
Celebrating Diversity: A Mixture of Experts Approach
for Runtime Mapping in Dynamic Environments

Murali Krishna Emani

University of Edinburgh, UK

m.k.emani@sms.ed.ac.uk

Michael O’Boyle

University of Edinburgh, UK

mob@inf.ed.ac.uk

Abstract

Matching program parallelism to platform parallelism using thread
selection is difficult when the environment and available resources
dynamically change. Existing compiler or runtime approaches are
typically based on a one-size fits all policy. There is little abil-
ity to either evaluate or adapt the policy when encountering new
external workloads or hardware resources. This paper focuses on
selecting the best number of threads for a parallel application in
dynamic environments. It develops a new scheme based on a mix-
ture of experts approach. It learns online which, of a number of
existing policies, or experts, is best suited for a particular envi-
ronment without having to try out each policy. It does this by us-
ing a novel environment predictor as a proxy for the quality of an
expert thread selection policy. Additional expert policies can eas-
ily be added and are selected only when appropriate. We evaluate
our scheme in environments with varying external workloads and
hardware resources. We then consider the case when workloads use
affinity scheduling or are themselves adaptive and show that our ap-
proach, in all cases, outperforms existing schemes and surprisingly
improves workload performance. On average, we improve 1.66x
over OpenMP default, 1.34x over an online scheme, 1.25x over an
offline policy and 1.2x over a state-of-art analytic model. Determin-
ing the right number and type of experts is an open problem and our
initial analysis shows that adding more experts improves accuracy
and performance.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors—Compilers, Optimization, Run-time environ-
ments; D.1.3 [Programming Techniques]: Concurrent Programming—
Parallel Programming

Keywords ParallelismMapping, Dynamic Environment, Machine
Learning, Mixture of Experts

1. Introduction

We now live in a world where, across the spectrum, hardware
platforms are parallel and diverse, ranging from mobiles to the

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, contact the Owner/Author.
Request permissions from permissions@acm.org or Publications Dept., ACM, Inc.,
fax +1 (212) 869-0481. Copyright 2015 held by Owner/Author. Publication Rights
Licensed to ACM.

PLDI’15 , June 13–17, 2015, Portland, OR, USA
Copyright c© 2015 ACM 978-1-4503-3468-6/15/06. . . $15.00
DOI: http://dx.doi.org/10.1145/(to come)

cloud. In the past, parallelism was restricted to HPC environments
running a single application at a time with fixed, known resources.
This is no longer the case, mainstream applications have to share
dynamically varying resources.

Matching program parallelism to platform parallelism is a real
challenge for compilers when the environment 1 is shared, dynamic
and unknown at compile time. Runtime systems such as [3, 6,
24, 28] can overcome this, but are program agnostic and slow to
react. In this paper we focus on one area of parallelism mapping,
selecting the best number of threads for a parallel program. It
is the key decision when reconciling program parallelism with
available resources. There has, in fact, been significant work from
the compiler and runtime communities in improving workload-
aware thread selection. Schemes that try to combine offline models
with runtime tuning [11, 14, 16, 20] can exploit prior knowledge of
the program but are limited by the assumptions of the environment.

All approaches are characterised by a one-size fits all assump-
tion. They have a single monolithic model or policy that matches
a program to its parallel environment. There is little ability to ex-
amine whether the policy fits the current setting or whether another
would perform better. No matter how parameterized the policy is, it
is highly unlikely that a scheduling policy developed today will al-
ways be suited for tomorrow. One critical problem with current ap-
proaches is that they cannot be easily updated or extended. Adding
additional expertise requires expensive rewriting (or retraining) the
policy. Furthermore, improving one of the policy heuristics may
adversely affect others.

Our paper develops a new approach based on predictive mod-
eling that considers a number of thread selection policies (experts)
at runtime and selects the one that it believes will perform best at
every parallel loop. As the program, workload and hardware re-
sources change, different policies will be dynamically selected at
runtime. Such an approach is known as Mixture of Experts [17].
Critically, it does not try out different policies, varying the number
of threads at runtime, as this is too expensive.

The central issue is: how do we, at runtime, evaluate whether
a particular policy is good? We cannot afford to try them all out
and pick the best. Furthermore, once we have selected a policy and
followed its decision, we still do not know how good it was, as the
environment might have changed. There is no monitor we can look
at to evaluate its performance. This is a key challenge to thread
selection. We overcome this by developing a novel approach that
uses models that not only predict what the right number of threads
should be for a program, they also predict what the environment
will look like. Given this ability to determine whether a policy is
accurate, we dynamically monitor the prediction accuracy of each
model, selecting an expert whenever we think it is the most accurate
for a particular environment.

1We use environment to describe dynamic workloads/hardware resources

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

PLDI’15, June 13–17, 2015, Portland, OR, USA
c© 2015 ACM. 978-1-4503-3468-6/15/06...$15.00

http://dx.doi.org/10.1145/2737924.2737999

499

A natural question to ask is: what is the right number of policies
and how do we train them ? This is an open problem. In Section 3,
we consider the simplest case of having just two experts while in
Section 4 and the remaining part of this paper, we use four experts.
In Section 8 we show that for the same amount of training data, a
mixture of experts approach outperforms a single monolithic model
and that increasing the number of experts improves performance.

We extensively evaluate our approach against existing policies
in dynamic environments, outperform all existing approaches and
surprisingly never slowdown the workload. We consider the case
when the workloads themselves use affinity scheduling, are smart
and adaptive. In each case our approach improves the performance
of the target program and workloads.

This paper makes the following contributions:

• First to employ mixture of experts for thread selection in dy-
namic environments.

• First to use an environment predictor as a proxy for selecting
the best thread predictor.

• First to combine offline prior models and online learning.

• Shows that additional experts improves performance.

