
Automatic Design and Implementation of Language Datatypes

Stan Shebs
Robert Kessler

Department of Computer Scienc e
University of Utah

Salt Lake City UT 84112

Abstrac t

Language implementation is in need of automation .
Although compiler construction has long been aide d
by parser generators and other tools, interpreters an d
runtime systems have been neglected, even though
they constitute a large component of languages lik e
Lisp, Prolog, and Smalltalk . Of the several parts of
a runtime system, the primitive datatype definition s
present some of the most difficult decisions for the im -
plementor . The effectiveness of type discrimination
schemes, interactions between storage allocation an d
virtual memory, and general time/space tradeoffs ar e
issues that have no simple resolution—they must b e
evaluated for each implementation . A formalism fo r
describing implementations has been developed an d
used in a prototype designer of primitive data struc-
tures . The designer is a collection of heuristic rules
that produce multiple designs of differing character-
istics . Cost evaluation on machine code derived fro m
those designs yields performance formulas, which ar e
then used to estimate the designs' effect on bench -
mark programs .

1 Introduction

In recent years there has been a move towards higher -
level languages such as Lisp, Prolog, Smalltalk, APL ,
SETL, Snobol, Icon, and others . These languages are
all designed around abstract models of computation ,
as opposed to C or Pascal, whose designs mirror ex-

Permission to cops ssithoul all or part of this material is granted provide d

that the copies are not made or distributed for direct commercial advantage ,
the \C\I copyright notice and the title of the publication and its dare appear ,
and notice is gisen that coming is by permission of the Association fo r

Computing Machinery . to cops otherwise, or to republish, requires a fee and /

or sped tie perm 15510, .

©1987 ACM 0-89791-235-7/87/0006/0026 	 75t

isting hardware . For instance, Lisp is based on list s
and functions, while APL is based on array opera-
tions and Snobol on string pattern matching . Even
the detractors of these languages admit that the y
speed up the program development process, and re-
sult in simpler, more maintainable and more flexibl e
programs .

Unfortunately, this advantage is bought at th e
price of significantly more complex implementations .
The "semantic gap" between hardware and softwar e
is well known, and the gap widens in proportion t o
the abstractness of the language . It falls to the imple-
mentation to fill up the gap, either by relying on a n
extraordinarily complicated compiler, or by includin g
a runtime system simulating a virtual machine .

In practice, nearly all implementations of abstrac t
languages use some sort of runtime system . How -
ever, these runtime systems are constructed entirel y
by hand, in many cases as imperative or even assem-
bly language programs. (though most Lisp systems
are at least partly self-defined) . Runtime system s
can range in size from a few pages of code for a n
interpreter written in a high-level language [1] to up -
wards of 100,000 lines of Lisp for some commercia l
Lisp systems . Although part of the code consist s
of simple library functions, many language system s
must also include algorithms for things like garbag e
collectors, which are notorious for complexity and dif-
ficulty . Interpreters and debugging environments ar e
an additional source of complexity .

The sad consequence is that many interesting lan-
guage designs have never been properly implemented .
Although most language interpreters are very smal l
high-level language programs, the additional effor t
required to get performance comparable to conven-
tional languages is truly staggering . As a result ,
only a few implementations of abstract languages)

t Our languages of interest have many features in common ,

but there does not seem to be a general term for them . "Ab-
stract language" is our tentative choice .

9 R

26

are really usable . Many of those performance im-
provements were achieved at the expense of interna l
abstraction and flexibility, which hinders further op-
timization and ultimately puts a ceiling on actua l
performance of abstract languages .

The object of this paper is to analyze the gen-
eral problem, and to present some investigations int o
a subproblem of special interest, namely the design
and implementation of primitive datatypes in a lan-
guage . We approach datatypes with the intention o f
automating their design, particularly the major de-
sign decisions and their tradeoffs . The method i s
based on the use of heuristic rules producing design s
for which time and space costs are evaluated, a pro-
cess which yields surprising conclusions when applie d
to real programs .

T
I'SL

	

Spice

Pas-P .

Franz
HP CL

2 Parts of Lisp
Xlisp

b

	

5

	

10

	

15

	

20

	

2 5
Size of Runtime in K lines

Sch8 4

2 5

2 0
C
0
m
p 1 5

e
r 1 0
S

z
e 5

0

Our work focuses on Lisp for two reasons : we
are familiar with both the language and its imple-
mentations, and Lisp has been implemented man y
times, perhaps more often than any other abstrac t
language . Systems have built on earlier systems '
strengths while innovating in other areas, and a size-
able body of (mostly unpublished) implementatio n
lore has evolved .

Any Lisp is conventionally divided into compiler ,
interpreter/runtime system, and programming envi-
ronment . The programming environment consists o f
those functions which are used during interaction ,
but which do not normally appear in programs . It i s
largely "user-style" code . The compiler is a (large)
Lisp program that produces machine language, while
the runtime system is usually a mixture of Lisp ,
pseudo-Lisp, and assembly code . The runtime sys-
tem is usually larger than the compiler, and it con-
sumes much, if not most, of the development time .
Figure 1 show a number of Lisp implementations an d
the relative sizes of their compilers and runtime sys-
tems, and includes some conventional language sys-
terns for comparison . The positions on the grap h
are quite approximate, since they depend on pro-
gramming style ; but the Lisp grouping and non-Lis p
grouping are readily distinguished .

