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1 Introduction 

In this paper, we describe’ the design and impie- 
nieutation of an optimizing Prolog compiler. Our 
approach is novel both for the breadth of techniques 
employed and the performance we achieve as a re- 
suit of using those techniques. Furthermore, we 
know of no other compiler for Prolog that utilizes 
the same techniques and achieves comparable per- 
formance. h addition to efficiency, the design goals 
were portah’lity and simplicity. Our compiler takes 
advantage of knowledge about what it is compii- 
ing to reduce the mechanisms needed to support its 
runtime evaluation. The types of knowledge it uses 
are: 

l syntactic types and the directionality of the 
procedure argumeuts (mode information), ai- 
lowing assignment and efficient pattern match- 
ing to replace unification, and 

l whether procedures are deterministic, since 
non-deterministic procedures require extensive 
overhead. 
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In a break with tradition, we have chosen to conl- 

pile into the C language, rather than some abstract 
machine language. The choice of the C language 
as our target language satisfies both the goals of 
portability and simplicity. Although compiling into 
an abstract machine language, provides a degree of 
portability, the back-end still has to be written for 
a new machine. In contraat, for ail practical pur- 
poses, the back-elld for our compiler (a C language 
compiler) already exists for most machines (satis- 
fying our goal of portability). Our goal of simpiic- 
ity is also satisfied by the choice of the C language 
because the C compiler will take care of the most 
difficult part of writing a compiler which is trying 
to take advautage of the underiyiug architecture of 
the target machine. Furthermore, most of the op- 
timizations that are done are, in fact, performed 
at the source level, i.e., at the Prolog source code 
level. This means that there is nothing inherent in 

a given intermediate representation that makes it 
superior to ours. 

2 Related Work 

Much research has been done in the <area of Pro- 
log compilation. The first compiler (the DEC 10 
Prolog compiler) was written at the University of 
Edinburgh by Warren and his colleagues (BOWE 
821. Written entirely iu Prolog, the DEC 10 Prolog 
compiler introduced many optimization techniques 
for Prolog. Among the techniques used are: compii- 
ing unification into machine language, fast access to 
clauses within a procedure and reductions in space 
requirements. 
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The next generation in the Prolog compilation 
area was ushered in when Warren compiled Pro- 
log into a specialized intermediate language [WAR.R 
83). This intermediate language is so designed that 
both Prolog’s control and data structures map in a 
straight forward manner to a sequence of instruc- 
tions in this intermediate language and forms the 
basis of what we call the Warren Abstract Machiue 
(WAM, for short). WAM’s success lay in the fact 
that it was not only well-designed but also very 
portable and formed the basis for most subsequent 
work. 

Following an approach closely related to the 
WAM, Mellish translates Prolog into a low-level in- 
termediate language called POPLOG [MELL 841. 
Mellish’s approach differs in one significant aspect 
from Warren%. Mellish argues that instead of builcl- 
ing a machine onto which Prolog could be easily 
mapped, it might be more fruitful to look at a sub- 
set of Prolog procedures that do not require all the 
machinery of a Prolog machine, such as the WAM, 
and that can be directly mapped onto a conven- 
tional machine. Mellish observes that most Pro- 
log programs are both directional and deterministic 
and suggests techniques for inferring these proper- 
ties by performing a static analysis of the Prolog 
programs. H e a so shows how knowledge of these 1 
properties can lead to generation of efficient code 
for a conventional machine. 

Nilsson [NILS 831 first suggested that one could 
use the machinery provided by a higher-level lan- 
guage to compile Prolog and suggested a translation 
to Pascal. Nilsson implements non-determinism by 
continuation-passing and looks for the same fea- 
tures of the Prolog program on which to perform 
some optimizations, i.e., direction (or, mode) and 
determinacy. Nilsson addresses the three problems 
in compiling domain-based Prolog: Compilation 
of non-determinism (clauses), compilation of terms 
into approprmte data structures and the compila- 
tion of unification. 

Bruynooghe [BRUY 861 also suggests a transla- 
tion to Pascal. However, his suggestions are in the 
context of efficient garbage-collection. He discusses 
how mapping Prolog constructs to Pascal would 
prove that garbage-collection in Prolog could be 
made as efficient as in conventional programming 
languages. 

