
Practical Data Breakpoints: Design and Implementation*

Robert Wahbet Steven Luccot Susan L. Grahamt

Computer Science Division, 571 Evans Hall

UC Berkeley, Berkeley CA, 94720

Abstract

A data breakpoint associates debugging actions with

programmer-specified conditions on the memory state

of an executing program. Data breakpoints provide

a means for discovering program bugs that are te-

dious or impossible to isolate using control breakpoints

alone. In practice, programmers rare] y use data break-

points, because they are either unimplemented or pro-

hibitively slow in available debugging software. In this

paper, we present the design and implementation of a

practical data breakpoint facility.

A data breakpoint facility must monitor all memory

updates performed by the program being debugged.

We implemented and evaluated two complementary

techniques for reducing the overhead of monitoring

memory updates. First, we checked write instructions

by inserting checking code directly into the program

being debugged. The checks use a segmented bitmap

data structure that minimizes address lookup cc)m-

plexity. Second, we developed data flow algorithms

that eliminate checks on some classes of write instruc-

tions but may increase the complexity of the remaining

checks.

We evaluated these techniques on the SPARC using

the SPEC benchmarks, Checking each write instruc-

“This research was sponsored in part by the Defense
Advanced Research Projects Agency (DARPA) under grant
MDA972-92-J-1028 and contract DABT63-92-C-O026. The con-
tent of the paper does not necessarily reflect the position or the
policy of the Government and no official endorsement should be
inferred.

tEmail: {ruahbe, lUCCO, grahsm}~cs .berkeley, edu

Permission to copy without fee all or part of this material is

granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notioe and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association for Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.
ACM-SlGPLAN-PLDl-6 /93/Albuquerque, N.M.
@1993 ACM 0-89791 -!598-4193/0006 /0001 ...$1.50

tion using a segmented bitmap achieved an average

overhead of 42?lo. This overhead is independent of the

number of breakpoints in use. Data flow analysis elim-

inated an average of 79% of the dynamic write checks.

For scientific programs such the NAS kernels, analysis

reduced write checks by a factor often or more. On the

SPARC these optimizations reduced the average over-

head to 25%.

1 Introduction

Breakpoints are user-specified rules that associate de-

bugging actions with break conditions that arise dur-

ing program execution. Control breakpoints specify

the break condition in terms of the program’s control

flow, for example stop on call to f unct ion main.

Data breakpoints specify the break condition in terms

of the program’s memory state, for example stop when

field f of structure s is modified.

Data breakpoints support debugging tasks such as

print the value of field f of structure s every

time it is updated. To perform this task using only

control, breakpoints, the programmer must find all

statements in the program that might update f. In

the presence of pointera or reference parameters, this

search is both tedious and error-prone.

At present, efficient data breakpoint facilities are

not available to programmers. Using efficient runtime

data structures and ideas from compiler optimization,

we have developed and evaluated several methods for

providing practical data breakpoints.

The key difference between control break conditions

and data break conditions is in the complexity of the

mapping from the break condition to the set of pro-

gram instructions that can trigger the condition. We -

call an instruction that may trigger a break condi-

tion an unsafe instruction. For control break condi-

tions, the mapping to unsafe instructions is one-to-

one, or one-to-few in the presence of funct ion inlining.

Hence, debuggers can guarantee detection of each con-

trol break condition by monitoring a handful of unsafe

instructions.

In contrast, the mapping from data break condi-

tions to unsafe instructions is one-to-many, because

the same memory location can be updated by write

instructions scattered throughout a program. A de-

bugger must either watch a memory location corre-

sponding to a data breakpoint, or it must check each

write instruction in the program that might update

that memory location.

We say a write instruction is known if static analysis

can resolve its target address. A debugger can deter-

mine the set of known instructions by inspecting target

addresses prior to execution. Programs written in lan-

guages that include pointers or permit runtime type

violations (e.g. out-of-bounds array indices) generally

contain a large number of unknown write instructions.

If any data breakpoint is active, all unknown write

instruct ions must be considered unsafe, and must be

checked at runtime.

Implementation Strategies Some commercially

available processors provide direct support for data

breakpoints. Examples include the Intel i386 [10], the

MIPS R4000 [12], and the SPARC[16]. Special-purpose

hardware can monitor memory efficiently. Unfortu-

nately, the hardware approach inherently limits the

number of data words simultaneously monitored. The

Intel i386 can monitor four words; the MIPS R4000

and the SPARC can only monitor a single word.

The UNIX debuggers gdb [17] and dbx [14, 18] pro-

vide data breakpoints. Both systems conservatively

assume all instructions are unsafe. The possible side-

effects of each instruction are checked through dynami-

cally inserted trap instructions. Due to context switch

and trap costs, this approach incurs very high over-

head. We measured the overhead of dbx to be a factor

of 85,000, independent of the program being debugged.

VAX DEBUG provides data breakpoints using vir-

tual memory page protection [3]. Like gdb and dbx,

VAX DEBUG assumes that all instructions are unsafe.

However, rather than check each instruction, VAX DE-

BUG protects each virtual memory page containing

data that is part of a data break condition.

hlagpie is a programming environment for Pascal

that allows debugging actions to be associated with

variable updates [6]. This functionality is implemented

by inserting checks during compilation. Magpie does

not support monitoring of heap objects.

To this date, no performance information has been

reported for Magpie or for VAX DEBUG. Several au-

thors have speculated that efficient data breakpoints

require special-purpose hardware [4, 11, 15].

To quantify the differences among data breakpoint

implement ation strategies, Wahbe [19] compared fa-

cilities based on specialized processor support, virtual

memory page protection, checking the destination ad-

dress of machine instructions via an operating system

trap, and checking the destination address of machine

instructions via a procedure call. Virtual memory and

the use of traps were shown to be too slow for practical

use. Special-purpose hardware, while efficient, could

not support all test cases due to limits on the number

of memory words simultaneously monitored. Checking

each write instruction via a procedure call emerged as

the most promising method for realizing efficient data

breakpoints. Its most significant disadvantage was the

expected overhead of between 209% and 642%.