Lisp runtime systems divide naturally into tw o
kinds of functions :

o Primitive datatype operations . Lowest-leve l
functions such as car and numberp are written
either in machine language or a Lisp variant en-
hanced with low-level operations .

e Library functions . These functions are normally

Figure 1 : Relative Sizes of Language System s

coded in Lisp and range from simple functions
like member to Common Lisp's [19] elaborat e
format function . The interpreter eval itself als o
falls in this category .

The library functions are not amenable to automa-
tion, since they are about as easy to code as they ar e
to describe—for many (such as member) the forma l
logic specification is nearly isomorphic to the Lis p
code! Equational descriptions of interpreters are als o
close to the actual code, and have been used to syn-
thesize Lisp eval [11] .

On the other hand, the implementation of primi-
tive datatypes presents some of the most difficult an d
perplexing questions that face the implementor . Ma-
chine architectures typically supply only bits and ar-
rays of hits as their "abstract data types", and thos e
types bear little relation to strings, lists, and variable -
size arrays . The abstract types must be efficiently
simulated by hardware ; there is no way to avoid o r
violate these abstractions, because they are so funda-
mental to the language . Efficient implementation i s
not an issue of traditional computational complexity ,
because the operations usually consist of only a fe w
machine instructions each . Instead, careful study o f
machine architectur e is required, down to the count-
ing of bits and clock cycles .

How crucial are the implementations of primitiv e
datatypes? No completely adequate study of the
overall cost of a datatype design has ever been done ,
since it would require a system designed to be more

27

flexible than usual . Not only must it be possible t o
change representations without rewriting the entir e
program, but the rest of the system should not de-
pend on a representation even indirectly . For exam-
ple . garbage collecting the entire address space migh t
make sense with tagged representations, but be uncle-
sirable with a system with separate data spaces tha t
can be GCed individually. Such a changeable lan-
guage system does not now exist . Implementors tel l
stories of dramatic speedups achieved by change of
representation during development, but of course th e
situations are not reproducible . Steenkiste and lien-
nessy [20] have (lone some detailed studies of cost s
for Portable Standard Lisp (PSL) on a RISC proces-
sor . They found that on the average, 52% of progra m
execution time was spent in runtime system func-
tions, and that type handling was 22% of execution .
It should be kept in mind that the PSL compiler i s
not a highly optimizing compiler, and that a bette r
compiler will make the percentage overhead larger .
Ultimately, performance gains will be limited by th e
runtime system instead of the compiler .

3 Related Wor k

Automatic design of builtin datatypes for a languag e
has not been clone to date . However, a substantia l
amount of relevant work can be found addressing the
implementation of data structures for a user program .

Inn 1974, Gotlieb and Tompa [9] gave an algorith m
to select a representation of a database-like object. .
The choices included a dozen designs ranging fro m
linked lists to balanced trees . The first stage o f
the algorithm was a procedural encryption of severa l
heuristics, which pruned choices to about three de -
signs. Each of those was then analyzed by generatin g
a formula for the costs of abstract operations . Rowe
and Tonga [16] did similar work, but with a somewha t
more generalized method for defining datatypes, in-
volving a large number of special attributes .

In the AI world, Barstow's program synthesize r
PECOS [2] and hant 's optimizer LIBRA [12] in-
cluded rules to design and optimize implementation s
of abstract types for collections and mappings, usin g
hash tables, lists, bit arrays, and several other Lis p
object. types . Since the input specifications were es-
sentially programs in a very-high-level language, th e
many heuristic rules in PECOS operated by succes-
sive refinement, gradually transforming an abstrac t
program into a concrete one . Among these rules were
several that changed abstract types into implemen-
tation types, but without any consideration of rela-
tive efficiencies . LIBRA worked closely with PECOS,

using some rather sophisticated analysis to estimat e
execution times for partially-written programs . Lo w
[13] presented an example of data structure selectio n
for abstract sets and lists in a subset of SAIL, usin g
a hill-climbing algorithm and user input to decide o n
the best representation . Another interesting idea wa s
to execute the program with a default representatio n
in order to gather usage statistics .

SETL [18] is an example of the incorporation o f
these ideas about data structure selection in a com-
plete language . SETL is based on the idea of sets a s
primitive datatypes, where each set variable may b e
represented differently within a program; one migh t
have its value as a bit table, another a list, and a
third an array . The SETT, compiler uses flow anal-
ysis to help select representations that minimize th e
number of coercions [6] .

Since a runtime system is just a program, the cite d
work could in theory be applied directly . Our prob-
lem differs in that generation of a more efficient run -
time system has a very high payoff and it therefor e
justifies more computation to find a . good design .
Also, patterns of usage are much harder to deter-
mine for a language than for most user programs, s o
cost estimation is a more difficult problem .

4 Notation

Before mechanization must come formalization . We
introduce a facility loosely based on constructive typ e
theory, and use it to help describe the primitive struc -
tures of some real implementations .

4 .1 Defining Datatype s

The desirable formalism is somewhere between do-
main theory [21], which is too weak to express man y
interesting types, and axiomatic type specification s
[10], which are too general even to decide about th e
existence of models . Constructive datatypes as pro -
posed by Cartwright [3] provide a good balance o f
theoretical and practical qualities . They are built i n
four ways : construction, union, subset, and quotient .

Additions to this toolkit (such as sequences and nu-
meric ranges) are conveniently built from the basi c
operations .

