
Automatically Partitioning Packet Processing Applications
for Pipelined Architectures

Jinquan Dai, Bo Huang, Long Li
Intel China Software Center

22nd Floor, ShanghaiMart Tower
No. 2299 Yan’an Road (West), Shanghai, 200336, PRC

86-21-52574545 ext. {1615, 1373, 1647}
{jason.dai, bo.huang, paul.li}@intel.com

Luddy Harrison
Department of Computer Science

Univ. of Illinois at Urbana-Champaign
201 N. Goodwin, Urbana, IL 61801

1-217-244-2882
luddy@uiuc.edu

Abstract
Modern network processors employs parallel processing engines
(PEs) to keep up with explosive internet packet processing
demands. Most network processors further allow processing
engines to be organized in a pipelined fashion to enable higher
processing throughput and flexibility. In this paper, we present a
novel program transformation technique to exploit parallel and
pipelined computing power of modern network processors. Our
proposed method automatically partitions a sequential packet
processing application into coordinated pipelined parallel
subtasks which can be naturally mapped to contemporary high-
performance network processors. Our transformation technique
ensures that packet processing tasks are balanced among pipeline
stages and that data transmission between pipeline stages is
minimized. We have implemented the proposed transformation
method in an auto-partitioning C compiler product for Intel
Network Processors. Experimental results show that our method
provides impressive speed up for the commonly used NPF IPv4
forwarding and IP forwarding benchmarks. For a 9-stage pipeline,
our auto-partitioning C compiler obtained more than 4X speedup
for the IPv4 forwarding PPS and the IP forwarding PPS (for both
the IPv4 traffic and IPv6 traffic).

Descriptors D.3.4 [Programming Languages]: Processors –
compilers, optimization.

General Terms Algorithms, Performance, Design.

Keywords Network Processor, Pipelining Transformation,
Program Partition, Live-Set Transmission, Parallel, Packet
Processing

1. Introduction
Internet traffic has grown at an explosive rate. The increasing
amounts of services offered on the internet have continually
pushed the network bandwidth requirement to newer heights �[1].
Advances in microprocessor technology helped pave the way for
the development of Network Processors (NPs) �[2]�[3]�[4]�[5]�[6],
which are designed specifically to meet the requirements of next
generation network equipments.

In order to address the tremendous speed challenges of network
processing, modern Network Processors generally have a parallel

multiprocessor architecture with multiple processing elements
(PEs) on a single chip. The PEs often are controlled by a general
purpose processor and supported by other reconfigurable logic
elements. In many NPs the processing elements can also be
organized as a pipeline, providing computing and algorithmic
flexibility. In this case, a packet processing application can be
partitioned into several pipeline stages, with each processing
element containing one pipeline stage. The packet processing
application as a whole can be accelerated by a factor of up to the
number of pipeline stages �[2]�[3]�[4]�[5]�[6]. The Intel IXA NPU
family of network processors (IXP), for instance, contains
multiple MicroEngines (MEs) which can be deployed either as a
pipeline or as a pool of homogeneous processors operating on
distinct packets �[2].

The unique challenge of network processing is to guarantee and
sustain the throughput of packet processing for worst-case traffic.
That is, each network application has performance requirements
that have to be statically guaranteed. Therefore a static compiler,
rather than a dynamic or runtime approach, is preferred in this
area. In order to exploit the underlying parallel and pipelined
architecture for higher performance, existing compilers for NPs,
(e.g., the Intel® MicroEngine C compiler), usually adopts the
paradigm of parallel programming for network applications, as
practiced in the scientific computing community. This requires
that the programmers manually partition the application into sub-
tasks, manage the synchronization and communication among
different sub-tasks, and map them onto a multiprocessor system
explicitly. Unfortunately, such a parallel programming paradigm
is not intuitive and not familiar to most programmers.

On the other hand, network applications are most naturally
expressed in a sequential way. When a new packet arrives, the
application performs a series of tasks (e.g., receipt of the packet,
routing table look-up, and enqueuing) on the packet.
Consequently, there is a large gap between the parallel
programming paradigm on NPs and the sequential semantics of
network applications.

Prior work on advanced tools for mapping packet processing
application onto processing elements can be found in �[9]�[10]�[11].
In this paper, we propose a novel approach that automatically
transforms sequential packet processing applications into
pipelined forms for execution on pipelined packet processing
architectures. The proposed algorithm automatically partitions a
sequential packet processing application into chained pipeline
stages and ensures that 1) the packet processing tasks are balanced
among pipeline stages and 2) the data transmission between
pipeline stages is minimized.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or republish, to post on servers
or to redistribute to lists, requires prior specific permission and/or a fee.
PLDI’05, June 12–15, 2005, Chicago, Illinois, USA.
Copyright 2005 ACM 1-59593-056-6/05/0006…$5.00

237

The rest of the paper is organized as follows. In section 2, we
provide a brief overview of the IXP architecture �[2] and the auto-
partitioning programming model used by the input programs we
consider �[7]. In section 3 we present the algorithms for automatic
pipeline transformation and live set transmission minimization.
We present experimental results in section 4 and cover related
work in section 5. Finally, we draw conclusions and describe
future work in section 6.

