
Supporting Virtual Memory in GPGPU without
Supporting Precise Exceptions

Hyesoon Kim
Georgia Institute of Technology
hyesoon@cc.gatech.edu

ABSTRACT
Supporting precise exceptions has been one of the essential components
of designing modern out-of-order processors. It allows handling exception
routines, including virtual memory support and also supports debugging
features. However, GPGPU, one of the recent popular scientific computing
platforms, does not support precise exceptions. Here, in this paper, we
argue that supporting precise exceptions is not essential for GPGPUs and
we propose an alternate solution to provide virtual memory support without
supporting precise exceptions.

Categories and Subject Descriptors
C.1.2 [Processor Architectures]: SIMD

General Terms
Design, Performance

Keywords
GPGPU, virtual memory, precise exception

1. INTRODUCTION
Supporting precise exceptions is one of the fundamental requirements in

building an out-of-order processor. It decouples micro-architectural states
from architectural states, thereby guaranteeing sequential execution to pro-
grammers. This is essential to provide easy debugging features, exception
handlers, virtual memory, and context switching. Lately, GPGPUs have at-
tracted many scientific computing programmers, because of the wide-SIMD
execution units and high memory bandwidth. In some sense, GPUs are not
much different from vector processors. However, GPUs are connected with
a host computing platform so the host processors handle general-purpose
computing components such as file I/O, user interface, and complex con-
trol flow graphs. More importantly, GPGPUs have not supported precise
exceptions yet.

We can find several reasons why supporting for precise exceptions has
not been implemented: First and foremost, GPUs are developed for graph-
ics. Supporting precise exceptions is not needed at all and it is extremely
expensive due to the high number of registers. Second, typical GPGPU ap-
plications consist of simple kernels. They are relatively easy to debug, and
occasionally have already been debugged on CPUs. Third, debugging sup-
port features have been very limited anyway. Until recently CUDA did not
supports GDB. Hence, we wonder whether it is necessary to support precise
exceptions in future GPGPUs or other massively parallel architectures.

In this position paper, we argue that supporting precise exceptions is not
required in GPGPUs if there are other ways of supporting virtual memory.
The reasons are as follows:

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MSPC’12 , Jun 16 - June 16 2012, Beijing, China
Copyright 2012 ACM 978-1-4503-1219-6/12/06 ...$10.00.

1. GPGPU processors are always connected with a host processor. The
host processor can handle asynchronous exceptions such as timers,
and other hardware interrupts.

2. There are several known techniques to handle exceptions such as
software restart markers [2, 3] or idempotent processors [1, 5].

(a) Software restart markers can be used to handle many excep-
tion handler programs by deferring execution of an exception
handler program until a software restart marker (i.e., barriers).
Software restart markers can be also used to support virtual
memory in vector processors [2].

(b) Idempotent processors can provide an easy mechanism to sup-
port context switch.

3. To support debugging features such as break in GDB, a barrier
instruction can be inserted, or an in-order execution can be enforced.

There could be some restrictions to supporting various other exceptions
such as unaligned memory accesses, arithmetic exceptions, etc. However,
many of those exception handlers are not commonly practiced by program-
mers unlike virtual memory. Hence, if we have other low-cost solutions
to support virtual memory in GPGPUs, we argue that it is not essential to
support precise exceptions.

In order to support virtual memory in GPGPUs, we assume that another
processor will execute the kernel code to bring a page from another stor-
age. Hence, the essential feature to support virtual memory is the ability
to resume the thread that generated an exception. Software restart markers,
idempotent processors can also support some degree of exceptions but their
exception support is of too coarse granularity. Here, we propose another
solution that provides fine-grained entry/exit points than previous mecha-
nisms.

The key idea is that the instructions between potential virtual memory
exception generating instructions and the exception handler instructions are
predicated. Current GPUs already utilize predicate execution to support
control divergence. Hence, supporting predicated execution is not costly.
We provide the mechanism in more detail in the following section.

2. MECHANISM
The basic idea is that the compiler inserts exception check instructions in

appropriate places. Similar to Intel’s IA-64 speculative load and NaT bit [4],
exception check instructions flag a set of state registers. The state register is
used to predicate instructions, which are used to guard some instructions or
trigger an exception handler routine. It is also built on the previous mecha-
nisms of software restart markers and idempotent processors.

2.1 Basic Mechanism
The basic mechanism is composed of three instructions: set start_marker,

LD.pfchk, sw_call. set start_marker indicates a place where a
program can be restarted after a page fault exception handler is serviced.
sw_call is composed of barrier and call instructions. When a pro-
cessor fetches an sw_call instruction, it enforces an execution barrier.
Instructions after sw_call can be fetched/renamed, but none of the in-
structions will be executed. call instructions invoke page fault handler.
Implementing this execution barrier is very easy, but it reduces the benefit
of a fully out-of-order scheduling processor.

70

An LD.pfchk instruction sets pfbit, when it generates a page fault.
The pfbit registers behave like predicate registers in IA-64. Instructions
that can potentially change program’s states are predicated with pfbit.
Similar to idempotent processors, instructions that can be safely reexecuted
without changing the program’s results do not need to be predicated. If all
instructions are predicated, those instructions cannot be executed until the
load instruction is completed, thereby degrading performance significantly.
Hence, it is the compiler’s job to reduce the number of predicated instruc-
tions.