Construction is what we normally think of a s
structure-building, and will be writte n

(struct name
(slots typel)

(slot2 type2)

28

28

which says that a type named name has components
named slots, slot2, etc . of types typel, type2 ,
etc .

Union has the semantics of ordinary set union, i n
which AU A = A . However, we need to attach name s
to the parts, so we write union a s

(union nam e
(predicates typel)
(predicate2 type2)

where the predicates are the names of predicat e
functions that distinguish each type .

Subsets and quotients are similar in that they both
involve pieces of code written in a pure first-orde r
Lisp .

(subset name type predicate)

designates a subset of type for which the predicat e
function predicate is true, while

(quotient name type equivalence)

designates a set of equivalence classes within type ,
partitioned according to the function equivalence .

The following constructs are useful additions (def-
inition in terms of previous operations is left as an
exercise) :

(enumerate name xi x2 . . . xn)

designates the set containing the elements xi throug h
xn .

(integers name)
(range name ni n2)

designate the set of all integers and specific range s
of integers . The set of integers can never really be
implemented on a finite machine, but its subsets ar e
quite useful .

(quotient Q
(subset fractions

(struct raw Q
(numerator integers)
(denominator integers))

(lambda (x)
(not (equal 0 (denominator x)))))

(lambda (x y)
(equal (* (numerator x)

(denominator y))
(* (numerator y)

(denominator x)))))

Figure 2 : Definition of R.ational s

This set of abstract types provides sufficient flex-
ibility to represent almost all first-order types of in-
terest . Unfortunately, although function types ar e
useful, they are also higher-order and must be rep -
resented extensionally (as sets of pairs) rather tha n
intensionally (as programs) .

With this notation, the set of rational numbers Q
is defined as pairs of integers (with nonzero denom-
inator) equivalenced by the familar rule for equalit y
of two fractions, as shown in Figure 2 . Note tha t
the constructive type system does not define func-
tions such as multiplication it is assumed that a
surrounding system is capable of defining recursive
functions .

4 .2 Defining Machine s

The description of a real machine comes in two parts .
The first is a description of the storage structures :
that is, the machine's datatypes . Almost all exist-
ing hardware is binary with fixed storage sizes an d
shapes, so arrays are useful . To avoid some com-
plexity, the elements of storage are modelled as num -
bers rather than sequences of bits . For instance, th e
M68000 will be described a s

(seq name
(seq name

type
type

n)
(range ni n2)) (range byte 0 256)

(seq name type *) (range addr 0 (expt 2 24))
(range long (- (expt 2 31))

	

(expt

	

2

	

31))
defines sequences of fixed, variable, and unbounde d
length, respectively . The specification of a range o f
lengths for variable length objects makes explicit a
part of abstract language design that is frequently
left vague . Finally ,

(array name type ni n2 . . .)

represents an array with dimensions n1, n2 ,
whose elements are all in type .

(struct m68k
(a (array areg addr 8))
(d (array dreg long 8))
(m (array memory byte (expt 2 24))))

which says that it has a collection of 8 24-bit registers .
8 32-bit registers, and a memory of 224 8-bit bytes .

Although the description of storage structures i s
sufficient to generate implementation designs, we wil l

2 9

29

also need some description of the machine ' s instruc-
tions . Formally, a machine instruction is a functio n
mapping a machine state into another state, but a
less-formal procedural model will suffice for our pur-
poses . We define instructions with a bit of Lisp-lik e
code ; for instance

(setf (aref d 0)

(logior (aref

(aref

d 0)

in

	

(+

	

(aref

	

a 3)

	

4))))

0 integer

car
cdr

is the 68000's inclusive OR operation, with operand s
dO and the (32-bit) memory word at an address offse t
by 4 from the contents of register a3 . Its time cost i s
a constant ; 18 clock cycles [14] .

4 .3 Describing Implementation s

An implementation description is defined to be a
function d which maps states of the machine to el-
ements of abstract types . This is the reverse of what
one might expect, but multiple machine states ca n
represent the same object (consider the presence o f
garbage in memory), while it is never the case tha t
the same machine state represents different object s
at different times .

As an example, consider a primitive Lisp-like lan-
guage which has only numbers and pairs, defined as :

(union Sexp
(integerp (range int 0 1000))

(consp (struct cons (car Sexp)

(cdr Sexp))))

implemented on a machine with one register and a
memory (68000 minus the extra registers) ;

(struct m

(r long)

(array mem byte (expt 2 24)))

An implementation d is a function mapping betwee n
these two types :

dEm---* Sexp

and could be defined to map numbers into numbers
directly, but to tag a pointer to a pair by setting
the most-significant bit to one . The pointer itsel f
addresses a region of memory that contains represen-
tations of the car and cdr in successive locations . The
mathematical definition of d i s

d(n, AI) = n, where n E [0, 1000)

d(x + 231 , Al) = cons(d(11I,,, Al), d(11I,;+ 1 , AI))

but this notation quickly gets cumbersome (conside r
that we have here eliminated the distinction between

Figure 3 : S-expression Storage Layou t

byte and longword addressing!), and so we use Lis p
syntax when processing on the machine, and picture s
for readability; see Figure 3. Of course, this is bu t
one of many possibilities . The tag bit could have bee n
placed elsewhere, or some other means of type dis-
crimination used, or car and cdr stored in a differen t
order in memory or even in non-adjacent addresses .
The next section is devoted to looking at decision s
that are made by expert implementors .