In this paper, we adopt a code patching approach

to checking write instructions and significantly reduce

its overhead. We investigate two complementary ap-

proaches to reducing the overhead of write checks.

First, we develop an efficient data structure, the seg-

mented bitmap, for checking whether an individual

target address is part of a data breakpoint condition.

We compare several techniques for optimizing these

checks.

Second, we investigate the additional performance

benefit of eliminating write checks through compile-

time analysis. Our strategy for eliminating write

checks has three components. First, we use a sym-

bol table matching algorithm to find as many known

write instructions as possible. We check those instruc-

tions only when the variables to which they write occur

in break conditions. Second, we use data flow analy-

sis techniques to remove checks on write instructions

within loops. We replace such checks by checks that

execute only once, on entry to the loop. Third, we

support these loop optimizations by using data struc-

tures that provide efficient checks on contiguous ranges

of memory locations. We demonstrate that, at the

cost of considerable implementation complexity, these

techniques dramatically diminish the dynamic count

of checked write instructions.

The remainder of this paper has the following struc-

ture. Section 2 describes a monitored region service

abstraction that defines the specific functionality pro-

vided by our system and outlines its implementation.

Section 3 describes the segmented bitmap data struc-

ture, its optimization through caching and inlining,

and its overhead for the SPEC benchmarks. Section

4 provides the details of our write-check elimination

algorithms, and evaluates their effectiveness. Finally,

Section 5 draws some conclusions.

2

St %oo, rlfp-20] ! Write instruction

sub xfp,20,%g5 ! Address passed via %g5

call check-1-word,O ! Write check procedure

nop ! Delay slot

Figure 1: Simplified example ofawrite check.

2 Monitored Region Service

We encapsulate the core functionality needed to im-

plement data breakpoints within an abstraction callled

a monitored region service (MRS). A monitored region

service detects writes to contiguous regions of memory

called monitored regions. To simplify the implementa-

tion, monitored regions are assumed to be word aligned

and non-overlapping. The interface to the monitored

region service consists of the following three functions:

Create!fonitoredRegion (MonitoredRegion)

DeleteMonitoredRegion (MonitoredRegion)

NotificationCallBack (TargetAddress, Size)

It is the responsibility of the debugger to map source

language names used in the break conditions tomon-

itored regions, and to create and delete monitored re-

gions as necessary.

Ifthe target ofawrite instruction intersects amon-

itored region, there is a monitor hit, otherwise there is

a monitor miss. The function NotificationCallBack

is used tonotify MRS clients, such as the debugger, of

monitor hits.

The monitored region service does not monitor

writes to registers or memory updates due to system

calls. Because registers cannot be aliased, detecting

writes to registers is straightforward and incurs negligi-

bleruntime overhead. Adebugging system can detect

memory updates due to system calls by replacing the

library portion ofeach system call with an equivalent

call that reports memory updates to the debugger.

2.1 Implementation

We now outline our basic approach to implementing

a monitored region service. In the next two sections

we will show how this straightforward implementation

can be optimized.

Our system consists of a program analysis tool and

a runtime library. The analysis tool acts as an extra

processing stage between the compiler and the assem-

bler, patching each write instruction with a function

call that checks the target address to detect monitor

hits. An example SPARC assembly code fragment, gen-

erated by our MRS implementation, is shown in Fig-

ure 1. In this example, the write instruction is a one

word store to memory (st), and the target address is

%f p-2o. The runtime monitor library contains the data

structures necessary to check whether a target address

represents a monitor hit.

Since our simple MRS implementation does not

monitor indirect jump instructions during program

execution, it must be prepared for arbitrary control

transfers. Indirect control transfers pose two potential

problems for the MRS. First, as a result of data corrup-

tion, control might be transferred directly to a write in-

struction. To insure that all monitor hits are detected,

checks are placed after, rather than before, the write

instruction. Second, the program might jump into the

middle of a monitor library routine. This situation

is detected by maintaining a check-in-progress flag

which is set on entry to a monitor routine and cleared

on exit. The above scheme does not prevent the rou-

tine from referencing an invalid address before check-

ing the flag. However, the MRS may use an operating

system signal to detect this situation gracefully.

The write check implementations described in Sec-

tion 3 and Section 4 reserve a minimum of three reg-

isters for the monitored region service. One register

holds the check-in-progress flag described above.

The MRS uses a second register to hold a global

disabled flag. The MRS sets this flag whenever no

data breakpoints are active. The code for each write

check branches around the body of the check when the

disabled flag is set, reducing runtime overhead. Fi-

nally, a third register is used by write checks to hold

the target address of the write instruction.

For etliciency, the monitor library data structures

are maintained in the address space of the program

being debugged. The MRS creates monitored regions

as necessary to insure the integrity of these data struc-

tures,

3 Write Check Implementa-

tions

In this section, we describe our basic SPARC imple-

mentation of a monitored region service, and present

several possible optimizations for reducing the over-

head of checking write instructions. On the SPARC, all

write instructions update either one or two memory

words. Because the two word write instructions are

suitably aligned, one-word and two-word checks incur

identical overhead for the implementation techniques

that we tested. We will discuss only single-word write

checks.

The basic operation that a write check performs is

to determine whether a write instruction’s target ad-

dress references a monitored region. We call this oper-

ation address lookup. We found that the best strategy

for implementing efficient address lookup is to mini-

mize the average number of memory accesses required.

The write checks tested in Wahbe’s pilot study of data

breakpoint implementations used a hash table for ad-

dress lookup [19]. This data structure uses memory

efficiently, consuming space proportional to the num-

ber of monitored regions. However, it requires sev-

eral memory accesses for each address lookup. We

tested this data structure using the SPEC benchmarks

and verified that the write check overhead generally

matched the 209% to 642% reported in the previous

study for a different set of benchmarks.

The overhead of hash table address Iookups is due

mostly to the memory accesses performed in matching

a target address against a list of hash table entries.

The write checks described in this section use a seg-

mented bitmap data structure to implement address

lookup. This data structure uses one bit to represent

each word allocated by the program being debugged.

Each bit indicates whether or not the corresponding

word is monitored. Hence a segmented bitmap con-

sumes more space than a hash table - roughly 3% of

the total memory used by the program. However, it in-

curs at most two memory accesses per address lookup.

