
An Implementation of a Code Generator Specification Language
for Table Driven Code Generators

Peter L. Bird
Department of Computer and Communication Sciences

and
Computing Center

University of Michigan
Ann Arbor, Michigan 48109

Abstract

This paper discusses an implementation of
Glanville's code generator generator for
producing a code generator for a production
Pascal compiler on an Amdahl 470.

We successfully replaced the hand written
code generator of an existing compiler with
one which was produced automatically from a
formal specification. This paper first
outlines Glanville's original scheme, then
describes extensions which were necessary
for generating code for a production
compiler.

i. Background

Attempts to systematize the process Of
code emission have been ongoing since the
appearance of compilers in the 1950s.
There are several survey papers [4,5]
devoted to this history. Lately, the
techniques of formalizing code generation
have concentrated on table driven methods.
One research direction has used heuristic
strategies for determining appropriate code
sequences (see [6] for a recent
contribution). A second direction uses a
grammar to describe the capabilities of the
intermediate form (IF) of the compiler
coupled with a Syntax Directed Translation
Scheme (SDTS) [7]. In this approach, the
code generator parses the IF of a program
and emits the machine instructions
specified by the SDTS templates.

The SDTS approach has the great advantage
over heuristic methods in that the
operation of the parser can be proven to be

I This work was supported by the University
of Michigan Computing Center.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1982 ACM0-89791-074-5/82/006/0044 $00.75

correct. If the specification of the code
generator is correct, then the code
generator cannot emit incorrect instruction
sequences. Instead it will stop and signal
an error. In addition, well understood
algorithms exist for constructing the code
generator's tables. We are only interested
in the second scheme in this paper.

The work of Glanville [1,2] forms the
basis for our research. In his method, the
specification of a code generator is
expressed as a simple SDTS. The form of
the IF is described by a context-free
grammar. Associated with each production
of the grammar is a sequence of templates
which specify the translation from
intermediate code to target code. Consider
the following translation fragment for an
artificial machine:

r.2 ::= word d.l
{ LOAD R.2,D.I }
r.l ::= iadd r.l r.2
{ ADD R.I,R.2 }
lambda ::= store word d.l r.2
{ STORE R.2,D.I }

where word, iadd and store are operators in
the IF. Given the assignment statement

A := A+ B ;

the IF representation might look like

store (word d.a,
iadd (word d.a, word d.b))

Where "d.a" is the location of the variable
"A". The code emitted will be:

Load RI,D.A
Load R2,D.B
Add RI,R2
Store RI,D.A

The translation templates (enclosed in
curly braces above) constitute the
sequences of target machine instructions
corresponding to the operation found in the
production. The intermediate form emitted
by the front end of a compiler (the lexical
analyzer, parser, tree builder and static
semantic checker) is manipulated by a
shaping routine which resolve variable
addresses by assigning base registers and

44

displacements. After shaping, the IF
serves as input to the code generator. The
code generator performs a bottom-up parse
of the IF, and after a reduction, emits the
appropriate machine instructions.

2. Overview of CoGG

CoGG accepts a specification for a code
generator, and produces a code generator
consisting of

i. A skeletal parser.
2. Tables for driving the parser.
3. Special utility routines for

purposes of
i. register allocation and

ii. symbol table management.
The specification for the code generator

consists of a declaration section and a
production section. The declaration
section is divided into five subsections,
each corresponding to a different type of
symbol. This allows CoGG to build a symbol
table which contains the type of each
identifier used, enabling the table
constructor to type check the use of each
identifier2. The five subsections declare
the following entities:

i. Nonterminals - These correspond to
the types of registers managed by
the register allocation routine.
They are either base registers
(for ~ddress computations), or the
registers that can hold the
results of intermediate
computations.

2. Terminals - These are identifiers
whose values are set by the
shaping routine. They are
displacements, lengths, counts,
etc.

3. Operators - These are only found
in productions. They include
arithmetic and logical operators,
data transfer operators, and
indicators of different machine
level data types (such as byte,
halfwo~d, fullword, etc.).

4. Opcodes - The mnemonics for the
instructions of the target
machine.

5. Constants - They include both
numeric constants as well as
semantic operators (described in
section 4.).

The production section specifies the
SDTS. It allows the use of template
sequences (rather that single instructions)
for each production. Currently up to eight
machine instructions may be emitted during
a single reduction. In the generated
tables, the templates contain indices into
the translation stack or the list of

2 Such type checking is of utmost
importance when processing the description
of a realistic code generator. Our code
generator for the Pascal language is
specified with nearly 250 productions and
600 templates.

allocated registers to speed up the process
of code emission.

Many of. the problems of a real
architecture (such as machine idioms, jump
instructions, etc.) were not addressed by
Glanville, as his method is merely capable
of specifying straightforward string to
string translations. We found it necessary
to add operators enabling templates to
invoke semantic operations at code
generation time. These operators were
needed in order to generate correct code.
The operations fall into the following
categories:

I. Management of symbol tables
internal to the code generator.

2. Manipulations to account for
machine idioms.

3. Context sensitive manipulations of
the parse/translation stack.

Before discussing these extensions, we will
briefly sketch the layout of a code
generator produced by CoGG.

3. Code Generator Structure

The code generator consists of three
portions:

i. A standard LR parser.
2. A code emission routine which is

called to perform reductions and
build the actual machine
instructions.

3. A Loader Record Generator which
resolves all label references and
branch instructions, and emits
standard system loader records.