5 Describing Real Systems

The formal notation of the previous section gives u s
a context in which to study real systems, but say s
nothing about how they are actually designed . We
now sketch out some datatype designs of some exist-
ing implementations, emphasizing Lisp but includin g
examples from other languages as well .

5 .1 Lis p

Lisp dialects typically define a large number of rela-
tively independent types (for instance Common Lis p
requires about 30 distinct builtin types) so the defi-
nitions of types look much like the S-expression ex-
ample of the previous section, but with more ele-
ments in the union . The two most commonly use d
approaches are tagging, in which each pointer incor-
porates some information about the type of the ob-
ject being pointed to, and separate spaces, in which
each kind of object is stored in a separate region o f
memory . Actually, there is a continuous spectrum o f
mixed approaches and most Lisps use a combinatio n
of tagging and spaces . For example, PSL is nearl y
a pure tagged Lisp, but compiled code resides in a
separate Binary Program Space which is allocate d
differently and not garbage collected .

In the most basic version of tagged types, the tag
field must have enough bits to discriminate all types ,
and the data field must be large enough to address

30

ta g

Figure 4 : Tagged Memory Layou t

Figure 5 : Separate Spaces Layou t

enough objects in memory . The most obvious de -
sign puts tags into the high-order bits, then a singl e
mask operation yields a valid memory address . The
memory layout is illustrated in Figure 4 . The siz e
of the tag field is set as small as possible, to save
space ; but sometimes a tag field of a "natural" siz e
is more efficient, as on a 68000, where an 8-bit ta g
field in a 32-bit word allows exploitation of the byte
operations .

There are other places to put tags . In some
systems, pointers are always aligned on multiword
boundaries, so there are a few unused bits in the lo w
end of the pointer . These bits can profitably be mad e
part of the tag, but there are usually not enough t o
discriminate all types ; low tags must be augmente d
by additional tag hits elsewhere .

The other important approach to type discrimi-
nation allocates each type to a distinct region of
memory, as shown by Figure 5 . Type discrimina-
tion is accomplished by comparing pointers to region
boundaries . The disadvantage of fully general sep-
arate spaces is that it requires two address compar-
isons to recognize a type, while tag recognition re -
quires only one mask and one compare, possibly on
a smaller number. If the size of each space needs t o
be variable, allocation and type discrimination wil l
be slowed down further . It is unlikely that the size o f
each space needs to be completely flexible, so imple-
mentations that use separate spaces will restrict the

possible values of space boundaries to be multiples o f
2" for some n . In fact, if n = Wordsize - Tagsize ,
then each object appears to have a tag field and ca n
be discriminated by masking . At the same time, i t
is also a valid, usable pointer . The entire addres s
space will be sparsely but entirely spanned by dat a
objects, which usually means that virtual memor y
is appropriate, but the usable address range is no t
constrained in the way that it is with pure tagging .

Simple address boundaries for spaces are somewha t
inflexible, and an unanticipated distribution of objec t
types can defeat the allocator long before all of mem-
ory is used . Therefore, a variant approach uses smal l
spaces instead of large ones, and a table to indicat e
the type of object being stored in each space ; thus
the term Big Bag of Pages (BBOP or Bibop) . 2 Thi s
setup is quite flexible and retains the advantages o f
separate spaces, but type discrimination involves a n
extra memory reference, while allocation of space fo r
very large objects is a problem .

5 .2 Prolog

Contemporary Prolog systems still have very fe w
builtin datatypes ; the widely available C-Prolog [1 .5 1
has only integers and floats in addition to terms .

(struct predicat e

(head term)

(body (seq xx term

(struct term

(functor atom)

(args (seq yy atom

(union atom

(intp (range ints (— (expt 2 28))

(expt 2 28)))

(floatp floats) ; complicate d

(symp symbols))

Detailed internal descriptions of Prologs are still rare .
C-Prolog uses a combination of tagging and spaces .
"Immediate" types are tagged with the high-orde r
bit (in a 32-bit word) of 1, while pointers get a ta g
of O . Bits 29-30 tag four kinds of immediate objects :
integers, floats, pointers to clauses, and pointers t o
terms. Integers are 29-bit twos-complement, whil e
floats are in the machine's format with the last thre e
bits of the mantissa dropped (in order to fit the tag) .
The pointer area is divided into regions for atoms ,
heap, and various dynamic structures . The relativel y
infrequent type discrimination on pointers uses tw o

2 BBOP pages should not be confused with virtual memory

pages, although there may be some advantage to making th e
BBOP page size a multiple of VM page size .

t3 area

t2 area

t i area

M

R .

n,

31

Figure 6 : C-Prolog Memory Layout

address comparisons . Atoms are fairly complex ob-
jects with a number of slots, including pointers to
themselves and to all of the terms that they appea r
in . The general effect is to gain speed at some ex-
pense in space; this is reasonable, since C-Prolog has
no compiler .

5 .3 Smalltal k

Smalltalk-80 has as one of its design goals extrem e
uniformity in the representation of datatypes as ob-
jects, so the definition of objects looks lik e

(union objec t
(nump (range num -32768 32768))

(objp (seq obj object {range 0 65536))))

The Smalltalk-80 virtual machine specification in the
"Blue Book" [8, pp . 564-566] dictates how object s
are to be represented . Object pointers are always 16 -
bit quantities, and point to vectors of object pointers ,
with the exception of integers in the range [-2" 2 19)
The integers are tagged with a 1 bit in the least -
significant position (thereby making integer opera-
tions less efficient while speeding up object opera-
tions) .

