
A Piggy-back Compiler For Prolog

J. L. Weiner
S. Ramakrishnan

Computer Science Department
University of New Hampshire

March 18, 1988

1 Introduction

In this paper, we describe’ the design and impie-
nieutation of an optimizing Prolog compiler. Our
approach is novel both for the breadth of techniques
employed and the performance we achieve as a re-
suit of using those techniques. Furthermore, we
know of no other compiler for Prolog that utilizes
the same techniques and achieves comparable per-
formance. h addition to efficiency, the design goals
were portah’lity and simplicity. Our compiler takes
advantage of knowledge about what it is compii-
ing to reduce the mechanisms needed to support its
runtime evaluation. The types of knowledge it uses
are:

l syntactic types and the directionality of the
procedure argumeuts (mode information), ai-
lowing assignment and efficient pattern match-
ing to replace unification, and

l whether procedures are deterministic, since
non-deterministic procedures require extensive
overhead.

‘The assistance of Profs. Robert Russell and Philip
Hatcher throughout this project is gratefully acknowledged.

Permisswt to copy without fee all or pan of this material is granted provided

that the copies are not made or dNributed for direct commercial advantage,

the ACM copyright nottce and the title of the pubhcation and its date appear.

and notice is gwen that copyng is by permtwon of the Association for

Compurjng Machinery. To copy olhenvrse. or to repubhsh. requires a fee and/
or specltic permission.

o 1988 ACM O-8979 l-269- i/88/0006/0288 $ I .50

Atlanta, Georgia, June 22-24, 1988

In a break with tradition, we have chosen to conl-

pile into the C language, rather than some abstract
machine language. The choice of the C language
as our target language satisfies both the goals of
portability and simplicity. Although compiling into
an abstract machine language, provides a degree of
portability, the back-end still has to be written for
a new machine. In contraat, for ail practical pur-
poses, the back-elld for our compiler (a C language
compiler) already exists for most machines (satis-
fying our goal of portability). Our goal of simpiic-
ity is also satisfied by the choice of the C language
because the C compiler will take care of the most
difficult part of writing a compiler which is trying
to take advautage of the underiyiug architecture of
the target machine. Furthermore, most of the op-
timizations that are done are, in fact, performed
at the source level, i.e., at the Prolog source code
level. This means that there is nothing inherent in

a given intermediate representation that makes it
superior to ours.

2 Related Work

Much research has been done in the <area of Pro-
log compilation. The first compiler (the DEC 10
Prolog compiler) was written at the University of
Edinburgh by Warren and his colleagues (BOWE
821. Written entirely iu Prolog, the DEC 10 Prolog
compiler introduced many optimization techniques
for Prolog. Among the techniques used are: compii-
ing unification into machine language, fast access to
clauses within a procedure and reductions in space
requirements.

288

The next generation in the Prolog compilation
area was ushered in when Warren compiled Pro-
log into a specialized intermediate language [WAR.R
83). This intermediate language is so designed that
both Prolog’s control and data structures map in a
straight forward manner to a sequence of instruc-
tions in this intermediate language and forms the
basis of what we call the Warren Abstract Machiue
(WAM, for short). WAM’s success lay in the fact
that it was not only well-designed but also very
portable and formed the basis for most subsequent
work.

Following an approach closely related to the
WAM, Mellish translates Prolog into a low-level in-
termediate language called POPLOG [MELL 841.
Mellish’s approach differs in one significant aspect
from Warren%. Mellish argues that instead of builcl-
ing a machine onto which Prolog could be easily
mapped, it might be more fruitful to look at a sub-
set of Prolog procedures that do not require all the
machinery of a Prolog machine, such as the WAM,
and that can be directly mapped onto a conven-
tional machine. Mellish observes that most Pro-
log programs are both directional and deterministic
and suggests techniques for inferring these proper-
ties by performing a static analysis of the Prolog
programs. H e a so shows how knowledge of these 1
properties can lead to generation of efficient code
for a conventional machine.