The structure of the code emission
routine is as follows:

{ Assume that a reduction has occurred.]
begin

remove current production from
the parse stack.

allocate all requested registers.
for all associated templates do begin

fill in required values
{ registers, displacements, etc.]

if template requires
semantic intervention

then case intervention code of
. . . o

end
else append instruction

to code buffer
end
prefix LHS to input stream.

end

While parsing the IF, label locations and
branch instructions are kept in a
dictionary. This is necessary for reasons
discussed in subsection 4.2. After all of
the IF representation of a program has been
processed, the loader record generator
resolves the absolute addresses in a two
pass traversal of the dictionary. When all
label locations and branch targets have
been resolved, the routine constructs the
TEXT records which make up the object
module.

45

4. Semantic Operators

The major shortcomings of Glanville's
method are in the areas of machine idioms,
addressing, register allocation, common
subexpression handling and the typing of
operands. Because a pure string to string
translation is inadequate for describing
the behavior of a realistic code generator,
we have substantially enlarged the
specification language by adding semantic
operators which can deal with all of the
above problems.

4.1 Register Allocation

CoGG provides the operators USING, NEED
and MODIFIES to allow the user to
communicate with the code generator's
register allocation routine. The first two
tie the register allocation routine to the
translation scheme. The last is Used for
keeping track of common subexpressions.

The interpretation by the code generator
of either the USING or the NEED directive
results in a call to the register
allocation routine. The operands of the
directive indicate that a register of a
particular type is needed to perform the
computation. The NEED directive requests a
specific register from some type class;
USING is more general and requests any
register of the class. The use of a
specific register is necessary for
utilizing certain machine instructions, or
for system specific purposes such as
subroutine calls.

The operator MODIFIES is used by the
common subexpression handler. It informs
the register allocation routine-that the
contents of a register has been changed.

For an example, consider the following
templates:

r.2 ::= fullword dsp.l r.l
{ USING R.2

L R.2,DSP.I (R.I) }

r.l ::= iadd r.l fullword dsp.2 r.2
{ MODIFIES R.I

A R.I,DSP.2(R.2) }

and the IF program segment:

iadd (fullword dsp.a base,
fullword dsp.b base)

where base is the base register for the
local data area.

For these calculations, some register is
needed for temporarily holding the result
of the computation. The value returned
from the USING directive is inserted into
the Load template, and then used as the LHS
of the production. The resulting system
370 code sequence is:

L RI,D.B(BASE)
A RI,D.A(BASE)

The IADD template uses the MODIFIES

directive to invalidate any common
subexpression held in R.I.

If a specific register is requested, and
that register is in use, then the current
contents of that register is transferred to
another register of the same type, and the
translation stack is updated to reflect the
change in the location of the result of
that computation.

As was shown in the description of the
code emission routine above, the call to
the register allocator is made prior to
acting upon any of the templates associated
with the production; all registers required
by the template sequence are allocated at
one time. When a register is allocated,
its use count is decremented. If a
register is used as the LHS of the
proQuction, its use count is incremented
when the LHS is pushed back on the parse
stack3.

We use a "least recently used" register
allocation strategy in an attempt to reduce
operand contention in the pipeline of the
machine (see [8] for a discussion including
algorithms for minimizing instruction
contention). Each register has a usage
index associated with it. Every time a
reduction occurs, a global index value is
incremented. When a register is allocated
for use in templates, or when it is
modified, the current global index value is
recorded in the register record. Thus, the
register with the lowest usage index was
changed at a time previous to all other
registers and in terms of pipeline
contention, it is "least recently used".
When the register allocator is called, the
free registers with the lowest index values
are allocated first.

4.2 Addressin~

Without knowledge of how (and where)
instructions are emitted, it is impossible
for any routine which only operates on the
IF to specify the target location of any
branch instruction. For some
architectures, even if a code generator
emits assembly code and an assembler is
used to generate object modules, the
problem of addressability of the target
location remains. This is true for two
reasons:

I. Routines operating only on the IF
have minimal knowledge of the
number of instructions it takes to
implement a language construct.
In our case, since the templates
associated with a production may
change (because the code generator
is retargetable) it is
inappropriate to hardwire this
information into the shaper.

2. The problem of long and short
instruction sizes [9,10] (and
hence the absolute size of the

3 Actually every LHS is prefixed to the
input stream.

46

object module) cannot be resolved
until after all labels have been
located in the generated code.
Even if all instructions are
generated using the long format4,
the exact target location for a
forward branch is unknown until
after the label is encountered in
the code generation process.

We have solved this problem by installing
the code emiss In operator:

lambda ::= label def Ibl.l
[LABEL LOCATION LBL.I]

The interpretation of the LABEL LOCATION
directive causes the code gene?ator to
record a relative label in the dictionary
at the location of the current program
counter.

A branch instruction may take the
following form:

lambda ::= branch op ibl.l cond.l cc.l
{ USING R.3

BRANCH COND.I,LBL.I,R.3]

As was discussed above, the binding of
jump instructions to the target is resolved
after all code for a module has been
generated. If the target for a jump
instruction resides on another page,5 then
an additional load instruction (loading a
page multiple value into a register) is
required to establish addressability of the
target location. When interpreted, the
BRANCH template will allocate two
instructions in the code buffer (for the
case of the long instruction) and will
enter into the dictionary a branch existing
at the current program counter targeting
this label. The allocated register (R.3 in
the above templates) is to be used in the
event that a long instruction is needed;
this will serve as the index register.

