Automatic Design and Implementation of Language Datatypes

Stan Shebs
Robert Kessler

Department of Computer Science
University of Utah
Salt Lake City UT 84112

Abstract

Language implementation is in need of automation.
Although compiler construction has long been aided
by parser generators and other tools, interpreters and
runtime systems have been neglected, even though
they constitute a large component of languages like
Lisp, Prolog, and Smalltalk. Of the several parts of
a runtime systeim, the primitive datatype definitions
present some of the most difficult decisions for the im-
plementor. The effectiveness of type discrimination
schemes, interactions between storage allocation and
virtual memory, and general time/space tradeofls are
issues that have no simple resolution—they must be
evaluated for each implementation. A formalism for
describing implementations has been developed and
used in a prototype designer of primitive data strue-
tures. The designer is a collection of heuristic rules
that produce multiple designs of differing character-
istics. Cost evaluation on machine code derived from
those designs yields performance formulas, which are
then used to estimate the designs’ effect on bench-
mark programs.

1 Introduction

In recent years there has been a move towards higher-
level languages such as Lisp, Prolog, Smalltalk, APL,
SETL, Snobol, Icon, and others. These languages are
all designed around abstract models of computation,
as opposed to C or Pascal, whose designs mirror ex-

Permission 1o copy without fee all or part ol this material is granted provided
that the copies are not made or distributed for direet commereiad advantage,
the ACM copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Association tor
Computing Machinery. To copy otherwise, or to republish, reguires a fee and/

or specitic permission.

©1987 ACM 0-89791-235-7/87/0006/0026

..... 75¢

26

isting hardware. For instance, Lisp is based on lists
and functions, while APL is based on array opera-
tions and Snobol on string pattern matching. Even
the detractors of these languages admit that they
speed up the program development process, and re-
sult in simpler, more maintainable and more flexible
programs.

Unfortunately, this advantage is bought at the
price of significantly more complex implementations.
The “semantic gap” between hardware and software
is well known, and the gap widens in proportion to
the abstractness of the language. It falls to the imple-
mentation to fill up the gap, either by relying on an
extraordinarily complicated compiler, or by including
a runtime system simulating a virtual machine.

In practice, nearly all implementations of abstract
languages use some sort of runtime system. How-
ever, these runtime systems are constructed entirely
by hand, in many cases as imperative or even assen-
bly language programs (though most Lisp systems
are at least partly self-defined). Runtime systems
can range in size from a few pages of code for an
interpreter written in a high-level language [1] to up-
wards of 100,000 lines of Lisp for some commercial
Lisp systems. Although part of the code consists
of simple library functions, many language systems
must also include algorithms for things like garbage
collectors, whicli are notorious for complexity and dif-
ficulty. Interpreters and debugging environments are
an additional source of complexity.

The sad consequence is that many interesting lan-
guage designs have never been properly implemented.
Although most language interpreters are very small
high-level language programs, the additional effort
required to get performance comparable to conven-
tional languages is truly staggering. As a result,
only a few imiplementations of abstract languages!

10ur languages of interest have many features in common,
but there does not seem to be a general term for them., “Ab-
stract language” is our tentative choice.

are really usable. MNany of those performance un-
provements were achieved at the expense of internal
abstraction and flexibility, which hinders further op-
timization and ultimately puts a ceiling on actual
performance of abstract languages.

The object of this paper is to analyze the gen-
eral problem, and to present some investigations into
a subproblem of special interest, namely the design
and implementation of primitive datatypes in a lan-
guage. We approach datatypes with the intention of
aulomating their design, particularly the major de-
sigh decisions and their tradeoffs. The method is
based on the use of heuristic rules producing designs
for which time and space costs are evaluated, a pro-
cess which yields surprising conclusions when applied
to real programs,

2 Parts of Lisp

Our work focuses on Lisp for two reasons: we
are familiar with both the language and its imple-
mentations, and Lisp has been implemented many
times, perhaps more often than any other abstract
language. Systems have built on earlier systems’
strengths while innovating in other areas, and a size-
able body of (mostly unpublished) implementation
lore has evolved.

Any Lisp is conventionally divided into compiler,
interpreter/runtime system, and programming envi-
ronment. The programming environment consists of
those functions which are used during interaction,
but which do not normally appear in programs. It is
largely “user-style” code. The compiler is a (large)
Lisp program that produces machine language, while
the runtime system is usually a mixture of Lisp,
pseudo-Lisp, and assembly code. The runtime sys-
tem is usually larger than the compiler, and it con-
sumes much, if not most, of the development time.
Figure 1 show a number of Lisp implementations and
the relative sizes of their compilers and runtime sys-
tems, and includes some conventional language sys-
tems for comparison. The positions on the graph
are quite approximate, since they depend on pro-
gramming style; but the Lisp grouping and non-Lisp
grouping are readily distinguished.