Nilsson [NILS 831 first suggested that one could
use the machinery provided by a higher-level lan-
guage to compile Prolog and suggested a translation
to Pascal. Nilsson implements non-determinism by
continuation-passing and looks for the same fea-
tures of the Prolog program on which to perform
some optimizations, i.e., direction (or, mode) and
determinacy. Nilsson addresses the three problems
in compiling domain-based Prolog: Compilation
of non-determinism (clauses), compilation of terms
into approprmte data structures and the compila-
tion of unification.

Bruynooghe [BRUY 861 also suggests a transla-
tion to Pascal. However, his suggestions are in the
context of efficient garbage-collection. He discusses
how mapping Prolog constructs to Pascal would
prove that garbage-collection in Prolog could be
made as efficient as in conventional programming
languages.

Our approach is very similar to that followed by
Nilsson and Mellish. However, even though Nilsson
proposed a transla.tion to Pascal, he has not im-
plemented it. Furthermore, Nilsson dismisses back-
tracking (and the related issues) as trivial problems;
we have found that the implementation of back-
tracking to be a very important issue, and it is only
a careful design and implementation of backtrack-
ing that enables the performance improvemeuts
outlined later. We differ from Mellish more in form
than in content by departing from the WAM model
of compilation. The performance improvements we
obtain justify the soundness of our approach.

3 Efficiencies exploited by
compilation

Our compiler is nimecl at improving the efficiency
of a Prolog program by providing an efficient im-
plementation of backtracking, by processing cleter-
ministic clauses efficiently, by exploiting parameter
directionality and by introducing typed arguments
into Prolog.

Backtracking: Backtracking is the process by
which Prolog searches for all solutions to a query.
This implies that a Prolog procedure can return
many values. Such a procedure is said to be non-
cleterministic. We implement aon-determinisin us-
ing a continuation-passing method following Mel-
lish [MELL 851. In tl ris approach, a procedure in-
dicates success by invoking the next proceclure to
be executed; it returns only on failure. While the
continuation-passing approach is very easy to im-
plement, it can be very slow (we suspect that this
is, perhaps, the reason for its linlited use). We
have a particularly efficient iiiipleiiieiita.tioii of this
backtracking process (using some assembly-codecl
routiues) that exploits the nature of the calling se-

quence of the underlying machine.
Deterministic Procedures: Procedures tl1n.t

are deterministic (that is, those that are uni-valued)
can be compiled into a conventional C procedure.
Accordingly, such procedures use less spa.ce and ex-
ecute faster since they do not generate multiple so-
lutions. Our compiler performs this optimization
for procedures that the user explicitly specifies as
being deterministic.

289

Directional Parameters: Another contribut-
ing factor to Prolog’s inefficiency is a result of the
uotiou of Uu~ult,i-directioual” arguments to proce-
dures; that is, unlike conventional languages, there
is no notion of input and output arguments. To
handle multi-directional arguments requires calls to
expensive unification routines. If we know which
arguments are input and which are output, we can
generate more efficieut code that uses simple assign-
meuts and comparisons, instead of calls to unifica
tion routines.

Data Typing: Another importnut feature of our
approach is the introduction of datu types in Pro-
log. We call these domains after Nilsson [NILS 831
partly in order to distinguish them from data types
iu the target language, aud partly, to emphasize
the abstract nature of the type concept. Mauy of
the optimizations that we perform are due to Luca
Cardelli /CARD 84). Cardelli exploits the strongly-
typed nature of ML in order to couipile unification
efficiently and to enable quick clause selection. We
follow a silnilor a.pproach by augmenting our Prolog
programs with type annotations.

4 Language Supported

The compiler supports staudard Prolog augnleuted
with annotations. These annotations are used by
the compiler in order to optimize performauce. The
annotations fall into four classes:

1. Domain declarations. These are cleclaratious
that allow the user to specify the types of the
objects used in the program. Thus, the user
can declare a list data type, which consists
of a list of integers (say), with the followiiig
declaration:

type((list :- l(int,liet),
empty)).