There are many instances when it is not
desirable to have all the details of a
template declared in the production;
unnecessary details complicate both the
construction of a shaper and the form of
the productions for the code generator.
Consider the templates used for storing a
the result of a comparison into a boolean
variable:

4 In the case of certain older
architectures, the long jump instruction
actually consists of two machine
instructions, the first of which is used to
establish a base register for the second
instruction.
5 On an Amdahl (or an IBM 370), all memory
references are performed using base
registers. The maximum range of
addressability with one base register is
4096 bytes. On our machine, 1 page equals
4096 bytes.

lambda ::= assign boolean dsp.l r.l cc.l
[USING R.3

MVI DSP.I(R.I),FALSE
SKIP FALSE COND,R.3
MVI DSP.I~R.I),TRUE]

It is undesirable to force the shaper to
allocate all of the labels needed to
perform the above SKIP operations.
Instead, the code generator enters the
branch instruction and target into its
dictionary, to be resolved with the others
declared in the IF representation.

4.3 Machine Idioms and
Translation Stack Manipulations

As with Branch instructions above, we
found it easier to handle machine idioms by
semantic actions. One very important idiom
concerns double register usage. The IBM
360 architecture uses an even/odd register
pair when performing integer
multiplication, division, or modulo
arithmetic.

There are instructions which treat
even/odd pairs as a single 64 bit operand,
such as SLDA (shift left double arithmetic)
and SRDA (shift right double arithmetic).
For example, "SRDA E.I,32" will transform
the 32 bit signed value in the even
register into a 64 bit signed value in the
even/odd pair. This is a necessary prelude
to performing a division or modulo
operation.

The following simple translation scheme
(from [2])

d.l : := e.l
[SLDA E.I,32 }

ignores what is happening with the odd
register of the even/odd pair (aside from
actually destroying the contents of E.I).
This will greatly complicate the role of
register allocation, possibly forcing a
considerable amount of unwanted movement of
register contents.

Consequently, we have included several
operations in our templates which are
intercepted by the code emission routine,
and either cause a modified instruction to
be emitted, or the translation stack to be
manipulated. For an example, consider the
following:

r.2 ::= imult r.2 fullword dsp.l r.l
[USING DBL.I

LOAD ODD DBL. I,DSP.I(R.I)
MR DBL. I,R.2
PUSH ODD DBL.I
IGNORE LHS }

The special LOAD operator will load the
fullword value into the odd half of the
double register pair. PUSH will then
"push" the odd register on the top of the
parse stack (it does so after performing a
type conversion of the odd register into
type "R.n"). IGNORE LHS prevents the
parser from pushing the LHS of the

47

production since this has already been
done.

Although this approach requires a fair
amount of intervention, it seems necessary
that certain contextual information be used
to insure that the proper result is placed
on the stack. Otherwise the scheme

r.l ::= d.l (}

may fail to retrieve the proper register.
Since the results of IMULT/IDIV or IMOD
operation leaves the result in a different
register of the even/odd pair, the context
of the operation defines the location of
the result register. It is possible that
the code emission routine (and the register
allocation routine) could both recognize
that the odd register in

o.i ::= imult

is associated with a
through

double register

d.l ::= <e.l,o.l>

but this amounts to hardwiring the result
register into both the code emitter and the
table constructor.

It is necessary to have the LHS of the
multiplication production included in the
grammar even though it is never pushed. A
result is pushed when the reduction occurs
(with the PUSH ODD operator), but the LHS
declared with (he production is used so the
table constructor recognizes that the IMULT
operation is accessible to integer
arithmetic computations.

4.4 Common Subexpressions (CSE)

All CSEs are detected, and their use
counts established, by an IF optimizer.
Two sets of productions are associated with
CSEs: definition of the CSE in the code
generator's symbol table, and usage of the
CSE.

Establishment of a CSE requires:
i. A CSE number. Each CSE is

assigned a unique identifier which
is valid throughout the
compilation.

2. A usage count.
3. A temporary storage location This

is allocated by the shaper
routine, and is used only in the
event that the register value is
modified.

4. A register holding the result of
the computation.

The following templates are used for the
declaration of a CSE:

r.2 ::= make common cse.l cnt.1
fullword dsp.l r.l r.2

[COMMON CSE.I,CNT.I,R.2,DSP.I,R.I }

Using the CSE for a computation only
requires the symbolic name of the CSE as
demonstrated by the following template:

r.l ::= use common cse.l
{ usING R.Y

FIND COMMON CSE.I,R.I
IGNORE LHS }

At code generation time, the effect of the
FIND COMMON operation is as follows: if the
CSE still resides in a register, then that
register value is prefixed to the input
stream. If the CSE resides only in memory,
however, then the address of the CSE is
prefixed to the input stream. In either
case, the actual current location of the
CSE is needed only at the time this
reduction is performed, and its management
is left to semantic routines in the code
generator.

4.5 Typing of Operand ~

Included in the operators of the IF are
unary operators which give the implementer
both access to and checking of different
data types of the architecture. As an
example, consider:

r.2 ::= fullword dsp.l r.l
[USING R.2

L R.2,DSP.I(R.I)

which forces a fullword integer be loaded,
while

r.2 ::= halfword dsp.l r.l
[USING R.2

LH R.2,DSP.I(R.I)

loads a halfword.
Without an operator to indicate a

variable's storage format, the code
generator is constrained in its ability to
generate code suitable to the machine's
architecture. The code generator could
ignore all but one of the machine's data
types, but this would be fairly inefficient
storage utilization. Alternatively, it
could examine the symbol table of the front
end of the compiler each time an operand
was referenced. This would require a
significant amount of semantic intervention
as well as decreasing the modularity of the
components of the compiler.