Lisp runtime systems divide naturally into two
kinds of functions:

¢ Primitive datatype operations. Lowest-level
functions such as car and numberp are written
etther in machine language or a Lisp variant en-
hanced with low-level operations.

e Library functions. These functions are normally

27

BSD F77

25 BSD Pascal

20
C BSD C
0
m
P15
| ‘ T
] ‘ .
o . PSL Spice —
r10
S o
i Franz P CL
e 5| Pas-P

ol Sch84 Xlisp
0 5 10 15 20 25

Size of Runtime in K lines

Figure 1: Relative Sizes of Language Systems

coded in Lisp and range from simple functions
like member to Common Lisp’s {19] elaborate
format function. The interpreter eval itself also
falls in this category.

The library functions are not amenable to automa-
tion, since they are about as easy to code as they are
to describe—for many (such as member) the formal
logic specification is nearly isomorphic to the Lisp
code! Equational descriptions of interpreters are also
close to the actual code, and have been used to syn-
thesize Lisp eval [11].

On the other hand, the implementation of primi-
tive datatypes presents some of the most difficult and
perplexing questions that face the implementor. Ma-
chine architectures typically supply only bits and ar-
rays of bits as their “abstract data types”, and those
types bear little relation to strings, lists, and variable-
size arrays. The abstract types must be efficiently
simulated by hardware; there is no way to avoid or
violate these abstractions, because they are so funda-
mental to the language. Efficient implementation is
not an issue of traditional computational complexity,
because the operations usually consist of only a few
machine instructions each. Instead, careful study of
machine architecture is required, down to the count-
ing of bits and clock cycles.

How crucial are the implementations of primitive
datatypes? No completely adequate study of the
overall cost of a datatype design has ever been done,
since it would require a system designed to be more

flexible than usual. Not only must it be possible to
change representations without rewriting the cntire
prograin, but the rest of the system should not de-
pend on a representation even indirectly. For exam-
ple. garbage collecting the entire address space might
make sense with tagged representations, but be unde-
sirable with a system with separate data spaces that
can be GCed individually. Such a changeable lan-
guage systen1 does not now exist. Implementors tell
stories of dramatic speedups achieved by change of
represeutation during development, but of course the
situations are not reproducible. Steenkiste and Ifen-
nessy [20} have done some detailed studies of costs
for Portable Standard Lisp (PSL) on a RISC proces-
sor. They found that on the average, 52% of program
execution time was spent in runtime system func-
tions, and that type handling was 22% of execution.
It should be kept in mind that the PSL compiler is
not a highly optimizing compiler, and that a better
compiler will make the percentage overhead larger.
Ultimately, performance gains will be limited by the
runtime system instead of the compiler.

3 Related Work

Automatic design of builtin datatypes for a language
has not been done to date. However, a substantial
amount of relevant work can be found addressing the
implementation of data structures for a user program.

In 1974, Gotlieb and Tompa [9] gave an algorithm
Lo select a representation of a database-like ohject.
The choices included a dozen designs ranging from
linked lists to balanced trees. The first stage of
the algorithin was a procedural encryption of several
heuristics, which pruned choices to about three de-
signs. Fach of those was then analyzed by generating
a formula for the costs of abstract operations, Rowe
and Tonga [16] did similar work, but with a somewhat
more generalized method for defining datatypes, in-
volving a large nuinber of special attributes.

In the AT world, Barstow’s program synthesizer
PECOS [2) and Kant's optimizer LIBRA [12] in-
cluded rules to design and optimize implementations
of abstract types for collections and mappings, using
hash tables, lists, bit arrays, and several other Lisp
object types. Since the input specifications were es-
sentially programs in a very-high-level language, the
many heuristic rules in PECOS operated by succes-
sive refinement, gradually transforming an abstract
program into a concrete one. Among these rules were
several that changed abstract types inlo implemen-
tation types, bul without any consideration of rela-

tive efficiencies. LIBRA worked closely with PECOS,

28

using some rather sophisticated analysis to estimate
execution times for partially-written programs. Low
[13] presented an example of data structure selection
for abstract sets and lists in a subset of SAIL, using
a hill-climbing algorithm and user input to decide on
the best representation. Another interesting idea was
to execute the program with a default representation
in order to gather usage statistics.

SETL [18] is an example of the incorporation of
these ideas about data structure sclection in a com-
plete language. SETL is based on the idea of scts as
primitive datatypes, where each set variable may be
represented differently within a program; one might
have its value as a bit table, another a list, and a
third an array. The SETI compiler uses flow anal-
ysis to help select representations that minimize the
number of coercions [6).

Since a runtinie system is just a program, the cited
work could in theory be applied directly. Our prob-
lem differs in that generation of a more efficient run-
time system has a very high payofl and it therefore
justifies more computation to find a good design.
Also, patterns of usage are much harder to deter-
mine for a language than for most user programs. so
cost estimation is a more difficult problem.

4 Notation

Before mechanization must come formalization. We
introduce a facility loosely based on constructive type
theory, and use it to help describe the primitive struc-
tures of some real implementations.

4.1 Defining Datatypes

The desirable formalism is somewhere between do-
main theory [21], which is too weak to express many
interesting types, and axiomatic type specifications
[10], which are too general even to decide about the
existence of models. Constructive datatypes as pro-
posed by Cartwright [3] provide a good balance of
theoretical and practical qualities. They are built in
four ways: conslruction, union, subset, and quoticnt.
Additions to this toolkit (such as sequences and nu-
meric ranges) are conveniently built from the basic
operations.

