An Implementation of a Code Generator Specification Language
for Table Driven Code Generators

Peter L.

Bird

Department of Computer and Communication Sciences

and

Computing Center
University of Michigan
Ann Arbor, Michigan 48109

Abstract

This paper discusses an implementation of
Glanville's code generator generator for
producing a. code generator for a production
Pascal compiler on an Amdahl 470.

We successfully replaced the hand written
code generator of an existing compiler with
one which was produced automatically from a
formal specification. This paper first
outlines Glanville's original scheme, then
describes extensions which were necessary
for generating code for a production
compiler.

1. Background

Attempts to systematize the process of
code emission have been ongoing since the
appearance of compilers in the 1950s.
There are several survey papers [4,5]
devoted to this history. Lately, the
techniques of formalizing code generation
have concentrated on table driven methods.
One research direction has used heuristic
strategies for determining appropriate code
sequences (see [6] for a recent
contribution). A second direction wuses a
grammar to describe the capabilities of the
intermediate form (IF) of the compiler
coupled with a Syntax Directed Translation

Scheme (sDTS) [7]. 1In this approach, the
code generator parses the IF of a program
and emits the machine instructions

specified by the SDTS templates.

The SDTS approach has the great advantage
over heuristic methods in that the
operation of the parser can be proven to be

1 This work was supported by the University
of Michigan Computing Center.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1982 ACM 0-89791-074-5/82/006/0044 $00.75

correct. If the specification of the code
generator 1is correct, then the code
generator cannot emit incorrect instruction
sequences. Instead it will stop and signal
an error. In addition, well understood
algorithms exist for constructing the code
generator's tables. We are only interested
in the second scheme in this paper.

The work of Glanville [1,2] forms the
basis for our research. In his method, the
specification of a code generator is
expressed as a simple SDTS. The form of
the IF 1is described by a context-free
grammar. Associated with each production
of the grammar is a sequence of templates
which specify the translation from
intermediate code to target code. Consider
the following translation fragment for an
artificial machine:

r.2 ::= word 4.1

{ LOAD R.2,D.1 }

r.l ::= iadd r.1 r.2

{ ADD R.1,R.2 }

lambda ::= store word 4.1 r.2
{ STORE R.2,D.1 }

where word,
the IF.

iadd and store are operators in
Given the assignment statement

A :=A + B ;
the IF representation might look like

store (word d.a,
iadd (word d.a, word d.b))

where "d.a" is the location of the variable

"A". The code emitted will be:

Load R1l,D.A

Load R2,D.B

Add R1,R2

Store R1,D.A

The translation templates (enclosed in

curly braces above) constitute the
sequences of target machine instructions

corresponding to the operation found in the
production. The intermediate form emitted
by the front end of a compiler (the lexical
analyzer, parser, tree builder and static
semantic checker) is manipulated by a
shaping routine which resolve variable
addresses by assigning base registers and

44

displacements. After shaping, the
serves as input to the code generator. The
code generator performs a bottom-up parse
of the IF, and after a reduction, emits the
appropriate machine instructions.

iIF

2. Overview of CoGG

CoGG accepts a specification for a code
generator, and produces a code generator
consisting of

1. A skeletal parser.
2. Tables for driving the parser.
3. Special utility routines for
purposes of
i. register allocation and
ii. symbol table management.

The specification for the code generator
consists of a declaration section and a
production section. The declaration
section is divided into five subsections,

each corresponding to a different type of
symbol. This allows CoGG to build a symbol
table which contains the type of each
identifier used, enabling the table
constructor to type check the use of each
identifier2. The five subsections declare
the following entities:

1. Nonterminals - These correspond to
the types of registers managed by
the register allocation routine.
They are either base registers
(for address computations), or the
registers that can hold the
results of intermediate
computations.

Terminals - These are identifiers
whose values are set by the
shaping routine. They are
displacements, lengths, counts,
etc.

Operators -~ These are only found

in productions. They include
arithmetic and logical operators,
data transfer operators, and
indicators of different machine
level data types (such as byte,
halfword, fullword, etc.).

Opcodes - The mnemonics for the
instructions of the target
machine.
Constants -
numeric constants
semantic operators
section 4.).