Further, these memory accesses are more likely to

be cached than the hash table memory accesses. Since

one bitmap word represents 32 words of memory allo-

cated by the program being debugged, and since cache

lines on the SPARC contain 32 bytes, any lookup of an

address within 512 bytes of a recently checked address

is very likely to require only cached memory accesses.

Conceptually, the bitmap contains one bit for ev-

ery word of addressable memory. To reduce its space

overhead, we organize the bitmap into segments of size

SEGMENT-SIZE. Segments are allocated lazily in re-

sponse to monitored region inst all at ions. Right shift-

ing the target address by logz (SEGMENT-SIZE) bits

yields its segment number. Segments are accessed via

a segment table, which is an array of segment pointers,

indexed by segment number. All segment pointers are

initialized to a single zeroed bitmap segment. Figure

2 depicts a segmented bitmap.

Breaking the bitmap into segments requires an extra

load instruction to index into the segment table. How-

ever, the target of this load instruction is very likely

to be cached, again assuming spatial locality among

checked addresses.

3.1 Reserving Registers for the Moni-

tored Region Service

On modern RISC architectures the naive compilation

typically used during debugging requires only a sub-

set of the available registers. We can take advantage

of this situation by reserving registers for use by the

MRS. Optimization based on reserved registers are

Addres

i
>>

I
SegmentNmnber+

SegmentTable

1
7‘e”entp”h’er-UE1

I

Segment

I SingleWordin Segment

Figure 2: A Segmented Bitmap

less applicable to architectures, such as the i386, which

have small register sets [10]. Also, as compilation for

debugging incorporates more sophisticated register al-

location, there will be a tradeoff between freeing an

additional register for the compiler, and reserving that

register for the MRS. On the SPARC we found two

techniques that can benefit from reserved registers.

The segmented bitmap code requires three regis-

ters to hold intermediate values during address lookup.

The MRS can use reserved registers to avoid pushing a

register window. The MRS can use a fourth register to

hold the base address of the segmented bitmap table.

Although this value is constant, it is too large to be an

immediate assembly operand and therefore placing it

in a register requires extra register instructions during

address lookup.

A more sophisticated technique, called segment

caching, uses registers to cache the results of previous

write checks on the same bitmap segment. To sup-

port caching, each write instruction is assigned a write

iype. The goal of the write type is to identify groups

of write instructions which are likely to exhibit spa-

tial locality. For C programs, we used the write types

BSS, STACK, and HEAP. All target addresses computed

using the frame or stack pointer were assigned type

STACK. Writes with constant target addresses were as-

signed type BSS; the remaining writes were assigned

type HEAP. For FORTRAN, in addition to the above

types, we also used the type BSS-VAR. The Sun FOR-

TRAN compiler used a simple idiom to calculate related

B SS accesses. By recognizing this idiom we were able

to increase the effective cache hit rate.

For each write type we maintain a segment cache.

The segment cache holds the segment number of the

last checked segment to have no monitored regions.

By keeping the segment cache in a reserved register,

we can check the cache in four register instructions.

To support segment caching we must be able to de-

4

termine efficiently whether a bitmap segment contains

any monitored regions. We do this by maintaining,

for each bitmap segment, a boolean flag unrnonit ol:ed,

indicating whether the segment has any monitored re-

gions. By suitably aligning the bitmap segments, we

can store the unmonitored flag in the unused low order

bit of the corresponding segment pointer.

In addition to supporting segment caching, the un-

monitored flag saves the address calculation and load

of the correct bitmap segment when the segment con-

tains no monitored regions. To support efficient cre-

ation and deletion of monitored regions in the pres-

ence of the unmonitored flag, an auxiliary data struc-

ture maintains a count of monitored regions for each

bitmap segment.

The algorithm for maintaining the segment caches

is as follows:

if Segmen tNum (TargetA ddress) = Segmen t Cache

Done

elsif Segmen ti’VotMonitored(TargetAddress)) then

Segment Cache + SegmentNum(TargetAddress)

elsif MonitorHit (TargetAddress)

NotificationCallBack(TargetAddress, Size)

endif

Note that the segment cache is only updated if t here

is a cache miss and the new segment contains no mon-

itored regions.

While larger segments improve segment cache lcjcal-

ity, smaller segments reduce the number of full lookups.

Full lookups are monitor misses that require checking

the cache, the unmonitored flag, and finally the appro-

priate bitmap segment word. A full lookup occurs for

target addresses whose bitmap segment contains moni-

tored regions; the impact of full lookups is discussed in

Section 3.3. Segment size also determines the number

of segments in the segment table. For a 232 byte ad-

dress space, a 128 word segment size requires 1 million

segments. While the segments themselves are allocated

lazily, the segment table is not. Thus, to decide seg-

ment size, one must consider tradeoffs among segment

cache locality, the expected number of full lookups,

and the size of the segment table.

To limit table size, we restricted our choice of seg-

ment sizes to 128 words or greater. Figure 3 graphs

segment cache locality as a function of segment size.

Segment sizes greater than 128 words did not offer

enough gain in cache locality to justify the possible

increase in full lookups. Hence, all experiments re-

ported in Section 3.3 were performed with a 128 word

segment size.

90.00%

80.00%

40.00%

- /- --
●/’:.--

,/ . ● -
./ .~”

/. “ “’
l’”/.-

/:--{n—C Average
0.
.

. - -- F Average

-- Average

30.00% t I

Segment Size (Bytes)

Figure 3: Segment Cache Locality

3.2 Inlining

In addition to reserving registers, we evaluated the im-
pact of inlining write checks. On the SPARC, inlining

eliminates as many aa six instructions. Section 3.3

demonstrates, however, that inlining can increase over-

head due to instruction cache misses. To evaluate the

effectiveness of inlining, we compared inlined and non-

inlined versions for both simple bitmap lookup and seg-

ment cached implementations. For segment caching,

the four instructions necessary to check the cache are

always inlined. The non-inlined version makes a pro-

cedure call when there is a segment cache miss.

3.3 Evaluation

Table 1 presents monitored region service overhead
for the following write check implementations:

Bitmap. Address lookup executed via procedure call.