Here 1 is the functor of the liet data type. If
the list is empty, it is represented by the dis-
tiuguished fuuctor empty. Otherwise, the list
must have a functor 1, and it must have two
arguments: the first must be of type integer
and the second is of list type agaiu. Notice
that the fuuctors must be unique; that is, given
a functor we must uniquely be able to identify

the type defined by that functor. Furthermore,
types can be defiued in terms of other types.
Thus, the above domain cleclaratiou is equiva-
lent to the following declarations:

type((w :- empty)).
type((1iet :- l(int,liet), w)).

The only difference now is that the distin-
guished functor empty is of type w. These do-
maiu declarations are couverted mechanically
into equivalent C structures that are accessed
by the C program generated by our compiler.

2. Predicate type definitions. These type clef%
tions specify for each predicate what the types
of the arguments are. For example, given the
above defiuitiou of the list data type, sup-
pose we write a procedure called append that
takes two lists and produces a third list. Then
the predicate type definitiou for the predicate
append will be:

type(append(liet,list,liet)).

There must be one such declaration for each
procedure that the user wishes to coulpile.

3. Mode declarations. These dkclarations specify
the directionality of the arguments of a pred-
icate. The mode value can be One of (free,
ground, part-ground). A mode value of “free”
indicates that, the correspoudiug argument, is
a.11 output parameter; the “ground” parameter
indicates that it is an input parameter. A mode
with a value of “part-ground” indicates that
the mode is uukuowu. Optimiratious can 0111~
be performed in the first two cases. If the precl-
icate does not have a mode declaration, all its
argumeuts are assumed to be Upart-grouud.”
For example, given the procedure append to
concatenate two lists (that appear in the first
two argumeut positions) to procluce the list (iu
the third argument), mode declaration looks
like the following:

mode(append(ground,ground,free)).

4. Determinncy decfarntions. These cleclarations
provide information about the determinacy of

290

the predicates. The value for the determinacy
of a predicate is either “true” or “false.” If
tl1e predicate has 110 determi11acy declaration,
a value of Ufalse” is assumed; tl1at is, in the ab-
seuce of better iuformation, tl1e predicate is as-
sumed to be non-detern1inistic. Assuming that
tl1e predicate append is determiuistic, tl1e fol-
lowing declaratiou would be made:

det(append,3,true).

5 Clause Indexing

Au important, use of tl1e predicate type definitions
is related to tl1e uotion of quick clause selection or
clause indexing. Give11 a set of clauses, Prolog per-
forms a unification witl1 tl1e 11ead of each clause
startiug wit11 tl1e first, a11d goiug 011 to the uext
clause only if tl1e unificatiou fails. If we know that
a certaiu argument positio11 is always “ground,” we
could use the functors that constitute the terms for
tl1at position as clause selectors. To illustrate this
idea wit11 a11 example, consider tl1e followiug defini-
tion of append.

type(append(list,list,list)).

append(empty,L,L).
append(l(X,Y) ,L2,1(X,L3)) :-

append(L1 ,L2 ,L3).

Assume tl1at tile list data type l1as beeu de-
filled earlier; furtller assume that tl1e n1ode declara-
tiou for append is mode (append (ground, ground,
free)). Theu, since we know that tl1e first argu-
meut position is “ground,” we can generate code
tl1at looks like tl1e following:

Li :
if (argl->tag != empty)

go to L2;
<code for clause I>

L2:
if (argl->tag != 1)

go to L3;
<code for clause 2>

L3:
return (FALSE) ;

Notice that this code consists of simple conditionals
instead of calls to a general unification routine. If
tl1e tag field is neitller empty nor 1 we sin1ply report
failure. The only catch 11ere is that we need to
k11ow tl1e modes. If the n1odes were uukuown, we
could not make this optimization, and would have
to resort to unification. If two or more colun1ns
are “ground,” we have to cl1oose one. There are

well-known tecl1niques tl1at enable us to make tl1is
choice [CARD 841 and they will not be discussed
here.