2. The IXP architecture for packet processing
The IXP network processor architecture �[2] is designed to process
packets at high rates, i.e., where inter-arrival times between
packets may be less than a single memory access latency. To keep
up with such high arrival rates, IXP presents a novel architecture
consisting of one core processor based on the Intel® XScale and a
collection of multithreaded packet processing engines with an
explicit memory hierarchy. For example, the IXP2800 contains
sixteen processing engines (PE in Figure 1). The processing
engines have a non-traditional, highly parallel architecture.
Ordinarily, XScale runs the control plane code and the packet
engines run the fast path data plane code.

Figure 1. Intel IXP2800 block diagram

2.1 Pipelined processing engines
Each processing engine in an IXP has eight hardware threads,
with zero-overhead context switching between them. Although
each packet engine is an independent processor with its own
register file and 32-bit ALU, several packet engines can work
together to form an engine level pipeline. A packet processing
application can be mapped onto such a pipeline by dividing it into
successive stages, each containing a portion of the packet
processing tasks.

Data transmission between successive pipeline stages is
accomplished on IXP using ring buffers. The IXP provides two
flavors of hardware-supported rings: 1) a nearest neighbor (NN)
ring, a register-based ring that can deliver words between packet
engines in just a few cycles, and 2) a scratch ring, which is
implemented in static memory and takes on the order of a hundred
cycles to perform an enqueue/dequeue operation.

2.2 Packet processing stages
In order to reduce the programming effort required to develop a
fast-path data plane packet processing application for IXP, an
auto-partitioning C compiler product �[7] is being developed by
Intel. The goal of this compiler is to automatically partition packet
processing applications onto multiple processing engines and
threads, thus allowing programmers to develop applications using

sequential semantics and without excessive concern for the details
of the machine’s organization.

The auto-partitioning C compiler requires that the input program
be developed using the auto-partitioning programming model, in
which the data plane packet processing application is expressed as
a set of sequential C programs called packet processing stages
(PPSes). This model corresponds closely to the communicating

sequential processes (CSP) model of computation �[8] in which
independent sequential programs run concurrently and
communicate via queues. A PPS is a logical entity written using
hardware-independent sequential C constructs and libraries, and is
not bound by the programmer to a specific number of compute
elements (processing engines, threads etc.) on the IXP. Each PPS
contains an infinite loop, also called a PPS loop, which performs
the packet processing indefinitely. The primary mechanism by
which PPSes communicate with one another is a pipe which is an
abstract, unidirectional communication channel, i.e., a queue.
Like a PPS, a pipe is also a logical entity that is not bound by the
programmer to a specific physical communication channel (NN
rings, scratch rings, SRAM rings) on the IXP. PPSes can also
communicate through variables in shared memory �[7].

The auto-partitioning C compiler automatically explores how (e.g.,
pipelining vs. multiprocessing) each PPS is paralleled and how
many PEs (e.g., number of pipeline stages or multiprocessing
stages) each PPS is mapped onto, and selects one compilation
result based on a static evaluation of the performance and the
performance requirements of the application. The pipelining
transformation presented in this paper is a fundamental algorithm
in the compiler; on the other hand, how the exploration and
multiprocessing are performed is beyond the scope of this paper.

The expression of a packet processing application as a set of
communicating PPSes represents the logical partitioning of the
application into concurrently executing processes. This is done
by the programmer, who may write as few or as many PPSes as
seems natural for the application at hand. The algorithm for
pipeline decomposition presented in this paper operates on a
single PPS, and represents the decomposition of the PPS into a
physical form that is appropriate for high performance execution
on the IXP.

3. Automatic pipelining transformations
In this section, we describe a novel algorithm for transforming a
sequential PPS into pipelined parallel form, as shown in Figure 2a
and 2b. By this transformation two or more processing engines in
an NP are organized as a pipeline where each stage contains a
portion of the original PPS loop. Data that are alive at the
boundary between one stage and the next are communicated from
the earlier stage to the later, as shown in Figure 3.

3.1 The framework of pipelining transformation
A cut is a set of control flow points that divide the PPS loop body
into two pieces. If the PPS is to be partitioned into D stages, then
D–1 cuts must be selected, and the cuts must be non-overlapping.
That is, each node in the control flow graph must lie in one
pipeline stage after all the cuts are applied. For better
performance, the selected cuts need to meet the following criteria.

