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Abstract 
Modern network processors employs parallel processing engines 
(PEs) to keep up with explosive internet packet processing 
demands. Most network processors further allow processing 
engines to be organized in a pipelined fashion to enable higher 
processing throughput and flexibility. In this paper, we present a 
novel program transformation technique to exploit parallel and 
pipelined computing power of modern network processors. Our 
proposed method automatically partitions a sequential packet 
processing application into coordinated pipelined parallel 
subtasks which can be naturally mapped to contemporary high-
performance network processors.  Our transformation technique 
ensures that packet processing tasks are balanced among pipeline 
stages and that data transmission between pipeline stages is 
minimized. We have implemented the proposed transformation 
method in an auto-partitioning C compiler product for Intel 
Network Processors. Experimental results show that our method 
provides impressive speed up for the commonly used NPF IPv4 
forwarding and IP forwarding benchmarks. For a 9-stage pipeline, 
our auto-partitioning C compiler obtained more than 4X speedup 
for the IPv4 forwarding PPS and the IP forwarding PPS (for both 
the IPv4 traffic and IPv6 traffic). 

Descriptors    D.3.4 [Programming Languages]: Processors – 
compilers, optimization. 

General Terms   Algorithms, Performance, Design. 

Keywords   Network Processor, Pipelining Transformation, 
Program Partition, Live-Set Transmission, Parallel, Packet 
Processing 

1. Introduction 
Internet traffic has grown at an explosive rate. The increasing 
amounts of services offered on the internet have continually 
pushed the network bandwidth requirement to newer heights �[1]. 
Advances in microprocessor technology helped pave the way for 
the development of Network Processors (NPs) �[2]�[3]�[4]�[5]�[6], 
which are designed specifically to meet the requirements of next 
generation network equipments.  

In order to address the tremendous speed challenges of network 
processing, modern Network Processors generally have a parallel 

multiprocessor architecture with multiple processing elements 
(PEs) on a single chip. The PEs often are controlled by a general 
purpose processor and supported by other reconfigurable logic 
elements. In many NPs the processing elements can also be 
organized as a pipeline, providing computing and algorithmic 
flexibility. In this case, a packet processing application can be 
partitioned into several pipeline stages, with each processing 
element containing one pipeline stage. The packet processing 
application as a whole can be accelerated by a factor of up to the 
number of pipeline stages �[2]�[3]�[4]�[5]�[6]. The Intel IXA NPU 
family of network processors (IXP), for instance, contains 
multiple MicroEngines (MEs) which can be deployed either as a 
pipeline or as a pool of homogeneous processors operating on 
distinct packets �[2].  

The unique challenge of network processing is to guarantee and 
sustain the throughput of packet processing for worst-case traffic. 
That is, each network application has performance requirements 
that have to be statically guaranteed. Therefore a static compiler, 
rather than a dynamic or runtime approach, is preferred in this 
area. In order to exploit the underlying parallel and pipelined 
architecture for higher performance, existing compilers for NPs, 
(e.g., the Intel® MicroEngine C compiler), usually adopts the 
paradigm of parallel programming for network applications, as 
practiced in the scientific computing community. This requires 
that the programmers manually partition the application into sub-
tasks, manage the synchronization and communication among 
different sub-tasks, and map them onto a multiprocessor system 
explicitly. Unfortunately, such a parallel programming paradigm 
is not intuitive and not familiar to most programmers. 

On the other hand, network applications are most naturally 
expressed in a sequential way. When a new packet arrives, the 
application performs a series of tasks (e.g., receipt of the packet, 
routing table look-up, and enqueuing) on the packet. 
Consequently, there is a large gap between the parallel 
programming paradigm on NPs and the sequential semantics of 
network applications.  

Prior work on advanced tools for mapping packet processing 
application onto processing elements can be found in �[9]�[10]�[11]. 
In this paper, we propose a novel approach that automatically 
transforms sequential packet processing applications into 
pipelined forms for execution on pipelined packet processing 
architectures. The proposed algorithm automatically partitions a 
sequential packet processing application into chained pipeline 
stages and ensures that 1) the packet processing tasks are balanced 
among pipeline stages and 2) the data transmission between 
pipeline stages is minimized.   
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The rest of the paper is organized as follows.  In section 2, we 
provide a brief overview of the IXP architecture �[2] and the auto-
partitioning programming model used by the input programs we 
consider �[7]. In section 3 we present the algorithms for automatic 
pipeline transformation and live set transmission minimization. 
We present experimental results in section 4 and cover related 
work in section 5. Finally, we draw conclusions and describe 
future work in section 6. 