6 Code Generation

The code generatiou pl1ase cau be split up i11to 2
parts:

1. Head Processing, and

2. Body Processing.

Head Processing Head processing is tl1e main
step in the code generatiou process aud iuvolves
uuifying tl1e head and selecting the clause. We pro-
cess each argument of tl1e 11ead individually. Each
argument in tl1e 11ead can be eitller a variable, a
constant or a structure and can have one of three
modes. Tl1us tl1ere are uine cases that must be
11andled wl1en processiug au argument. Wheu tl1e
argumeut is free, tl1e term correspondiug to that
argument position is created; that is, no uuification
ueeds to be performed. Instead, we merely gener-
ate assignn1ent statements, whenever necessary. In
tl1e case of a Ugroulld” argument, we kuow tl1at tl1e
argument exists. Therefore, we generate “if-then”
conditioual statements, since we know that tl1e ar-
gument must exist. It is only in the case of tlie
“part-grouud” position tl1at we need to geuerate
1111ificatiou code. Eveu in tl1is case, siuce we know
tlie syntactic types, we geuerate calls to uiiification
routine8 for a ayecific type; tliis is more efficient
tliau a geiieral unification of two arguments of ar-
bitrary types.

Processing the Body Processing the body is
111~~11 simpler than 11ead processing, siuce 110 u11ifi-
cation needs to be done. All that tl1e body proces-
sor does is to call tl1e subgoals wit11 tl1e appropriate
argun1ents. The only complexity arises as a result of

291

the way we implement non-determinism using the
technique of continuation passing.

We have a particularly efficient implementation
of the continuation passing mechanism. Our imple-
mentation uses two primitives called freeze and
melt. Freeze is a procedure (coded in assembly
language) that takes as its arguments the name of
a procedure, the number of its arguments, and its
continuation pointer, followed by a list of the argu-
ments, and returns a pointer to a location in mem-
ory at which the procedure and its arguments are
stored. This pointer is then passed along. When
melt is invoked with that pointer as its argument,
it executes the procedure at that location with those
arguments.

Thus, the way we process the body is to start
from the last subgoal and work our way up to
the first subgoal. Each subgoal from the last to
the third (counting the head as the first subgoal)
is frozen. Each subgoal is passed a continuation
pointer to the next subgoal, so that we thread the
goals together. We then call the second subgoal
with the appropriate continuation. Let us illustrate
this with an example. Suppose we have the clause:

a(X,Y) :- b(X,Z) ,c(Z,W> ,d(W,Y).

The code we generate is

<code for the head>
cl = freeze(d,cont,2,W,Y) ;
c2 = freeze(c,cl,2,Z,W);
b(c2,X,Z);

“cant” in the first freeze call is the continuation
pointer associated with the procedure a. When
(and if) b succeeds the procedure at its continu-
ation is invoked. This is c. Now c gets as its con-
tinuation cl, which is the pointer to the function
d and its arguments. When (and if) c succeeds,
it invokes the procedure at its continuation (which
is d). Finally, when (and if) d succeeds, it invokes
the procedure at its continuation cant, which is the
procedure that is executed after a succeeds. If (for
example) c fails, an alternative clause for b is tried
(assuming that there is one), since a procedure re-
turns on failure.

7 Optimizing Deterministic
Predicates

A deterministic procedure in Prolog returns only
once. If it is ever reinvoked (as a result of back-
tracking) it will always fail. Thus, it is as if a de-
terministic procedure has an ‘implied cut” as the
last subgoal of each of its defining clauses. A deter-
ministic procedure, then, conforms more to our no-
tion of a standard procedure, since there is no back-
tracking, Within the context of our approach, this
means that deterministic procedures do not contain
the freeze and melt primitives.