238

Figure 2. The ingress of IPv4 forwarding processing application

���������	
�	�
������

�

������������

�����

�����������������

���������

������������������

����������������������

���������

�������������

���������

���������������
�

����������������
����

���������

�����

����	�������	�
��
��� ����

�

���������	
�	�
��
���

�

������������

�����

��������!�������"��#�	�
�����$� �$���

�������������������

���������

����������������������

������������%���&���� ����

���������

�������������

���������

�����������������
����

������������%���&
��� ����

���������

�����

�

� ��

�
���&��������
����'(����
����	

���������	�
���� ���������	�
���

�)���&����
����#�����	����&
��
������������

���������	
���

�

������������

�����

�����������������

���������

����������������������

����������������������

������������%���&���� ����

���������

�������������

���������

�����������������
����

�����������������
����

������������%���&
��� ����

���������

�����

�

Figure 3. Proper transmissions of the live set cross cuts

1. No dependence from later stages to earlier ones
Any dependence from a later stage to an earlier one is
necessarily PPS loop-carried. Should such dependences exist,
feedback paths from later stages to earlier ones are required to
ensure that the earlier stage (of a later iteration) stalls until the
later stage (of an earlier iteration) satisfies the dependence.
Backward-flowing synchronization is complex and awkward
to implement on the IXP. We have chosen to prohibit such
dependences in our choice of cuts, in favor of simple,
unidirectional communication and synchronization between
stages.

2. Minimization of live set
After cutting the PPS into two stages, data that are alive at the
cut (roughly speaking, the contents of live registers) must be
transmitted across the cut, so that the downstream pipeline
stage may begin executing in the proper context. In addition,
some control flow information must be transmitted over the
cut so that the downstream stage may begin executing at the
right program point. We call this data collectively the live set
(see variables x and c in Figure 3).

3. Balance of packet processing tasks

The performance of the pipelined computation as a whole will
be no better than the slowest of the pipeline stages. For this
reason it is desirable to balance the original packet processing
tasks among the stages as evenly as possible.

It is natural to model the problem of selecting cuts as a network
flow problem, in which the weight of an edge represents the cost
of transferring the live set between pipeline stages if the edge is
cut. As a result, the selection of cuts is reduced to finding
minimum cuts of the flow network that result in balanced
instruction counts among pipeline stages. Consequently, the
overall framework of pipelining transformation consists of
construction of a proper flow network model, selection of cuts on
the flow network, and realization of pipeline stages.

3.2 Construction of the flow network model
A proper flow network model should help us avoid dependences
from the downstream nodes of the cut to upstream ones, and
should model correctly the cost of transmission of the live set. The
flow network is constructed from the single static assignment
(SSA) form of the program and the dependence graph of the
program. The flowchart of the construction process is shown in
Figure 4, and the steps are described in detail in subsequent
sections.

239

Figure 4. The flow chart for the construction of the flow network

model

3.2.1 Elimination of PPS loop carried dependence
To eliminate control dependences from later stages to earlier ones,
the pipelining transformation should not split any strongly
connected component (SCC) of the control flow graph (CFG)
across pipeline stages. That is, each SCC should belong in its
entirety to one pipeline stage after the transformation. Step 1.3
therefore forms SCCs for the CFG and builds the associated
summarized graph (in which SCCs are reduced to a single node),
and step 1.4 constructs the dependence graph (DG) based on the
summarized graph.

To eliminate data dependences from later stages to earlier ones,
step 1.4 includes PPS-loop-carried flow dependence as well as
non-loop-carried data and control dependence in the DG;
consequently, the sources and the sinks of the PPS-loop-carried
flow dependence are in the same SCC of the DG. Step 1.5 then
forms SCCs for the DG, and the pipelining transformation
considers only cuts that place a whole SCC of the DG on one or
another side of each cut.

3.2.2 Cost of live set transmission
The flow network makes explicit the flow of values (both
variables and control objects) in the program, so that the cost of
the live set transmission can be modeled appropriately. The flow
network is constructed based on the summarized DG in step 1.6,
which is shown in detail in Figure 5.

In addition to the unique source and sink nodes (step 1.6.1) and
program nodes that contains instructions (step 1.6.2), variable
nodes and control nodes are introduced in the flow network for
each object that may be included in the live set (step 1.6.3 and
1.6.4). After the SSA transformation in step 1.1, every variable
has only one definition point, and hence has only one definition
edge (step 1.6.5); and likewise for control nodes (step 1.6.7).

Consequently, the weight (or capacity) associated with the
definition edges (VCost for variables and CCost for control
object) models the cost of transmitting the associated variable or
control object if that edge is cut. Its value depends on the

underlying architecture of the NPs; since the static guarantee of
performance is required, the architecture of the NPs (e.g., IXP) is
very predictable and those costs can be statically determined.

In addition, the weight of edges going out of the source and
coming into sink are set to 0, as cutting such an edge will not
incur any transmission of live set. All the other edges have infinite
weights so that they are not eligible for cutting.

3.3 Selection of cuts in the flow network
To cut the PPS into D (the pipelining degree) stages, the
transformation applies D–1 successive cuts to the PPS such that
each cut is a balanced minimum cost cut; the overall framework is
shown in Figure 6.