2. Related Work

Runtime adaptation techniques try to adjust the mapping based
on the current execution scenarios. They typically lack “self-
awareness” i.e. there is either no mechanism to detect the quality of
the technique online or, if there is a provision, it involves consid-
erable time-lag. Early feedback driven policy [30], assumes known
programs and a static environment. ReSense [9] uses resource sen-
sitivity to map co-located applications. A sensitivity score obtained
by offline characterization per-program determines thread map-
pings at runtime. This approach assumes known programs and the
scores do not reflect the sensitivity changes at runtime. We assume
no such prior knowledge of programs and are able to accurately
capture the contention arising due to co-execution.

More sophisticated solutions proposed in [12, 13, 15] use con-
trol theory to adapt. However, the monitoring process is discrete
(fixed time-steps) and slow while our approach adapts rapidly and
continuously. Optimal resource allocation using semi-bandit feed-
back policies in [19] learns the policy from the scratch at runtime
while we exploit offline knowledge. It suffers from considerable
delay in reaching the optimal allocation.

Techniques to improve program performance and utilization
proposed in [31, 32] reduce resource contention caused by the
programs. However they do not consider the dynamic nature of
workloads. Petabricks [2, 3] determines best runtime implemen-
tation of a program to adapt to a dynamic system. This approach
requires different implementations offline, narrowing the scope of
applicability. Sambamba [29] adapts programs online but they are
generic and slow to respond to changes in the environment. Spec-
ulatively executing multiple threads add significant overhead in
the former. Few solutions aim to minimize resource utilization us-
ing work-stealing [5, 25] and other proposals target to avoid over-
subscription in [7, 20]. These solutions require extensive offline
profiling and are not effective on new unseen programs.

The paper closest to our work is [28] which builds and improves
on [27]. It uses an analytic model to determine the degree of paral-
lelism at runtime. Based on observed instantaneous performance, it
executes for fixed time intervals with two randomly chosen thread
numbers. The new thread number is then estimated using regression
techniques. Such exploratory process incurs significant overhead.
Our work avoids this overhead by making instantaneous decisions.
The analytic policy relies on passive monitoring whereas we em-
ploy active monitoring continuously to measure the model quality.

Figure 1. Highly dynamic system activity observed in a live sys-
tem showing number of threads vs. time.

Other closely related work is [11]. Here a machine learning based
technique is proposed that uses program and system parameters to
adaptively map a program. However, it lacks a monitoring mecha-
nism to detect the efficiency at runtime. [24] is an adaptive policy
that uses hill-climbing technique to adjust the degree of parallelism
using an orchestration mechanism proposed in [23]. Although this
policy is robust to system changes, there is a delay to reach the best
thread number and may stick in local optimum.

Mixture of Experts (ME) was first proposed by [17]. It used
a set composed of several expert neural networks. Expectation-
maximization algorithm is used to adjust parameters to each ex-
pert in [18]. Here the learning process is treated as a maximum
likelihood problem. Boosting technique [10] describes a probabilis-
tic model of improving learning by using a product of experts that
greedily selects models incrementally. Unlike standard ME, we do
not select an expert and evaluate its performance online as there is
no way to tell how well an expert performed. Instead, we are the
first to use a proxy environment predictor as a measure of quality
and then maximise likelihood. This prevents the need for the online
trial of experts, reducing overhead and allowing rapid adaptation.

3. Motivation

Realistic systems are highly dynamic with programs sharing the
system resources. Figure 1 shows real workload behavior derived
from a log over a period of 50 hours activity in a high performance
computing system (2912 cores, 5824 H/W contexts, 24GB RAM).
Zooming in at point 175,000 (highlighted), we replicated this pat-
tern in a scaled down experiment on a 12-core machine. As shown
in the top graph of Figure 2, the number of workload threads and
available processors varies over time. To aid comparison, we use a
benchmark and workload used in [11] and [28]. We evaluate the lat-
ter, labelled analytic, which is the state-of-art mapping policy and
the best alternative scheme. Here we wish to select the right num-
ber of threads for target lu co-executing with mg, both from NAS
benchmark. The remaining graphs in Figure 2 shows the number
of threads selected by four different policies over time, reacting to
changes within the target program and the external environment.

The analytic policy first runs a parallel section with varying
number of threads to measure speedup behavior before settling on
a preferred number. This causes delay as can be seen at time step
t0. Just when the number of resources drops, this scheme increases
the number of threads based on out-of-date data collected before
t0. It eventually settles down, but this delay has cost. The next
two graphs show the behavior of 2 experts. Each expert (E1, E2)
uses an offline trained model that predicts the best thread number.
They differ in the state space that they are trained for, E1 is more
sensitive to changes in the number of processors than E2, and
consequently select different thread numbers.

500

Figure 2. A snap shot of the dynamic system around 175, 000th

second window. Top graph shows the number of workload threads
and the number of cores available vs. time. Remaining graphs
shows the number of threads selected by different policies over
time. Change points at t0, t1, t2 are highlighted. Analytic is delayed
in reacting to change. The mixture approach selects expert 1 until
t0, expert 2 until t2 and expert 1 thereafter.

The final graph shows the number of threads selected by our
new approach mixture. It chooses the expert which is best-suited
for that current execution environment. For example, consider the
timeline at t1, t2. Initially, expert E

2 is the best model at t1. When
the execution environment changes at t2, the selector switches to
expert E1 as it is more appropriate than E2. As we show in Section
4.3, E1 does in fact predict the environment more accurately at t2
than E2, so this was the right decision.

The program performance using these techniques is seen in
Figure 3. The analytic approach improves over the OpenMP default
but is outperformed by either expert due to its delay in reacting to
change. Having the ability to dynamically switch between experts
significantly improves performance further still.

4. Mixture of Experts

Our approach is to use a number of different policies or experts to
predict the best number of threads at a given instance. Each expert
is trained offline and we dynamically select the best expert to use
at runtime. To make things concrete, in our experiments throughout
this paper, we consider the case where the training data is divided
arbitrarily amongst 4 experts based on program scaling behavior
and H/W configuration (explained in Section 5.1). We analyse this
decision in Section 8.