The compiler currently assumes that if the pred-
icate being compiled is deterministic, all its sub-
goals are. It also assumes that if any one of the
subgoals in the body is deterministic, each and ev-
ery subgoal is deterministic. Although this rules
out compiling clauses in which the body consists of
both deterministic and non-deterministic subgoals,
the same effect can be easily achieved. This is done
by combining sequences of consecutive determinis-
tic goals into one non-deterministic clause, whose
head consists of a non-deterministic predicate, and
whose body consists of only deterministic goals. A
simple preprocessing step prior to start of compila-
tion can perform this conversion. Let us illustrate
this with an example. In this example predicate
names that begin with “d” are deterministic; simi-
larly, predicate names that begin with “11” are non-
deterministic. Consider the clause:

na(X,Y> :-
nb(X,Z) ,dc(Z.Y) ,dd(Y,W) ,ne(Y).

This clause can be rewritten as the following two
clauses:

na(X,Y> :-
nb(X,Z) ,ncd(Z,Y,W) ,ne(Y).
ncd(Z,Y,W) :- dc(Z,Y), dd(Y,W).

Thus, the method consists of building up a dummy
clause, with a non-deterministic head and an en-
tirely deterministic body (consisting of the sequence
of deterministic subgoals). This clause acts as a
non-deterministic interface to an essentially deter-
ministic clause. This clause indicates its success by
melting its continuation, but there is no necessity

292

of freezeing any of the subgoals in the body. Now
both clauses obey the restrictions imposed by our
compiler. Even though this simple transformation
of combining deterministic goals is not performed
by our compiler, it is a relatively simple process
and can be easily implemented.

A deterministic procedure is compiled as a se-
quence of calls. Since each procedure returns a
truth value, the failure of any of the subgoals means
that the predicate fails. Thus, the clause

a(X) :- b(X,Y), c(Y,Z), Z is Y + 1.

is compiled into the following code:

a (Xl
. . .

{
<code for the head>
if (! b(X,Y))

return (FALSE) ;
if (! c(Y,Z))

return (FALSE) ;

if (! evalprocl(Z,Y))
return (FALSE) ;

return (TRUE) ;

1

Notice that none of the calls to the various pro-
cedures has any continuations passed to it. This
shows that the class of deterministic procedures can
be mapped onto a conventional control structure.

8 Results on Benchmarks

The performance of the compiler was tested on
eight benchmarks]WARR 771, and the results are
summarized in the tables below. For a detailed
description of the tasks that each of these bench-
marks achieve and the reasons for including them
see [WARR 771. All timings are in milliseconds, and
represent the average execution times over a large
number of iterations (100,000) of the program using
the UNIX’ utility getrueage running on a VAX-
11/780.

%NIX is a trademark of Bell Laboratories.

The versions are:

A Neither mode nor determinacy annotations
are supplied. This means that unification rou-
tines have to be invoked and none of the op-
timizations outlined can be performed.

B Only mode declarations are supplied. In this
case, calls to unification routines are reduced;
however, since there are no determinacy dec-
larations, all predicates are assumed to be
non-deterministic, and hence require calls to
freeze and melt routines.

C Both mode and determinacy declarations are
supplied. In this all possible optimizations are
performed.

MI This represents the percentage improvement
in performance as a result of supplying the
mode declarations. Simply put, it repre-
sents the improvement that results from sav-
ing calls to the unification routines.

MD1 This represents the percent improvement
when we know both the modes and the de-
terminacy of the predicates.

Column MI represents the percent improvement in
performance due to the addition of mode declara-
tions. We can see that the improvement in per-
formance ranges from 1.24 % to 8.07 %. Column
MD1 represeuts the percent improvement in perfor-
mance due to the addition of both mode and deter-
minacy declarations. This column therefore repre-
sents the maximum possible improvement in per-
formance. Accordingly, we see that the gains in
performance are, in fact, very impressive. The im-
provement in performance ranges from 14.45 9% to
27.14 x6. These are substantial gains.

The above times are conservative; they include
calls to malloc as part our memory management

293

component (which is notoriously slow) and repre-
sent timings on programs compiled with the UNIX
portable C compiler, not known for producing qual-
ity code.