Our approach is very similar to that followed by 
Nilsson and Mellish. However, even though Nilsson 
proposed a transla.tion to Pascal, he has not im- 
plemented it. Furthermore, Nilsson dismisses back- 
tracking (and the related issues) as trivial problems; 
we have found that the implementation of back- 
tracking to be a very important issue, and it is only 
a careful design and implementation of backtrack- 
ing that enables the performance improvemeuts 
outlined later. We differ from Mellish more in form 
than in content by departing from the WAM model 
of compilation. The performance improvements we 
obtain justify the soundness of our approach. 

3 Efficiencies exploited by 
compilation 

Our compiler is nimecl at improving the efficiency 
of a Prolog program by providing an efficient im- 
plementation of backtracking, by processing cleter- 
ministic clauses efficiently, by exploiting parameter 
directionality and by introducing typed arguments 
into Prolog. 

Backtracking: Backtracking is the process by 
which Prolog searches for all solutions to a query. 
This implies that a Prolog procedure can return 
many values. Such a procedure is said to be non- 
cleterministic. We implement aon-determinisin us- 
ing a continuation-passing method following Mel- 
lish [MELL 851. In tl ris approach, a procedure in- 
dicates success by invoking the next proceclure to 
be executed; it returns only on failure. While the 
continuation-passing approach is very easy to im- 
plement, it can be very slow (we suspect that this 
is, perhaps, the reason for its linlited use). We 
have a particularly efficient iiiipleiiieiita.tioii of this 
backtracking process (using some assembly-codecl 
routiues) that exploits the nature of the calling se- 

quence of the underlying machine. 
Deterministic Procedures: Procedures tl1n.t 

are deterministic (that is, those that are uni-valued) 
can be compiled into a conventional C procedure. 
Accordingly, such procedures use less spa.ce and ex- 
ecute faster since they do not generate multiple so- 
lutions. Our compiler performs this optimization 
for procedures that the user explicitly specifies as 
being deterministic. 
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Directional Parameters: Another contribut- 
ing factor to Prolog’s inefficiency is a result of the 
uotiou of Uu~ult,i-directioual” arguments to proce- 
dures; that is, unlike conventional languages, there 
is no notion of input and output arguments. To 
handle multi-directional arguments requires calls to 
expensive unification routines. If we know which 
arguments are input and which are output, we can 
generate more efficieut code that uses simple assign- 
meuts and comparisons, instead of calls to unifica 
tion routines. 

Data Typing: Another importnut feature of our 
approach is the introduction of datu types in Pro- 
log. We call these domains after Nilsson [NILS 831 
partly in order to distinguish them from data types 
iu the target language, aud partly, to emphasize 
the abstract nature of the type concept. Mauy of 
the optimizations that we perform are due to Luca 
Cardelli /CARD 84). Cardelli exploits the strongly- 
typed nature of ML in order to couipile unification 
efficiently and to enable quick clause selection. We 
follow a silnilor a.pproach by augmenting our Prolog 
programs with type annotations. 

4 Language Supported 

The compiler supports staudard Prolog augnleuted 
with annotations. These annotations are used by 
the compiler in order to optimize performauce. The 
annotations fall into four classes: 

1. Domain declarations. These are cleclaratious 
that allow the user to specify the types of the 
objects used in the program. Thus, the user 
can declare a list data type, which consists 
of a list of integers (say), with the followiiig 
declaration: 

type((list :- l(int,liet), 
empty)). 

Here 1 is the functor of the liet data type. If 
the list is empty, it is represented by the dis- 
tiuguished fuuctor empty. Otherwise, the list 
must have a functor 1, and it must have two 
arguments: the first must be of type integer 
and the second is of list type agaiu. Notice 
that the fuuctors must be unique; that is, given 
a functor we must uniquely be able to identify 

the type defined by that functor. Furthermore, 
types can be defiued in terms of other types. 
Thus, the above domain cleclaratiou is equiva- 
lent to the following declarations: 

type((w :- empty)). 
type((1iet :- l(int,liet), w)). 

The only difference now is that the distin- 
guished functor empty is of type w. These do- 
maiu declarations are couverted mechanically 
into equivalent C structures that are accessed 
by the C program generated by our compiler. 

2. Predicate type definitions. These type clef% 
tions specify for each predicate what the types 
of the arguments are. For example, given the 
above defiuitiou of the list data type, sup- 
pose we write a procedure called append that 
takes two lists and produces a third list. Then 
the predicate type definitiou for the predicate 
append will be: 

type(append(liet,list,liet)). 

There must be one such declaration for each 
procedure that the user wishes to coulpile. 