Figure 5. The detailed flow chart for building the flow network

240

Figure 6. The flow chart for selection of cuts in the flow network

Our algorithm for selecting a balanced minimum cost cut is based
on the iterative balanced push-relabel algorithm �[12]. (It is
adapted from �[13], and its flow chart is shown in Figure 7). Given
a flow network N = (V, E), a weight function W for each node in
V, this heuristic applies the push-relabel algorithm iteratively on
the flow network N until it finds a cut C which partitions V into X
and V–X, such that (1 - e) � W(V) / d � W(X) � (1 + e) � W(V) / d,
where d is the balance degree, and e (a small constant between 0
and 1) is the balance variance.

The weight function W of each node models how the placement of
the node affects the overall balance of the packet processing tasks;
it is flexible and can model various factors (e.g., instruction count,
instruction latency, hardware resources, or combinations thereof).
In our implementation, instruction count is used because the
latency is optimized and hidden through multi-threading, and
because code size reduction is an important secondary goal. In
the future, other factors might be included for consideration.

	���������&��)
�
���������� �
���

����������&��)
�
�����
��
���*

"����
�#���#(#��(���������(�����

�(�&+���
)���
������&# ����,&��&�

�&�������������
����
���������������

��
���	
�� ��)���&���(�*�������

(�����
#����	
�� �� ����&�����,�

���,��-*�

.�����
����,����,��-���
�	
�����

,��&�
�(��'(��������������
���
�

(��'(�����������*�/
�&��������&
��

,���&������ �
����&�����
��,���&��

����&�����,����,��-�����*

0 �1���+����2�3

	���������&���(#�������� �����
�&��

����

4 5���&�����,����,��-�� �����
����

����&�����������������&�������� �

���(��
������������

����������*

6

0 �7���8����2�3

!��(�����
���&�����(��

6

5���&�����,����,��-�� �����
����

����&�����������
�������&������ �

���(��
����������
����������*

4

5���&������
��������,����,��-�� �

�������
�
����+���-�������

�9
���������&������������&���

����
�����������&���������
���

(��
�������������
����������*

5���&������
��������,����,��-�� �

�������
����+��(����������

�9
���������&���������&�������
����

�������&�������
���(��
����������

����������*

:����&����������,��������

��������
��������3

:����&����������,��������

��������
��������3

6 6

44

Figure 7. The flow chart for the selection of the cuts in the flow
network

The balance variance e reflects the tradeoff between the balance
and the cost of the cut (in terms of live set transmission). If it is
close to 0, the algorithm prefers a balanced cut over one with a
smaller cost; on the other hand, if it is close to 1, minimization of
the cost is regarded as more important. Experiments may be
needed to determine the right value of the balance variance; for
instance, its value is set to 1/16 in out implementation, as a result
of experimentation and tuning of real world applications.

In addition, an efficient implementation of the heuristic need not
run the push-relabel algorithm from scratch in every iteration.
Instead, it can be computed incrementally as follows.

• Find the initial minimum cut for the flow network using plain
push-relabel algorithm.

• After nodes are collapsed to the source or sink, find the
updated minimum cut using the push-relabel algorithm with
the following initial states of pre-flow, label, and excess (see
�[12] for the definition of these variables).
o Set the pre-flow of all the edges going out of the source to

their capacities, and update their excesses accordingly.
Leave the pre-flow of other edges unchanged.

o Set the label of the source to the new number of nodes.
o If nodes are collapsed to the source, leave the labels of

other nodes unchanged. Otherwise, set them to 0.

241

Figure 8. The flow chart for realization of a pipeline stage

�������;��

�������

-������&������

-��
��
�<�������
��

&���<��

/6=

�
��������

�������7��;�

�
���&��������
�������
#

��
���� ��
���

�)���&�����������������
#

�������;��

�������

&������

�<�������
��

/6=

�
��������

�������7��;�

�������

-������

-��
��&���<��

/6=

�������7��;�
�� ��
 ��<

������

Figure 9. Example of live set transmission

3.4 Realization of pipeline stages
The realization of a pipeline stage involves proper transmission of
the live set across the cut, and the reconstruction of the control
flow of the stage. The flow chart of the realization algorithm is
shown in Figure 8; the pipelining transformation applies this
process to every pipeline stage.

Figure 10 Conditionalized live set transmissions

Figure 11. Naively unified live set transmissions

3.4.1 Live set transmission
As shown in Figure 9, for proper transfer of the data and control
flow between neighboring stages, the live set needs to be properly
transmitted across the cut, through the inter-processor
communication channels provided by the NP. A problem that
arises is that the live set at one control-flow point (i.e., one edge
in the cut) may be different from the live set at a different point.

One resolution is to conditionalize the transmission of every
object in the live set, as shown in Figure 10. However, if the
pipeline stages are to be multi-threaded later, the transmission of
the live set has to be ordered and synchronized across multiple
threads, due to the global resource (pipe) used. With the
conditionalized transmissions, the critical section around the pipe
operations can be very large (as suggested by the bold lines in
Figure 10), and consequently the performance of the application is
greatly impacted.