Bitmaphdine. An inlined version of Bitmap.

BitmapInlineRegisters. An inlined version of Bitmap

that makes use of reserved registers to avoid

spilling and the recalculation of address constants.

Cache. Segment caching implementation using four

segment caches. On a cache miss, lookup is ex-

ecuted via a procedure call.

CacheInJine. An inlined version of C7ache.

In addition to the above implementations, we mea-

sured the overhead of branching around checks when

Programs Disabled Bitmap Bitmap Bitmap Cache Cache o

Inline Inline Inline

Registers

(C) 023. EQNTOT~ -3.2% 0.2% -0.5% -1.770 -3.7% -4.4% 2.3%

(C) 008.ESPRESSO 22.2% 70.4% 66.2% 40.4% 29.6’%0 22.2% 4.9%

(C) 001. GCC1.35 28.1% 75.4% 83.6% 63.1% 49.7?70 53.3% 6.1%

(C) 022.LI 60.2% 128.5% 124.2% 94.8% 77.2% 62.3% 19.4%

(F) 015. DODUC 19.3% 58.6% 73.3% 45.2% 21.170 37.8~o 5.6%

(F) 042. FPPPP 33.8% 55.4% 68.7% 56.1% 41.2% 53.8% 3.3%

(F) 030. MATRIx300 7.5% 39.1% 31.8% 25.3% 15.4% 13.8% 1.1%

(F) 020. NASKER 9.2% 44.5% 40.0% 37.2% 17.2% 19.6% 1.6%

(F) 013. SPICE2G6 7.1% 30.9% 29.1% 25.1% 15.970 15.7% 4.1%

(F)047.TOMCATV 13.6% 44.7970 36.6% 32.5% 19.2% 27.8~o 1.3%

C AVERAGE 26.8% 68.6% 68.4% 49.2~o 38.2% 33.3% 8.2%

FORTRAN AVERAGE 15.1% 45.5’%0 46.6$Z0 36.9% 21.7~o 28.1’?ZO 2.8%

OVERALL AVERAGE 19.8% 54.8% 55.3% 41.8% 28.3% 30.2% 5,0%

Table 1: Monitored region service overhead for different write check implementations.

the disabled flag is set. The column labeled aisex-

plained below. All routines were carefully hand coded

in SPARC assembly code. The standard libraries were

not patched for these experiments; using gprof [8], we

measured the percentage of time spent in library rou-

tines to be an average of 2.6~o for C programs and 1.6%

for FORTRAN programs, excluding the SPARC library

routines for integer multiplication and division which

do not update memory.

3.3.1 Cache Effects

Our measurements show a number of interesting

anomalies. The most obvious are the negative over-

heads for 023 .EQNTOTT. For a number of programs,

the savings due to reserving registers is somewhat

higher than we had estimated. Finally, while inlin-

ing the segment caching routine slightly improved the

average overhead on C programs, inlining the simple

bitmap lookup routine had essentially no effect.

We conjecture that these anomalies are due to cache

effects, The SPARC used in our experiments has a

direct-mapped combined instruction and data cache

with 32 byte cache lines. Inserting write checks affects

cache performance in two ways. First, because write

checks increase the size of the code, the cache size is

effectively reduced. Second, adding or moving instruc-

tions changes the alignment of code and data relative

to cache line boundaries.

To evaluate the impact of caching we performed

an experiment in which we inserted 2, 4, 8, 16, or

32 nop instructions before each write instruction. In

the absence of cache effects, the overhead should be

linearly dependent on the number of instructions in-

serted. We make the simplifying assumption that the

effect ive cache size is also linearly reduced. For each

program we performed a simple linear regression on

the measured overhead for the different number of in-

serted nop instructions. Under the above assumptions,

any deviation from the expected linear behavior must

be caused by cache alignment effects. The last col-

umn of Table 1 shows the standard deviation of the

differences between expected and observed overhead.

In two ways, these cache effects alter the conclu-

sions we can draw from comparing different write check

implementations. First, the ranking of a given ap-

proach could change given a different cache organiza-

tion. Second, we must rely more heavily on average

measurements over all SPEC benchmarks, as individual

measurements may include anomalous overhead due to

cache performance variation.

3.3.2 Inlining

Inlining had little effect on the measured overheads for

our benchmark programs; overall, it slightly increased

overhead. Because inlining dramatically changes the

alignment characteristics of the program, the small dif-

ferences observed for individual programs are not sig-

nificant. We conclude that inlining write checks on the

SPARC is not necessary.

3.3.3 Segment Caching

In contrast, segment caching did reduce the effec-

tive overhead of write checks. However, because

full lookups may occur when monitored regions are

present, the savings from segment caching is depen-

6

dent on the debugging situation. If there are too

many full lookups, the additional overhead incurred

for checking the cache and unmonitored flag cancels

the benefit of caching. To address this issue, we com-

pared the cycle counts for BitmaplnlineRegisters and

Cache. BitmapInlineRegisters executes 12 register in-

structions and 2 loads. Cache executes 6 register in-

structions if there is a cache hit, 18 register instruc-

tions and 1 load if there is a cache miss, and 26 reg-

ister instructions and 2 loads if there is a full lookup.

Assuming that loads take between 2- 8 cycles, the

break-even point for C programs occurs when the per-

centage of write instructions requiring a full lookup is

24.3- 44.0%. For FORTRAN programs, the break-even

point is 16.4- 36.7%.

Segment caching reduced overhead by an average of

13.5%. For short lived programs, we do not think the

savings justify the scheme’s variability. Consider that

1470 overhead represents only about 50 seconds for a

program that normally runs for 6 minutes.

For compute intensive applications, improving the

naive compilation typically used during debugging

would have more performance impact than reserving

registers for segment caching [1, 2, 9]. In particu-

lar, register allocation would speed program execution,

while reducing the number of write checks. Because

register allocation targets scalar variables found on the

stack and stack writes exhibited excellent locality in

our tests, we conjecture that register allocation would

reduce the effect ive hit rate of segment caching, nar-

rowing the performance gap between simple bitmap

lookup and segment caching.