Another interesting test is to see the effect, of the
C compiler on the C code generated. It is our claim
that given a better C compiler the quality of the ex-
ecutable image can be substantially improved. The
following table summarizes the results of running
the same tests on a VAX 8650 with two differ-
ent C compilers. Column CC represents the times
for execution using the UNIX C compiler with the
-CI switch turned on. Column VCC represents the
times using the VAX C compiler (again with the -0
switch on). Again the timings are in milliseconds.
Cohrmn CI represents the percent improvement in
performance as a result of using a different C com-
piler.

Task cc vcc CI ---
nrev30 16.00 12.90 19.375
qsort 50 28.60 25.04 12.45
serialize 20.80 18.49 11.11
query 82.40 74.67 9.38

tSimes10 2.20 1.71 22.27
divide 10 3.00 2.00 33.33
log10 1.00 0.33 67.00
ops8 1.6 0.96 40.00 ---

Looking at the table we can see that the perfor-
mance improvements as a result of having a better
C compiler are in fact fairly substantial (ranging
from 9 % to 67 %).

9 Conclusions

One of the principal reasons for undertaking this
project was to prove that Prolog could be mapped
onto a conventional architecture. We have realized
this goal by mapping Prolog onto an abstract C
machine.

Prolog with the annotations (especially when
the predicates are deterministic, directed and well-
typed) has a control flow that is similar to that of
conventional programming languages. In this spe-
cial cnse, the performance gains are very impressive
(upto 27.14 %). Tl lis can be thought of as repre-
senting the front-end improvement.

We have seen in the previous section that we can
obtain fairly significant performance improvements
as a result of using a better C compiler. The back-
end improvement as a result of having a better C
compiler ranges from 9 % to 67 %. This vindicates
our original design decision to compile to C! and
let the C compiler handle the back-end. The aver-
age total improvement in performance as a result
of optimizations on the front-end and the back-end
(obtained by adding the MD1 and CI columns and
averaging) is 39.7 %, which represents a fairly sub-
stantial improvement in performance.

We have not found the writing of the annotations
to be overly restrictive on the Prolog programmer.
In fact, the user is usually aware of the direction-
ality of his predicates; likewise, the user is usually
aware of whether his predicates are expected to be
multi-valued. More importantly, the user is not
constrained to using “cuts” to specify the deter-
minacy of his predicates. Our experience indicates
that “cut” usage is unclear at best. It seems that
an explicit de&ration to specify whether a certain
predicate is deterministic is a better method. These
annotations can, in fact, be inferred [MELL 85);
this would remove the burden of providing these
declarations from the user. However, as mentioned
before, providing these annotations is useful both
for redundancy and when these inference techniques
fail. Furthermore, the inference techniques are very
costly; therefore, one would like to use them as spar-
ingly as possible. The ideal scenario may, in fact,
be a combination of user-provided annotations, to-
gether with some tha,t need to be inferred; the 11um-
ber of annotations that need to be inferred will then
be small.

Compiling to C has the disadvantage of impos-
ing a two-step compilation process: first, compile
Prolog to C, and then compile the C code. We do
not feel this to be a major disadvantage since Pro-
log programs can be interpreted. This means that
the user can test his programs using the interpreter,
and only when he is convinced of their correctness
does he need to compile his program. Notice that
the annotations that, are supplied with the program
have no effect as far as the interpreter is concerned.

The compiler has been written entirely in Pro-
log. The power of Prolog as a language that en-
ables the rapid prototyping of large software sys-

294

tems is unquestioned. The very power and brevity
that Prolog programs provide are (simultaneously)
its strength and weakness. What our research has
shown us is a way of maiutaining the strengths
of Prolog while minimizing its weaknesses. If we
could combine the ease of programming (that Pro-
log provides) with the efficieucy of a procedural lan-
guage, we would have created a sophisticated mufti-
language programming environmeiit.