Instead, a unified transmission can be used, in which all variables
that at any edge in the cut are transmitted with a single aggregate
(unified) transmission. In this case the critical section around pipe
operations is much smaller (as suggested by the bold lines in
Figure 11).

242

Figure 12. Minimized unified live set transmission

Figure 13. Concatenated flow graphs of the two stages

However, a naïve implementation of the unified transmission, as
shown in Figure 11, can transmit more objects than necessary,
because two objects in the live set may not be alive at the cut
simultaneously (for instance, t2 and t3 in Figure 9(b)) and hence
only one of them need be transmitted. Ideally, the live set should
be packed such that if several objects are never alive at a cut

simultaneously (i.e., they do not interfere with each other in the
pipelined program), only one of them is transmitted, as illustrated
in Figure 12.

Packing the live set can be achieved by first computing an
interference relation between objects in the live set, and then
coloring each object to a temporary for transmission. If the
interference relation is simply computed over the back-to-back
concatenated CFGs of the two stages, as shown in Figure 13, false
interference edges may be present (such as the interference
between t2 and t3 in Figure 13), because some paths in the
concatenated control flow graph (such as the one shown in Figure
13) can never be executed in reality and should be excluded when
computing the interference.

The flow chart for computing the desired interference is shown in
Figure 14. In steps 4.1 and 4.2, the original program is rendered
such that definitions of the live objects in the current stage and
their use in the later stages are made explicit.

Figure 14. The flow chart for the minimum and unified live set

transmission

The steps 4.3 and 4.4 collectively compute the correct interference
relation between the live objects, over the back-to-back
concatenated CFGs of the two stages with impossible paths
excluded. This is because the live object v is alive when the live
object u is defined in the concatenated CFG (excluding
impossible paths), if and only if

243

1) There is a path V1→U1→W1→V2→U2→W2 in the
concatenated CFG, where V1 and U1 are the definition points
of v and u in the first stage respectively, V2 and U2 are the
counterparts of V1 and U1 in the second stage, W2 is a use of
v in the second stage, and W1 is the counterpart of W2 in the
first stage (see Figure 15). In this case, v’ and u’ interfere in
the rendered program and this is computed by step 4.3.

2) There is a path V1→W1→U1→V2→W2→U2 in the
concatenated CFG, where V1 and U1 are the definition points
of v and u in the first stage respectively, V2 and U2 are the
counterparts of V1 and U1 in the second stage respectively,
W2 is a use of v in the second stage, and W1 is the
counterpart of W2 in the first stage (see Figure 16). In this
case, there is a path from a use of v’ to a definition of u’ in the
transformed program and this is computed by step 4.4.

After the final interference graph is built, step 4.5 attempts to
color it using existing heuristics in the literature, and finally, the
steps 4.6 and 4.7 set up the transmission properly in the current
and the next stages, as illustrated by Figure 12.

Figure 15. The first case for interference:

V1→U1→W1→V2→U2→W2

Figure16. The second case for interference:

V1→W1→U1→V2→W2→U2

3.4.2 Reconstruction of the control flow
The reconstruction of the control flow for the pipeline stage is
largely straightforward. One subtlety here is that as the control
dependence is built from the summarized CFG, the conditional in
the summarized CFG can be a loop that contains multiple exits. In
that case, a different value needs be assigned to the control object
in every successor block of that loop in step 3.4; furthermore, the
reconstruction of the conditional in step 3.3 should replace the
loop by conditional branch (switch) to the appropriate successor
block based on the associated control object. Such an example is
shown in Figure 17.

4. Experimental results
The pipelining transformation can be applied to arbitrary network
applications written using the auto-partitioning programming
model. It has been implemented in the Intel auto-partitioning C
compiler product and has been tested on several real-world
applications in different network segments (e.g., broadband access,
wireless, enterprise security, and core/metro network,).

In this section, we evaluate the effectiveness of the pipelining
transformation using the industry standard Network Processor
Forum (NPF) IPv4 forwarding benchmark �[25] and IP forwarding
benchmark (both for IPv4 and for IPv6) �[26]. These two
benchmarks selected for our experimental measurements because
they are real and standard network applications and are widely
used in the industry to test the system level performance of NPs.

244

Figure 17. Example for transfer of control flow after a loop

(a) The IPv4 forwarding application

(b) The IP forwarding application
Figure 18. The NPF benchmarks

The two applications are illustrated in Figure 18. The IPv4
forwarding application consists of five PPSes: the packet receipt
(RX) PPS, the IPv4 PPS, the Scheduler PPS, the queue manager
(QM) PPS, and the packet transmission (TX) PPS; and the IP
forwarding application is made up of three PPSes: the RX PPS,
the IP PPS and the TX PPS, with the IP PPS consisting of two
code paths – one for the IPv4 traffic and the other for the IPv6
traffic. Each one has a complex control flow graph, with ~10K
lines of codes, >600 basic blocks, ~100 routines, and >20 loops �

We evaluate the performance of each PPS in terms of the number
of instructions required for processing a minimum sized packet
(48 bytes for Packet Over SONET) for the IPv4 traffic and/or the
IPv6 traffic, as this case places the most stringent performance
requirement on the application.