2.  The IXP architecture for packet processing 
The IXP network processor architecture �[2] is designed to process 
packets at high rates, i.e., where inter-arrival times between 
packets may be less than a single memory access latency. To keep 
up with such high arrival rates, IXP presents a novel architecture 
consisting of one core processor based on the Intel® XScale and a 
collection of multithreaded packet processing engines with an 
explicit memory hierarchy. For example, the IXP2800 contains 
sixteen processing engines (PE in Figure 1).  The processing 
engines have a non-traditional, highly parallel architecture. 
Ordinarily, XScale runs the control plane code and the packet 
engines run the fast path data plane code. 

 
Figure 1. Intel IXP2800 block diagram 

2.1 Pipelined processing engines 
Each processing engine in an IXP has eight hardware threads, 
with zero-overhead context switching between them. Although 
each packet engine is an independent processor with its own 
register file and 32-bit ALU, several packet engines can work 
together to form an engine level pipeline. A packet processing 
application can be mapped onto such a pipeline by dividing it into 
successive stages, each containing a portion of the packet 
processing tasks. 

Data transmission between successive pipeline stages is 
accomplished on IXP using ring buffers. The IXP provides two 
flavors of hardware-supported rings: 1) a nearest neighbor (NN) 
ring, a register-based ring that can deliver words between packet 
engines in just a few cycles, and 2) a scratch ring, which is 
implemented in static memory and takes on the order of a hundred 
cycles to perform an enqueue/dequeue operation. 

2.2 Packet processing stages 
In order to reduce the programming effort required to develop a 
fast-path data plane packet processing application for IXP, an 
auto-partitioning C compiler product �[7] is being developed by 
Intel. The goal of this compiler is to automatically partition packet 
processing applications onto multiple processing engines and 
threads, thus allowing programmers to develop applications using 

sequential semantics and without excessive concern for the details 
of the machine’s organization.  

The auto-partitioning C compiler requires that the input program 
be developed using the auto-partitioning programming model, in 
which the data plane packet processing application is expressed as 
a set of sequential C programs called packet processing stages 
(PPSes). This model corresponds closely to the communicating 

sequential processes (CSP) model of computation �[8] in which 
independent sequential programs run concurrently and 
communicate via queues.  A PPS is a logical entity written using 
hardware-independent sequential C constructs and libraries, and is 
not bound by the programmer to a specific number of compute 
elements (processing engines, threads etc.) on the IXP. Each PPS 
contains an infinite loop, also called a PPS loop, which performs 
the packet processing indefinitely. The primary mechanism by 
which PPSes communicate with one another is a pipe which is an 
abstract, unidirectional communication channel, i.e., a queue. 
Like a PPS, a pipe is also a logical entity that is not bound by the 
programmer to a specific physical communication channel (NN 
rings, scratch rings, SRAM rings) on the IXP. PPSes can also 
communicate through variables in shared memory �[7]. 

The auto-partitioning C compiler automatically explores how (e.g., 
pipelining vs. multiprocessing) each PPS is paralleled and how 
many PEs (e.g., number of pipeline stages or multiprocessing 
stages) each PPS is mapped onto, and selects one compilation 
result based on a static evaluation of the performance and the 
performance requirements of the application. The pipelining 
transformation presented in this paper is a fundamental algorithm 
in the compiler; on the other hand, how the exploration and 
multiprocessing are performed is beyond the scope of this paper. 

The expression of a packet processing application as a set of 
communicating PPSes represents the logical partitioning of the 
application into concurrently executing processes.  This is done 
by the programmer, who may write as few or as many PPSes as 
seems natural for the application at hand. The algorithm for 
pipeline decomposition presented in this paper operates on a 
single PPS, and represents the decomposition of the PPS into a 
physical form that is appropriate for high performance execution 
on the IXP. 

3. Automatic pipelining transformations 
In this section, we describe a novel algorithm for transforming a 
sequential PPS into pipelined parallel form, as shown in Figure 2a 
and 2b.  By this transformation two or more processing engines in 
an NP are organized as a pipeline where each stage contains a 
portion of the original PPS loop. Data that are alive at the 
boundary between one stage and the next are communicated from 
the earlier stage to the later, as shown in Figure 3. 