Construction is what we normally think of as
structure-building, and will be written

(struct name
(sloti typel)
(slot2 type2)

3

which says that a type named name has components
named slotl, slot2, ctc. of types typel, type2,
clc.

Union has the semantics of ordinary set union, in
which AUA = A, However, we need to attach names
to the parts, so we wrile union as

(union name
(predicatel typel)
{predicate2 type2)

)

where the predicates are the names of predicate
functions that distinguish each type.

Subsets and quotients are similar in that they both
involve pieces of code written in a pure first-order
Lisp.

(subset name type predicate)

designates a subset of type for which the predicate
function predicate is true, while

(quotient name type equivalence)

designates a set of equivalence classes within type,
partitioned according to the function equivalence.

The following constructs are useful additions (def-
mition in terms of previous operations is left as an
exercise):

(enumerate name x1 x2 xn)

designates the set containing the elements x1 through
xn.

(integers name)
(range name nl n2)

designate the set of all integers and specific ranges
of integers. 'I'he set of integers can never really be
implemented on a finite machine, but its subsets are
quite useful.

{seq name type n)
(seq name type (range ni n2))
(seq name type *)

defines sequences of fixed, variable, and unbounded
length, respectively. The specification of a range of
lengths for variable length objects makes explicit a
part of abstract language design that is frequently
left vague. Finally,

(array name type nil n2 ...)

represents an array with dimensions ni, n2, ...,
whose elements are all in type.

29

(quotient Q
(subset fractions
(struct rawQ
(numerator integers)
(denominator integers))
(lambda (x)
(not (equal 0 (denominator x)))))
(lambda (x y)
(equal (* (numerator x)
(denominator y))
(* (numerator y)
(denominator x)))))

Figure 2: Definition of Rationals

This set of abstract types provides suflicient flex-
ibility to represent almost all first-order types of in-
terest. Unfortunately, although function types are
useful, they are also higher-order and must be rep-
resented extensionally (as sets of pairs) rather than
intensionally (as programs).

With this notation, the set of rational numbers Q
is defined as pairs of integers (with nonzero denom-
inator) equivalenced by the familar rule for equality
of two fractions, as shown in Figure 2. Note that
the constructive type system does not define func-
tions such as multiplication—it is assumed that a
surrounding system 1s capable of defining recursive
functions.

4.2 Defining Machines

The deseription of a real machine comes in two parts.
The first is a description of the storage structures
that is, the machine’s datatypes. Almost all exist-
ing hardware is binary with fixed storage sizes and
shapes, so arrays are useful. To avoid some com-
plexity, the elements of storage are modelled as num-
bers rather than sequences of bits. Tor instance, the

MG8000 will be described as

(range byte 0 258)
(range addr 0 (expt 2 24))
(range long (- (expt 2 31)) (expt 2 31))

{struct m68k
(a (array areg addr 8))
(4 (array dreg long 8))
(m (array memory byte (expt 2 24))))

which says that it has a collection of 8 24-bit registers.

8 32-bit registers, and a memory of 221 8-hit bytes.
Although the description of storage structures is

sufficient to generate implementation designs, we will

also need some description of the machine’s instruc-
tions. Formally, a machine instruction is a function
mapping a machine state into another state, but a
less-formal procedural model will suffice for our pur-
poses. We define instructions with a bit of Lisp-like
code; for instance

(setf (aref d 0)
(logior (aref d 0)
(aref m (+ (axef a 3) 4))))

is the 68000’s inclusive OR operation, with operands
d0 and the (32-bit) memory word at an address offset
by 4 from the contents of register a3d. Its time cost is
a constant; 18 clock cycles [14].

4.3 Describing Implementations

An implementation description is defined to be a
function d which maps states of the machine to el-
ements of abstract types. This is the reverse of what
one might expect, but multiple machine states can
represent .the same object (consider the presence of
garbage in memory), while it is never the case that
the same machine state represents diflerent ohjects
at different times.

As an example, consider a primitive Lisp-like lan-
guage which has only numbers and pairs, defined as:

(union Sexp
(integerp (range int O 1000))
(consp (struct cons (car Sexp)
(cdr Sexp))))

implemented on a machine with one register and a
memory (68000 minus the extra registers);

(struct m
(r long)
(array mem byte (expt 2 24)))

An implementation d is a function mapping between
these two types:

d €m — Sexp

and could be defined to map numbers into numbers
directly, but to tag a pointer to a pair by setting
tlie most-significant bit to one. The pointer itself
addresses a region of memory that contains represen-
tations of the car and cdr in successive locations. The
mathematical definition of d is

d(n, M) = n, where n € [0,1000)
d(e + 2%, M) = cons(d(My, M), d(Myyr, M)

but this notation quickly gets cumbersome (consider
that we have here eliminated the distinction between

30

[0] integer]
ol |

car
cdr

Figure 3: S-expression Storage Layout

byte and longword addressing!), and so we use Lisp
syntax when processing on the machine, and pictures
for readability; see Figure 3. Of course, this is but
one of many possibilities. The tag bit could have been
placed elsewhere, or some other means of type dis-
crimination used, or car and cdr stored in a diflerent
order in memory or even in non-adjacent addresses.
The next section is devoted to looking at decisions
that are made by expert implementors.