This Mixture of Experts approach is a supervised learning tech-
nique for systems composed of many distinct models. An expert
selector model decides which expert should be invoked for each
dynamic case. In parallelism mapping, central to our formulation
is the concept of reward i.e. determining how good a mapping is.
Given a number of mapping policies, this approach learns online
which expert is best suited to each dynamic decision.

Figure 3. Selecting an optimal policy at runtime improves pro-
gram performance

Figure 4. Mixture of experts: Depending on the input state f
consisting of code c and environment e , the online model M
chooses an expert most likely to select the best number of threads
n. Based on the environment prediction accuracy of each expert, ê,
it updates its choice over time

4.1 Offline Expert

Each expert has two models associated with it: (a) thread predictor
‘w’ and (b) an environment predictor ‘m’. Assume ‘p’ represents
any vector p. Let ct denote the parallel loop code, et, the corre-
sponding runtime environment, ft = ulct||et, the features combin-
ing code and environment information at time stamp t.

Thread Prediction: A model x is learnt that given a thread num-
ber n returns an approximation of eventual speedup

x(n, ft) = V̂ (n)

whereˆ is used to denote an approximation and V̂ (n) is the pre-
dicted program speedup with n threads. We then define a thread
predictor ‘w’ that selects the thread number that is predicted to
maximize speedup:

w(ft) = n|(argmaxn(x(n, ft)))]

This policy is learnt offline and applied dynamically at runtime.
There is no re-learning of policy at runtime.

Environment Prediction: Environment predictor m is a predic-
tive model which is trained to predict the future environment state
given current features. At time-stamp t, given the current system
state encoded as a feature vector ft, this model returns the possible
environment at time-stamp, ˆet+1.

m(ft) = ˆet+1

If this prediction is incorrect then the thread prediction will be
incorrect. While it is hard to determine the accuracy of w, it is easy
to judge the accuracy of m at the next time stamp. As m and w
are built from the same training data, they are correlated. For this
training set it is observed that if m is accurate, so is w, as discussed
in later sections.

501

Environment prediction is the key to monitoring the accuracy
of the experts. Existing experts that are generated using machine
learning can be retrofitted by retraining them, using the same orig-
inal training data, to predict the environment as well. It is more
challenging for hand-crafted or ad-hoc experts as a new environ-
ment predictor would need to be created. Alternatively, we could
online, periodically select an expert (with no environment predic-
tor) and see how it affects the environment and record the result,
slowly building an environment predictor automatically over time.

4.2 Expert Selector

We assume we have a number of different predictors or experts,
each of which has an associated predictor pair (mk, wk). The role
of the mixture of experts model M is to select the best expert ‘k’
which is predicted to give the best performance:

M(ft) = k|argmaxk(argmaxn(xk(n, ft)))]

in other words, select the expert that is expected to predict the
number of threads that will lead to maximum speedup. This selec-
tion is to be performed online. Learning the best gating function
M in this way is not feasible, however, as we cannot, at runtime,
evaluate the performance of xk and hence the thread predictor wk.
Instead, we use the environment predictor and instead formulate the
prediction as:

M(ft) = k|argmink‖êk
t − et‖

in other words, select the expert that is most accurate in pre-
dicting the environment. As this can be evaluated at each time step,
it can be used to build, online, the mixture of experts model M .
This process is shown in Figure 4. The code and environment fea-
tures, f , are input to the online expert selector M which determines
which expert to select based on the features. The thread prediction
n of the selected expert is then output. The model M adapts over
time based on the accuracy of each expert’s prediction of the future
environment ê. In the next section we describe how the experts are
built and how M is learnt and deployed at runtime.

5. Our Approach

Here we describe how each individual expert is built. This is fol-
lowed by a description of how a model is learnt online to select
the best expert based on the accuracy of each expert’s environment
prediction.

5.1 Individual Experts

Each expert is an offline trained mapping policy where each policy
contains two models as mentioned above w, m. Any (potentially
external) expert that determines these two parameters, via whatever
means, can be included in the existing mixture.

There are numerous ways of selecting the number and type of
training data for each expert. For this paper, we used the following
arbitrary approach to build 4 experts: We first separate the training
programs into 2 sets: those that scale well and those that do not. We
then built an expert for each set on 2 different platforms: a 12 core
machine and a 32 core machine, giving 4 experts in all. We defined
a program as being scalable if it achieves at least P/4 speedup
where P is the number of processors. This allocation of training
data to experts is shown in Figure 5.

5.2 Predictive Modeling

Machine learning techniques using supervised learning are em-
ployed for training the experts [11, 21]. This uses the standard three
stage process: (i) generate training data; (ii) train and build a model
using cross-validation (iii) deploy this learnt model in an unseen
setting.

Figure 5. Diagram showing how four experts are selected.

5.2.1 Training Data Set for Experts

Building an expert model requires training data. The training ex-
periments consisted of one target and one workload from NAS
suite where each program runs until the other finishes. These runs
are repeated by varying the number of threads for both programs.
No retraining is needed on other platforms of interest. It is to be
noted that only NAS programs were used for training but programs
from SpecOMP, Parsec are used for evaluation. We capture features
f = [c, e] where c are static code features and e environment fea-
tures and record the number of threads n that leads to best perfor-
mance. The training is performed for each expert and incurs a one-
off cost. Once the experts are built there is no further re-learning.

5.2.2 Features

While predictive modeling is relatively automated, it critically re-
lies on good feature selection. During the training phase 134 fea-
tures, f , were collected, comprising of many code (c) and envi-
ronment (e) parameters available within our LLVM-based com-
piler and Linux. From these, 10 features were chosen that were
found to be critical to the models based on the quality of informa-
tion gain. These are listed in Table 1. At loop i, the feature vector
f

i
=(f1

i, .., f
10

i) is formed by these 10 features. The code features

at every loop were normalized to the total number of instructions
in the program. Code features characterize a program’s inherent
compute, memory or I/O intensive properties. The runtime features
characterize contention and load in the system. In this paper, the
environment is formalized as the norm of the runtime features in
this feature set (f4 tof10).