3. Mode declarations. These dkclarations specify 
the directionality of the arguments of a pred- 
icate. The mode value can be One of (free, 
ground, part-ground). A mode value of “free” 
indicates that, the correspoudiug argument, is 
a.11 output parameter; the “ground” parameter 
indicates that it is an input parameter. A mode 
with a value of “part-ground” indicates that 
the mode is uukuowu. Optimiratious can 0111~ 
be performed in the first two cases. If the precl- 
icate does not have a mode declaration, all its 
argumeuts are assumed to be Upart-grouud.” 
For example, given the procedure append to 
concatenate two lists (that appear in the first 
two argumeut positions) to procluce the list (iu 
the third argument), mode declaration looks 
like the following: 

mode(append(ground,ground,free)). 

4. Determinncy decfarntions. These cleclarations 
provide information about the determinacy of 

290 



the predicates. The value for the determinacy 
of a predicate is either “true” or “false.” If 
tl1e predicate has 110 determi11acy declaration, 
a value of Ufalse” is assumed; tl1at is, in the ab- 
seuce of better iuformation, tl1e predicate is as- 
sumed to be non-detern1inistic. Assuming that 
tl1e predicate append is determiuistic, tl1e fol- 
lowing declaratiou would be made: 

det(append,3,true). 

5 Clause Indexing 

Au important, use of tl1e predicate type definitions 
is related to tl1e uotion of quick clause selection or 
clause indexing. Give11 a set of clauses, Prolog per- 
forms a unification witl1 tl1e 11ead of each clause 
startiug wit11 tl1e first, a11d goiug 011 to the uext 
clause only if tl1e unificatiou fails. If we know that 
a certaiu argument positio11 is always “ground,” we 
could use the functors that constitute the terms for 
tl1at position as clause selectors. To illustrate this 
idea wit11 a11 example, consider tl1e followiug defini- 
tion of append. 

type(append(list,list,list)). 

append(empty,L,L). 
append(l(X,Y) ,L2,1(X,L3)) :- 

append(L1 ,L2 ,L3). 

Assume tl1at tile list data type l1as beeu de- 
filled earlier; furtller assume that tl1e n1ode declara- 
tiou for append is mode (append (ground, ground, 
free)). Theu, since we know that tl1e first argu- 
meut position is “ground,” we can generate code 
tl1at looks like tl1e following: 

Li : 
if (argl->tag != empty) 

go to L2; 
<code for clause I> 

L2: 
if (argl->tag != 1) 

go to L3; 
<code for clause 2> 

L3: 
return (FALSE) ; 

Notice that this code consists of simple conditionals 
instead of calls to a general unification routine. If 
tl1e tag field is neitller empty nor 1 we sin1ply report 
failure. The only catch 11ere is that we need to 
k11ow tl1e modes. If the n1odes were uukuown, we 
could not make this optimization, and would have 
to resort to unification. If two or more colun1ns 
are “ground,” we have to cl1oose one. There are 

well-known tecl1niques tl1at enable us to make tl1is 
choice [CARD 841 and they will not be discussed 
here. 

6 Code Generation 

The code generatiou pl1ase cau be split up i11to 2 
parts: 

1. Head Processing, and 

2. Body Processing. 

Head Processing Head processing is tl1e main 
step in the code generatiou process aud iuvolves 
uuifying tl1e head and selecting the clause. We pro- 
cess each argument of tl1e 11ead individually. Each 
argument in tl1e 11ead can be eitller a variable, a 
constant or a structure and can have one of three 
modes. Tl1us tl1ere are uine cases that must be 
11andled wl1en processiug au argument. Wheu tl1e 
argumeut is free, tl1e term correspondiug to that 
argument position is created; that is, no uuification 
ueeds to be performed. Instead, we merely gener- 
ate assignn1ent statements, whenever necessary. In 
tl1e case of a Ugroulld” argument, we kuow tl1at tl1e 
argument exists. Therefore, we generate “if-then” 
conditioual statements, since we know that tl1e ar- 
gument must exist. It is only in the case of tlie 
“part-grouud” position tl1at we need to geuerate 
1111ificatiou code. Eveu in tl1is case, siuce we know 
tlie syntactic types, we geuerate calls to uiiification 
routine8 for a ayecific type; tliis is more efficient 
tliau a geiieral unification of two arguments of ar- 
bitrary types. 

Processing the Body Processing the body is 
111~~11 simpler than 11ead processing, siuce 110 u11ifi- 
cation needs to be done. All that tl1e body proces- 
sor does is to call tl1e subgoals wit11 tl1e appropriate 
argun1ents. The only complexity arises as a result of 
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the way we implement non-determinism using the 
technique of continuation passing. 