5 Describing Real Systems

The formal notation of the previous section gives us
a context in which to study real systems, but says
nothing about how they are actually designed. We
now sketch out some datatype designs of some exist-
ing implementations, emphasizing Lisp but including
examples from other languages as well.

5.1 Lisp
Lisp dialects typically define a large number of rela-
tively independent types (for instance Common Lisp
requires about 30 distinct builtin types) so the defi-
nitions of types look much like the S-expression ex-
ample of the previous section, but with more ele-
ments in the union. The two most commonly used
approaches are tagging, in which each pointer incor-
porates some information about the type of the ob-
Ject being pointed to, and separate spaces, in which
each kind of object is stored in a separate region of
memory. Actually, there is a continuous spectrum of
mixed approaches and most Lisps use a combination
of tagging and spaces. For example, PSL is nearly
a pure tagged Lisp, but compiled code resides in a
separate Binary Program Space which is allocated
differently and not garbage collected.

In the most basic version of tagged types, the tag
field must have enough bits to discriminate all types,
and the data field must be large enough to address

M

T

Figure 4: Tagged Memory Layout

N
t3 area
r—ﬁ;l_;
ts area
t, area

Figure 5: Separate Spaces Layout

enough objects in memory. The most obvious de-
sign puts tags into the high-order bits, then a single
mask operation yields a valid memory address. The
memory layout is illustrated in Figure 4. The size
of the tag field is set as small as possible, to save
space; but sometimes a tag field of a “natural” size
is more eflicient, as on a 68000, where an 8-bit tag
field in a 32-bit word allows exploitation of the byte
operations.

In some
systems, pointers are always aligned on multiword
boundaries, so there are a few unused bits in the low
end of the pointer. These bits can profitably be made
part of the tag, but there are usually not enough to
discriminate all types; low tags must be augmented
by additional tag bits elsewhere.

The other important approach to type discrimi-
nation allocates each type to a distinet region of
memory, as shown by Figure 5. Type discrimina-
tion is accomplished by comparing pointers to region
boundaries. The disadvantage of fully general sep-
arate spaces is that it requires two address compar-
1sons to recognize a type, while tag recognition re-
quires only one mask and one compare, possibly on
a smaller number. If the size of each space needs to
be variable, allocation and type discrimination will
be slowed down further. It is unlikely that the size of
each space needs to be completely flexible, so imple-
mentations that use separate spaces will restrict the

There are other places to put tags.

31

possible values of space boundaries to be multiples of
2" for some n. In fact, if n = Wordsize — Taysize,
then each object appears to have a tag field and can
be discriminated by masking. At the same time, it
is also a valid, usable pointer. The entire address
space will be sparsely but entirely spanned by data
objects, which usually means that virtual memory
is appropriate, but the usable address range is not
constrained in the way that it is with pure tagging.

Simple address boundaries for spaces are somewhat
inflexible, and an unanticipated distribution of object
types can defeat the allocator long before all of mem-
ory is used. Therefore, a variant approach uses small
spaces instead of large ones, and a table to indicate
the type of object being stored in each space; thus
the term Big Bag of Pages (BBOP or Bibop).” This
setup is quite flexible and retains the advantages of
separate spaces, but type discrimination involves an
extra memory reference, while allocation of space for
very large objects is a problem.

5.2 Prolog

Contemporary Prolog systems still have very few
builtin datatypes; the widely available C-Prolog [15]
has only integers and floats in addition to terms.

(struct predicate
(head term)
(body (seq xx term *)))
(struct term
(functor atom)
(args (seq yy atom *)))
(union atom
(intp (range ints (- (expt 2 28))
(expt 2 28)))
(floatp floats) ; complicated
(symp symbols))

Detailed internal descriptions of Prologs are still rare.
C-Prolog uses a combination of tagging and spaces.
“Immediate” types are tagged with the high-order
bit (in a 32-bit word) of 1, while pointers get a tag
of 0. Bits 29-30 tag four kinds of immediate objects:
integers, floats, pointers to clauses, and pointers to
terms. Integers are 29-bit twos-complement, wlhile
floats are in the machine’s format with the last three
bits of the mantissa dropped (in order to fit the tag).
The pointer arca is divided into regions for atoms,
heap, and various dynamic structures. The relatively
infrequent type discrimination on pointers uses two

2BBOP pages should not be confused with virtual memory
pages, although there may be some advantage to making the
BBOP page size a multiple of VM page size.

global stack

(ool infeger | local stack
([o1]_float] trail

Qo[e——f—
Al e——F—
[of —

heap

atoms

Figure 6: C-Prolog Memory Layout

address comparisons. Atoms are fairly complex ob-
jects with a number of slots, including pointers to
themselves and to all of the terms that they appear
in. The general effect is to gain speed at some ex-
pense in space; this is reasonable, since C-Prolog has
no compiler.