3.1 The framework of pipelining transformation 
A cut is a set of control flow points that divide the PPS loop body 
into two pieces. If the PPS is to be partitioned into D stages, then 
D–1 cuts must be selected, and the cuts must be non-overlapping. 
That is, each node in the control flow graph must lie in one 
pipeline stage after all the cuts are applied. For better 
performance, the selected cuts need to meet the following criteria. 
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Figure 2. The ingress of IPv4 forwarding processing application 
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Figure 3. Proper transmissions of the live set cross cuts 

1. No dependence from later stages to earlier ones 
Any dependence from a later stage to an earlier one is 
necessarily PPS loop-carried. Should such dependences exist, 
feedback paths from later stages to earlier ones are required to 
ensure that the earlier stage (of a later iteration) stalls until the 
later stage (of an earlier iteration) satisfies the dependence. 
Backward-flowing synchronization is complex and awkward 
to implement on the IXP.  We have chosen to prohibit such 
dependences in our choice of cuts, in favor of simple, 
unidirectional communication and synchronization between 
stages. 

2.  Minimization of live set 
After cutting the PPS into two stages, data that are alive at the 
cut (roughly speaking, the contents of live registers) must be 
transmitted across the cut, so that the downstream pipeline 
stage may begin executing in the proper context.  In addition, 
some control flow information must be transmitted over the 
cut so that the downstream stage may begin executing at the 
right program point.  We call this data collectively the live set 
(see variables x and c in Figure 3). 

3. Balance of packet processing tasks 

The performance of the pipelined computation as a whole will 
be no better than the slowest of the pipeline stages.  For this 
reason it is desirable to balance the original packet processing 
tasks among the stages as evenly as possible. 

It is natural to model the problem of selecting cuts as a network 
flow problem, in which the weight of an edge represents the cost 
of transferring the live set between pipeline stages if the edge is 
cut. As a result, the selection of cuts is reduced to finding 
minimum cuts of the flow network that result in balanced 
instruction counts among pipeline stages. Consequently, the 
overall framework of pipelining transformation consists of 
construction of a proper flow network model, selection of cuts on 
the flow network, and realization of pipeline stages. 

3.2 Construction of the flow network model 
A proper flow network model should help us avoid dependences 
from the downstream nodes of the cut to upstream ones, and 
should model correctly the cost of transmission of the live set. The 
flow network is constructed from the single static assignment 
(SSA) form of the program and the dependence graph of the 
program. The flowchart of the construction process is shown in 
Figure 4, and the steps are described in detail in subsequent 
sections.
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Figure 4. The flow chart for the construction of the flow network 

model 

3.2.1 Elimination of PPS loop carried dependence 
To eliminate control dependences from later stages to earlier ones, 
the pipelining transformation should not split any strongly 
connected component (SCC) of the control flow graph (CFG) 
across pipeline stages.  That is, each SCC should belong in its 
entirety to one pipeline stage after the transformation. Step 1.3 
therefore forms SCCs for the CFG and builds the associated 
summarized graph (in which SCCs are reduced to a single node), 
and step 1.4 constructs the dependence graph (DG) based on the 
summarized graph.  

To eliminate data dependences from later stages to earlier ones, 
step 1.4 includes PPS-loop-carried flow dependence as well as 
non-loop-carried data and control dependence in the DG; 
consequently, the sources and the sinks of the PPS-loop-carried 
flow dependence are in the same SCC of the DG. Step 1.5 then 
forms SCCs for the DG, and the pipelining transformation 
considers only cuts that place a whole SCC of the DG on one or 
another side of each cut. 

3.2.2 Cost of live set transmission 
The flow network makes explicit the flow of values (both 
variables and control objects) in the program, so that the cost of 
the live set transmission can be modeled appropriately. The flow 
network is constructed based on the summarized DG in step 1.6, 
which is shown in detail in Figure 5.  

In addition to the unique source and sink nodes (step 1.6.1) and 
program nodes that contains instructions (step 1.6.2), variable 
nodes and control nodes are introduced in the flow network for 
each object that may be included in the live set (step 1.6.3 and 
1.6.4). After the SSA transformation in step 1.1, every variable 
has only one definition point, and hence has only one definition 
edge (step 1.6.5); and likewise for control nodes (step 1.6.7).  