5. Comparisons

Table 1 contains information about the
number of declarations used to define the
tables for the code generator.

Entry (i) is a count of all identifiers
used in constructing the tables. (ii) on
the other hand is a count of only those
symbols which can be encountered in the IF
during a parse. (v) is a count of those
entries which do NOT contain an error
entry. (viii) is a count of the number of
operators which can be encountered in the
IF. These include IADD, FULLWORD, etc.
(ix) is the number of operators designed to
produce semantic intervention.

Table 2 contains information about the
size of the object modules for the tables

48

i. Number of symbols declared 247
ii. X dimension of parse table 87

iii. States in parsing automaton 810
iv. Parse table entries 70470
v. Significant Entries 30366

vi. Productions 248
vii. SDT templates 578

viii. Production operatorb 68
ix. Semantic operators 28

Table i.

and the code generator, and compares this
to an existing production compiler with a
handwritten code generator. Entry (v) is a

i. Template Array 8.5
ii. Compressed Parse Table 32.7

iii. Uncompressed Parse Table 71.5
iv. Code generation routines 7.5
v. PascalVS Translation routines 41.9

vi. Full PascalVS Code generator 53.8

Table 2.
(Sizes are in pages)

measurement without support routines from
the PascalVS runtime library. (vi) is a
measurement using these routines.

The SDTS represented by these tables
supports bitset operations with inline code
generation, as well as quadruple precision
(128 bit) floating point arithmetic.

Many productions have been included to
take advantage of the index registers used
for addressing in most instructions, as
well as the various data types in this
architecture. There are no less than
thirteen productions associated with
integer addition (IADD), where one
production (add register to register) would
be sufficient to generate accurate code.
All of the integer operations (ISUB, IMULT,
etc) have the same level of redundancy. As
we see from table 2, however, the size is
not significantly larger than for the
translation phase of a currently used IBM
program product. Additionally, the
"compressed" tables are by no means
minimally compressed.

6. Conclusion

The use of formal specifications of code
generators for their implementation is
clearly superior to the traditional
approach of hand crafting them. This is
especially true in the attempts to retarget
a compiler to a new machine, where a hand
crafted code generator would require
extensive rewriting. In an SDTS approach,
retargetting the code generator merely
requires a rewriting of the templates
associated with productions and minor
modifications of the routines which
actually emit the machine instructions.

The approach specified in [1,2] works in
a production environment only through the

introduction of substantial extensions.
Code generation is a translation process
which needs more information than is
available to the parser on its stack. We
saw this problem above with label handling
and common subexpressions. The more
sophisticated, the utilization of machine
idioms, the greater the contextual
intervention required by the code
generator.

The input to the code generator is
actually a linearized tree structure. The
process of parsing the IF by the code
generator is in fact the detection and
transformation of subtrees which correspond
valid computations [3]. Each production in
the grammar corresponds to a valid subtree
which might be encountered in a computation
tree. The size of the parse tables
described in the last section are due to
our attempt to recognize a very large
number of possible tree shapes. With a
larger number of recognizable patterns, the
code generator can produce better code. As
was stated above, a single IADD production
would be enough to produce executable code,
but the large number of productions allows
the code generator to produce code which is
as good as that produce by IBM's PascalVS
[12]. See appendix one for a comparison
emitted code.

This scheme should prove successful on
microcomputers with limited memory. By
reducing the number of productions in the
grammar, the size of the parse tables is
also reduced. A language implementer can
therefore control the size of the compiler
by changing the complexity of the grammar.
This size change can be accomplished
without losing the guarantee of generating
correct code.

The code generator we replaced [ii]
produced code for a PDP-10. It encompassed
17 separate compilation units and was 5000
lines long (not including several files of
type declarations). CoGG is less than 3000
lines. The code generator it produces is
less than 2500 lines (not including parse
tables) and is contained in 2 separate
compilations. The process of adapting the
original code generator to generate code
for an an Amdahl is of considerable
complexity when using traditional methods
which require rewriting the code generator.
In contrast, writing the specification for
the code generator and using CoGG for its
implementation was much less complicated
and less error prone. It seems clear that
establishing and maintaining a grammar is a
much simpler task than writing and
maintaining a code generator.

49

Acknowledgements

Professor Uwe Pleban provided much needed
advice and encouragement during all phases
of this project, in addition to carefully
reading an earlier draf~ of this paper.
George Schimmel helped to wade through
problems encountered during construction of
the table generator. Paul Pickelmann
collected information about the PascalVS
compiler.

References

[I] R.S. Glanville and S.L. Graham, A
New Method for Compiler Code
Generation, 5th ACM Symposium on
Principles of Programming Languages
(1978) .

[2] R.S. Glanville, A Machine Independent
Al@brithm for Code Generation and its
use in Retar~etable Compilers, PhD
Thesis, University of California,
Berkeley, 1977.

[3] S.L. Graham, Table Driven Code
Generation IEEE Comp~ter--~ug. 198--80~
25-34.

[4] M. Ganapathi and C.N. Fisher, A
review of Automatic Code Generation
Techniques Computer Science Tech.
Report #407, Computer Science Dept.
University of Wisconsin - Madison
(January 1981).