The production section specifies the
SDTS. It allows the use of template
sequences (rather that single instructions)
for each production. Currently up to eight
machine instructions may be emitted during
a single reduction. In the generated
tables, the templates contain indices into
the translation stack or the 1list of

include both
as well as
(described in

They

2 Such type checking is of utmost
importance when processing the description
of a realistic code generator. Our code
generator for the Pascal 1language is
specified with nearly 250 productions and
600 templates.

45

allocated registers to speed up the process
of code emission.

Many of . the problems of a
architecture (such as machine idioms, Jjump
instructions, etc.) were not addressed by
Glanville, as his method is merely capable
of specifying straightforward string to
string translations. We found it necessary
to add operators enabling templates to
invoke semantic operations at code
generation time. These operators were
needed in order to generate correct code.
The operations fall into the following
categories:

1. Management of symbol tables
internal to the code generator.
Manipulations to account
machine idioms.

Context sensitive manipulations of
the parse/translation stack.
Before discussing these extensions, we will

real

2. for

3.

briefly sketch the layout of a code
generator produced by CoGG.
3. Code Generator Structure

The code generator consists of three
portions:

1. A standard LR parser.

2. A code emission routine which is
called to perform reductions and
build the actual machine
instructions.

3. A Loader Record Generator which
resolves all label references and
branch instructions, and emits
standard system loader records.

The structure of the code emission

routine is as follows:

{ Assume that a reduction has occurred. }
begin
remove current production from
the parse stack.
allocate all requested registers.
for all associated templates do begin
fill in required values
{ registers, displacements, etc.
if template requires
semantic intervention
then case intervention code of
end
append instruction
to code buffer

else

end
prefix LHS to input stream.
end

label locations and
are kept in a

While parsing the IF,
branch instructions
dictionary. This is necessary for reasons
discussed in subsection 4.2. After all of
the IF representation of a program has been
processed, the loader record generator
resolves the absolute addresses in a two
pass traversal of the dictionary. When all
label locations and branch targets have

been resolved, the routine constructs the
TEXT records which make up the object
module.

4. Semantic Operators

of Glanville's
idioms,

The major shortcomings
method are in the areas of machine
addressing, register allocation, common
subexpression handling and the typing of
operands. Because a pure string to string
translation is inadequate for describing
the behavior of a realistic code generator,

we have substantially enlarged the
gspecification language by adding semantic
operators which can deal with all of the

above problems.

4.1 Register Allocation

CoGG provides the operators USING, NEED
and MODIFIES to allow the user to
communicate with the code generator's

register allocation routine. The first two
tie the register allocation routine to the
translation scheme. The last is used for
keeping track of common subexpressions.

The interpretation by the code generator
of either the USING or the NEED directive
results in a call to the register
allocation routine. The operands of the
directive indicate that a register of a
particular type is needed to perform the
computation. The NEED directive requests a
specific register from some type class;
USING is more general and requests any
register of the class. The use of a
specific register is necessary for
utilizing certain machine instructions, or
for system specific purposes such as
subroutine calls.

The operator MODIFIES 1is used by the
common subexpression handler. It informs
the register allocation routine' that the
contents of a register has been changed.

For an example, consider the following
templates:

r.2 ::= fullword dsp.l r.l
{ USING R.2
L R.2,DSP.1(R.1) }

::= iadd r.l1 fullword dsp.2 r.2
MODIFIES R.1
A R.1,DSP.2(R.2) }

r.l
{

and the IF program segment:

iadd (fullword dsp.a base,

fullword dsp.b base)

where base 1is the
local data area.

For these calculations, some register is
needed for temporarily holding the result
of the computation. The value returned
from the USING directive is inserted into
the Load template, and then used as the LHS

base register for the

of the production. The resulting system
370 code sequence is:
L R1,D.B(BASE)
A R1l,D.A(BASE)
The IADD template uses the MODIFIES

46

directive to invalidate common
subexpression held in R.1.