We have a particularly efficient implementation 
of the continuation passing mechanism. Our imple- 
mentation uses two primitives called freeze and 
melt. Freeze is a procedure (coded in assembly 
language) that takes as its arguments the name of 
a procedure, the number of its arguments, and its 
continuation pointer, followed by a list of the argu- 
ments, and returns a pointer to a location in mem- 
ory at which the procedure and its arguments are 
stored. This pointer is then passed along. When 
melt is invoked with that pointer as its argument, 
it executes the procedure at that location with those 
arguments. 

Thus, the way we process the body is to start 
from the last subgoal and work our way up to 
the first subgoal. Each subgoal from the last to 
the third (counting the head as the first subgoal) 
is frozen. Each subgoal is passed a continuation 
pointer to the next subgoal, so that we thread the 
goals together. We then call the second subgoal 
with the appropriate continuation. Let us illustrate 
this with an example. Suppose we have the clause: 

a(X,Y) :- b(X,Z) ,c(Z,W> ,d(W,Y). 

The code we generate is 

<code for the head> 
cl = freeze(d,cont,2,W,Y) ; 
c2 = freeze(c,cl,2,Z,W); 
b(c2,X,Z); 

“cant” in the first freeze call is the continuation 
pointer associated with the procedure a. When 
(and if) b succeeds the procedure at its continu- 
ation is invoked. This is c. Now c gets as its con- 
tinuation cl, which is the pointer to the function 
d and its arguments. When (and if) c succeeds, 
it invokes the procedure at its continuation (which 
is d). Finally, when (and if) d succeeds, it invokes 
the procedure at its continuation cant, which is the 
procedure that is executed after a succeeds. If (for 
example) c fails, an alternative clause for b is tried 
(assuming that there is one), since a procedure re- 
turns on failure. 

7 Optimizing Deterministic 
Predicates 

A deterministic procedure in Prolog returns only 
once. If it is ever reinvoked (as a result of back- 
tracking) it will always fail. Thus, it is as if a de- 
terministic procedure has an ‘implied cut” as the 
last subgoal of each of its defining clauses. A deter- 
ministic procedure, then, conforms more to our no- 
tion of a standard procedure, since there is no back- 
tracking, Within the context of our approach, this 
means that deterministic procedures do not contain 
the freeze and melt primitives. 

The compiler currently assumes that if the pred- 
icate being compiled is deterministic, all its sub- 
goals are. It also assumes that if any one of the 
subgoals in the body is deterministic, each and ev- 
ery subgoal is deterministic. Although this rules 
out compiling clauses in which the body consists of 
both deterministic and non-deterministic subgoals, 
the same effect can be easily achieved. This is done 
by combining sequences of consecutive determinis- 
tic goals into one non-deterministic clause, whose 
head consists of a non-deterministic predicate, and 
whose body consists of only deterministic goals. A 
simple preprocessing step prior to start of compila- 
tion can perform this conversion. Let us illustrate 
this with an example. In this example predicate 
names that begin with “d” are deterministic; simi- 
larly, predicate names that begin with “11” are non- 
deterministic. Consider the clause: 

na(X,Y> :- 
nb(X,Z) ,dc(Z.Y) ,dd(Y,W) ,ne(Y). 

This clause can be rewritten as the following two 
clauses: 

na(X,Y> :- 
nb(X,Z) ,ncd(Z,Y,W) ,ne(Y). 
ncd(Z,Y,W) :- dc(Z,Y), dd(Y,W). 

Thus, the method consists of building up a dummy 
clause, with a non-deterministic head and an en- 
tirely deterministic body (consisting of the sequence 
of deterministic subgoals). This clause acts as a 
non-deterministic interface to an essentially deter- 
ministic clause. This clause indicates its success by 
melting its continuation, but there is no necessity 
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of freezeing any of the subgoals in the body. Now 
both clauses obey the restrictions imposed by our 
compiler. Even though this simple transformation 
of combining deterministic goals is not performed 
by our compiler, it is a relatively simple process 
and can be easily implemented. 

A deterministic procedure is compiled as a se- 
quence of calls. Since each procedure returns a 
truth value, the failure of any of the subgoals means 
that the predicate fails. Thus, the clause 

a(X) :- b(X,Y), c(Y,Z), Z is Y + 1. 

is compiled into the following code: 

a (Xl 
. . . 