Consequently, the weight (or capacity) associated with the 
definition edges (VCost for variables and CCost for control 
object) models the cost of transmitting the associated variable or 
control object if that edge is cut. Its value depends on the 

underlying architecture of the NPs; since the static guarantee of 
performance is required, the architecture of the NPs (e.g., IXP) is 
very predictable and those costs can be statically determined. 

In addition, the weight of edges going out of the source and 
coming into sink are set to 0, as cutting such an edge will not 
incur any transmission of live set. All the other edges have infinite 
weights so that they are not eligible for cutting. 

3.3 Selection of cuts in the flow network 
To cut the PPS into D (the pipelining degree) stages, the 
transformation applies D–1 successive cuts to the PPS such that 
each cut is a balanced minimum cost cut; the overall framework is 
shown in Figure 6.  

 
Figure 5. The detailed flow chart for building the flow network 
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Figure 6. The flow chart for selection of cuts in the flow network 

Our algorithm for selecting a balanced minimum cost cut is based 
on the iterative balanced push-relabel algorithm �[12]. (It is 
adapted from �[13], and its flow chart is shown in Figure 7). Given 
a flow network N = (V, E), a weight function W for each node in 
V, this heuristic applies the push-relabel algorithm iteratively on 
the flow network N until it finds a cut C which partitions V into X 
and V–X, such that (1 - e) � W(V) / d � W(X) � (1 + e) � W(V) / d, 
where d is the balance degree, and e (a small constant between 0 
and 1) is the balance variance. 

The weight function W of each node models how the placement of 
the node affects the overall balance of the packet processing tasks; 
it is flexible and can model various factors (e.g., instruction count, 
instruction latency, hardware resources, or combinations thereof). 
In our implementation, instruction count is used because the 
latency is optimized and hidden through multi-threading, and 
because code size reduction is an important secondary goal.  In 
the future, other factors might be included for consideration. 
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Figure 7. The flow chart for the selection of the cuts in the flow 
network 

The balance variance e reflects the tradeoff between the balance 
and the cost of the cut (in terms of live set transmission). If it is 
close to 0, the algorithm prefers a balanced cut over one with a 
smaller cost; on the other hand, if it is close to 1, minimization of 
the cost is regarded as more important. Experiments may be 
needed to determine the right value of the balance variance; for 
instance, its value is set to 1/16 in out implementation, as a result 
of experimentation and tuning of real world applications. 

In addition, an efficient implementation of the heuristic need not 
run the push-relabel algorithm from scratch in every iteration. 
Instead, it can be computed incrementally as follows. 

• Find the initial minimum cut for the flow network using plain 
push-relabel algorithm. 

• After nodes are collapsed to the source or sink, find the 
updated minimum cut using the push-relabel algorithm with 
the following initial states of pre-flow, label, and excess (see 
�[12] for the definition of these variables). 
o Set the pre-flow of all the edges going out of the source to 

their capacities, and update their excesses accordingly. 
Leave the pre-flow of other edges unchanged. 

o Set the label of the source to the new number of nodes. 
o If nodes are collapsed to the source, leave the labels of 

other nodes unchanged. Otherwise, set them to 0. 
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Figure 8. The flow chart for realization of a pipeline stage 
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Figure 9. Example of live set transmission 

3.4 Realization of pipeline stages 
The realization of a pipeline stage involves proper transmission of 
the live set across the cut, and the reconstruction of the control 
flow of the stage. The flow chart of the realization algorithm is 
shown in Figure 8; the pipelining transformation applies this 
process to every pipeline stage. 

 
Figure 10 Conditionalized live set transmissions 

 
Figure 11. Naively unified live set transmissions 

3.4.1 Live set transmission 
As shown in Figure 9, for proper transfer of the data and control 
flow between neighboring stages, the live set needs to be properly 
transmitted across the cut, through the inter-processor 
communication channels provided by the NP.  A problem that 
arises is that the live set at one control-flow point (i.e., one edge 
in the cut) may be different from the live set at a different point. 

One resolution is to conditionalize the transmission of every 
object in the live set, as shown in Figure 10. However, if the 
pipeline stages are to be multi-threaded later, the transmission of 
the live set has to be ordered and synchronized across multiple 
threads, due to the global resource (pipe) used. With the 
conditionalized transmissions, the critical section around the pipe 
operations can be very large (as suggested by the bold lines in 
Figure 10), and consequently the performance of the application is 
greatly impacted. 