The effectiveness of the pipelining transformation is evaluated by
studying the speedup of the performance (i.e., comparing the
performance of n-way pipelining a PPS with that of mapping it to
a single PE), as well as the overhead of the live set transmissions,
with different pipelining degrees. When measuring the
performance of a particular PPS with pipelining degree d, the PPS
is first d-way pipelined, and then the number of instructions
required is determined by the longest pipeline stage.

In addition, the overhead of the live set transmissions is measured
by the ratio, in the longest pipeline stage, of the number of
instructions for live set transmission (receiving the live set from
the previous stage and transmitting the live set to the next stage)
to the number of instruction counts for packet processing.

Figures 19 and 20 show the speedup of the PPSes in the IPv4
forwarding and IP forwarding applications for different pipelining
degrees. The speedup of the RX and TX PPSes, in both the IPv4
forwarding and IP forwarding applications, scales well up to
pipelining degree 5, after which the speedup levels off. This is due
to the fact that, as the pipelining degree increases, the reduction in
the number of instructions in each pipeline stage is offset by the
additional instructions required for live set transmission, as can be
seen in Figures 21 and 22.

Figure 19. Speedup in the IPv4 forwarding benchmark

Figure 20. Speedup in the IP forwarding benchmark

1

1.5

2

2.5

3

3.5

4

4.5

5

1 2 3 4 5 6 7 8 9 10
Pipelining Degree

S
pe

ed
up

RX PPS

IP PPS (IPv4)

IP PPS (IPv6)

TX PPS

1

1.5

2

2.5

3

3.5

4

4.5

1 2 3 4 5 6 7 8 9 10
Pipelining Degree

S
pe

ed
up

RX PPS

IPv4 PPS

Scheduler PPS

QM PPS

TX PPS

RX

IP

TX

RX

IPv4

Scheduler

QM

TX

245

Figure 21. Overhead in the IPv4 forwarding benchmark

Figure 22. Overhead in the IPv4 forwarding benchmark

On the other hand, the speedup for the IPv4 PPS scales well for
pipelining degree up to 10, as the number of instructions for
packet processing in this PPS is much larger than that for live set
transmission (as can be seen in Figure 21). The same is true for
the IP PPS (for both the IPv4 traffic and the IPv6 traffic).

In contrast, the speedup for the QM and the Scheduler PPSes is
almost the same for pipelining degrees 2 to 10. Since those two
PPSes essentially update the shared flow state of the traffic, they
have inherent PPS loop-carried dependence in the program.
Consequently, they cannot be effectively pipelined (though they
can be efficiently multi-threaded using one PE �[7]).

Network applications usually have inherent data parallelism, i.e.,
they perform largely independent operations on successive
packets, and hence they have little PPS-loop-carried dependence.
They also have very stringent performance budgets (cycles per
packet). For this reason the pipelining transformation is both
useful and effective for improving the performance of network
applications, as it distributes the performance budget over several
pipeline stages.

5. Related work
Program partitioning is a heavily researched topic. Zhang et. al.
�[15] introduce a whole program partitioning method for tamper-
resistant embedded devices, in which program partitions are
generated under the principle of concealing the program control
information to avoid security hazard. All program partitions are
executed later in the same embedded devices.

A large volume of literature exists on mapping and scheduling
parallel programs for multi-processor systems �[9]�[10]�[13]�[18]�[19]

�[20]�[21]�[22]�[23]�[24]. Choudhary et. al. �[21] address the problem
of optimal processor assignment to a pipeline of coarse grain tasks
but assume no communication cost (or that the communication
cost can be folded into computation cost). In �[20], Subhlok and
Vondran introduce a method to perform optimal mapping of k
tasks onto P processors while taking communication cost into
consideration. However, all the above work focus on how to
partition existing task chains into multi-processors, while no work
has been done on the problem of partitioning a whole program
into chained tasks.

Loop distribution �[16]�[17] performs a similar program
transformation to that presented here: it partitions a loop into
several loops. Typically, scalar expansion is used to communicate
live quantities between the resulting loops; the expanded scalars
(vectors) correspond to our pipes. Note that loop distribution
cannot be applied to infinite loops, whereas the transformation we
have outlined is applied exclusively to infinite loops (PPS loops).
Loop distribution typically results in several loops that are run
one after the other on a single processor; in our technique the
resulting pipeline stages are intended to be run simultaneously on
multiple processors, with pipes acting both as inter-processor
communication and as synchronization.