6 A Prototype Designe r

The goal of the automatic designer should now b e
clear; to construct the functions d that map machin e
states to elements of abstract types. There are two
approaches : construct an algorithm that generates
all possibilities, or write a set of heuristic rules that
are incomplete but produce plausible designs . The
first approach requires deeper understanding of th e
implementation process, especially to avoid combina-
torial explosions . For example, there are (2")! ways

to map n-bit integers into an n-bit word . It is likel y
(though not guaranteed) that only the identity ma p
is of interest .

Heuristic rules can avoid combinatorial problem s
at the risk of missing interesting implementatio n
tricks . One compromise is to use general rules, bu t
to order their operation heuristically . The designe r
can then be set to search until time runs out . Our
system does not need this as yet—its rules generat e
only known good designs .

The next stage is to evaluate designs . Since th e
code for primitive datatype operations is quite small ,
it is not sufficient to make an estimate—we must syn -
thesize the exact code to be used . The synthesize r
should be fairly intelligent, since many performance
differences depend on algebraic identities or quirks o f
an instruction set . This part of our system is quit e
crude .

Once the instructions have been generated for eac h
primitive operation, then we can count instructio n
clock cycles to determine the speed of the operation .
Summation over all operations yields a formula fo r
total overhead of the design .

6 .1 Design Rules

The first stage of the designer is coded in the MRS
logic programming language [17] . 3 There are rules fo r
both separate spaces and tagged architectures. The
overall goal of the designer is to satisfy a predicate o f
the form

(design $type $constraints $design)

where $type is the abstract type, $constraints are
any constraints on the design that have been impose d
(initially nil), and $design is the generated design .
The constraints provide a simple form of communica-
tion for those parts of the design that interact wit h
each other, such as when the allocation of tag bit s
within a word constrains the available word size fo r
subtypes . The machine description is a set of predi-
cates .

If the rule system is given a predicate, sa y

(design

(union sexp

(integerp (range int 0 1000))

(consp (struct cons (car sexp)

(cdr sexp)))))

nil

$x)

'MRS is implemented on top of Lisp, and borrows the S -

expression syntax . Terms and rules are ordinary S-expressions ;
a prefixed $ on a symbol flags it as a logical variable .

111011	 float.

32

Name Class Detail s
d 1 In tag 0 tag rots, car/cd r
d2 hi tag 0 tag ints, cdr/ca r
d 3 hi tag 0 tag conses, car/cd r
cl 3 hi tag 0 tag conses, cdr/ca r
d 5 to tag 0 tag ints, car/cd r
d 6 to tag 0 tag rots, cdr/ca r
d 7 lo tag 0 tag conses, car/cdr
ds lo tag 0 tag conses, cdr/ca r
d 9 spaces car/cd r
dro spaces cdr/car

Table 1 : Machine-Generated Design s

It will succeed and bind $x to the function definitio n

(defun d (r m)
(labels

((tag

	

(x) (1db (byte

	

1

	

31)

	

r))
(data (x) (1db (byte 31

	

0)

	

r)))

(case

	

(tag r)
(0 r)
(1 (con s

(d (aref m (4- (data r) 0)))
(d (aref m (+ (data r) 1)))

)))))

which describes exactly the same implementatio n
used as an example in the last section .

Backtracking produces nine additional designs, tw o
of them using separate spaces for types (and varyin g
in relative position of car and cdr), and the remainin g
seven using tags in various positions and assignments .
Table 1 summarizes the characteristics of each desig n
and assigns them labels to be used later .

Figure 7 exhibits several rules . MRS rule syntax i s
"backwards" from Prolog--the goal is in the secon d
part of the rule, while the body of the rule has an
and wrapped around it .

6 .2 Code Generatio n

The definitions of cl do not tell directly how expensiv e
the datatypes are to implement. . The next stage is to
generate machine code in sufficient detail to estimat e
time and space requirements . This could be modelled
as a code generator construction process as used with
compilers [4], except that our whole design metho d
depends on the ability to find clever patterns . There -
fore this stage still needs some human assistance .

In addition, there is a problem that d is an incom-
plete specification . It may say, for example, that a
cons cell occupies a portion of memory, but it does

not say how that piece of memory was acquired . The
allocator could allocate from low to high addresses ,
high to low, or even work randomly . We sideste p
this deficiency by using only conventional designs fo r
now .

The coding patterns are to be used by the com-
piler to code function calls inline, since function call -
ing protocol is generally quite expensive compared t o
the costs of the operations proper . Locations of ar-
guments and results and temporaries are abstracte d
into special constructs, since the compiler's regis-
ter allocator should be free to arrange positions o f
operands optimally. Although Lisp predicates are
defined to return atoms t or nil, the compiler wil l
avoid generating code to do so and will use condi-
tion codes directly when compiling predicates inline .
This means that our patterns need express only th e
key decisions, and can rely on the compiler to handl e
details . The patterns are incorporated into the run -
time system by the expedient of defining primitiv e
functions in terms of themselves :

(defun car (x)
(car x))

This rather bizarre-looking construct only works i f
the compiler codes the function call inline, but is nev -
ertheless common in present-day Lisp systems .