Instead, a unified transmission can be used, in which all variables 
that at any edge in the cut are transmitted with a single aggregate 
(unified) transmission.  In this case the critical section around pipe 
operations is much smaller (as suggested by the bold lines in 
Figure 11).  
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Figure 12. Minimized unified live set transmission 

 
Figure 13. Concatenated flow graphs of the two stages 

However, a naïve implementation of the unified transmission, as 
shown in Figure 11, can transmit more objects than necessary, 
because two objects in the live set may not be alive at the cut 
simultaneously (for instance, t2 and t3 in Figure 9(b)) and hence 
only one of them need be transmitted. Ideally, the live set should 
be packed such that if several objects are never alive at a cut 

simultaneously (i.e., they do not interfere with each other in the 
pipelined program), only one of them is transmitted, as illustrated 
in Figure 12. 

Packing the live set can be achieved by first computing an 
interference relation between objects in the live set, and then 
coloring each object to a temporary for transmission. If the 
interference relation is simply computed over the back-to-back 
concatenated CFGs of the two stages, as shown in Figure 13, false 
interference edges may be present (such as the interference 
between t2 and t3 in Figure 13), because some paths in the 
concatenated control flow graph (such as the one shown in Figure 
13) can never be executed in reality and should be excluded when 
computing the interference. 

The flow chart for computing the desired interference is shown in 
Figure 14. In steps 4.1 and 4.2, the original program is rendered 
such that definitions of the live objects in the current stage and 
their use in the later stages are made explicit.  

 
Figure 14. The flow chart for the minimum and unified live set 

transmission 

The steps 4.3 and 4.4 collectively compute the correct interference 
relation between the live objects, over the back-to-back 
concatenated CFGs of the two stages with impossible paths 
excluded. This is because the live object v is alive when the live 
object u is defined in the concatenated CFG (excluding 
impossible paths), if and only if  
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1) There is a path V1→U1→W1→V2→U2→W2 in the 
concatenated CFG, where V1 and U1 are the definition points 
of v and u in the first stage respectively, V2 and U2 are the 
counterparts of V1 and U1 in the second stage, W2 is a use of 
v in the second stage, and W1 is the counterpart of W2 in the 
first stage (see Figure 15). In this case, v’ and u’ interfere in 
the rendered program and this is computed by step 4.3. 

2) There is a path V1→W1→U1→V2→W2→U2 in the 
concatenated CFG, where V1 and U1 are the definition points 
of v and u in the first stage respectively, V2 and U2 are the 
counterparts of V1 and U1 in the second stage respectively, 
W2 is a use of v in the second stage, and W1 is the 
counterpart of W2 in the first stage (see Figure 16). In this 
case, there is a path from a use of v’ to a definition of u’ in the 
transformed program and this is computed by step 4.4. 

After the final interference graph is built, step 4.5 attempts to 
color it using existing heuristics in the literature, and finally, the 
steps 4.6 and 4.7 set up the transmission properly in the current 
and the next stages, as illustrated by Figure 12. 

 
Figure 15. The first case for interference: 

V1→U1→W1→V2→U2→W2 

 
Figure16. The second case for interference: 

V1→W1→U1→V2→W2→U2 

3.4.2 Reconstruction of the control flow 
The reconstruction of the control flow for the pipeline stage is 
largely straightforward. One subtlety here is that as the control 
dependence is built from the summarized CFG, the conditional in 
the summarized CFG can be a loop that contains multiple exits. In 
that case, a different value needs be assigned to the control object 
in every successor block of that loop in step 3.4; furthermore, the 
reconstruction of the conditional in step 3.3 should replace the 
loop by conditional branch (switch) to the appropriate successor 
block based on the associated control object. Such an example is 
shown in Figure 17. 

4. Experimental results 
The pipelining transformation can be applied to arbitrary network 
applications written using the auto-partitioning programming 
model. It has been implemented in the Intel auto-partitioning C 
compiler product and has been tested on several real-world 
applications in different network segments (e.g., broadband access, 
wireless, enterprise security, and core/metro network,). 