{ 
<code for the head> 
if (! b(X,Y)) 

return (FALSE) ; 
if (! c(Y,Z)) 

return (FALSE) ; 

if (! evalprocl(Z,Y)) 
return (FALSE) ; 

return (TRUE) ; 

1 

Notice that none of the calls to the various pro- 
cedures has any continuations passed to it. This 
shows that the class of deterministic procedures can 
be mapped onto a conventional control structure. 

8 Results on Benchmarks 

The performance of the compiler was tested on 
eight benchmarks ]WARR 771, and the results are 
summarized in the tables below. For a detailed 
description of the tasks that each of these bench- 
marks achieve and the reasons for including them 
see [ WARR 771. All timings are in milliseconds, and 
represent the average execution times over a large 
number of iterations (100,000) of the program using 
the UNIX’ utility getrueage running on a VAX- 
11/780. 

%NIX is a trademark of Bell Laboratories. 

The versions are: 

A Neither mode nor determinacy annotations 
are supplied. This means that unification rou- 
tines have to be invoked and none of the op- 
timizations outlined can be performed. 

B Only mode declarations are supplied. In this 
case, calls to unification routines are reduced; 
however, since there are no determinacy dec- 
larations, all predicates are assumed to be 
non-deterministic, and hence require calls to 
freeze and melt routines. 

C Both mode and determinacy declarations are 
supplied. In this all possible optimizations are 
performed. 

MI This represents the percentage improvement 
in performance as a result of supplying the 
mode declarations. Simply put, it repre- 
sents the improvement that results from sav- 
ing calls to the unification routines. 

MD1 This represents the percent improvement 
when we know both the modes and the de- 
terminacy of the predicates. 

Column MI represents the percent improvement in 
performance due to the addition of mode declara- 
tions. We can see that the improvement in per- 
formance ranges from 1.24 % to 8.07 %. Column 
MD1 represeuts the percent improvement in perfor- 
mance due to the addition of both mode and deter- 
minacy declarations. This column therefore repre- 
sents the maximum possible improvement in per- 
formance. Accordingly, we see that the gains in 
performance are, in fact, very impressive. The im- 
provement in performance ranges from 14.45 9% to 
27.14 x6. These are substantial gains. 

The above times are conservative; they include 
calls to malloc as part our memory management 
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component (which is notoriously slow) and repre- 
sent timings on programs compiled with the UNIX 
portable C compiler, not known for producing qual- 
ity code. 

Another interesting test is to see the effect, of the 
C compiler on the C code generated. It is our claim 
that given a better C compiler the quality of the ex- 
ecutable image can be substantially improved. The 
following table summarizes the results of running 
the same tests on a VAX 8650 with two differ- 
ent C compilers. Column CC represents the times 
for execution using the UNIX C compiler with the 
-CI switch turned on. Column VCC represents the 
times using the VAX C compiler (again with the -0 
switch on). Again the timings are in milliseconds. 
Cohrmn CI represents the percent improvement in 
performance as a result of using a different C com- 
piler. 

--- 
Task cc vcc CI --- 
nrev30 16.00 12.90 19.375 
qsort 50 28.60 25.04 12.45 
serialize 20.80 18.49 11.11 
query 82.40 74.67 9.38 

tSimes10 2.20 1.71 22.27 
divide 10 3.00 2.00 33.33 
log10 1.00 0.33 67.00 
ops8 1.6 0.96 40.00 --- 

Looking at the table we can see that the perfor- 
mance improvements as a result of having a better 
C compiler are in fact fairly substantial (ranging 
from 9 % to 67 %). 

9 Conclusions 

One of the principal reasons for undertaking this 
project was to prove that Prolog could be mapped 
onto a conventional architecture. We have realized 
this goal by mapping Prolog onto an abstract C 
machine. 

Prolog with the annotations (especially when 
the predicates are deterministic, directed and well- 
typed) has a control flow that is similar to that of 
conventional programming languages. In this spe- 
cial cnse, the performance gains are very impressive 
(upto 27.14 %). Tl lis can be thought of as repre- 
senting the front-end improvement. 

We have seen in the previous section that we can 
obtain fairly significant performance improvements 
as a result of using a better C compiler. The back- 
end improvement as a result of having a better C 
compiler ranges from 9 % to 67 %. This vindicates 
our original design decision to compile to C! and 
let the C compiler handle the back-end. The aver- 
age total improvement in performance as a result 
of optimizations on the front-end and the back-end 
(obtained by adding the MD1 and CI columns and 
averaging) is 39.7 %, which represents a fairly sub- 
stantial improvement in performance. 