The following patterns are for a tagged implemen -
tation in which cdr follows car in memory . The in-
tegerp and consp predicates must do both a mas k
and a test :

(defpredicate integerp
(setf (tmp 1) (logand (arg 1) tag-mask))
(= (tnip 1) integer-mask)) ; cmp . l

(defpredicate consp
(setf (trap 1) (logand (arg 1) tag-mask))
(_ (tmp 1) cons-mask))

	

; cmp . l

where tag-mask masks out all but the tag field, an d
integer-mask and cons-mask are constants derive d
from the values of the tags (by shifting) . There i s
an opportunity for an optimization here if for in -
stance integer-mask is zero, then since the 6800 0
AND operation sets condition codes, the compariso n
is unnecessary', which halves the time necessary t o
do an integerp test . This sort of optimization wil l
prove to be important in other functions as well .

Integer creation merely involves the adding of th e
tag to the number .

(defopen make-intege r
(setf (result 1)

(logior (arg 1) integer-mask)))

3 3

33

; ; ; If a range of integers is small enough, they can be represented directly .

; ; ; Otherwise we have to go to bignum-type representations .

; ; ;
(if (and (- $n2 $n1 $range)

(available-word $constraints $wordsize)

(expt 2 $wordsize $maxnum)

(< $range $maxnum))

(design ((range $name $nl $n2) . $auxin) $constraints (r . nil)))

; ; ; Implement a union of datatypes using high-order bit tags .

; ; ; Machine words may already be partly used up, so account for this .

; ; ;
(if (and (delaminate $preds $types $parts) ; separate names from type s

(length $types $len)

(log2-ceiling $len $bits) ; compute how many bits needed

(available-word $constraints $wordsize)

(- $wordsize $bits $datasize)

; ; do subtype design s

(design-list $types $auxi n

((wordsize $datasize) ; new wordsize

(accessor (data r)) ; new accesso r

. $constraints)

$designs $auxout)

(assign-tags $designs $bits $asgns)) ; random assignmen t

(design ((union $name . $parts) . $auxin)

$constraint s

((case (tag r) $asgns)

. ((tag (x) (ldb (byte $bits $datasize) r))

(data (x) (ldb (byte $datasize 0) r))

. $auxout))))

; ; ;
; ; ; AVAILABLE-WOAD examines a set of constraints to determine how man y

; ; ; bits remain unused .

Figure 7 : Some Design Rule s

Again, if the integer tag is 0, its mask is all 0 bits ,
which is an identity for inclusive OR . Make-intege r
is therefore empty, and the compiler would not gen-
erate any tag-stripping code . Make-integer is neve r
called explicitly, but it does appear in other opera-
tions, for instance addition :

(defopen +

(setf (tmp 1) (logand (arg 1) data-mask))

(setf (tmp 2) (logand (arg 2) data-mask))

(setf (tmp 3) (add (tmp 1) (tmp 2)))

(make-integer (tmp 3)))

If the integer tag is 0, then the function reduces to
the add instruction alone ; a savings of 3 out of 4
instructions . Incidentally, elimination of the tag op-
erations in addition raises the possibility that intege r
arithmetic will overflow and create an object of some
other apparent type, with disastrous consequences ;

we assume the compiler will not allow raw addition
instructions if there is any chance at all of an over-
flow .

The cons creation routine cons is interesting, be -
cause it involves allocation of storage . Normally th e
allocator is used by a number of primitives and so w e
abstract it into a function of constant performanc e
over varying designs (thus completely neglecting th e
price of storage reclamation!) . Its cost will not b e
added into the cost of doing a cons .

(defopen cons

(setf (tmp 1)

	

(allocate 2))

(setf (mref heap

	

(tmp 1))

	

(arg 1))
(setf (mref heap (+ (tmp 1)

	

4))

	

(arg 2))

(setf (result

	

1)

(logior (tmp 1)

	

cons-mask)))

Both car and cdr are memory references, bu t

34

34

one of the two will have to do displaced addressin g
(which is slightly slower than indirect addressing o n
the 68000) .

(defopen car

(setf (tmp 1) (logand (arg 1) data-mask))

(setf (result 1)

(mref heap (tmp 1))))

(defopen cdr

(setf (tmp 1) (logand (arg 1) data-mask))

(setf (result 1)

(mref heap (+ (tmp 1) 4)))

These patterns (with the parametrized masks)
cover only the four designs that use high-order ta g
bits . Low-order tag bits are similar, but shiftin g
operations may be necessary, such as for multiplica-
tion . The patterns are quite different for the separate
spaces designs . Basically, they omit all the maskin g
operations and have more complicated predicates .

6 .3 Cost Evaluatio n

Now that the functions of interest have been coded,
we can put together formulas for the performance o f
each of the four designs . Our 68000 machine descrip-
tion includes time and space costs for each instruc-
tion . As mentioned earlier, the compiler is assume d
to be capable of arranging operands into the righ t
places, which simplifies the calculations .

Adding up the cost of each instruction in each op-
eration for the design using a high-order tag wit h
integers getting 0, pairs getting 1, and car stored a t
the lower address, gives us the following formula :

Time = 28integerp- ►-Omakeintege r

28consp + 42cons + 30car + 34cdr

Table 6 .3 lists the coefficients of the formulas for al l
ten designs .