Although in name the technique of software pipelining would
seem to be closely related to the transformation presented here,
both the aim and the effect of software pipelining are quite
different from our context pipelining. Software pipeline
rearranges the body of a loop so as to take advantage of inter-
iteration parallelism to tolerate latencies in functional units and
memory accesses, and to eliminate resource-based scheduling
hazards (see �[14] and �[30] for some representative examples of
software pipelining). It is not the goal of software pipelining to
put multiple processors into use on a single loop, nor is it the goal
of software pipelining to split what was originally a single loop
into multiple loops, nor does software pipelining introduce any
inter-loop communication or synchronization along the lines of
our pipes. Software pipelining is motivated by the abundance of
instruction-level parallelism that is made available by rearranging
a loop body into pipeline stages taking into advantage inter-
iteration independence. The resulting loop body is executed on a
single processor, in a single instruction stream. In contrast, our
pipeline stages are intended to execute asynchronously on
multiple processors using communication and synchronization;
this corresponds much more closely to loop distribution than to
software pipelining.

There are some other proposals in the literature with similar goals;
however, their approaches are very different. For instance, in
StreamIt �[27] the pipeline and parallelism constructs are explicit
in the source code; on the other hand, the PPSes are unannotated
sequential C program. The DEFACTO system �[28] focuses on
coarse-grain inter-loop pipeline, and the work by Du et al. �[29]
focuses on structured control flow and constructs (e.g., foreach
loop); those are very different from our approach that works on
the complex and arbitrary control flow inside the PPS loop.

The processing engines in the network processors can be also
employed as a pool of homogenous processors operating on
distinct packets. The auto-partitioning C compiler is also capable
of replicating a single PPS, so that the same PPS runs on multiple
threads and PEs, by inserting proper synchronization codes �[7].

0

0.5

1

1.5

2

2.5

1 2 3 4 5 6 7 8 9 10
Pipelining Degree

O
ve

rh
ea

d

RX PPS

IP PPS (IPv4)

IP PPS (IPv6)

TX PPS

0

0.5

1

1.5

2

2.5

3

3.5

1 2 3 4 5 6 7 8 9 10
Pipelining Degree

O
ve

rh
ea

d

RX PPS

IPv4 PPS

QM

Scheduler PPS

TX PPS

246

There are complicated tradeoffs in the resource management, in
addition to the code size implications, between these two
approaches. In brief, pipelining transformation permits the
resources of a PE to be divided among the stages of the pipeline
as opposed to dividing them among the instances of the
computation applied to individual packets. The performance result
may be radically different as a result.

6. Concluding remarks and future works
In this paper, we present a method that automatically partitions a
program with data parallelism into several chained sub-tasks
(pipeline stages) that can be mapped onto pipelined
multiprocessor architectures. In our approach, the balance of the
packet processing tasks is taken into account during program
partitioning, and the data transmission between chained sub-tasks
is minimized.

The original program is modeled using a flow network, and
balanced minimum cuts are found on this flow network. Finally,
each pipeline stage is realized with the minimum live set
transmissions. The transformation is effective in improving the
performance of packet processing applications by distributing the
processing tasks over several pipeline stages while minimizing the
overhead of live set transmission.

Although we illustrate our algorithms using packet processing
applications as examples, the methods described in this paper can
be applied to other data parallel programs such as digital signal
processing, imaging processing and computer vision as well.

In our transformation, how the placement of the codes affects the
overall balance of the packet processing tasks is modeled using a
weight function. It is flexible and can model various factors (e.g.,
instruction count, instruction latency, hardware resources, or
combinations thereof). In our implementation, it is used to
distribute the instruction count; based on the encouraging results
from this paper, we would like to extend it to explore the effect of
distributing IO latency and hardware resource (e.g., CAM and
local memory �[2]) over pipeline stages.

7. Acknowledgements
The authors would like to thank Wen-Hann Wang for providing
insightful suggestions on revising the paper. The authors would
also like to thank the anonymous reviewers for their constructive
comments that helped improve the final paper.

8. References
[1] Challenges in Building Network Processor Based Solutions,

http://www.futsoft.com/pdf/NPwp.pdf

[2] Intel IXP family of Network Processors,
www.intel.com/design/network/products/npfamily/index.htm

[3] IBM PowerNP Network Processors http://www-
3.ibm.com/chips/techlib/techlib.nsf/products/IBM_PowerNP
_NP4GS3

[4] CPort Network Processor family,
http://www.windriver.com/cgi-
bin/partnerships/directory/viewProd.cgi?id=1371

[5] Agere’s PayloadPlus Family of Network Processors,
http://www.agere.com/telecom/network_processors.html

[6] AMCC’s nP7xxx series of Network Processors,
http://www.mmcnetworks.com/solutions/

[7] Introduction to the Auto-Partitioning Programming
Model,
http://www.intel.com/design/network/papers/25411401.pdf

[8] C.A.R. Hoare, Communicating Sequential Processes,
Prentice Hall International Series in Computer Science,
1985. ISBN 0-13-153271-5 (0-13-153289-8 PBK).