We have not found the writing of the annotations 
to be overly restrictive on the Prolog programmer. 
In fact, the user is usually aware of the direction- 
ality of his predicates; likewise, the user is usually 
aware of whether his predicates are expected to be 
multi-valued. More importantly, the user is not 
constrained to using “cuts” to specify the deter- 
minacy of his predicates. Our experience indicates 
that “cut” usage is unclear at best. It seems that 
an explicit de&ration to specify whether a certain 
predicate is deterministic is a better method. These 
annotations can, in fact, be inferred [MELL 85); 
this would remove the burden of providing these 
declarations from the user. However, as mentioned 
before, providing these annotations is useful both 
for redundancy and when these inference techniques 
fail. Furthermore, the inference techniques are very 
costly; therefore, one would like to use them as spar- 
ingly as possible. The ideal scenario may, in fact, 
be a combination of user-provided annotations, to- 
gether with some tha,t need to be inferred; the 11um- 
ber of annotations that need to be inferred will then 
be small. 

Compiling to C has the disadvantage of impos- 
ing a two-step compilation process: first, compile 
Prolog to C, and then compile the C code. We do 
not feel this to be a major disadvantage since Pro- 
log programs can be interpreted. This means that 
the user can test his programs using the interpreter, 
and only when he is convinced of their correctness 
does he need to compile his program. Notice that 
the annotations that, are supplied with the program 
have no effect as far as the interpreter is concerned. 

The compiler has been written entirely in Pro- 
log. The power of Prolog as a language that en- 
ables the rapid prototyping of large software sys- 
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tems is unquestioned. The very power and brevity 
that Prolog programs provide are (simultaneously) 
its strength and weakness. What our research has 
shown us is a way of maiutaining the strengths 
of Prolog while minimizing its weaknesses. If we 
could combine the ease of programming (that Pro- 
log provides) with the efficieucy of a procedural lan- 
guage, we would have created a sophisticated mufti- 
language programming environmeiit. 

IO Postscript 

Although the preceding results show that we com- 
pare very favorably with at least oue WAM-based 
compiler, the Mellish compiler (MELL 841, we de- 
cided to compare the quality of code generatecl by 
our compiler against auother well-known compiler, 
the Quiutus 3 compiler. This time the results did 
not prove quite so favorable. In fact, ua’ive reverse, 
compiled with the Quintus compiler, ran ahnost 
four times as fast as it did with ours. 

In trying to uuderstand this discrepancy, we first 
replaced our memory maunger with another more 
suitable one. This cut our time in ha.l.f, but we were 
still twice as slow as the Quiutus version. After try- 
ing to speed up our compiler a bit more, with not 
much success, we took another approach. Rather 
than speed up our compiler bliudly, we decided to 
understand the factors that made the Quintus COIW 

piler produce more efficient code. Apart from point- 
iug out to us the areas where our compiler coulcl 
be improved, this would also enable us to ideutify 
issues that need to be addressed when designing 
optimizing compilers for Prolog. 

The ouly optimizations that we do not currently 
perform are: 1) ii0 list optimization am1 2) uo tail 
recursiou optimizatiou. Could the effect of perform- 
iug these optimizations result in the object code ex- 
ecuting twice as fast? To test this hypothesis, we 
took the na’ive reverse and altered it so that lists 
were now represeuted as geueral Prolog terms a.nd 
the predicates were no longer tail recursive. This 
resulted in the Quiutus compiler producing object 

3Quintus is a trademark of Quintus Computer Systems, 
Inc. 
We are grnteful to Bob Keller nnd Quintus Computer Sys- 
tems for loaning us a copy of their compiler. 

code that rau slower thau the object code we pro- 
duced. 

What do these experimeuts suggest? They ver- 
ify the correctness of our approach aud reiuforce 
our belief that the best optimizing Prolog compil- 
ers perform all possible optimizatious on the Prolog 
source code, and therefore the choice of the inter- 
mediate represeutstiou is arbitrary. These exper- 
imelits also suggest areas for improvement iii the 
performance of our compiler. 

While it is certainly pleasing to arrive at favor- 
able conclusions by performiug “empirical” tim- 
iug experiments, it is also importallt to remem- 
ber that performing experiments using benchmarks 
is au art, iiot a science, and that auy results 
proven/disproven as a result of their use, should 
be viewed with caution. 
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