If a specific register is requested, and
that register is in use, then the current
contents of that register is transferred to
another register of the same type, and the
translation stack is updated to reflect the
change in the location of the result of
that computation.

any

As was shown in the description of the
code emission routine above, the call to
the register allocator 1is made prior to

acting upon any of the templates associated
with the production; all registers required
by the template sequence are allocated at

one time. When a register is allocated,
its use count 1is decremented. 1f a
register is used as the LHS of the
prodauction, its use count is incremented
when the LHS 1is pushed back on the parse
stack3.

We wuse a "least recently used" register

allocation strategy in an attempt to reduce
operand contention in the pipeline of the
machine (see [8] for a discussion including

algorithms for minimizing instruction
contention). Each register has a wusage
index associated with it. Every time a

reduction occurs, a global index value is
incremented. When a register is allocated
for use in templates, or when it is
modified, the current global index value is
recorded in the register record. Thus, the
register with the lowest usage index was
changed at a time previous to all other
registers and in terms of pipeline
contention, it is "least recently used".
When the register allocator is called, the
free registers with the lowest index values
are allocated first.

4.2 Addressing

Without knowledge of how (and where)
instructions are emitted, it is impossible
for any routine which only operates on the
IF to specify the target location of any
branch instruction. For some
architectures, even if a code generator
emits assembly code and an assembler is
used to generate object modules, the
problem of addressability of the target
location remains. This 1is true for two
reasons:

1. Routines operating only on the IF
have minimal knowledge of the
number of instructions it takes to
implement a language construct.

In our case, since the templates
associated with a production may
change (because the code generator

is retargetable) it is
inappropriate to hardwire this
information into the shaper.

2. The problem of long and short
instruction sizes [9,10] (and
hence the absolute size of the

3 Actually every LHS is the

input stream.

prefixed to

object module) cannot be resolved

until after all labels have been
located in the generated code.
Even if all instructions are

generated using the
the exact target
forward branch 1is
after the label is encountered in
the code generation process.
We have solved this problem by installing
the code emiss In operator:

long format4,
location for a
unknown until

lambda ::= label_def 1bl.l

{ LABEL_LOCATION LBL.1 }
The interpretation of the LABEL_LOCATION
directive causes the code generator to
record a relative label in the dictionary
at the 1location of the current program
counter.

A branch instruction may take the

following form:

lambda ::= branch op 1lbl.l cond.l cc.l
{ USING R.3
BRANCH COND.1,LBL.1,R.3 }

As was discussed above, the binding of
jump instructions to the target is resolved
after all code for a module has been
generated. If the target for a jump
instruction resides on another page,5 then
an additional load instruction (loading a

page multiple value into a register) is
required to establish addressability of the
target location. When interpreted, the
BRANCH template will allocate two
instructions in the code buffer (for the
case of the 1long instruction) and will

enter into the dictionary a branch existing
at the current ‘program counter targeting
this label. The allocated register (R.3 in
the above templates) is to be used in the
event that a long instruction is needed:;
this will serve as the index register.

There are many instances when it is not
desirable to have all the details of a
template declared in the production;
unnecessary details complicate both the
construction of a shaper and the form of
the productions for the code generator.
Consider the templates used for storing a
the result of a comparison into a boolean
variable:

4 In the
architectures, the

of certain older
long jump instruction
actually consists of two machine
instructions, the first of which is used to
establish a base register for the second
instruction.

5 On an Amdahl (or an IBM 370),
references are performed
registers. The maximum
addressability with one
4096 bytes.
4096 bytes.

case

all memory
using base
range of
base register is

On our machine, 1 page equals

47

lambda ::= assign boolean dsp.l r.l cc.l
{ USsING R.3
MVI DSP.1(R.1),FALSE
SKIP FALSE COND,R.3
MvI DsSP.1TR.1),TRUE }
It 1is undesirable to force the shaper to
allocate all of the labels needed to
perform the above SKIP operations.
Instead, the code generator enters the
branch instruction and target into its
dictionary, to be resolved with the others
declared in the IF representation.
4.3 Machine Idioms and
Translation Stack Manipulations
As with Branch instructions above, we

found it easier to handle machine idioms by
gsemantic actions. One very important idiom

concerns double register usage. The IBM
360 architecture uses an even/odd register
pair when performing integer
multiplication, divisgion, or modulo
arithmetic.