In this section, we evaluate the effectiveness of the pipelining 
transformation using the industry standard Network Processor 
Forum (NPF) IPv4 forwarding benchmark �[25] and IP forwarding 
benchmark (both for IPv4 and for IPv6) �[26]. These two 
benchmarks selected for our experimental measurements because 
they are real and standard network applications and are widely 
used in the industry to test the system level performance of NPs.  
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Figure 17. Example for transfer of control flow after a loop 

(a) The IPv4 forwarding application 

 
(b) The IP forwarding application 
Figure 18. The NPF benchmarks 

The two applications are illustrated in Figure 18. The IPv4 
forwarding application consists of five PPSes: the packet receipt 
(RX) PPS, the IPv4 PPS, the Scheduler PPS, the queue manager 
(QM) PPS, and the packet transmission (TX) PPS; and the IP 
forwarding application is made up of three PPSes: the RX PPS, 
the IP PPS and the TX PPS, with the IP PPS consisting of two 
code paths – one for the IPv4 traffic and the other for the IPv6 
traffic. Each one has a complex control flow graph, with ~10K 
lines of codes, >600 basic blocks, ~100 routines, and >20 loops �  

We evaluate the performance of each PPS in terms of the number 
of instructions required for processing a minimum sized packet 
(48 bytes for Packet Over SONET) for the IPv4 traffic and/or the 
IPv6 traffic, as this case places the most stringent performance 
requirement on the application.  

The effectiveness of the pipelining transformation is evaluated by 
studying the speedup of the performance (i.e., comparing the 
performance of n-way pipelining a PPS with that of mapping it to 
a single PE), as well as the overhead of the live set transmissions, 
with different pipelining degrees. When measuring the 
performance of a particular PPS with pipelining degree d, the PPS 
is first d-way pipelined, and then the number of instructions 
required is determined by the longest pipeline stage. 

In addition, the overhead of the live set transmissions is measured 
by the ratio, in the longest pipeline stage, of the number of 
instructions for live set transmission (receiving the live set from 
the previous stage and transmitting the live set to the next stage) 
to the number of instruction counts for packet processing. 

Figures 19 and 20 show the speedup of the PPSes in the IPv4 
forwarding and IP forwarding applications for different pipelining 
degrees. The speedup of the RX and TX PPSes, in both the IPv4 
forwarding and IP forwarding applications, scales well up to 
pipelining degree 5, after which the speedup levels off. This is due 
to the fact that, as the pipelining degree increases, the reduction in  
the number of instructions in each pipeline stage is offset by the 
additional instructions required for live set transmission, as can be 
seen in Figures 21 and 22. 

Figure 19. Speedup in the IPv4 forwarding benchmark 

Figure 20.  Speedup in the IP forwarding benchmark 
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Figure 21. Overhead in the IPv4 forwarding benchmark 

Figure 22. Overhead in the IPv4 forwarding benchmark 

On the other hand, the speedup for the IPv4 PPS scales well for 
pipelining degree up to 10, as the number of instructions for 
packet processing in this PPS is much larger than that for live set 
transmission (as can be seen in Figure 21). The same is true for 
the IP PPS (for both the IPv4 traffic and the IPv6 traffic). 

In contrast, the speedup for the QM and the Scheduler PPSes is 
almost the same for pipelining degrees 2 to 10. Since those two 
PPSes essentially update the shared flow state of the traffic, they 
have inherent PPS loop-carried dependence in the program. 
Consequently, they cannot be effectively pipelined (though they 
can be efficiently multi-threaded using one PE �[7]). 

Network applications usually have inherent data parallelism, i.e., 
they perform largely independent operations on successive 
packets, and hence they have little PPS-loop-carried dependence. 
They also have very stringent performance budgets (cycles per 
packet). For this reason the pipelining transformation is both 
useful and effective for improving the performance of network 
applications, as it distributes the performance budget over several 
pipeline stages. 

5. Related work 
Program partitioning is a heavily researched topic. Zhang et. al. 
�[15] introduce a whole program partitioning method for tamper-
resistant embedded devices, in which program partitions are 
generated under the principle of concealing the program control 
information to avoid security hazard. All program partitions are 
executed later in the same embedded devices.  

A large volume of literature exists on mapping and scheduling 
parallel programs for multi-processor systems �[9]�[10]�[13]�[18]�[19] 

�[20]�[21]�[22]�[23]�[24]. Choudhary et. al. �[21] address the problem 
of optimal processor assignment to a pipeline of coarse grain tasks 
but assume no communication cost (or that the communication 
cost can be folded into computation cost). In �[20], Subhlok and 
Vondran introduce a method to perform optimal mapping of k 
tasks onto P processors while taking communication cost into 
consideration. However, all the above work focus on how to 
partition existing task chains into multi-processors, while no work 
has been done on the problem of partitioning a whole program 
into chained tasks.  