4 Eliminating Write Checks

The implementation described in the previous section

is simple but may incur significant overhead when the

dynamic count of write instructions is large relative

to the total instruction count. The optimizations de-

scribed in this section concentrate on reducing this

overhead by eliminating unnecessary y write checks.

Write check elimination is based on dynamic inser-

tion and deletion of write checks. For certain classes

of write instructions, data flow analysis can determine

runtime conditions under which a given write instruc-

tion is safe. For example, if a particular write instruc-

tion w can only write to a specific program variable

x, then the MRS need only check w while x is being

monitored. Hence, the analysis tool can eliminate the

check on w, and arrange for the hIRS to re-insert the

check at runtime upon creation of a monitored region

that includes x.

Similarly, the analysis tool can often determine that

a particular write instruction W1 within a loop will up-

date a contiguous range of memory locations. Given

this information, it can arrange for the MRS to check,

on loop entry, whether the range of memory locations

to be updated intersects any monitored regions. If this

range check succeeds, the MRS can dynamically re-

insert the eliminated write check on wl.

Kessler [13] describes a method for dynamically

patching a running program. To insert a check be-

fore an instruction, the instruction is replaced with a

branch to a write check patch. The write check patch,

in addition to checking for a monitor hit, is responsible

for executing the displaced instruction. At compile-

time, for each write instruction, a write check patch

is constructed. By having dedicated patches we in-

sure that inserting checks is extremely efficient. On

most architectures only a handful of instructions are

required.

Unfortunately, the MRS must incur additional run-

time overhead to support write check elimination.

For example, both write check optimizations outlined

above require that the MRS check all indirect jump

instructions, to verify that the control flow graph used

in data flow analysis matches the actual control flow

of the program being debugged. Whether these addi-

tional sources of overhead cancel the benefit of elim-

inating write checks depends on both the target pro-

cessor architecture and the type of program being de-

bugged.

4.1 Analysis

To support write check elimination, we augmented our

code patching and analysis tool to include a machine

independent optimizer. As before, the analysis tool

takes as input a sequence of SPARC assembly instruc-

tions. It then converts this sequence into an interme-

diate representation (IR) which is defined as a set of

3-address codes. In addition, the analysis tool con-

verts symbol table entries (e.g. STAB) into IR form.

The optimizer takes as input the IR, and converts it to

static single assignment (SSA) form [5]. It then per-

forms several IR transformations that eliminate checks

on the target addresses of individual write instructions.

4.2 Symbol Table Pattern Matching

The first pass of the optimizer identifies known write

instructions through symbol tabJe pattern matching.

The optimizer creates an expression DAG for each

target address, matching the DAG against debugging

symbol table entries. JVhen the expression for a target

address matches a symbol table expression, the opti-

mizer eliminates the expression from the IR instruction

sequence and replaces it with a pseucboperancl. For

example, if the expression %fp-20 matches a symbol

7

table entry, the optimizer will replace all instances of

Xfp-20 with a unique variable name v. Instructions

that read from Xfp-20 are converted to IR move in-

structions with v as the source. Instructions that write

into Xfp-20 are converted into IR move instructions

with v as the target.

This transformation has two benefits. First, it en-

ables a substantial portion of the write checks to be

eliminated, since there is no uncertainty about which

variable is being written. Second, substituting pseudo-

operands for target address expressions such as Xfp-20

simplifies the recognition of induction variables, a nec-

essary step in the loop optimizations described below.

During this first pass, the optimizer generates a table

which is used at runtime to translate a symbol name

x into a list of associated write instructions. When

the monitored region containing x is created, each in-

struction w in this list must be patched to detect a

monitor hit when w is executed. To support this pro-

cedure, the monitored region service interface exports

two additional operations:

PreMonitor(symbol)

PostMonitor(symbol)

The Premonitory operation performs this code patch-

ing procedure; the PostMonitor operation reverses it.

When a break condition involving x is set, the debug-

ger calls Premonitory to patch the write instructions

for x and then calls CreateMoni.toredRegion on the

memory region associated with z. The debugger must

create a monitored region for x because x could be

written through aliases as well as through instructions

patched to detect a monitor hit directly.

To support this symbol table optimization we must

check all definitions of registers that appear in symbol

table expression DAGs. For example, whenever Xfp is

modified, we must ensure that it points to the correct

stack frame. Hence, eliminating the uses of !!fp will

be profitable only if the number of uses of Xfp in write

instructions is greater than the dynamic count of its

definitions. Further, to check whether !!fp is reset to

its correct value following a function return requires a

pair of memory accesses to save and retrieve the cor-

rect Xfp value. A dedicated register will not suffice,

except for leaf procedures. Hence, checking a defini-

tion of %f p will be as expensive as checking two or three

write instructions that use %fp. Further, to avoid still

greater overhead (an extra load instruction for each

Xf p check), the hIRS must reserve a register for this

check. Because the %fp check reserves a register, the

remaining write checks in the optimized implementa-

tion must push a register window. As a whole, the

optimized implementation requires four dedicated reg-

isters.

Elimination of known write instructions also de-

pends on the control flow of the program. For example,

if the program erroneously jumps into the middle of a

procedure, the Xf p can contain an incorrect value. To

prevent such an occurrence, we must also check all in-

direct jumps in the program being debugged, to ensure

that they transfer control to legitimate targets.

Finally, this optimization requires compiler support

for the correct treatment of exceptions. If an exception

causes stack unwinding, the MRS must be notified so

that it can unwind its stack of correct Ifp values,

4.3 Loop Optimization

For many programs, writes performed in loops can

dominate the dynamic write-count, even if loop writes

make up only a small minority of the static write-

count. Because of the importance of loop writes, the

optimizer uses additional data flow analysis to elimi-

nate checks for some of the writes found in loops.

The optimizer performs two loop-based optimiza-

tion: loop invariant check motion and monotonic

write check elimination. First, the optimizer detects

all loop invariant target addresses. It eliminates the

checks for these loop invariant addresses and replaces

them with write checks in a pre-header block that dom-

inates all entrances to the loop. If one of these checks

succeeds at runtime, the MRS will insert the elimi-

nated write check within the loop.