Although all experts uses the same features, they vary in impor-
tance across each expert. Figure 6 shows the importance of selected
features across different experts. We define feature impact (π) as
the drop in prediction accuracy of the model when this feature alone
was removed from the feature-set. The resultant normalized values
for all four experts form the pie-charts. Each slice of the pie-chart
corresponds to how crucial is the feature for that expert. These fea-
tures are ranked in relative importance to the experts. For example,
run queue size is more critical to expert E1 and less important to
other experts. Certain features such as #processors are nearly the
same for all experts.

5.2.3 Linear Regression

We use a linear regression technique employing standard least
squares to build two models that fit the training data. Other models
could equally be used. We employ the standard leave-one-out cross
validation methodology that ensures we keep training and test data
separate. i.e. if we are trying to predict the number of threads for
program bt, we ensure that bt is not part of the training set.
Learning a model for this data is simply finding the best linear
fit to the data i.e. determining weights for each selected feature
(w1f1 + .. + wnfn + β). This results in simple 10-dimensional
linear model n = wf and ê = mf where the weights (coefficients)

502

Table 1. List of features, regression coefficients

Features E1 E2 E3 E4

Description type w m w m w m w m

f1 load/store count compiler 1.05 -0.47 -0.84 1.02 0.14 1.1 0.05 0.74

f2 instructions “ -1.52 0.35 1.12 -0.78 0.95 1.10 0.03 1.03

f3 branches “ 0.87 1.15 0.84 0.05 -0.87 0.54 -0.57 1.12

f4 workload threads Linux -0.62 0.39 0.05 0.44 -0.48 0.44 0.004 0.39

f5 processors “ 0.98 0.46 0.98 0.002 0.99 0.142 0.92 0.74

f6 run queue size (runq-sz) “ 0.003 0.29 0.02 0.23 -0.15 0.25 0.22 0.28

f7 cpu load (ldavg-1) “ 0.002 0.17 0.03 0.09 0.473 0.07 0.01 0.09

f8 cpu load (ldavg-5) “ -0.013 0.64 0.227 0.6 -1.07 0.15 -0.62 0.59

f9 cached memory “ -0.07 0.01 0.002 0.05 0.007 0.06 0.03 0.12

f10 pages free list rate “ 0.004 0.002 -0.08 -0.04 0.01 0.14 -0.14 0.003

β regression constant -1.21 0.25 -6.8 0.28 -3.03 0.33 -2.5 -0.05

Figure 6. Impact of selected features on the experts. A slice in each
pie-chart corresponds to how crucial is the feature for that expert.
Feature impact (π) value below a pie-chart is averaged across all
experts.

w and m are listed in Table 1. Each of the 4 experts has its own
weights.

5.3 Expert Selector / Feature Space Partitioning

A mixture of experts model M consists of a series of hyperplanes
S in the 10-dimensional feature space f . These hyperplanes define
the regions in the feature space where one expert is more accurate
than the others. The environment prediction error, a for expert k is
defined as

ak = ‖ ˆek
t
‖ − ‖e

t
‖

The hyperplanes S are learnt online such that the error of a
predictor k in this region is less than the average error of the other
predictors. (‘<’ is based on Euclidean distance)

argminSk‖(a
k −

P

i6=k
ai

K − 1
)‖, Sk−1 < f ≤ Sk

We initially partition the space evenly and adjust S online based
on the accuracy of each expert. To minimize runtime overhead, we
only use data from the last timestep to update the model.

5.4 Example

To demonstrate how our approach works consider the workload
timeline shown in Figure 2. At timestamp t1, the feature-vector f

1

is

f
1

= [0.032, 0.026, 0.2, 4, 8, 16, 4.76, 2.17, 1.11, 1.65]

Expert E1 predicts thread number n1
1 and environment ê1

1 by the
product of weights w1, m1 from Table 1 with f

1
as

n1
1 = w1 · f

1
= 4; ‖ê1

1‖ = m1 · f
1

= 12.56

Similarly expert E2 predicts

n2
1 = w2 · f

1
= 6; ‖ê2

1‖ = m2 · f
1

= 7.2

The Mixture of Expert selection S1 hyperplane is = [0.04,0,02, 0.2,

6, 10, 14, 4.00, 2.00, 1,1.5] and as f
1

< S1, it selects E2 as its expert

and chooses 6 threads. This, in fact, turns out to be the correct
decision as the actual measured environment is ‖e1‖ = 8.713
which is closer to E2’s prediction of 7.2 rather than E1’s of 12.56.
Later at timestamp t2, the feature-vector f

2
is

f
2

= [0.045, 0.013, 0.1, 12, 12, 6, 2.73, 2.17, 0.01, 1.21]

Here, expert E1 predicts n1
2 and ê1

2 as

n1
2 = w1 · f

2
= 4; ‖ê1

2‖ = m1 · f
2

= 13.94

Similarly expert E2 predicts

n2
2 = w2 · f

2
= 8; ‖ê2

2‖ = m2 · f
2

= 8.504

Here, the mixture of experts selects expert E1 as S1 < f
2
and

chooses 4 threads. This is the correct decision as the actual mea-
sured environment is ‖e2‖ = 11.763 which is closer to E1’s pre-
diction of 13.94 rather than E2’s of 8.504. If there was a mispredic-
tion, the hyperplane S would be updated to reclassify this feature
point.

6. Experimental Setup

This section describes the hardware platform and benchmarks used.
It describes the adaptive techniques we compare against and out-
lines the dynamic environment used.

6.1 System

The experimental setup used as the evaluation platform is listed in
Table 2. Target and workloads begin their execution at the same
time and continue running till the other finishes. Each experiment
was repeated 3 times and the mean value of program execution time
reported.