IO Postscript

Although the preceding results show that we com-
pare very favorably with at least oue WAM-based
compiler, the Mellish compiler (MELL 841, we de-
cided to compare the quality of code generatecl by
our compiler against auother well-known compiler,
the Quiutus 3 compiler. This time the results did
not prove quite so favorable. In fact, ua’ive reverse,
compiled with the Quintus compiler, ran ahnost
four times as fast as it did with ours.

In trying to uuderstand this discrepancy, we first
replaced our memory maunger with another more
suitable one. This cut our time in ha.l.f, but we were
still twice as slow as the Quiutus version. After try-
ing to speed up our compiler a bit more, with not
much success, we took another approach. Rather
than speed up our compiler bliudly, we decided to
understand the factors that made the Quintus COIW

piler produce more efficient code. Apart from point-
iug out to us the areas where our compiler coulcl
be improved, this would also enable us to ideutify
issues that need to be addressed when designing
optimizing compilers for Prolog.

The ouly optimizations that we do not currently
perform are: 1) ii0 list optimization am1 2) uo tail
recursiou optimizatiou. Could the effect of perform-
iug these optimizations result in the object code ex-
ecuting twice as fast? To test this hypothesis, we
took the na’ive reverse and altered it so that lists
were now represeuted as geueral Prolog terms a.nd
the predicates were no longer tail recursive. This
resulted in the Quiutus compiler producing object

3Quintus is a trademark of Quintus Computer Systems,
Inc.
We are grnteful to Bob Keller nnd Quintus Computer Sys-
tems for loaning us a copy of their compiler.

code that rau slower thau the object code we pro-
duced.

What do these experimeuts suggest? They ver-
ify the correctness of our approach aud reiuforce
our belief that the best optimizing Prolog compil-
ers perform all possible optimizatious on the Prolog
source code, and therefore the choice of the inter-
mediate represeutstiou is arbitrary. These exper-
imelits also suggest areas for improvement iii the
performance of our compiler.

While it is certainly pleasing to arrive at favor-
able conclusions by performiug “empirical” tim-
iug experiments, it is also importallt to remem-
ber that performing experiments using benchmarks
is au art, iiot a science, and that auy results
proven/disproven as a result of their use, should
be viewed with caution.

References

[BOWE 821

[BRUY 861

[CARD 841

[MELL 841

[MELL 85)

[NILS 83)

Bowen, D.L., Byrd, L., Pereira,
F.C.N., Pereira, L.M., Warren, D.H.D,
DEC System-10 Prolog User’s Manual,
Department of Artificial Intelligence,
University of Edinburgh, 1982.

Bruynooghe,M.,“Con~pile
Time Garbage Collectioul” R.eport
43, Dept. Computerweteuschappeu,
Katholieke Universiteit Leuven, Apr.
1986.

Cardelli,L.,“Compiling a Functional
Laugnage,” Proceedings of the A CM,
March, 1984, pp. 208-217.

Mellish, C., & Hardy,S.,“Integratiug
Prolog into the POPLOG eiivirou-
ment,” Implementations of PR.OLOG,
J.A. Campbell (ed.), 1984, pp. 147-
162.

Mellish, C.,‘Some Global Optimiza-
tious for a Prolog Compiler,” The
Journal of Logic Programming, 2:l,
1985, pp. 43-66.

Nilsson, J#rgeu Fischer, ‘011 the Com-
pilntiou of a Domain-Based Prolog,”
Injormation Processing, R.E.A. Ma-
son (ed.), Elsevier Science Publishers

295

B.V. (North-Holland), 1983, pp. 293-
299.

[WARR 771 W arreu, D.H.D., “Implementing Pro-
log: Compiling Predicate Logic Pro-
gram3,n Research Report # 39, Dept.
of Artificial Intelligence, Univ. of Ed-
inburgh, 1977.

[WARR 831 W mreu,D.H,D.,UAu Abstract Prolog
Instruction Set,” Tecl~nical Note #
309, AI Center, SRI International, Oc-
tober 1983.

296