5.3 Smalltalk

Smalltalk-80 has as one of its design goals extreme
uniformity in the representation of datatypes as ob-
jects, so the definition of objects looks like

(union object
(nump (range num ~32768 32768))
(objp (seq obj object (range 0 65536))))

The Smalltalk-80 virtual machine specification in the
“Blue Book™ [8, pp. 564-566] dictates how objects
are to be represented. Object pointers are always 16-
bit quantities, and point to vectors of object pointers,
with the exception of integersin the range [—214, 214),
The integers are tagged with a 1 bit in the least-
significant position (thereby making integer opera-
tions less eflicient while speeding up object opera-
tions).

6 A Prototype Designer

The goal of the automatic designer should now be
clear; to construct the functions d that map machine
states to elements of abstract types. There are two
approaches: construct an algorithm that generates
all possibilities, or write a set of heuristic rules that
are incomplete but produce plausible designs. The
first approach requires deeper understanding of the
implementation process, especially to avoid combina-
torial explosions. For example, there are (27)! ways

to map n-bit integers into an n-bit word. It is likely
(though not guaranteed) that only the identity map
1s of interest.

Heuristic rules can avoid combinatorial problems
at the risk of missing interesting implementation
tricks. One compromise is to use general rules, but
to order their operation heuristically. The designer
can then be set to search until time runs out. Our
system does not need this as yet—its rules generate
only known good designs.

The next stage is to evaluate designs. Since the
code for primitive datatype operations is quite small,
1t 1s not sufficient to make an estimate—we must syn-
thesize the exact code to be used. The synthesizer
should be fairly intelligent, since many performance
differences depend on algebraic identities or quirks of
an instruction set. This part of our system is quite
crude.

Once the instructions have been generated for each
primitive operation, then we can count instruction
clock cycles to determine the speed of the operation.
Summation over all operations yields a formula for
total overhead of the design.

6.1 Design Rules

The first stage of the designer is coded in the MRS
logic programming language [17].5 There are rules for
both separate spaces and tagged architectures. The
overall goal of the designer is to satisfy a predicate of
the form

(design $type $constraints $design)

where $type is the abstract type, $constraints arve
any constraints on the design that have been imposed
(initially nil), and $design is the generated design.
The constraints provide a simple form of communica-
tion for those parts of the design that interact with
each other, such as when the allocation of tag bits
within a word constrains the available word size for
subtypes. The machine description is a set of predi-
cates.
If the rule system is given a predicate, say

(design
(union sexp
(integerp (range int 0 1000))
(consp (struct cons (car sexp)
(edr sexp)))))
nil

$x)

3MRS is implemented on top of Lisp, and borrows the S-
expression syntax. Terms and rules are ordinary S-expressions;
a prefixed $ on a symbol flags it as a logical variable.

Name | Class Details

dy hitag 0 tag ints, car/cdr
da hi tag 0 tag ints, cdr/car
ds hitag 0 tag conses, car/cdr
d4 hitag 0 tag conses, cdr/car
ds lo tag 0 tag ints, car/cdr
dg lo tag 0 tag ints, cdr/car
ds lo tag 0 tag conses, car/cdr
dg lotag 0 tag conses, cdr/car
dg spaces car/edr

dyo spaces cdr/car

Table 1: Machine-Generated Designs

It will succeed and bind $x to the function definition

(defun d (r m)
(labels
((tag (x) (1db (byte 1 31) r))
(data (x) (ldb (byte 31 0) x)))
(case (tag r)
(0 r)
(1 (cons
(d (aref m (+ (data r) 0)))
(d (aref m (+ (data r) 1)))
DI

which describes exactly the same implementation
used as an example in the last section.

Backtracking produces nine additional designs, two
of them using separate spaces for types (and varying
in relative position of car and cdr), and the remaining
seven using tags in various positions and assignments.
Table 1 summarizes the characteristics of each design
and assigns them labels to be used later.

Figure 7 exhibits several rules. MRS rule syntax is
“hackwards” from Prolog—the goal is in the second
part of the rule, while the body of the rule has an
and wrapped around it.

6.2 Code Generation

The definitions of d do not tell directly how expensive
the datatypes are to implement. The next stage is to
generate machine code in sufficient detail to estimate
time and space requirements. This could be modelled
as a code generator construction process as used with
compilers [4], except that our whole design method
depends on the ability to find clever patterns. There-
fore this stage still needs some human assistance.

In addition, there is a problem that d is an incom-
plete specification. It may say, for example, that a
cons cell occupies a portion of memory, but it does

33

not say how that piece of memory was acquired. The
allocator could allocate from low to high addresses,
high to low, or even work randomly. We sidestep
this deficiency by using only conventional designs for
now.

The coding patterns are to be used by the com-
piler to code function calls inline, since function call-
ing protocol is generally quite expensive compared to
the costs of the operations proper. Locations of ar-
guments and results and temporaries are abstracted
into special constructs, since the compiler’s regis-
ter allocator should be free to arrange positions of
operands optimally. Although Lisp predicates are
defined to return atoms t or nil, the compiler will
avoid generating code to do so and will use condi-
tion codes directly when compiling predicates inline.
This means that our patterns need express only the
key decisions, and can rely on the compiler to handle
details. The patterns are incorporated into the run-
time system by the expedient of defining primitive
functions in terms of themselves:

(defun car (x)
(car x))

This rather bizarre-looking construct only works if
the compiler codes the function call inline, but is nev-
ertheless common in present-day Lisp systems.