[5] R.G. Cattell, A Survey and Critique
of some Models of Code Generation
D-epartment of Computer Science Report,
Carnegie-Mellon University (November
1977).

[6] R.G. Cattell, Formalization and
Automatic Derivation of Code
Generators, PhD Thesis, --Carnegie i
Mellon University, 1978.

[7] W. Barrett and J. Couch, Compiler
Construction: Theory and Practice SRA
1979.

[8] J.L. Hennessy and T.R. Gross, Code
Generation and Reor@anization in the
Presence of Pipeline Constraints, 9th
ACM Symposium on Principles of
Programming Languages (1982).

[9] E. Robertson, Code ~eneration and
storage allocation for machines with
Span dependent Instructions ACM Trans.
Program. Lang. Syst. I,I (July
1979) 71-83.

[10] B. Leverett and T. Szymanski,
Chainin @ Span-Dependent Jump
Instructions ACM Trans. Program.
Lang. Syst. 2,3 (July 1980) 274-289.

[II] R.N. Faiman, Jr. and A.A.
Kortesoja, An Optimizing Pascal
Compiler IEEE Transactions on Software
Engineering Vol SE-6, No. 6,
(November 1980).

[12] Pascal/VS Release 2.1, Program Product
#5796-PNQ, IBM Corporation.

50

Code examples.
Appendix I.

The base type of all arrays is integer. No subscript or range checking is performed.
The equation compiled is:

x[q]:=(a[i]+b[j]*(c[k]-d[l])+(e[m] div (f[n]+g[o]))*h[p]);

CoGG PascalVS

i
sla
1
sla
i
sla
i
sla
1
1
sla
s
1
mr
a

I
sla
I
sla
1
sla
1
a

1
srda
dr
I
sla
I
mr
ar
st

rl,132(r12) Load Q
rl,2 Multiply by 4.
r2,100(r12) Load I
r2,2
r3,104(r12) Load J
r3,2
r4,108(r12) Load K
r4,2
r5,850(r4,r12) Load C(K)
r6,112(r12) Load L
r6,2
r5,1250(r6,r12) C(K) - D(L)
r7,450(r3,r12)
r6,r5
r7,150(r2,r12)
r8,116(r12)
r8
r9,20(r12)
r9
r2,24(r12)
r2
r3
r3
r4q
r4
r4
r6
r6
r3
r2
r7
r7

Load B(J)
B(J) * ...
A(Z) + ...

Load M

Load N

Load O

2450(r2,r12) Load G(O)
2050(r9,r12) F(N) + G(O)
r8,r12) Load E(M)
32 Propogate Sign
r3 E(M) / ...
28(r12) Load P
2
2850(r6,r12) Load H(P)
r5 H(P) * ...

r3 Final Addition
3250(rl,r12) Store X(Q)

L 03
SLA 03
L 04
SLA 04
L O5
S O5
L O4
SLA 04
LR 07
M 06
L O6
SLA 06
A 07
L 06
SLA 06
L 03
SLA 03
L 04
A O4
L O5
SLA 05
L 08
SRDA 08
DR 08
L O6
SLA 06
M O8
AR 07
L O6
SLA 06
ST O7

152(,13) Load K
2
156(,13) Load L
2

576(03,13) Load C(K)
776(04,13) C(K)-D(L)
148(,13) Load J
2
O5
376(04,13) B(J) * ...
144(,13) Load I
2
176(06,13) A(I)+...
164(,13) Load N
2
168(,13) Load O
2
I176(06,13) F(N)
1376(03,13) F(N)+G(O)
160(,13) Load M
2
976(05,13) E(M)
32 Propogate Sign
04 E(M) / ...
172(,13) Load F
2
1576(06,13) H(P) * ...
09 Final Addition
176(,13) Load Q
2
1776(06,13) Store X(Q)

if flag

if p < q

then i := j - 1
else i := z ;
then 1 := z ;

where: i, j, k, p, q are fullwords ,
b is a boolean (logical) variable,
z is a halfword

(Note that PascalVS didn't use a halfword for the storage format).

tm 3300(r12),i Test B
bc 8,Labell Branch if false
1 rl,104(r13) Load J
bctr rl,r0 Decrement
st rl,100(rl3) Store I
bc 15,Label2 Branch

Label: 1
lh r2,142(r13) Load Z
st r2,100(r13) Store I

Label: 2
1 r3,136(r13) Load Q
c r3,140(r12) Compare with P
bc 4,Label3 Branch if <
lh r4,142(r13) Load Z
st r4,112(r13) Store L

Label: 3"

TM 3780(13),I Test B
BNO @2LI Branch if false
L 03,148(,13) Load J
BCTR 03,00 Decrement
ST 03,144(,13) Store I
B @2L2 Branch

@251DS OH
MVC 144(4,13),168(13) I := Z ;

@2L2 DS OH
L 03,172(,13) Load P
C 03,176(,13) Compare with Q
BNL @2L3 Branch if 7=
MVC 156(4,13),168(13) L := Z

@2L3 DS OH

51

1

25
27
29
31
33
35
37

43
45
47
49
51
53
55
57
59
62

100

115
118

134

139

143

loptions
symbol dump
listinE o n l y
punch p~cked

SNort-terminals
r = register

cc = cond code
dbl = doubTe
fit = floating

dflt dbl float
qflt = gd Tloat

STerminals--
Ing = length
ant : coun t
Ibl : ibl value
dsp : dis~lacement

cond condition
error = error num
stmt = stmt ~um

elmnt : element
value = v value

cse = c~e

Appendix 2 .