Although our derivation started with extremel y
simple types, the final expressions for the time cost o f
the datatype's operations are rather complex . None
of the ten designs are obviously inferior ; for any given
design, one could compose a Lisp program for whic h
that design is the most efficient, But of course w e
can select only one for the implementation, so w e
must evaluate the designs for some set of "typical"
Lisp programs . An early study by Clark and Green
[5] used programs written in an obsolete style, an d
is no longer particularly useful . The Stanford Lis p
Performance Study [7] is well-known, contemporary ,
and includes counts of function calls in each of its
benchmarks, from which we can get some informa-
tion about relative costs of each design . Calcula-
tions were done on most benchmarks, excluding those

which were similar to another one being used (CTAK ,
DDERIV), used only datatypes not being modelle d
(EFT, FRPOLY15), or did I/O (TPRINT) . Table 3
lists the raw clock cycle counts scaled down by a fac-
tor of a million . The numbers are absolute overheads ,
so a value of 0 .0 represents optimality, where the run -
time system does not slow things down at all .

Overall, the best performance is shown by the sep-
arate spaces designs . Separate spaces are less efficien t
for type discrimination, but the benchmarks do fa r
more operations whose type is known . It is unknown
as to whether real programs do more or less typ e
dispatching . It is worth noting at this point tha t
our assumptions about the compiler are somewha t
optimistic ; many real Lisp systems will add a typ e
test even to primitive operations . Separate space s
and BBOP schemes would then fare less against tag-
ging . The differences between low-order and high -
order tags were nonexistent, except for FRPOLY10 ,
which does a lot of multiplication and division, an d
the relative positions of car and cdr gave rise to onl y
the minor differences . There does not appear to be
any consensus as to which should be preferred . Thi s
is also the case with the assignment of tags in tagge d
designs. Some benchmarks favor assigning the 0 tag
to cons cells, while others would do better with num-
bers getting the honor .

Although the effects are sometimes dramatic, the y
may be insignificant in an entire implementation . Ac -
curate assessment of the overall effect must await ex-
periments in a real Lisp system, but Gabriel's TA K
benchmar k

(defun tak (x y z)

(if (not (< y x))

z
(tak (tak (1- x) y z)

(tak (1- y) z x)
(tak (1- z) x

	

Y))))

(tak 18 12 6)

	

; evaluate this for m

is small enough to be analyzed by hand . The PS L
compiler for the 68000 opencodes all function calls i n
the benchmark except for the recursive ones, and i t
also eliminates all use of tags and other type informa-
tion (since all data objects here are small numbers) ,
so the overhead of the runtime system is O . Over -
all execution time is about 10 .56 million clock cycles .
Use of a separate spaces representation does not ad d
any overhead, but if a tagged representation is use d
and the integer tag is not 0, then an additional time
of 3 .12 million cycles is consumed in tag stripping an d
adding operations, resulting in a slowdown of 29% .
TAK actually underestimates the effect of datatypes ,

35

35

hi tags lo tags spaces
Function d 1 d2 d3 cl.i d5 d6 d7 de, d9 d 1 0

integerp 28 28 28 28 28 28 28 28 38 3 8
make-integer 14 14 14 14 14 14 14 14 0 0
+, etc 6 6 48 48 6 6 48 48 6 6
consp 28 28 28 28 28 28 28 28 38 3 8
cons 42 42 28 28 42 42 28 28 28 2 8
car 30 34 12 16 30 34 12 16 12 1 6
cdr 31 30 16 12 34 30 16 12 16 12

Table 2 : 68000 Code Cost s

Benchmark dr d2 d3 d4 d 5 ds d 7 de, rl9 d1 0
Tai: 0 .0 0 .0 3 .1 3 .1 0 .0 0 .0 3 .1 3 .1 0 .0 0 . 0
Takl 29 .4 25 .9 17 .3 13 .8 29 .4 25 .9 17 .3 13 .8 17 .3 13 . 8
Boyer 60 .6 61 .9 39 .9 41 .2 60 .6 61 .9 39 .9 41 .2 44 .1 45 . 4
13 rowse 66 .3 69 .6 37 .7 41 .0 66 .3 69 .6 37 .7 41 .0 37 .6 40 . 9
Destruct 8 .6 8 .6 8 .6 8 .6 8 .6 8 .6 8 .6 8 .6 5 .0 5 . 0
Traverse IniL 62 .0 55 .9 65 .9 59 .9 62 .0 55 .9 65 .9 59 .9 36 .3 30 . 2
Traverse 195 .6 195 .6 110 .7 110 .7 195 .6 195 .6 110 .7 110 .7 110 .0 110 . 0
Deriv 15 .7 15 .8 10 .8 11 .0 15 .7 15 .8 10 .8 11 .0 11 .5 11 . 6
Div 16 .8 16 .3 10 .0 9 .6 16 .8 16 .3 10 .0 9 .6 10 .0 9 . 6
Puzzle 0 .0 0 .0 45 .3 45 .3 0 .0 0 .0 45 .3 45 .3 0 .0 0 . 0
Triangle 0 .0 0 .0 167 .2 167 .2 0 .0 0 .0 167 .2 167 .2 0 .0 0 . 0
Frpoly5 0 .4 0 .4 0 .3 0 .3 0 .4 0 .4 0 .3 0 .3 0 .3 0 . 3
Frpoly 10 5 .0 4 .9 4 .4 4 .4 5 .0 5 .0 4 .5 4 .5 3 .7 3 . 7

Table 3 : Millions of Clock Cycles Used by Integer and Cons Cell Function s

since most of its time is spent in function calls, eve n
more than for typical Lisp programs .