There are instructions which treat

even/odd pairs as a single 64 bit operand,
such as SLDA (shift left double arithmetic)
and SRDA (shift right double arithmetic).

For example, "SRDA E.1,32" will transform
the 32 bit signed value 1in the even
register into a 64 bit signed value in the

even/odd pair. This is a necessary prelude

to performing a division or modulo
operation.

The following simple translation scheme
(from [2])

d.1l ::= e.l

{ SLDA E.1,32 }

ignores what 1is happening with the odd
register of the even/odd pair (aside from
actually destroying the contents of E.1l).
This will greatly complicate the role of
register allocation, possibly forcing a
considerable amount of unwanted movement of
register contents.

Consequently, we have included several
operations in our templates which are
intercepted by the code emission routine,
and either cause a modified instruction to
be emitted, or the translation stack to be
manipulated. For an example, consider the
following:

r.2 ::= imult r.2 fullword dsp.l r.l
{ USING DBL.1

LOAD_ODD DBL.1,DSP.1(R.1)
MR DBL.1,R.2
PUSH_ODD DBL.1

IGNORE_LHS

The special LOAD operator will load the
fullword value into the odd half of the
double register pair. PUSH will then
“push”" the odd register on the top of the
parse stack (it does so after performing a
type conversion of the odd register into
type "R.n"). IGNORE LHS prevents the
parser from pushing the LHS of the

production since this has already been

done.
Although this approach requires a fair
amount of intervention, it seems necessary

that certain contextual information be used
to insure that the proper result is placed
on the stack. Otherwise the scheme

r.1l ::= 4.1 { }

may fail to retrieve the proper register.
Since the results of IMULT/IDIV or IMOD
operation 1leaves the result in a different
register of the even/odd pair, the context
of the operation defines the location of
the result register. It is possible that
the code emission routine (and the register
allocation routine) could both recognize
that the odd register in

0.1 ::= imult

is associated with a double
through ¢

register

d.l ::= <e.l,0.1>

but this amounts to hardwiring the result
register into both the code emitter and the
table constructor.

It is necessary to have the LHS of the
multiplication production included in the
grammar even though it is never pushed. A
result 1is pushed when the reduction occurs
{with the PUSH_ODD operator), but the LHS
declared with the production is used so the
table constructor recognizes that the IMULT
operation is accessible to integer
arithmetic computations.

4.4 Common Subexpressions {CSE)

All CSEs are detected, and their use
counts established, by an 1IF optimizer.
Two sets of productions are associated with
CSEs: definition of the CSE in the code
generator's symbol table, and usage of the

CSE.
Establishment of a CSE requires:
l. A CSE number. Each CSE is

assigned a unique identifier which
is valid throughout the
compilation.

2. A usage count.

3. A temporary storage location This
is allocated by the shaper
routine, and is used only in the
event that the register value is
modified.

4. A register holding the
the computation.

The following templates
declaration of a CSE:

result of

are used for the

r.2 ::= make_common cse.l cnt.l
fullword dsp.l r.1l r.2
{ COMMON CSE.1,CNT.1,R.2,DSP.1,R.1 }

Using the CSE for a computation only
requires the symbolic name of the CSE as
demonstrated by the following template:

r.1 ::= use_common cse.l
{ UsiNG R.1

FIND COMMON CSE.1,R.1

IGNORE LHS }
At code generation time, the effect of the
FIND_COMMON operation is as follows: if the
CSE still resides in a register, then that
register value is prefixed to the input
stream. If the CSE resides only in memory,
however, then the address of the CSE is
prefixed to the input stream. In either
case, the actual current location of the
CSE 1is needed only at the time this
reduction is performed, and its management
is left to semantic routines in the code
generator.

4.5 Typing of Operands

Included in the operators of the IF are
unary operators which give the implementer
both access to and checking of different
data types of the architecture. As an
example, consider:

r.2 ::= fullword dsp.l r.l
{ UsING R.2

L R.2,DSP.1(R.1) }

which forces a fullword integer be loaded,
while

r.2 ::= halfword dsp.l r.l
{ USING R.2
LH R.2,DSP.1(R.1) }

loads a halfword.