Second, the optimizer detects write instructions that

will generate a monotonic sequence of target addresses

during the execution of a loop. We call such instruc-

tions monotonic writes. The optimizer replaces checks

on monotonic writes with range checks in the loop pre-

header. We use an efficient data structure to imple-

ment range checks. For ranges of 225 bytes or less, the

lookup requires at most three memory accesses. As

with loop invariant checks, if a range check succeeds

at runtime, the MRS will dynamically restore the elim-

inated write check.

To detect monotonic writes, the optimizer deter-

mines the monotonic variables for each loop. The value

of each monotonic variable must increase or decrease

monotonically during the execution of the loop.

4.3.1 Assert Definitions

To support loop optimization, the post-processor con-

verts the SPARC condition code and conditional branch

instructions into IR assert statements. An assert state-

ment has the form

DESTI ,DEST2 := ASSERT_OP SRCI ,SRC2

where ASSERTDP is one of the relational operators. In

an assert statement, DEST1 is the same operand as

SRCI, and DEST2 is the same as SRC2. The role of the

assert statement is to update the data flow information

about DESTI and DEST2 to reflect the condition code

setting. The purpose of this re-definition is to deter-

mine precisely, for each use of a variable, the symbolic

lower and upper bounds of the value of the variable.

4.3.2 Bound Propagation

The optimizer uses a single bound propagation algo-

rithm to detect both loop invariant and monotonic

writes. Bound propagation is performed once per loop.

Loop nests are processed from inner to outer loops,

so that checks moved out of inner loops can becolme

candidates for further optimization. The loop being

processed is called the current loop. Following bound

propagation, the optimizer processes each write in-

struction in the current loop, replacing the checks on

all bounded writes with checks in the current loop’s

pre-header. A bounded write is a write instruction

whose target address has both an upper bound and a

lower bound.

To detect bounded writes, the optimizer tags each

SSA variable with bounds (L, U), where L represents

the lower bound on the variable, and U the upper
bound. L can have one of five values: LC, LL1, LM,

LA, or l-. Lc represents a lower bound derived from

constants. A variable tagged with Lc is either a con-

stant or derived from an expression DAG containing

only constants. LL1 designates a lower bound derived

from loop invariants or constants. LA~ designates a

lower bound derived from monotonic variables, loop

invariants or constants. LA designates a lower bound

derived from assert statements, monotonic variables,

loop invariants or constants. Finally, 1- designates that

the variable has no known lower bound. Similarly, U

can have the values Uc, ULI, UM, UA, or 1.

The possible values for L are totally ordered accord-

ing to the usefulness of the bounds these values rep-

resent: Lc > LLZ > LM > LA > 1. For example, a

bound derived only from constants or loop invariamts

(LL1) is more useful than a bound derived from mcmo-

tonic variables, constants, and loop invariants (LM).

The latter type of bound requires a range check in the

pre-header of the current loop, while the former re-
quires only a standard write check. The values for U

are ordered analogously.

Before bound propagation begins, the bounds of all

SSA variables are initialized. Constants and variables

with constant values have bounds (Lc, Uc). Loop in-

variant variables have bounds (LLI, ULZ), Members of

monotonic groups have bounds (LM, -1-)or (L, ~~) de-
pending on whether their direction is increasing (LM)

or decreasing (UM).

After this initialization step, bound propagation

Def = statements that define variables

while (Def # 0)

changed = false

remove S from Def

newJower.bound =

max(LowerBound(Dest(S)),

ComputeLowerBound(Operands(S)))

new.upper.bound =

max(UpperBound(Dest(S)),

ComputeUpperBound(Operands(S)))

if (LowerBound(Dest(S)) # newJower-bound)

changed = true

LowerBound(Dest(S)) = newJower-bound

if (UpperBound(Dest(S)) # new.upper.bound)

changed = true

UpperBound(Dest(S)) = new-upper-bound

if (changed)

add all statements using Dest(S) to Def

Figure 4: Bounds propagation algorithm.

proceeds using the algorithm shown in Figure 4. Here

Dest(S) denotes the destination operand for statement

S. LowerBound and UpperBound select the appr-

priate component of the bounds associated with the

variables.

This algorithm iterates to a fixed-point. It places

all statements defining SSA variables into a set Def.

It then processes every statement S in Def, comput-

ing bounds for Dest(S). If the bounds for Dest(S)

change, then all statements using Dest(S) are added

to Def, By using the max operator to combine the

bounds on Dest(S) with the bounds computed from

the source operands of S, the algorithm propagates

the computed bounds only when they are more useful

than the current bounds for Dest(S).

The ComputeLowerBound and ComputeUpper-

Bound functions depend on the type of S. For ex-

ample, the ADD and SHIFT statements require only

the simple conjunction rule 1 = min(/_srcl, /-src2) to

compute the a new lower bound 1 from the two source

operand lower bounds l-srcl and l-src2.

4.4 Generation of Checks

Once bound propagation has completed, the optimizer
visits each write instruction in the current loop. If the
target address a of a write instruction w is a bounded
value, then the optimizer can replace the check on a
with a check in the loop pre-header. The particular op-
timization performed depends on the symbolic bounds
for a. Let a have bounds (1, u). Then if 1 ~ LLI and
u > ULI, a k loop invariant and the optimizer can re-