7 Future Work

Although we have demonstrated a complete passag e
from abstract types to concrete code, it should b e
clear that many assumptions have been made an d
many difficult issues lightly treated or ignored . Even
so, enough questions have been raised to make i t
worthwhile to add some machine-generated design s
into a real implementation and to examine the con -
sequences . We are currently building a Commo n
Lisp implementation designed in part to allow rad-
ical changes to data representations, which shoul d
facilitate some interesting experiments .

The designer itself can be extended both by addin g
more rules and by increasing the sophistication of th e
formalisms to take into account such things as mor e
realistic memory models (including virtual memory) .

We have concentrated on the explicitly defined

data types of a language, but an implementatio n
also has implicit. datatypes, representing entities
like environments, control stacks, and trails . They
present a rich field for automatic design, but involv e
rather deep reasoning about the structure of pro-
gramming languages ; just consider the derivation o f
stack frames and register windows for procedural lan-
guages or structure sharing for logic languages . Ma-
chine design of these structures goes a long way to-
ward fully automatic language implementation . The
advantages are that those data structures are ver y
important to runtime performance, and relevant t o
all programming languages .

8 Conclusions

Implementation of a language's primitive datatype s
presents a number of interesting but hard question s
for the implementor . Automation raises additiona l
problems, since there are tradeoffs that cannot be re -
solved algorithmically . Heuristic rules coupled with

3 6

36

code generation and cost evaluation provide the be-
ginnings of a solution, by assessing the consequence s
of various decisions with only the abstract type an d
machine description as input . Expansion of thes e
techniques into a full system could greatly improv e
the process of constructing runtime support system s
for abstract languages .

Acknowledgements . We thank the members of the
Utah Portable AI Support Systems group, especiall y
Harold Carr, Jed Krohnfeldt, and Sandra Loosemor e
for many discussions, not to mention reading draft s
on short notice! Julian Padget also provided valuabl e
encouragement and advice .

Monetary support was provided by the IIewlet.t -
Packard Corporation, the National Science Founda-
tion under grant number MCS81-21750, and the De-
fense Advanced Research Projects Agency under con -
tract number DAAK 11-84-K-0017 .

References

[1] II . Abelson, G .J . Sussman, and J . Sussman .
Structure and Interpretation of Computer Pro -

grams . MIT Press, 1985 .

[2] D .R. Barstow . Knowledge-Based Program Con-

struction . North Holland, 1977 .

[3] R. Cartwright . A constructive alternative t o
axiomatic data type definitions . In Proc . 1980
LISP Conference, pages 46-55, 1980 .

[4] R .G .G . Cattell . Automatic derivation of cod e
generators from machine descriptions . ACM

TOPLAS, 2(2) :173-190, April 1980 .

[5] D .W . Clark and C . Green . An empirical study o f
list structure in Lisp . CALM, 20(2) :78, Febru-
ary 1977 .

[6] S .M . Freudenberger, J .T . Schwartz, and M .
Sharir . Experience with the SETL optimizer .
ACM TOPLAS, 5(1) :26--45, January 1983 .

[7] R .P . Gabriel . Performance and Evaluation of

Lisp Systems . MIT Press, 1985 .

[8] A . Goldberg and D . Robson . Smallialk-80 : th e

Language and Its Implementation . Addison -
Wesley, 1983 .

[9] C .C . Gotlieb and F .W . Torupa. Choosing a stor-
age schema . Ada Infornraliea, 3 :297-319 . 1974 .

[10] J .V . Guttag . Abstract. Data Types and th e
Development of Data Structures . CACTI ,
20(6) :396-404, June 1977 .

[I1] C.M . Hoffman and M .J . O'Donnell . Program-
ming with equations . ACM TOPLAS, 4(1) :83-
112, January 1982 .

[12] E. Kant . The selection of efficient implementa-
tions for a high-level language . In Proc. Symp .
on .4rirfical Intelligence and Prograrnnr-ing Lan-
guages, pages 140-146, 1977 .

[13] J .R . Low . Data structure selection : an exampl e
and overview . CA CAI, 21(5) :376-385, May 1978 .

[14] Motorola, Inc . MC68000 16-Bit Alicroproccso r

User 's Manual . Prentice-Hall, Inc ., 1982 .

[15] Pereira, F .C .N ., el al . C-Prolog User's Manual .
Technical Report, University of Edinburgh, Jan-
uary 1986 .

[16] L .A . Rowe and F.M . Tonge . Automating th e
selection of implementation structures . IEEE
Transactions on Software Engineering, SE -
4 :494-506, November 1978 .

[17] S . Russell . Compleat Guide to MRS. Re-
port KSh85-12, Computer Science Department .
Stanford University, June 1985 .

J .T . Schwartz, R .B .K. Dewar, E . Dubinsky, an d
E . Schonberg . Programming with Sets : an In-
troduction to SETL . Springer-Verlag, 1986 .

[19] G .L . Steele . Common Lisp : the Language . Dig-
ital Press, 1984 .

[20] P . Steenkiste and J . Hennessy. Lisp on a
reduced-instruction-set-processor . In Proc. 198 6
A1C11 Conference on Lisp and Functional Pro-

gramming, pages 192-201, August 1986 .

[21] J .F. Stoy . Denotational Semantics . MIT Press ,
1977 .

37

37