The following is the SDTS for the Amdahl 470.
The format o f each line is:

i. The left aligned production
ii. The Syntax Templates to be emitted when the

production is used to reduce.
NOTICE: Templates MUST skip column one!

Lines beginning with '~' are comments. Blank lines are
ignored. All others are examined! Comments may be inserted
after the instructions in the templates. Not all productions
have been included.

A general register.
Condition Code register.
A register pair (even/odd).
Single preczsion floating point.
Double precision floating point.
QUadruple precision floating point.

Length of operand.
Amount of a shift (or CSE usage).
The number of a label.
Displacement of operand (< 4096)
A condition (i.e. LT, EQ, GE .~.)
The error value for an abort.
Internal statement number.
Constant element of variable.
A constant to be loaded.
Common Sub Expression number.

$Operators
addr, fullword, hlfword, byteword, typeword realword, dblrealword, quadrealword,
iadd, isub, imult, idly, imod, icompare, labs, imax, imin, iodd, assiEn,
lone assign, vat assiEn, clear, deer, incr, pos constant, nee constant,
abor¢ op, statement, case check, unlnit check, Fange eheck~ s~bscript check,
boolean or, boolean and, ~oolean not, b~olean test, ~est bzt value, --
set bit--value, stor~ bit value, ~lear bit val~e, load bi~ vaTue, radd, rsub,
rmuTt, Fdiv, tabs, r~eg,--reompare, haTve,--rmin, rmax,--s x--envrt, x s envrt,
d x cnvrt, x d cnvrt, s d cnvrt, d s cnvrt, 1 shift, r -~hYft, bran~h--op,
l~bT~l def, l~b~rl index,--c~se index~ ~rocedure--call, prUcedure entry,--
procedure exit, ~ame param, -- -- --
reference--param, mak~ common, use common

$Opc~des -- --
spm, balr, bctr, bet, mvcl, elel, ipr, Inr, itr, let, nr, elf, o r, xr, It, er, at,
st, mr, dr. alr, slr, ipdr, indr, itdr, Icdr, hdr, irdr, mxr, mx~r, idr, edr, adr,
sdr, mdr, ddr, awr, swr, iper, iner, Iter, leer, her, fret, axr; sxr, let, cer, aer,
set, mar, der, aur, sur, sth, la, stc, ic, ex, bal, bet, be, lh, ch, ah,sh, mh, st,
n, el, o, x, i, c, a, s, m, d, al, sl, std, mxd, Id,cd, ad, sd, rod, dd, aw, sw, ate,
le, ce, me. se, me, de, au, su,bxh, bxle, srl, all, sra, sla, srdl, sldl, srda,
slda, stm, tm,mvi, ni, eli, oi, xi, ira, clm, stem, icm, mvc, nc, clc, oc,
xc,tr, trt

~Constants
Semantic opcodes for the code generator.

label location, label pntr, branch, branch indexed, skip, case load, abort,
stmt Fecord, list request, modifies, ignor~ lhs, IBM length, p~sh odd,
push--even, load oc~d addr, load odd full, lo~d odd haTf, load odd FeE,
load--extended, ~tor~ extended,--cle~r extended7 --

--• Common sub ~xpressions. --
full common, half common, byte_common, real common, drealeommon, find_common,
find--real common,--

--• ~lain cle' boring constants.
false coniC, true const, false cond, true ccnd,

v Fal~e cond = 8 ;-- True eond--: 7 ;
zero, one, two, thr~e, four, seven, ~iEht , fifteen, shift32, it, ICe, eq, ne, Et,
Eta, unconditional, underflow, overflow, not initialized, arra~ underflow,
array overflow, case low, ease hiEh, one loc~ minus one loc, bz~masks,
save_~rea,entrycode-~ code_bas~, staek_b~se, pr_bas~, s~ratch, old_base

Numberin8 conventions.

- Production Number
- Template Number

IProduetions

• AssiKnment Templates.

lambda ::= assiEn fullword dsp.1 r.1 r.2
st r.2,dsp.1(zero,r.1)

lambda ::= assiEn hlfword r.3 dsp.1 r.1 r.2
sth r.2,dsp.1(r.3,r.1)

lambda ::= assign r.1 r.2 ing.1
IBM l e n g t h inK. I
m v c - - z e r o (l n g . l , r . 1) , z e r o (r . 2)

w

m I - Line Number
l

159
161
162
163
164 I
165 I

17 4
17~ 4

191 10
192 10
193 11

Need IBM len&th

52

195
196
197
198
199
20O
201
202

204
205
206
207
208
209
210
211
212
213

216
217
218
238
2 9 2~o
242

307
308

315
316

318
319
32O

326
327
328

350
351
352

356
357
358
359
36O

488
q89
1190
1191
492
493

495
49b
497
498
1199
500
501

511
512

515
516
517

585
586
587
588
589
590

592
59 59~
595
596
597

/
11 ~

12

15
16
17

12

18
~9
20
21
22

17

29

18

30

32
56
57

33
58
59

35
62
63

41

74
75
76

42

77
78
79

63
14q
145

64

146
147
148
149
150

66

156
157
158
159
160

74
202
203

75
204

205
206
2O7

lambda :;: long assign r.1 r.2 Ing.1
using dbl.l,d~l.2
IBM length ing.1
loa~ odd addr dbl.l,lng.1(zero,zero)
load--odd--addr dbl.2,1ng.1(zero,zero)
Ir ~rbl.~,r.1
Ir dbl.2,r.2
mvcl dbl.l,dbl.2

lambda ::= var assign r.1 r.2 r.3
* r.1 is the a~dress of the target
* r.2 is the address of the source
* r.3 is the computed size of the move

using dbl.l,dbl.2
load odd reg dbl.l,r.3
load-odd-reg dbl.2,r.3
lr ~i01.X,r.1
ir dbl.2,r.2
mvcl dbl.l,dbl.2