The following patterns are for a tagged implemen-
tation in which cdr follows car in memory. The in-
tegerp and consp predicates must do both a mask
and a test:

(defpredicate integerp
(set? (tmp 1) (logand (arg 1) tag-mask))
(= (tmp 1) integer-mask)) ; cmp.l

(defpredicate consp
(setf (tmp 1) (logand (arg 1) tag-mask))
(= (tmp 1) cons-mask)) ; cmp.l

where tag-mask masks out all but the tag field, and
integer-mask and cons-mask are constants derived
from the values of the tags (by shifting). There is
an opportunity for an optimization here—if for in-
stance integer-mask is zero, then since the 63000
AND operation sets condition codes, the comparison
is unnecessary, which halves the time necessary to
do an integerp test. This sort of optimization will
prove to be important in other functions as well.

Integer creation merely involves the adding of the
tag to the number.

(defopen make—integer
(setf (result 1)
(logior (arg 1) integer-mask)))

;53 If a range of integers is small enough, they can be represented directly.
;;; Otherwise we have to go to bignum-type representations.

590

(if (and (- $n2 $n1 $range)

(available-word $constraints $wordsize)

(expt 2 $wordsize $maxnum)
(< $range $maxnum))
(design ((range $name $ni1 $n2)

[

$auxin) $constraints (r .

nil)))

;13 Implement a union of datatypes using high-order bit tags.
;3 Machine words may already be partly used up, so account for this.

1

(if (and (delaminate $preds $types $parts) ; separate names from types

(length $types $len)

(log2-ceiling $len $bits) ; compute how many bits needed

(available-word $constraints $wordsize)

(- $wordsize $bits $datasize)

;7 do subtype designs

(design-list $types $auxin
((vordsize $datasize)

; new wordsize

(accessor (data r)) ; new accessor

$constraints)
$designs $auxout)

(assign-tags $designs $bits $asgns)) ; random assignment

(design ((union $name . $parts) . $auxin)
$constraints

((case (tag r) $asgns)

((tag (x) (1db (byte $bits $datasize) r))
(data (x) (1db (byte $datasize 0) r))

$auxout))))

LI

;3 AVAILABLE-WORD examines a set of constraints to determine how many

;1; bits remain unused.

Figure 7: Some Design Rules

Again, if the integer tag is 0, its mask is all 0 bits,
which is an identity for inclusive OR. Hake-integer
is therefore empty, and the compiler would not gen-
erate any tag-stripping code. Make-integer is never
called explicitly, but it does appear in other opera-
tions, for instance addition:

(defopen +
(setf (tmp 1) (logand (arg 1) data-mask))
(setf (tmp 2) (logand (arg 2) data-mask))
(setf (tmp 3) (add (tmp 1) (tmp 2)))
(make-integer (tmp 3)))

If the integer tag is 0, then the function reduces to
the add instruction alone; a savings of 3 out of 4
instructions. Incidentally, elimination of the tag op-
erations in addition raises the possibility that integer
arithmetic will overflow and create an ohject of some
other apparent type, with disastrous consequences;

we assume the compiler will not allow raw addition
instructions if there 1s any chance at all of an over-
flow.

The cons creation routine cons is interesting, be-
cause it involves allocation of storage. Normally the
allocator is used by a number of primitives and so we
abstract it into a function of constant performance
over varying designs (thus completely neglecting the
price of storage reclamation!). Its cost will not he
added into the cost of doing a cons.

(defopen cons
(setf (tmp 1) (allocate 2))
(setf (mref heap (tmp 1)) (arg 1))
(setf (mref heap (+ (tmp 1) 4)) (arg 2))
(setf (result 1)
(logior (tmp 1) cons-mask)))

Both car and cdr are memory references, but

one of the two will have to do displaced addressing
(which is slightly slower than indirect addressing on
the 68000).

(defopen car
(setf (tmp 1) (logand (arg 1) data-mask))
(setf (result 1)
(mref heap (tmp 1))))

(defopen cdr
(setf (tmp 1) (logand (arg 1) data-mask))
(setf (result 1)
(mref heap (+ {(tmp 1) 4)))

These patterns (with the parametrized masks)
cover only the four designs that use high-order tag
bits., Low-order tag bits are similar, but shifting
operations may be necessary, such as for multiplica-
tion. The patterns are quite different for the separate
spaces designs. Basically, they omit all the masking
operations and have more complicated predicates,

6.3 Cost Evaluation

Now that the functions of interest have been coded,
we can put together formulas for the performance of
each of the four designs. Our 68000 machine descrip-
tion includes time and space costs for each instruc-
tion. As mentioned earlier, the compiler is assumed
to be capable of arranging operands into the right
places, which simplifies the calculations.