Loop distribution �[16]�[17] performs a similar program 
transformation to that presented here: it partitions a loop into 
several loops. Typically, scalar expansion is used to communicate 
live quantities between the resulting loops; the expanded scalars 
(vectors) correspond to our pipes.  Note that loop distribution 
cannot be applied to infinite loops, whereas the transformation we 
have outlined is applied exclusively to infinite loops (PPS loops).  
Loop distribution typically results in several loops that are run 
one after the other on a single processor; in our technique the 
resulting pipeline stages are intended to be run simultaneously on 
multiple processors, with pipes acting both as inter-processor 
communication and as synchronization. 

Although in name the technique of software pipelining would 
seem to be closely related to the transformation presented here, 
both the aim and the effect of software pipelining are quite 
different from our context pipelining. Software pipeline 
rearranges the body of a loop so as to take advantage of inter-
iteration parallelism to tolerate latencies in functional units and 
memory accesses, and to eliminate resource-based scheduling 
hazards (see �[14] and �[30] for some representative examples of 
software pipelining).  It is not the goal of software pipelining to 
put multiple processors into use on a single loop, nor is it the goal 
of software pipelining to split what was originally a single loop 
into multiple loops, nor does software pipelining introduce any 
inter-loop communication or synchronization along the lines of 
our pipes.  Software pipelining is motivated by the abundance of 
instruction-level parallelism that is made available by rearranging 
a loop body into pipeline stages taking into advantage inter-
iteration independence.  The resulting loop body is executed on a 
single processor, in a single instruction stream.  In contrast, our 
pipeline stages are intended to execute asynchronously on 
multiple processors using communication and synchronization; 
this corresponds much more closely to loop distribution than to 
software pipelining. 

There are some other proposals in the literature with similar goals; 
however, their approaches are very different. For instance, in 
StreamIt �[27] the pipeline and parallelism constructs are explicit 
in the source code; on the other hand, the PPSes are unannotated 
sequential C program. The DEFACTO system �[28] focuses on 
coarse-grain inter-loop pipeline, and the work by Du et al. �[29] 
focuses on structured control flow and constructs (e.g., foreach 
loop); those are very different from our approach that works on 
the complex and arbitrary control flow inside the PPS loop. 

The processing engines in the network processors can be also 
employed as a pool of homogenous processors operating on 
distinct packets. The auto-partitioning C compiler is also capable 
of replicating a single PPS, so that the same PPS runs on multiple 
threads and PEs, by inserting proper synchronization codes �[7]. 
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There are complicated tradeoffs in the resource management, in 
addition to the code size implications, between these two 
approaches. In brief, pipelining transformation permits the 
resources of a PE to be divided among the stages of the pipeline 
as opposed to dividing them among the instances of the 
computation applied to individual packets. The performance result 
may be radically different as a result. 

6. Concluding remarks and future works 
In this paper, we present a method that automatically partitions a 
program with data parallelism into several chained sub-tasks 
(pipeline stages) that can be mapped onto pipelined 
multiprocessor architectures. In our approach, the balance of the 
packet processing tasks is taken into account during program 
partitioning, and the data transmission between chained sub-tasks 
is minimized. 

The original program is modeled using a flow network, and 
balanced minimum cuts are found on this flow network. Finally, 
each pipeline stage is realized with the minimum live set 
transmissions. The transformation is effective in improving the 
performance of packet processing applications by distributing the 
processing tasks over several pipeline stages while minimizing the 
overhead of live set transmission. 

Although we illustrate our algorithms using packet processing 
applications as examples, the methods described in this paper can 
be applied to other data parallel programs such as digital signal 
processing, imaging processing and computer vision as well. 

In our transformation, how the placement of the codes affects the 
overall balance of the packet processing tasks is modeled using a 
weight function. It is flexible and can model various factors (e.g., 
instruction count, instruction latency, hardware resources, or 
combinations thereof). In our implementation, it is used to 
distribute the instruction count; based on the encouraging results 
from this paper, we would like to extend it to explore the effect of 
distributing IO latency and hardware resource (e.g., CAM and 
local memory �[2]) over pipeline stages. 
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