6.2 Applications

We use a range of multi-threaded programs from various domains:
all OpenMP-based C programs from NAS [1], SpecOMP [26]

503

Table 2. H/W and S/W configurations for evaluation.
Hardware 32-core Intel Xeon L7555 @1.87GHz

4 one-socket nodes, 8 cores/socket
64GB RAM, 24MB shared LLC

OS 64-bit openSUSE 12.3 version
3.7.10 kernel

Compiler gcc 4.6 -O3 optimization

and Parsec [4, 22] benchmark suites with respective largest input
datasets. These representative parallel programs consisting of com-
pute and memory-bound programs are diverse with emerging work-
loads from various domains. For example, blackscholes from
Parsec is a financial application which computes options pricing
using Black-scholes partial differential equations. SpecOMP pro-
grams target high performance computing (HPC) domain. NAS
programs are derived from computational fluid dynamics applica-
tions. Such a selection of programs ensures that we evaluate our
approach on a wide variety of programs.

Table 3. Workload configuration

Workload Benchmarks

small (i) is,cg
(ii) ammp,fft

large (i) bt,sp,equake,is,cg,art
(ii) bscholes,lu,bt,sp,fmine,art,mg

6.3 Policies

We evaluated our approach against the following adaptive policies
discussed in Section 2:
Default: OpenMP default policy [8] assigns a thread number equal
to the current number of available processors.
Analytic: In [28] an analytical model determines the degree of
parallelism at runtime based on observed speedups at fixed time-
intervals and estimated using regression techniques
Offline: In [11] a machine learning heuristic predicts a thread
number at runtime based on an offline-trained model.
Online: [24] is a robust adaptive scheme that employs hill-climbing
technique to change the thread count at runtime based on execution
time.

6.4 Experimental Scenarios

We evaluated our approach in a dynamic execution environment
with varying co-executing workloads and the number of proces-
sors. The effect of other external system issues such as network
contention are reflected in the set of runtime features used by our
model.
Workloads: The external workload consists of multiple parallel
programs selected from the above benchmarks. We vary the number
of workload programs chosen from above programs classified as
‘small’ and ‘large’.

For each workload type, we consider different sets of programs
as shown in Table 3. All results are averaged over these different
benchmark sets. The same external workload is reproduced for
all evaluated policies in all cases. This ensures a fair comparison
across different mapping policies.
Hardware: To reflect any change in hardware, we vary the num-
ber of available processors during program execution. Changes in
the number of processors can be due to several factors including
hardware failures, assigning more/less cores for other high/low pri-
ority jobs, turning them off for saving power. We assume the hard-
ware changes less frequently than workloads. The number of avail-
able processors is varied in two different frequencies: low and high
where it is reduced or increased every 20 seconds and 10 seconds
in low frequency and high frequency settings respectively.

Figure 7. Evaluation of policies in an isolated static system. Mix-
tures approach adds no overhead.

Figure 8. Speedup comparison of each scheme per workload and
frequency of hardware change averaged across all benchmarks.
Overall, on average, online, offline and analytic approaches im-
prove performance by 1.23x, 1.33x and 1.39x respectively. Our ap-
proach outperforms these by achieving 1.66x mean (1.54x median)
improvement.

7. Evaluation

First we show the results of each policy on an isolated static system.
Next we consider dynamic systems with varying workloads. In all
cases, the baseline is OpenMP 3.0 default policy and the average
values (hmean) are harmonic means to avoid outliers.

7.1 Isolated and Static Environment

Result 1: Mixture of Experts improves performance with no over-
head in a static system under isolation.

Figure 7 shows the results of the evaluated schemes in a sys-
tem which is static (no changes in the environment) and isolated
(no co-executing workloads). Online spends too much time trying
different thread numbers slowing down a few programs. However,
offline and analytic approaches adjust to find thread number lead-
ing to good speedup. The mixtures approach never slows down the
target and improves mg, cg, art. These involve irregular mem-
ory accesses and barriers and spawning many threads slows down
the program. Our approach analyzes this behaviour and determines
the optimal thread number of the best expert which is most suited
for a given program. On average, the mixtures approach improves
1.11x over the default and by 4% over the analytic scheme. This
highlights that, although our approach is aimed at dynamic environ-
ment, it is reassuring that we incur no overhead in static systems.

504

Figure 9. For targets executing with small workloads and low
frequency hardware changes, our approach improves 1.5x over
default, 1.3x over online, 1.22x over offline and 1.09x over analytic.

Figure 10. For targets executing with small workloads, high fre-
quency hardware changes, our approach improves 1.51x over de-
fault, 1.41x over online, 1.19x over offline and 1.12x over analytic.

7.2 Dynamic Environment

Result 2: Mixture of Experts significantly improves programs
across diverse dynamic environments.

Figure 8 summarises the results averaged across all benchmark
programs for different workload and hardware settings. On aver-
age, online, offline and analytic approaches improve performance
by 1.23x, 1.33x and 1.39x respectively. The mixture of experts ap-
proach outperforms all these by achieving 1.66x mean (1.54x me-
dian) speedup improvement.

The default policy performs poorly due to increased resource
contention. The online technique adapts to the changes in the sys-
tem by changing the thread number in response to the observed
execution time. But this reacts slowly to the changes and hence
achieves marginal improvement. The offline technique improves
over the online scheme but it is limited by its workload training
and cannot adapt to new environments. The analytic model per-
forms well with workload change but is unable to adjust to the
changing hardware resources. The mixture of experts approach im-
mediately detects these changes and selects the best expert that is
more specialized in the observed system state. It achieves signifi-
cant improvement over these existing techniques.

Breakdown by Scenario: Here we examine in more detail the
results on a per benchmark basis. We present results averaged over
all the workloads on each workload and hardware setting.

7.2.1 Small Workload

Here the resource contention is minimal, however the changing
number of processors limits the amount of computing resources.

Low frequency hardware change: Figure 9 shows the speedup
for each policy averaged across all workload programs when the
change in hardware is low. Here we improve performance 1.5x
over OpenMP default and outperform all other schemes. Online

Figure 11. For targets executing with large workloads and low fre-
quency hardware changes, our approach improves 1.74x over de-
fault, 1.31x over online, 1.23x over offline and 1.13x over analytic.

Figure 12. For targets executing with large workloads, high fre-
quency hardware changes, this approach improves 1.62x over de-
fault, 1.34x over online, 1.22x over offline and 1.15x over analytic.

improves over offline for bt, ep but it performs worse than the
default for sp. Analytic approaches the performance of the mixture
approach in some cases mg, art, btrack and cg, equake

but in each case it is outperformed by the mixture of experts.