Adding up the cost of each instruction in each op-
eration for the design using a high-order tag with
integers getting 0, pairs getting 1, and car stored at
the lower address, gives us the following formula:

Time 28integerp -+ Omakeinteger

28consp + 42¢cons + 30car + 34cdr

Table 6.3 lists the coefficients of the formulas for all
ten designs,

Although our derivation started with extremely
simple types, the final expressions for the time cost of
the datatype’s operations are rather complex. None
of the ten designs are obviously inferior; for any given
design, one could compose a Lisp program for which
that design is the most efficient. But of course we
can select only one for the implementation, so we
must evaluate the designs for some sct of “typical”
Lisp programs. An early study by Clark and Green
[5] used programs written in an obsolete style, and
is no longer particularly useful. The Stanford Lisp
Performance Study [7] is well-known, contemporary,
and includes counts of function calls in each of its
benchmarks, from which we can get some informa-
tion about relative costs of each design. Calcula-
tions were done on most benchmarks, excluding those

35

which were similar to another one being used (CTAK,
DDERIV), used only datatypes not being modelled
(I'FT, FRPOLY1S5), or did I/O (TPRINT). Table 3
lists the raw clock cycle counts scaled down by a fac-
tor of a million. The numbers are absolute overheads,
so a value of 0.0 represents optimality, where the run-
time system does not slow things down at all.,

Overall, the best performance is shown by the sep-
arate spaces designs. Separate spaces are less eflicient
for type discrimination, but the benchmarks do far
more operations whose type is known. It is unknown
as to whether real programs do more or less type
dispatching. It is worth noting at this point that
our assumptions about the compiler are somewhat
optimistic; many real Lisp systems will add a type
test even to primitive operations. Separate spaces
and BBOP schemes would then fare less against tag-
ging. The differences between low-order and high-
order tags were nonexistent, except for FRPOLY10,
which does a lot of multiplication and division, and
the relative positions of car and cdr gave rise to only
the minor differences. There does not appear to he
any consensus as to which should be preferred. This
is also the case with the assignment of tags in tagged
designs. Some benchmarks favor assigning the 0 tag
to cons cells, while others would do better with num-
bers getting the honor.

Although the effects are sometimes dramatic, they
may be insignificant in an entire implementation. Ac-
curate assessment of the overall effect must await ex-
periments in a real Lisp system, but Gabriel’s TAK
benchmark

(defun tak (x y z)
(if (not (< y x))
z
(tak (tak (1- x) y z)
(tak (1~ y) z x)
(tak (1~ 2) x y))))

(tak 18 12 6) ; evaluate this form

is small enough to be analyzed by hand. The PSL
compiler for the 68000 opencodes all function calls in
the benchmark except for the recursive ones, and it
also eliminates all use of tags and other type informa-
tion (since all data objects here are small numbers),
so the overhead of the runtime system is 0. Over-
all execution time is about 10.56 million clock cycles.
Use of a separate spaces representation does not add
any overhead, but if a tagged representation is used
and the integer tag is not 0, then an additional time
of 3.12 million cycles is consumed in tag stripping and
adding operations, resulting in a slowdown of 29%.
TAK actually underestimates the effect of datatypes,

hi tags lo tags spaces

Function dy dy ds dy|ds ds dr ds| dy dio

integerp 28 28 28 28|28 28 28 28|38 38

make-integer { 14 14 14 14|14 14 14 14| 0 0

+, ete 6 6 48 48| 6 6 48 48| 6 8

consp 28 28 28 28|28 28 28 28|38 38

cons 42 42 28 28 |42 42 28 28 | 28 28

car 30 34 12 16130 34 12 16|12 16

cdr 34 30 16 12|34 30 16 12|16 12

Table 2: 68000 Code Costs
Benchmark dy dy ds dy ds dg d- ds dy d1o
Tak 0.0 0.0 3.1 3.1 0.0 0.0 3.1 3.1 0.0 0.0
Takl 204 269 173 138 2904 259 173 138 | 173 1338
Boyer 60.6 619 399 412 | 606 6L9 399 41.2 | 44.1 454
Browse 66.3 69.6 377 410]| 66.3 696 37.7 410 | 37.6 40.9
Destruct 8.6 8.6 8.6 8.6 8.6 8.6 8.0 8.6 5.0 3.0
Traverse Init. | 62.0 8§59 659 5399 | 62.0 559 659 599 363 30.2
Traverse 195.6 195.6 110.7 110.7 | 195.6 195.6 110.7 110.7 | 110.0 110.0
Deriv b7 158 108 110} 157 158 10.8 11.0| 115 116
Div 16.8 16.3 10.0 9.6} 168 16.3 10.0 9.6 10.0 9.6
Puzzle 0.0 0.0 453 453 0.0 0.0 453 453 0.0 0.0
Triangle 0.0 0.0 167.2 167.2 0.0 0.0 1672 167.2 0.0 0.0
Frpolys 0.4 0.4 0.3 0.3 0.4 0.4 0.3 0.3 0.3 0.3
Frpoly10 5.0 4.9 4.4 4.4 5.0 5.0 4.5 4.5 3.7 3.7
Table 3: Millions of Clock Cycles Used by Integer and Cons Cell Functions

since most of its time is spent in function calls, even
more than for typical Lisp programs,

7 Future Work

Although we have demonstrated a complete passage
from abstract types to concrete code, it should be
clear that many asswmptions have been made and
many difficult issues lightly treated or ignored. Even
50, enough questions have been raised to make it
worthwhile to add some machine-generated designs
into a real implementation and to examine the con-
We are currently building a Common
Lisp implementation designed in part to allow rad-

sequences.

ical changes to data representations, which should
facilitate some interesting experiments.