* Loading Templates.
* l i * * * * * t * * * * J i l i l i i l i l N * * * * * * * * * * i i l i *
r . 2 :;: fullword dsp.1 r.1

using r.2
i r.2,dsp. 1(zero,r. I)

r.2 ::= fullword r.3 dsp.1 r.1
using r.2
1 r.2,dsp. 1(r.3,r. I)

* Addition Templates.
* * * * * * i l * * t i l i * * l t * i i * * * * * * * * * * l i N l i * * *
r . 1 : := *add r . 1 r . 2

modifies r.1
ar r.l,r.2

r.2 ::= iadd fullword dsp.1 r.1 r.2
modifies r.2
a r.2,dsp.1(zero,r.1)

r.2 ::= iadd r.2 fullword dsp.1 r.1
modifies r.2
a r.2,dsp.1(zero,r.1)

r.3 ::= iadd byteword dsp.1 r.1 r.2
using r.3
x r r.3,r.3
ic r.3,dsp.1(zero,r.1)
ar r.3,r.2

r.4 ::= iadd byteword r.3 dsp.1 r.1 r.2
using r.4
xr r.4,r.4
ic r.4,dsp.1(r.3,r.1)
ar" r.4,r.2

l J J J J i J i J J J l J J J J J * J * * J J i J l J J * l J J J J J J J J J
* Division Templates

r.1 ::= r shift r.1 cnt.1
modifie~ r.1
s ra r.1,cnt.1

r . 2 : := i d i v r . 2 f u l l w o r d dsp.1 r . 1
us ing d b l . 1
l r d b l . l , r . 2
s rda d b l . l , s h i f t 3 2
d d b Z . l , d s p . l (z e r o , r . 1)
push odd d b l . 1 Push odd r e g i s t e r on to s t a c k .
zgnoYe_Ibs

r.2 ::= idiv fullword dsp.1 r.1 r.2
using dbl.1
1 dbl.1°dsp.1(zero,r.1)
s rda db!.1,shift32
dr dbl.l,r.2
~ush odd dbl.1 Push odd register onto stack.
zgno~e_Ibs

* Standard functions
m*mmJ*R*****minmIN*****miII***J***Jlg**

r.1 ::= iabs r.1
modifies r. 1
ipr r.l,r.1

r.1 ::= imax r.1 r.2
modifies r.1
using r.3
er r . l , r . 2
skip g te , two , r .3
i r r . l , r . 2

Load c o u n t e r s .

Commutative template.

53

681
682
685
684
685

687
688

690
691
692

694
695
696

698
699
7OO
701
7O2

7O5
706
708
710 94
711
712
71

716 95
717
718
719

721 96
722
723
724
725

781
782
783
784 107
785
786

788 108
789
790

821
822
82
87~ 124
872
873
874
875
876

878 125
879
88O
881
882
885

902
9O4
910
912 128
913
914
915
916
917

919 129
920
921
922
923

932 131

935
936

89
252

90
253

91

254

92

255

93

256
257
258

• J J i • • J • J J • • i • • • J J • J J J J J J J • J J J • J • J • • • * J

* Label and Branching Templates
J J J • J J J • • J J J J J J J J • J J J • J J • J • J • J J • • • • • • • J

lambda : : = l a b e l d e f l b l . 1
label location-- Ibl.1 Label definitiQn found.

lambda ::= label index ibl.1
label_pntr IbT. 1 Set up pointer to laDel.

la~bda ::= branch_op Ibl.1 cond.1 cc.1
using r.3
branch cond.1,1bl.l,r.3 Branch instruction.

lambda ::= branch op ibl.1
using r.3
branch unconditional,lbl.l,r.3 Jump instruction.

lambda ::= case index ibl.1 r.1
using r.3
sll r.l,two
case load r.1,1bl.l,r.3 A branch table load.
bc -- uneonditional,zero(r.l,code_base)

l • • * • • • • t • • • • • * i i • • • * * t • * * * t • • t i t • i • i m l

• Procedure Calls, Entry and Exit.
* J • i i J i J • i J • * • • J • i l J J J J • J • i • J J J i J J i J J J J

l ~ n b d a : : = p r o c e d u r e c a l l e n t . 1 f u l l w o r d d s p . 1 r . 1
need r . 1 4 , r . 1 5 --

259 list request cnt.1
260 i --r.15,dsp.1(zero,r.1)
261 balr r.14,r.15

lambda ::= procedure entry
need r.14,r.15 --

262 stm r.14,stack base,save area(stack base)
263 bal r.14,entryZcode(pr_b~se) BUild new stack frame.

l~nbda ::= procedure exit
using r.14

264 i stack base,old base(stack base) Get old stack frame
265 im r.14,~tack bas~,save area~stack base) Restore all registers.
266 ber unconditio~al,r.14 -- --