High frequency hardware change: With a high frequency hard-
ware change, the amount of available resources changes at a faster
rate. The results for this setting are shown in Figure 10. where we
improve performance by 1.51x over the OpenMP default and out-
performs the other techniques. The online technique slows down
certain programs e.g., ft, sp, art. The offline approach never
slows down any target program performing better than the online
scheme. In all cases our approach achieves the best performance
improvement.

7.2.2 Large Workload

With large workloads, the contention for system resource is greater.
Variation in the available processors compounds this effect.

Low frequency hardware change: Figure 11 shows the results
for this scenario. On average our approach achieves performance
improvement of 1.74x over the default. Online improves bt, ep

but slows down is, ep. Offline policy improves bt, lu, cg,

ep but is ineffective for is, sp, freqmine, btrack. Ana-
lytic improves across all programs, but is outperformed by mixture
of experts technique in all cases. bt, lu, cg, equake benefit
a lot from our approach.

High frequency hardware change: Here we improve 1.62x over
default, 1.34x over online, 1.22x over offline and 1.15x over ana-
lytic. Programs such as cg, lu, equake, freqmine benefit
significantly from the mixture of experts. Offline and analytic im-
prove over online across all programs except sp. Figure 12 shows
the speedup results in detail.

505

(a) Impact on workloads

default

online

offline

analytic

mixture

de
fa

ul
t

on
lin

e

of
fli

ne
an

al
yt

ic
m

ix
tu

re

1.0

1.2

1.4

1.6

1.8

2.0

(b) Adaptive workloads

Figure 13. (a) Effect of policies on external workloads. The mixture approach never degrades workloads, improving workload by 1.19x on
average. (b) Evaluation of pairs-of programs where both target and workload programs co-execute with smart policies. The mixture policy
gives a combined improvement averaged across all pairs of 1.81x over the default.

on
lin

e

of
flin

e

an
al

yt
ic

m
ixt

ur
e1.

0
1.

2
1.

4
1.

6
1.

8
2.

0

sp
ee

du
p

ov
er

 d
ef

au
lt

(a) Evaluation on a real-world casestudy (b) Thread affinity (c) Monolithic model vs. mixture of experts

Figure 14. (a) In a live system, based on Figure 1, mixture improves by, on average, 1.32x, 1.21x, 1.19x over the online, offline and analytic
models. (b) Impact of affinity scheduling on thread selection policies averaged over all benchmarks and workloads for small workloads
scenario. Our approach gives a 2.1x average speedup and shows largest improvement of 28% using affinity scheduling. (c) Evaluation of
monolithic model vs mixture of experts. The mixture approach improves 1.22x over the former.

7.3 Impact on Workloads

Result 3:Mixture of Experts never slows down co-executing work-
loads.

Any optimization scheme improving the target program perfor-
mance should ideally exert minimal impact on the co-executing
workloads. Figure 13(a) shows the impact of the evaluated schemes
on the external workloads averaged across all experiment settings.
All improve relative to the default on average, though online de-
grades the workload performance in certain cases. The offline and
analytic models marginally improve over the online scheme. Our
approach outperforms these techniques by improving workloads
performance by 1.19x. This result is primarily due to a reduction
in system-wide contention benefiting target and workload.

7.4 Adaptive Workloads

Result 4: Mixture of Experts creates a win-win situation for target
and workloads.

In this paper we have assumed that workloads vary in size and
duration, but do not adapt their scheduling policy. Here we study
the combined execution time when one program co-executes with
another and both can adapt i.e. execute using different scheduling
policies. Ideally an optimal combination of policies stabilizes the
system, leading to faster execution of both programs.

Figure 13(b) shows the measured speedups averaged across all
program pairs. The baseline of 1.0 is the performance when each
program employs the default policy. As observed from previous
results, the mixtures approach is able to boost the targets’ perfor-
mance over other evaluated schemes. What is interesting is what
happens as the workload become smart and adapt using the same
policies. If both programs use an online policy, they achieve only

1.08x improvement over the default. Using offline for both pro-
grams increases the performance to 1.27x, while analytic boosts
this to 1.42x The mixtures approach, however, if employed by both
programs, delivers 1.81x speedup, a significant improvement over
all of the other policies. Rather than fighting each other, employ-
ing a smart scheduling policy boosts each program’s performance.
Employing the mixture of experts approach does this significantly.

7.5 Evaluation on a Real-world Case Study

Result 5: Mixture of Experts continuously adapts program paral-
lelism to rapidly changing conditions.

To demonstrate how our approach works in a real live system,
we also ran a small-scale study with a real workload pattern in
Figure 1. During the observed period, there was a hardware failure
such that half of the processors were unavailable for 2 hours. This
pattern was simulated on the platform from Section 6 where the
number of workload threads was scaled down in proportion with
the maximum number of processors. We ran all the benchmarks
with this scenario and show the summarized speedup results in
Figure 14(a). On average the speedups were online: 1.19x, offline
1.34x: analytic 1.43x and mixture 1.61x. Mixture of experts is
clearly the superior policy. achieving improvement 1.32x, 1.21x,
1.19x over online, offline and analytic.

7.6 Thread Affinity

Result 6: Mixture of Experts improves affinity scheduling.
Associating threads to cores via affinity scheduling can improve

performance as it may reduce memory traffic. Here we combine
affinity scheduling with each of the thread selection policies. We
ran all the benchmarks with multiple workloads in the small work-

506

(a) Efficiency of environment predictor (b) Distribution of experts (c) Effect of increasing number of experts

Figure 15. (a) Environment predictor accuracy of experts normalized to actual environment. (b) Distribution of the number of times an
expert is chosen across each scenario. (c) Effect of increasing number of experts on program speedup averaged across all target programs. A
mixture of 4 experts outperforms the best single expert by 1.22x.

load scenario described in Section 7.2.1, the scenario likely to ben-
efit most from thread scheduling. The results averaged across the
target benchmarks are shown in Figure 14(b). All schemes show
improvement with affinity scheduling but our approach gives the
largest improvement of 26%, giving an overall speedup of 2.1x.