The designer itself can be extended both by adding
more rules and by increasing the sophistication of the
formalisms to take into account such things as more
realistic memory models (including virtual memory).

We have concentrated on the explicitly defined

36

data types of a language, but an implementation
also has implicit datatypes, representing entities
like environments, control stacks, and trails. They
present a rich field for automatic design, but involve
rather deep reasoning about the structure of pro-
gramming languages; just consider the derivation of
stack frames and register windows for procedural lan-
guages or structure sharing for logic languages. Aa-
chine design of these structures goes a long way to-
ward fully automatic language implementation. The
advantages ave that those data structures are very
important to runtime performance, and relevant to
all programming languages.

8 Conclusions

Implementation of a language’s primitive datatypes
presents a number of interesting but hard questions
for the implementor. Automation raises additional
problems, since there are tradeofls that cannot be re-
solved algorithmically. Heuristic rules coupled with

code generation and cost evaluation provide the be-
ginnings of a solution, by assessing the consequences
of various decisions with only the abstract type and
machine description as input. Expansion of these
techniques into a full system could greatly improve
the process of constructing runtime support systems

for abstract languages.

Acknowledgements. We thank the members of the
Utah Portable Al Support Systems group, especially
[Tarold Carr, Jed Krohnfeldt, and Sandra Loosemore
for many discussions, not to mention reading drafts
on short notice! Julian Padget also provided valuable
encouragement and advice.

Monetary support was provided by the IHewlett-
Packard Corporation, the National Science Founda-
tion under grant number AICS81-21750, and the De-
fense Advanced Research Projects Agency under con-
tract number DAAKIL1-84-K-0017.

References

[1] H. Abelson, G.J. Sussman, and J. Sussman.
Structure and Interprelation of Clomputer Pro-
grams. MIT Press, 1985.

D.R. Barstow. Knowledyge-Based Program Con-
struction. North Holland, 1977.

R. Cartwright. A constructive alfernative to
axiomatic data type definitions. In Proc. 1980
LISP Conference, pages 46-55, 1980.

R.G.G. Catlell.
generators from machine descriptions.

TOPLAS, 2(2):173-190, April 1980.

Automatic derivation of code

ACM

D.W. Clark and C. Green. An empirical study of
list structure in Lisp. CACM, 20(2):78, Febru-
ary 1977.

(6] SM. Treudenberger, J.'T. Schwartz, and AL
Sharir. Experience with the SETL optimizer.
ACM TOPLAS, 5(1):26-45, January 1983,

R.P. Gabriel. Performance and Fvalualion of
Lisp Systems. MIT Press, 1985,

(8] A. Goldberg and D. Robson. Smelltalk-80: the
Language and Its Tmplementation. Addison-
Wesley, 1983.

[9] C.C. Gotlieb and FAV. Tompa. Choosing a stor-

age schema. Acta Informatica, 3:297-319. 1974,

37

(10]

(11]

(12]

(1]

[19]

(20]

[21]

J.V. Guttag. Abstract Data Types and the
Devclopment of Data Structures. CACM,
20(6):396-404, June 1977.

C.M. Hoffman and M.J. O'Donnell. Program-
ming with equations. ACA TOPLAS, 4(1):83-
112, January 1982.

E. Kant. The selection of eflicient implementa-
tions for a high-level language. In Proc. Symp.
on Artifical Intelligence and Programming Lan-
guages, pages 140-146, 1977.

J.R. Low. Data structure selection: an example

and overview. CACM, 21(5):376-385. May 1978,

Motorola, Inc. MC68000 16-Bil Microprocesor
User’s Manual, Prentice-Hall, Inc., 1982,

Pereira, F.C.N., el al. C-Prolog User's Manual.
Technical Report, University of Edinburgh, Jan-
uary 1986.

L.A. Rowe and F.AL Tonge. Automating the

selection of implementation structures. [EEL
Transactions on Software Engineering, Sk-
4:494-500, November 1973.

S. Russell. Compleal Guide lo MRS, Re-

port KS1.-85-12, Computer Science Department,
Stanford University, June 1985.

J.T. Schwartz, R.B3.K. Dewar, [2. Dubinsky, and
E5. Schonberg. Programining with Sets: an In-
{roduction to SETL. Springer-Verlag, 1986.

G.L. Steele. Commeon Lisp: the Language. Dig-
ital Press, 1984.

P. Steenkiste and J. Henunessy. Lisp on a
reduced-instruction-set-processor. In Proc. 1986
ACA Conference on Lisp and Functional Pro-
gramming, pages 192-201, August 1986.

J.E. Stoy. Denotational Semantics. MIT Press,
1977,