Wwithout an operator to indicate a
variable's storage format, the code
generator is constrained in its ability to
generate code suitable to the machine's
architecture. The code generator could
ignore all but one of the machine's data
types, but this would be fairly inefficient
storage utilization. Alternatively, it
could examine the symbol table of the front
end of the compiler each time an operand
was referenced. This would require a
significant amount of semantic intervention
as well as decreasing the modularity of the
components of the compiler.

5. Comparisons

Table 1 contains
number of declarations used to
tables for the code generator.

Entry (i) is a count of all identifiers
used 1in constructing the tables. (ii) on
the other hand is a count of only those
symbols which can be encountered in the IF
during a parse. (v) is a count of those
entries which do NOT contain an error
entry. (viii) is a count of the number of
operators which can be encountered in the
IF. These include IADD, FULLWORD, etc.
(ix) is the number of operators designed to
produce semantic intervention.

Table 2 contains information about the
size of the object modules for the tables

information about the
define the

i. Number of symbols declared 247
ii. X dimension of parse table 87
iii. States in parsing automaton 810
iv. Parse table entries 70470
v. Significant Entries 30366
vi. Productions 248
vii. SDT templates 578
viii. Production operators 68
ix. Semantic operators 28
Table 1.
and the code generator, and compares this

with a
Entry (v) is a

to an existing production compiler
handwritten code generator.

i. Template Array 8.5
ii. Compressed Parse Table 32.7
iii. Uncompressed Parse Table 71.5
iv. Code generation routines 7.5
v. PascalVS Translation routines 41.9
vi. Full PascalVS Code generator 53.8

Table 2.
(sizes are in pages)

measurement without support routines from

the PascalVsS runtime library. (vi) is a
measurement using these routines.
The SDTS representad by these tables

supports bitset operations with inline code
generation, as well as guadruple precision
(128 bit) floating point arithmetic.

Many productions have been included to
take advantage of the index registers used
for addressing in most instructions, as
well as the various data types in this
architecture. There are no less than
thirteen productions associated with
integer addition (1aDD), where one
production (add register to register) would
be sufficient to generate accurate code.
All of the integer operations (ISUB, IMULT,
etc) have the same level of redundancy. As
we see from table 2, however, the size is
not significantly larger than for the
translation phase of a currently used IBM
program product. Additionally, the
"compressed" tables are by no means
minimally compressed.

6. Conclusion

The use of formal specifications of
generators for their implementation is
clearly superior to the traditional
approach of hand crafting them. This is
especially true in the attempts to retarget
a compiler to a new machine, where a hand
crafted code generator would require
extensive rewriting. In an SDTS approach,
retargetting the code generator merely
requires a rewriting of the templates
associated with productions and minor
modifications of the routines which
actually emit the machine instructions.

The approach specified in [1,2] works in
a production environment only through the

code

49

extensions.
translation process

introduction of substantial
Code generation is a
which needs more information than is
available to the parser on its stack. We
saw this problem above with label handling

and common subexpressions. The more
sophisticated_ the wutilization of machine
idioms, the greater the contextual
intervention required by the code
generator.

The input to the code generator is
actually a linearized tree structure. The
process of parsing the IF by the code

generator is in fact the detection and
transformation of subtrees which correspond
valid computations [3]. Each production in
the grammar corresponds to a valid subtree
which might be encountered in a computation
tree. The size of the parse tables
described in the last section are due to
our attempt to recognize a very large
number of possible tree shapes. With a
larger number of recognizable patterns, the
code generator can produce better code. As
was stated above, a single IADD production
would be enough to produce executable code,
but the large number of productions allows
the code generator to produce code which is
as good as that produce by IBM's PascalVvs
[12]. See appendix one for a comparison
emitted code.

This scheme should prove successful on
microcomputers with 1limited memory. By
reducing the number of productions in the
grammar, the size of the parse tables is
also reduced. A language implementer can
therefore control the size of the compiler
by changing the complexity of the grammar.
This size change can be accomplished
without 1losing the guarantee of generating
correct code.