7.7 Generic vs. Experts

Result 7: Mixture of Experts yields better performance over one
generic model composed of individual experts.

Here we evaluate the performance of the mixture of experts
policy comparing it against a single aggregate model with the same
total training data. Figure 14(c) shows the speedup comparison
using such a single model against the mixtures. The mixture of
experts gives a 22% improvement over an aggregate model. This
is due to the failure of the one size fits all approach of the aggregate
model.

8. Analysis

We first analyse the accuracy of the experts and study how often
they are selected. We also investigate how the number of experts
impacts performance.

8.1 Environment Predictor Accuracy

The efficiency of the mixture of experts approach relies on the
environment prediction capabilities of individual experts. Figure
15(a) shows how accurate these values are for each expert. Y-axis
shows the normalized difference between observed and predicted
environment averaged across all experiments. It can be seen that all
experts accurately predict the future environment between 79% and
82% of the time. So individually there are highly accurate. When
combined in a mixture model this accuracy increases to 87%.

8.2 Frequency of Expert Selection

Here we analyze how frequently the experts are selected by the
mixture approach. If one expert were to dominate one or more sce-
narios, then having a mixture may be of little benefit. If, however,
the frequency that an expert is selected is independent of scenario,
then this undermines the need for online selection. Figure 15(b)
shows the normalized frequency distribution of how many times
each expert is selected in each of the four scenarios. As expected,
one particular expert dominates each scenario: expert 1 is used 60%
of the time for small workload, low frequency scenario, while ex-
pert 4 is preferred in the large workload, high frequency setting.
Surprisingly, all experts are selected as the best at some point in
each scenario. For instance, experts 1 and 2 are almost evenly cho-
sen in the small workload, high frequency setting. This means that
experts can be effectively used in scenarios that they have not been
specifically trained for.

Figure 16. Increased granularity of number of experts

8.3 Number of Experts

One of the central claims of the mixture approach is that experts
can be added over time, helping improve performance. In this anal-
ysis, we measured the target speedup with an increasing number of
experts in the large workload, low frequency scenario. Figure 15(c)
shows the average performance achieved across all benchmark pro-
grams in this scenario using a varying number of experts. Individu-
ally, each expert gives low performance. As expected, from Figure
15(b) experts 3 and 4 are most accurate here and give speedups
of 1.22x and 1.27x. The mismatched experts 1 and 2 give perfor-
mance of only 1.2x and 1.15x. However, adding experts steadily
improves performance. This shows that the slight additional cost to
determine the environment prediction accuracy is more than com-
pensated by the performance gains. The mixture approach gives a
22% improvement over a best single-expert.

8.4 Experts of Finer Granularity

Here we study how the number of experts impacts performance. We
build 8 experts by further splitting the training programs based on
scaling behavior and compare against the monolithic and 4 experts
approach The results averaged across all programs for the scenario
in Section 7.2.1, are presented in Figure 16. It can be observed that
an increased number of experts further benefits the programs with
8 experts improving by 1.63x and 4 experts by 1.55x. This is prob-
ably due to the more specialized experts, capturing environment
changes more precisely.

8.5 Distribution of Thread Numbers

Figure 17 shows the distribution of thread numbers predicted by
individual experts and the mixture. It can be seen that the range of
thread numbers vary with different expert across different evaluated
scenarios. E1 predicts larger thread numbers while E4 predicts
smaller numbers due to their training environments. These are
consistent across the evaluated scenarios where as E2 and E3 are
sensitive and vary in their predictions depending on the scenarios.
The mixture M attempts to pick the best expert in all cases.

507

Figure 17. Thread number distribution

9. Conclusion

In this paper we presented a new technique based on a mixture
of experts approach for efficient thread number selection. It de-
termines at runtime, the best offline expert out of a collection of
experts, as there is no one-size fits all universal best policy. It
also provides a mechanism to gracefully add additional expertise
knowledge. On evaluating with varying workloads and hardware
resources, this approach improves over all existing approaches. Fu-
ture work will explore the open problem of determining the ideal
number of experts and the trade-off in number of experts vs. train-
ing data size. It will also investigate whether other modeling tech-
niques such as SVMs trained on the same data or hand written an-
alytic models can be selected by a mixtures approach. To ensure
portability and robustness of our approach, we also plan to evaluate
on alternative hardware platforms.

References

[1] NAS 2.3. http://phase.hpcc.jp/Omni/benchmarks/

NPB/index.html.

[2] J. Ansel, Y. L. Wong, C. Chan, M. Olszewski, A. Edelman, and
S. Amarasinghe. Language and compiler support for auto-tuning
variable-accuracy algorithms. CGO ’11.

[3] J. Ansel, C. Chan, Y. L. Wong, M. Olszewski, Q. Zhao, A. Edelman,
and S. Amarasinghe. PetaBricks: A Language and Compiler for
Algorithmic Choice. PLDI, 2009. doi: 10.1145/1542476.1542481.

[4] C. Bienia. Benchmarking Modern Multiprocessors. PhD thesis,
Princeton University, January 2011.

[5] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E. Leiserson, K. H.
Randall, and Y. Zhou. Cilk: an efficient multithreaded runtime system.
PPOPP ’95, pages 207–216, New York, NY, USA, 1995. ACM. ISBN
0-89791-700-6. doi: http://doi.acm.org/10.1145/209936.209958.

[6] N. Carriero, E. Freeman, D. Gelernter, and D. Kaminsky. Adaptive
parallelism and piranha. IEEE Computer, 28(1):40–49, Jan 1995. doi:
10.1109/2.362631.

[7] M. Curtis-Maury, J. Dzierwa, C. D. Antonopoulos, and D. S.
Nikolopoulos. Online power-performance adaptation of multithreaded
programs using hardware event-based prediction. ICS ’06, pages 157–
166, New York, NY, USA, 2006. ACM. ISBN 1-59593-282-8. doi:
http://doi.acm.org/10.1145/1183401.1183426.