J J J J J J J J J J J J * J J J W * * * J J J J J J J J J J • J J J J J J J J

• Integer Comparison Templates ***************************************
cc.1 ::= icompare r.1 r.2

using cc.1
284 er r.l,r.2

cc.1 ::: icompare r.2 fullword dsp.1 r.1
using cc.1

285 e r.2,dsp.1(zero,r.1)

* Checking templates
J J J J J l J J J * J J i i J J J J J J J J J J i J * J J * J J J J J J J J *
r.3 ::: range check r.3 fullword dsp.1 r.1 fullword dsp.2 r.2

need r.14--
315 c r.3,dsp.1(zero,r.1)
316 hal r.14,underflow(pr base)
317 c r.3,dsp.2(zero,r.~)
318 bal r.14,overflow(pr_base)

r.3 ::= range check r.3 r.1 r.2
need r.14--

319 cr r.3,r.1
320 bal r.14,underflow(pr_base)
321 cr r.3,r.2
322 hal r.14,overflow(pr_base)

* J J i J i J i J i J * l i J J J i J J i l i J l i * i J J J J J J J J J i J

* Boolean Templates. ***************************************

r.1 ::= cond.1 cc.1
* This puts the condition code into a register.

using r.l,r.3
331 la r.l,zero(zero,zero) Since this doesn't affect Cond code
332 skip cond.l,two,r.3 R.3 used for long branch
333 la r.l,one(zero,zero)

lambda ::= assign byteword dsp.1 r.1 cc.1
using r.3

334 mvi dsp. 1(r.1),false const
335 skip false cond,two,r73
336 mvi dsp. ITr.1),true_const

cc.1 ::= boolean and byteword dsp.l r.1 byteword dsp.2 r.2
using cc.I,r.3--

341 tm dsp. 1(r. I) ,one
342 skip false cond,two,r.3
343 tm dsp. 2Yr.2) ,one

54

938 132

941
942
943

996
998

1000
1003 142
1004
1005

1007 143
10o8
1009

1011 144
1012
lO13
1014
1015
1016
1017
1018
1019

1021 145
1022
1023
1024
1025
1026
1027
1028
1029

I031
1033 146
1034
1035

1037 147
1038
1039

1041 148
1042
1043
1044
1045
1046
1047
1048
1049
1050

1052 149
1053
1054
1055
I056
1057
I05~
1059
1060
1061

ec.1 ::= boolean and r.1 byteword dsp.2 r.2
using cc.I,r.3--

344 modifies r.1
345 tm dsp.2(r.2),one
346 skip false cond,two,r.3
347 n r.l,o~e_loc(zero,pr_base)

* Set manipulation templates. ***************************************

cc.1 ::= test bit value addr dsp.1 r.1 elmnt.1
using cc.1

372 tm asp.1(r.1),elmnt.1

ec.1 ::= test bit value r.1 elmnt.1
using cc.1-- --

373 tm zero(r.1),elmnt.1

cc.1 ::= test Bit value addr dsp.1 r.1 r.2
using cc.17~.3--

374 modifies r.2
375 I r r.3,r.2
376 srl r.2,three
377 n r.3,seven(zero,pr base)
378 ic r.2,dsp.1(r.2,r.17
379 sll r.3,two
380 n r.2,bitmasks(r.3,pr_base)

ee.1 ::= test bit value r.1 r.2
using cc.17r.3--

381 modifies r.2
582 Ir r.3,r.2
383 srl r.2,three
384 n r.3,seven(zero,pr base)
38~ ie r.2,zero(r.2,r.1)--
386 sll r.3,two
387 n r.2,bitmasks(r.3,pr_base)

* Setting a bit value in a set.
lambda ::= set bit value addr dsp.1 r.1 elmnt.1

' usin~ ce
~88 Ol asp.i~r.1),elmnt.1

lambda ::= set b i t value r.1 elmnt.1
using ee.l - --

389 oi zero(r.1),elmnt.1

lambda ::= set bit value addr dsp.1 r.1 r.2
using cc.I,~.3,~.4

390 modifies r.2
391 Ir r.3,r.2
392 srl r.2,three
~ n r.3,seven(zero,pr base)

ic r.4,dsp.1(r.2,r.17
395 sll r.3,two
396 o r.4,bitmas~s(r.3,pr base)
397 sic r.4,dsp.1(r.2,r.1) --

lambda ::= set bit value r.1 r.2
using cc.I,~.3,~.4

398 modifies r.2
399 Ir r.3,r.2
400 srl r.2,three
401 n r.3,seven(zero,pr base)
402 ie r.4,zero(r.2,r.1)--
403 sll r.3,two
404 o r.4,bitmasKs(r.~ipr_base)
405 sic r.4,zero(r.2,r

DIV 8 -- (byte index in set).
MOD 8 -- (bit index in byte)
Load byte from set.

4 (for fullword index)
Test if bit set.

DIV 8 -- (byte index in set).
MOD 8 -- (bit index in byte)
Load bySe from set.
* 4 (for fullword index)
Test if bit set.

DIV 8 -- (byte index in set).
MOD 8 -- (bit inJex in byte)
Load byte from set.
* 4 (for fullword index)
Or in bit setting.
SCore updated byte.

DIV 8 -- (byte index in set).
MOD 8 -- (bit index in byte).
Load byte from set.
* 4 (for fullword index)
Or in bit setting.
Store updated byte.

55