9

Checks Checks Runt ime

Program Eliminated Generated Overhead

Symbol LI Range Tot al LI Range Full Sym

(C) 023. EQNTOTT 71.9% 0.0% 0.6% 72.5% 0.0% 0.0% 0.5% 4.0%

(C) 008. ESPRESSO 23.1% 19.5% 15.4% 58.0% 0.9% 7.4% 27.8% 39,9%

(C) 001. GCC1.35 49.0’%0 1.3% 1.8’?ZO 52.1% 0.0% 0.8% 80.4% 109.2%

(C) 022.LI 75.9% 0.0% 0.0% 75.9% 0.0% 0.0% 89,2% 156.4%

(F) 015. DODUC 84.7% 0.1% 10.6% 95.4% 0.1% 4.6% 3.1% 80.8%

(F) 042. FPPPP 70.4% 0.0% 10,8% 81.2% 0.0% 0.0% 11.9% 39.5%

(F) 030. MATRIx300 51.7% 0.0% 48.3% 100.0% 0.2% 0.2% 0.4% 18.8%

(F)020.NAsKER 42.6% 17.3% 34.5% 94.4% 0.1% 0.2% 13.9% 26.9%

(F) 013.sPIcE2G6 77.7% 0.2% 1.0% 78.9% O.o’?zo 0.4% 11.4% 34.4%

(F)047.TOMCATV 70.4% 0.0% 10.8% 81.2% 0.0% 0.0% 8.2% 40.6%

CAVERAGE 55.0% 5.2% 4.5% 64,6% 0.2% 2.1% 49.5% 77.4%

FORTRAN AVERAGE 66.3% 2.9% 19.3% 88.5% 0.1% 0.9% 8.1% 40.2%

OVERALL AVERAGE 61.7% 3.8% 13.4% 79.0% 0.1% 1.4% 24.7% 55.1%

Table2: Results of write check elimination.

place the check on awith astandard write check inthe

pre-header ofthe current loop. Ifl=LM andu>UA

oru= UMandi~ LA, then a is derived fromamono-

tonic variable and the optimizer can replace the check

on a with a range check in the loop pre-header.

Togenerate code for themovedchecks, theoptimizer

walks the expression DAGfora, generating statements

until it reaches loop invariant or constant operands.

For monotonic write check elimination, the optimizer

walks the DAG twice, generating code for the lower

bound and then the upper bound. If the write check

for a ever succeeds during program execution, the mon-

itored region service dynamically restores the elimi-

nated write check inside the loop.

4.5 Implementation Complexities

In performing these transformations, the optimizer

must take into account possible aliases that might af-

fect the value of a. As the optimizer generates code,

it maintains an alias list of all memory operands en-

countered while walking the expression DAG for a.

The optimizer precedes the range check generated for

a with a sequence of statements that create monitored

regions for each address on the alias list. At all exits to

the current loop, the optimizer inserts a code sequence

that deletes these monitored regions. Thus, alias de-

tection, like symbol table optimization, requires veri-

fication of program control flow. Further, it requires

compiler support for notification of exceptions, as the

MRS may need to delete monitored regions when an

exception transfers control outside of a loop.

4.5.1 Overflow

For range checks, the optimizer must also guard

against overflow. Overflow occurs when the monotonic

variable is incremented or decremented to a value that

is not in the domain of the variable’s type. For ex-

ample, a 16-byte signed integer might be incremented

past 215 – 1, yielding a non-monotonic sequence of val-

ues. Detecting overflow requires the compiler to pro-

vide type information. The optimized code would use

this type information to verify the type consistency

of each sub-expression leading to a loop-optimized ad-

dress.

4.5.2 Reserved Registers

The MRS implementation that uses both symbol table

and loop optimization reserves five registers. The extra

register beyond what is needed to support symbol table

optimization is used to hold one of the two bounds

computed by the range check code.

4.6 Evaluation

We evaluated the symbol table and loop optimizations

in two ways. First, we provide detailed dynamic count

data for write checks eliminated as a result of opti-

mization, Second, we measured the runtime overhead

of the monitored region service for symbol table opti-

mization and for symbol table optimization combined

with loop optimization.

10

4.6.1 Dynamic Write C1~eck Counts

To compare the counts of write checks executed with

and without optimization, we measured the number of

checks that optimization was able to eliminate while

still insuring that all monitor hits are detected. We

also measured the number of dynamic write checks

executed in loop pre-headers generated as a result of

monotonic variable and loop invariant optimization.

Under the headings “Checks Eliminated” and “Checks

Generated,” Table 2 reports these results as percent-

ages of total write instructions executed.

For seven of ten programs our optimizations were

able to eliminate more than 75% of the checks.

001 .GCC1 .35 and 008. ESPRESSO have the lowest per-

centage of checks eliminated. Both programs mtike

extensive use of C‘s register declaration. During de-

bugging, the C compiler keeps register declared vari-

ables in registers. Because registers are not aliased,

these declarations reduce both the need and the op-

portunity for optimization.

4.6.2 Expected Performance

We now turn to the expected overhead of the moni-

tored region service, This overhead includes all une-

liminated write checks and loop pre-header checks gen-

erated as a result of loop optimization. In addition, as

stated earlier, the MRS must check all indirect jumps

and definitions of the lif p.

The column “Sym” in Table 2 shows the effect of us-

ing symbol table optimization on the SPEC benchmark.

Comparing the overheads from Section 3 reported in

Table 1, we observe that for some programs, checking

every write instruction incurs less overhead than the

analysis based implementations. This is due to the

added overhead of checking ?!fp definitions and con-

trol flow.

The column “Full” in Table 2 reports the overhead

of monitoring the SPEC benchmarks with checks elim-

inated through both symbol table and loop optimiza-

tion. These measurements are optimistic in that our

implementation does not check for either overflow or

aliases. Since all work performed for these checks is

done only on loop entry or exit, overhead for this check

will be insignificant for loops that have large iteration

spaces.

The scientific programs in the benchmark suite gain

the most from loop optimization. For these programs,

the costs of checking control flow and symbol table lceg-

ister definitions are subsumed by the benefit of elim-

inating most of the write checks. However, for some

system codes such as 001 .Gcc 1.35, these costs do,mi-

nat e, and checking every write instruction emerges as

the better choice.

5 Conclusion

Among the data breakpoint implementation methods

we studied on the SPARC architecture, we believe that

the best method is to check all write instructions using

a segmented bitmap, reserving registers to hold inter-

mediate values during address lookup. This implemen-

t ation choice has several advantages. First, its over-

head is independent of the number and distribution

of monitored regions. Second, its average overhead on

the SPEC benchmarks is 42Y0, which is small when com-

pared to the cost of using unoptimized code for debug-

ging. Finally, this choice simplifies both the monitor

library and the assembly language analysis tool. The

monitor library need not initialize and maintain data

structures that support fast lookup on address ranges.

The analysis tool can simply insert checks after every

write instruction; it does not need to perform data flow

analysis on the assembly language code.

As debugging systems evolve to support more so-

phisticated register allocation, the dynamic count

of write instructions executed by a typical program

should diminish relative to the total instruction count.