[8] L. Dagum and R. Menon. OpenMP: An Industry-Standard API for
Shared-Memory Programming. IEEE Comput. Sci. Eng., 5(1):46–55,
Jan. 1998. ISSN 1070-9924. doi: 10.1109/99.660313.

[9] T. Dey, W. Wang, J. W. Davidson, and M. L. Soffa. Resense: Map-
ping dynamic workloads of colocated multithreaded applications us-
ing resource sensitivity. ACM Trans. Archit. Code Optim., 10(4):41:1–
41:25, Dec. 2013. ISSN 1544-3566. doi: 10.1145/2555289.2555298.

[10] N. U. Edakunni, G. Brown, and T. Kovacs. Boosting as a product of
experts. CoRR, abs/1202.3716, 2012.

[11] M. K. Emani, Z. Wang, and M. F. O’Boyle. Smart, adaptive mapping
of parallelism in the presence of external workload. In CGO, pages
1–10. IEEE, 2013.

[12] H. Hoffmann. Coadapt: Predictable behavior for accuracy-aware ap-
plications running on power-aware systems. In ECRTS, pages 223–
232, July 2014. doi: 10.1109/ECRTS.2014.32.

[13] H. Hoffmann, M. Maggio, M. D. Santambrogio, A. Leva, and A. Agar-
wal. Seec: A framework for self-aware computing. 2010. URL
http://hdl.handle.net/1721.1/59519.

[14] H. Hoffmann, S. Sidiroglou, M. Carbin, S. Misailovic, A. Agarwal,
and M. Rinard. Dynamic knobs for responsive power-aware comput-
ing. ASPLOSXVI, pages 199–212, New York, NY, USA, 2011. ACM.
doi: 10.1145/1950365.1950390.

[15] H. Hoffmann, M. Maggio, M. Santambrogio, A. Leva, and A. Agar-
wal. A generalized software framework for accurate and efficient man-
agement of performance goals. EMSOFT ’13, 2013.

[16] S. Ioannidis and S. Dwarkadas. Compiler and Run-Time Support
for Adaptive Load Balancing in Software Distributed Shared Memory
Systems. In Languages, Compilers, and Run-Time Systems for Scal-

able Computers, pages 107–122. Springer Berlin Heidelberg, 1998.

[17] R. A. Jacobs, M. I. Jordan, S. J. Nowlan, and G. E. Hinton. Adaptive
mixtures of local experts. Neural Comput., 3(1):79–87, Mar. 1991.
doi: 10.1162/neco.1991.3.1.79.

[18] M. Jordan and R. A. Jacobs. Hierarchical mixtures of experts and the
em algorithm. In IJCNN, volume 2, pages 1339–1344 vol.2, Oct 1993.
doi: 10.1109/IJCNN.1993.716791.

[19] T. Lattimore, K. Crammer, and C. Szepesvári. Optimal Resource
Allocation with Semi-Bandit Feedback. CoRR, abs/1406.3840, 2014.
URL http://arxiv.org/abs/1406.3840.

[20] J. Lee, H. Wu, M. Ravichandran, and N. Clark. Thread tailor: dynam-
ically weaving threads together for efficient, adaptive parallel applica-
tions. ISCA, 2010. doi: 10.1145/1815961.1815996.

[21] S. Long and M. O’Boyle. Adaptive java optimisation using instance-
based learning. ICS ’04, 2004. doi: 10.1145/1006209.1006243. URL
http://doi.acm.org/10.1145/1006209.1006243.

[22] Parsec. Parsec 2.1. http://parsec.cs.princeton.edu/.

[23] A. Raman, H. Kim, T. Oh, J. W. Lee, and D. I. August. Parallelism or-
chestration using dope: The degree of parallelism executive. PLDI ’11,
New York, NY, USA, 2011. ACM. doi: 10.1145/1993498.1993502.

[24] A. Raman, A. Zaks, J. W. Lee, and D. I. August. Parcae: A System
for Flexible Parallel Execution. PLDI ’12, pages 133–144, 2012. doi:
10.1145/2254064.2254082.

[25] J. Reinders. Intel threading building blocks. O’Reilly & Associates,
Inc., Sebastopol, CA, USA, first edition, 2007. ISBN 9780596514808.

[26] SpecOMP. SPECOMP 3.0. http://www.spec.org/omp/.

[27] S. Sridharan, G. Gupta, and G. S. Sohi. Holistic Run-time Parallelism
Management for Time and Energy Efficiency. ICS ’13, pages 337–
348, 2013. doi: 10.1145/2464996.2465016.

[28] S. Sridharan, G. Gupta, and G. S. Sohi. Adaptive, Efficient, Parallel
Execution of Parallel Programs. PLDI ’14, pages 169–180, 2014. doi:
10.1145/2594291.2594292.

[29] K. Streit, C. Hammacher, A. Zeller, and S. Hack. Sambamba: a
runtime system for online adaptive parallelization. CC’12, Berlin,
Heidelberg, 2012. Springer-Verlag. doi: 10.1007/978-3-642-28652-0
13.

[30] M. A. Suleman, M. K. Qureshi, and Y. N. Patt. Feedback-driven
threading: power-efficient and high-performance execution of multi-
threaded workloads on CMPs. ASPLOS XIII, New York, NY, USA,
2008. ACM. doi: http://doi.acm.org/10.1145/1346281.1346317.

[31] L. Tang, J. Mars, N. Vachharajani, R. Hundt, and M. L. Soffa. The
impact of memory subsystem resource sharing on datacenter applica-
tions. In ISCA, pages 283–294. IEEE, 2011.

[32] S. Zhuravlev, S. Blagodurov, and A. Fedorova. Addressing Shared
Resource Contention in Multicore Processors via Scheduling. ASP-
LOS XV, pages 129–142, New York, NY, USA, 2010. ACM. ISBN
978-1-60558-839-1. doi: 10.1145/1736020.1736036.

508