We also do not want to convert all load and store instructions as LD.pfchk
or ST.pfchk instructions. We like to have as few set start_marker
and sw_call instructions. For statically allocated objects, the compiler
can easily insert LD.pfchk/ST.pfchk whenever it is across page boundaries.
We discuss the issues in some cases. Please note that the cases that can take
advantage of idempotent regions are not discussed here.

2.2 Malloc Functions
Malloc functions should try to allocate memory at a page granularity to

reduce the number of page fault check instructions. This will increase frag-
mentation, but many dynamic memory allocations use large size of memory.

2.3 Large Arrays
Whenever a program accesses a large array that is located across multiple

pages, the program should include a check routine. If the memory access
pattern is known at static time, the compiler can minimize the checking
routine only to the page boundary. Figure 1 shows example code.

/* original C-code */
for (int ii=0; ii<N; ii++)
a[ii] = b[ii]*2;

/* new code */
for (int ii=0; ii<N; ii++) {
if (!(ii%kk)) {

// kk = page size%(size of(a[0]))
pfchk(&(a[0])+ii*kk));
pfchk(&(b[0])+ii*kk));

}
a[ii] = b[ii]*2;

}

void pfchk(int addr) {
/* use intrinsics to insert assembly code */
set start_marker;
LD.pfchk(addr);
(pfbit) sw_call(start_marker);
}

Figure 1: Array code example with LD.PFCHK in an array.

2.4 Stack Operations
Stack operations can be similar to the large array case. The address com-

putation routine can be moved before the actual computation, and the page
boundary check functions can be executed. The current mechanism cannot
handle stack overflow or deep nested function calls. These problems will
be studied in future work.

2.5 Pointers
The most challenging data structure is pointers or random data accesses.

In that case, memory address computation cannot be easily precomputed.
One solution is to replace every memory operation as a pfchk function,
as shown in Figure 2 unoptimized pfchk code. In this case, every single
loop iteration will be serialized because the sw_call function has an exe-
cution barrier. However, if we utilize predicated execution, sw_call can
be placed outside of the loop code. When LD.pfchk sets the pfbit value,
the CMPNZ instruction will be nop; therefore, it naturally exits the loop and
executes the sw_call instruction.

2.6 Supporting Multiple PFCHK LDs
Just like other architecture registers, pfbit can also be renamed. When

multiple loads are inside a loop, we need to have multiple architectural pf-

/* original c-code */
/* init p */

while (p!=0){
sum+=p->value;
p=p->next;

}

/* original assembly code */
LOOP_START:
ADD R2 R2 MEM[R1+offset1];
// offset1 indicates value field

LD R1 MEM[R1+offset2];
// offset2 indicate next field

CMPNZ R1, LOOP_START;

/* unoptimized pfchk code*/
LOOP_START:
ADD R2 R2 MEM[R1+offset1];
set sart_marker;
LD.pfchk R1 MEM[R1+offset2];
(pfbit) sw_call (start_marker);
CMPNZ R1, LOOP_START;

/* optimized pfcheck code */
set sart_marker;
clear pfbit; // reset pfbit;

LOOP_START:
(!pfbit) ADD R2 R2 MEM[R1+offset1];
(!pfbit) LD.pfchk R1 MEM[R1+offset2];
(!pfbit) CMPNZ R1, LOOP_START;
(pfbit) sw_call (start_marker);

Figure 2: Pointer chasing code example with LD.PFCHK.

bit registers. Similar to IA-64 predicate registers (where there are 64 1-bit
predicate registers), we can have multiple pfbits. Predicate AND/OR oper-
ations can be used to combine multiple predicate registers.

2.7 Page faults in Instruction Fetch
If an instruction fetch generates an exception, none of the instructions

from the correct path have fetched or executed. So in this case, the hardware
triggers a page fault handler after all the instructions that are in the pipeline
are executed. This can be easily supported by hardware without any support
from a compiler/ISA.

3. CONCLUSION
In this position paper, we discuss that supporting precise exceptions is

not strongly needed for GPGPU computing platforms. We also propose
using predicated execution to support virtual memory in GPUs. Although
this solution requires support from both hardware and software (new ISA
and compiler), we believe this option is more practical, compared to hard-
ware support for precise exceptions. In our future work, we will detail the
hardware mechanism and evaluate the performance implications of this ap-
proach. We will also investigate supporting non-trivial stack operations and
global variables.

4. REFERENCES
[1] M. de Kruijf and K. Sankaralingam. Idempotent processor

architecture. In Proceedings of the 44th International Symposium on
Microarchitecture (MICRO), December 2011.

[2] M. Hampton and K. Asanović. Implementing virtual memory in a
vector processor with software restart markers. In Proceedings of the
20th annual international conference on Supercomputing, ICS ’06,
pages 135–144, New York, NY, USA, 2006. ACM.

[3] M. J. Hampton. Reducing Exception Management Overhead with
Software Restart Markers. PhD thesis, 2008.

[4] Intel Corporation. IA-64 Intel Itanium Architecture Software
Developer’s Manual Volume 1: Application Architecture, 2002.

[5] J. Menon, M. de Kruijf, and K. Sankaralingam. igpu: Exception
support and speculative execution on gpus. In Proceedings of 39th
International Symposium on Computer Architecture(ISCA), 2012.

71