This development will reduce the overhead of check-

ing every write instruction. It may also dictate that

freeing more registers for the compiler, rather than re-

serving them for write checks, will minimize the over-

head of providing a monitored region service. This

development will also decrease the importance of some

write check elimination techniques. For example, an

optimizing compiler will eliminate many of the same

write instructions whose write checks can by elimi-

nated through symbol table pattern matching. The

majority of these instructions access local variables

that, in optimized code, will reside in registers.

On processor architectures such as the i386, the dy-

namic count of write instructions will be far greater

relative to the total instruction count than on RISC

architectures such as the SPARC. Further, some appli-

cations of data breakpoints, such as detecting access

anomalies [7] in parallel programs, require the moni-

toring of read instructions as well as write instructions.

Since the dynamic count of read instructions is typi-

cally two to three times that of write instructions, the

overhead of monitoring every read and write can be

significant. The data flow analysis techniques outlined

in Section 4 successfully address this problem by pro-

viding a means for eliminating checks on the majority

of write instructions dynamically executed by the pro-

gram. Straightforward extensions of these techniques

will handle read instructions as well.

On the SPARC both implementation approaches

yielded data breakpoint services whose overhead is

low enough for practical use. In addition to support-

ing important debugging queries such as stop when

11

field f of structure s is modified, a practical

data breakpoint service opens the door for higher level

applications of data breakpoints. Data breakpoints

can be combined with control breakpoints to support

fault isolation. Using this technique, programmers can

prevent a subset of their program’s code from access-

ing a given data structure. For example, a programmer

could detect corruption of library data structures such

as those used by a memory allocator. Other applica-

tions of data breakpoints include access anomaly de-

tection, data structure animation, checkpointing data

for replayed execution, and support for runtime type

checking. We are currently investigating several of

these applications.

Acknowledgements

We wish to thank Oliver Sharp for his valuable com-

ments on earlier drafts of this paper.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

A. Adl-Tabatabai and T. Gross. “Detection and Re-

covery of Endangered Variables Caused by Instruction

Scheduling,”. In Programming Language Design and

Implementation, 1993.

A. Adl-Tabat abai and T. Gross. “Evicted Variables

and the Interaction of Global Register and Symbolic

Debugging,”. In Principles of Programming Lan-

guages, pages 371-383, 1993.

B. Beander. “Vax DEBUG: an Interactive, Symbolic,

Multilingual Debugger,”. In Proceedings of the ACM

SIGSOFT/SIGPLA N Software Engineering Sympo-

sium on High-Level Debugging, pages 173–179, August

1983. Appeared as SIGPLAN Notices 18(8).

T. Cargill and B. Locanthi. “Cheap Hardware Support

for Software Debugging and Profiling,”. In Proceedings

of t}ae Second International Conference on Architec-

tural Support for Programming Languages and Oper-

ating Systems, pages 82–83, October 1987. Appeared

as SIGPLAN Notices 22(10).

R. Cytron, J. Ferrante, B. K. Rosen, M. N. Weg-

man, and F. K. Zadeck. “Efficiently Computing Static

Single Assignment Form and the Control Dependence

Graph,”. ACM Transactions on Programming Lan-

guages and Systems, 13(4):451-490, October 1991.

N. M. Delisle, D. E. Menicosy, and M. D. Schwartz.

“Viewing a Programming Environment As a Sin-

gle Tool,”. In Proceedings of the ACM SIG-

SOFT/SIGPLAN Software Engineering Symposium

on Practical Software Development Environments,

pages 49–56, May 1984. Appeared as SIGPLAN No-

tices 19(5).

A. Dinning and E. Schonberg. “An Empirical Com-

parison of Monitoring Algorithms for Access Anomaly

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

19

Detection,”. In ACM Symposium on Principles and

Practice of Parallel Programming, pages 1-10, 1990.

S. L. Graham, P. B. Kessler, and M. K. McKu-

sick. “An Execution Profiler for Modular Programs,”.

Software-Practice H Experience, 13:671–685, August

1983.

J. L. Hennessy. “Symbolic Debugging of Optimized

Code,”. ACM Transactions on Programming Lan-

guages and Systems, 4(3):323–344, July 1982.

Intel Corporation, Santa Clara, California. Inte/ 80386

Programmer’s Reference Manual, 1986.

M. S. Johnson. “Some Requirements for Architectural

Support of Software Debugging,”. In Symposium on

Architectural Support for Programming Languages and

Operating Systems, pages 140-148, April 1982. Ap-

peared as SIGPLAN Notices 17(4).

G. Kane and J. Heinrich. MIPS RISC ARCHITEC-

TURE. Prentice Hall, New Jersey, 1992.

P. B. Kessler. “Fast Breakpoints: Design and Im-

plementation,”. In Proceedings of the ACM SIG-

PLAN’90 Conference on Programming Language De-

sign and Implementation, pages 78–84, White Plains,

New York, June 1990. Appeared as SIGPLAN Notices

25(6).

M. A. Linton. “The Evolution of Dbx,”. In Proceedings

of the 1990 Useniz Summer Conference, pages 211–

220, Anaheim, CA, June 1990.

J. M. Mellor-Crummey and T. J. LeBlanc. “A Soft-

ware Instruction Counter,n. In Proceedings of the

Third International Conference on Architectural Sup-

port for Programming Languages and Operating Sys-

tems, pages 78-86, April 1989. Appeared as SIGPLAN

Notices 24(Special Issue).

Spare International. The Spare Architecture Manual.

Prentice-Hall, Inc., Menlo Park, CA, version 8 edition,

1992.

R. M. Stallman and R. H. Pesch. A Guide to the

GNU Source-Level Debugger. Free Software Founda-

tion, 4.01 revision 2.77 edition, January 1992.

Sun Microsystems, Inc. Programmer’s Language

Guide, revision a edition, March 1990. Part Number:

800-3844-10.

R. Wahbe. “Efficient Data Breakpoints,”. In F’ijth

International Conference on Architectural Support

for Programming Languages and Operating Systems,

pages 200-212, October 1992. Appeared as SIGPLAN

Notices 27(9).