[9] TejaNP*: A Software Platform for Network Processors,
http://www.teja.com

[10] Vin, H., Mudigonda, J., Jason, J., Johnson, E., Ju, R., Kunze,
A. and Lian, R. A Programming Environment for Packet-
processing Systems: Design Considerations, 3rd Workshop
on Network Processors & Applications (Feb. 2004)

[11] Michael K. Chen, Xiao-Feng Li, Ruiqi Lian, Jason H. Lin,
Lixia Liu, Tao Liu, and Roy Ju. Shangri-la: Achieving high
performance from compiled network applications while
enabling ease of programming, In Proceedings of ACM
SIGPLAN 2005 Conference on Programming Language
Design and Implementation

[12] Goldberg, A.V. and Tarjan, R.E. A new approach to the
maximum flow problem. In Proc. 18th ACM STOC (1986),
136-146

[13] Yang, H. and Wong and D. F. Efficient network flow based
min-cut balanced partitioning. In Proc. IEEE Intl. Conf.
Computer-Aided Design (1994), 50-55

[14] Lam, M. Software pipelining: an effective scheduling
technique for VLIW machines. In Proceedings of the ACM
SIGPLAN 1988 conference on Programming Language
design and Implementation (June 1988), Volume 23 Issue 7

[15] Zhang, T., Pande, S. and Valverde, A., Tamper-resistant
whole program partitioning, In ACM SIGPLAN Notices , In
Proceedings of the 2003 ACM SIGPLAN conference on
Language, compiler, and tool for embedded systems (June
2003), Volume 38 Issue 7

[16] Bacon, David F., Graham, Susan L. and Sharp, Oliver J.,
Compiler transformations for high-performance computing,
in ACM Computing Surveys (CSUR), Volume 26 Issue 4
(Dec. 1994)

[17] Kennedy, K. and McKinley, Kathryn S., Loop distribution
with arbitrary control flow, In Proceedings of the 1990
ACM/IEEE conference on Supercomputing (Nov. 1990)

[18] Han, Jia L., Program partition and logic program analysis,
In IEEE Transactions on Software Engineering, Volume 21
, Issue 12 (Dec. 1995), 959 – 968

[19] Yang, T. and Gerasoulis, A., PYRROS: static task scheduling
and code generation for message passing multiprocessors, In
Proceedings of the 6th international conference on
Supercomputing, p.428-437, July 19-24, 1992, Washington,
D. C., United States

[20] Subhlok, J. and Vondran, G., Optimal mapping of sequences
of data parallel tasks, ACM SIGPLAN Notices, v.30 n.8,
p.134-143, Aug. 1995

[21] Choudhary, A. N., Narahari, B., Nicol, D. M., and Simha, R.,
Optimal Processor Assignment for a Class of Pipelined

247

Computations, In IEEE Transactions on Parallel and
Distributed Systems, v.5 n.4, p.439-445, April 1994

[22] Subhlok, J., O'Hallaron, David R., Gross, T., Dinda, Peter A.,
and Webb, J, Communication and memory requirements as
the basis for mapping task and data parallel programs, In
Proceedings of the 1994 conference on Supercomputing,
p.330-339, December 1994, Washington, D.C., United States

[23] Orlando, S. and Perego, R., Scheduling Data-Parallel
Computations on Heterogeneous and Time-Shared
Environments, In Proceedings of European Conference on
Parallel Processing, Pages 356-366, 1998

[24] Gordon, M. I.., Thies, W. , Karczmarek, M., Lin, J., Meli, A.
S., Lamb, A. A., Leger, C., Wong, J., Hoffmann, H., Maze,
D. and S. Amarasinghe, A Stream Compiler for
Communication-Exposed Architectures, in Proceedings of
the Tenth International Conference on Architectural Support
for Programming Languages and Operating Systems, San
Jose, CA, October, 2002.

[25] Network Processor Forum (NPF), IPv4 Forwarding
Benchmark Implementation Agreements (July 2002),
http://www.npforum.org/benchmarking/licenseagm_IPv4.sht
ml

[26] Network Processor Forum (NPF), IP Forwarding
Benchmark Implementation Agreements (June 2003),
http://www.npforum.org/benchmarking/licenseagm_ipforwar
ding.shtml

[27] William Thies, Michal Karczmarek, Michael Gordon, David
Maze, Jeremy Wong, Henry Hoffmann, Matthew Brown, and
Saman Amarasinghe. StreamIt: A Compiler for Streaming
Applications, MIT-LCS Technical Memo TM-622,
Cambridge, MA (December, 2001)

[28] Heidi Ziegler, Byoungro So, and Mary Hall Pedro Diniz.
Coarse-Grain Pipelining for Multiple FPGA Architectures,
In Proceedings of the IEEE Symposium on Field-
Programmable Custom Computing Machines, April, 2002

[29] Wei Du, Renato Ferreira, and Gagan Agrawal, Compiler
Support for Exploiting Coarse-Grained Pipelined
Parallelism, In Proceedings of the ACM/IEEE SC2003
Conference, 2003

[30] Rau, B. R. Iterative modulo scheduling: an algorithm for
software pipelining loops. In Proceedings of the 27th annual
international symposium on Microarchitecture (1994), ACM
Press, pp. 63--74.

248