The code generator we replaced [11]
produced code for a PDP-10. 1t encompassed
17 separate compilation units and was 5000
lines long (not including several files of
type declarations). CoGG is less than 3000
lines. The code generator it produces is
less than 2500 lines (not including parse
tables) and is contained in 2 separate
compilations. The process of adapting the
original code generator to generate code
for an an Amdahl is of considerable
complexity when using traditional methods
which require rewriting the code generator.
In contrast, writing the specification for
the code generator and using CoGG for its
implementation was much 1less complicated
and less error prone. It seems clear that
establishing and maintaining a grammar is a
much simpler task than writing and
maintaining a code generator.

Acknowledgements

Professor Uwe Pleban provided much needed
advice and encouragement during all phases
of this project, in addition to carefully
reading an earlier draft of this paper.
George Schimmel helped to wade through
problems encountered during construction of
the table generator. Paul Pickelmann
collected information about the PascalVs
compiler.

50

[1]

£2]

£3]

C4]

£51]

(61l

(7]

[8]

(2]

fio01l

[11]

£12]

References

R.S. Glanville and S.L. Graham, A
New Method for Compiler Code
Generation, Sth ACM Symposium on
Principles of Programming Languages
(1978).

R.S. Glanville, A Machine Independent

Algorithm for Code Generation and its
PhD

use 1in Retargetable Compilers,
Thesis, University of california,
Berkeley, 1977.

S.L. Graham, Table Driven Code
Generation IEEE Computer (Aug. 1980)
25-34.

M. Ganapathi and C.N. Fisher, A
review of Automatic Code Generation
Techniques Computer Science Tech.
Report #407, Computer Science Dept.
University of Wisconsin - Madison

(January 1981).

R.G. Cattell, A Survey and Critique
of Some Models of Code Generation

Department of Computer Science Report,

Carnegie-Mellon University (November
1977).

R.G. Cattell, Formalization and
Automatic Derivation of Code
Generators, PhD Thesis, Carnegie-
Mellon University, 1978.

W. Barrett and J. Couch, Compiler

Construction: Theory and Practice SRA

1979.

Gross, Code

J.L. Hennessy and T.R.
in the

Generation and Reorganization

Presence oOf Pipeline Constraints, 9th
ACM Symposium on Principles of
Programming Languages (1982).

E. Robertson, Code generation and
storage allocation for machines with

Span dependent Instructions ACM Trans.

Program. Lang. Syst. 1,1 (July
1979) 71-83.

B. Leverett and T. Szymanski,
Chaining Span-Dependent Jump
Instructions ACM Trans. Program.
Lang. Syst. 2,3 (July 1980) 274-289.
R.N. Faiman, Jr. and A.A.
Kortesoja, An Optimizing Pascal

Compiler IEEE Transactions on Software
Engineering vol SE-6, No. 6,
(November 1980).

Pascal/VsS Release 2.1, Program Product
#5796-PNQ, IBM Corporation.

*»

Code examples.

The base type of all arrays is integer.

Appendix 1.

The equation compiled is:

sla
1
sla
1

a

1
srda
dr
1
sla
1
mr
ar
st

if
if p

where:

tm
bc
1
betr
st
be
Label:
lh
st
Label:
1
c
be
1h
st
Label:

flag then i :

x[ql:=(alil+bl[j1*(c[k]-d[1])+(elm] div (£f[nl+glol))*nlpl);:

CoGG

r1,132(r12)
rl,2
r2,100{(r12)
r2l2
r3,104(r12)
r3,2
r4,108(r12)
r4,2
r5,850(r4,rl2)
r6,112(rl12)
r6,2
r5,1250(r6,rl2)
r7,450(r3,rl2)
r6,r5
r7,150(r2,rl12)
r8,116(r12)

r8

r9,20(rl2)

r9

r2,24(rl12)

r2
r3,2450{r2,r12)
r3,2050(r9,rl2)
r4(rs8,r12)
r4,32

r4,r3
r6,28(rl2)

r6,2
r3,2850(r6,r12)
r2,r5

r7,r3
r7,3250(rl,rl2)

else i
< g then 1l

o

i, 3, k, p.

Load Q
Multiply by 4.
Load I

Load J
Load K

Load C(K)
Load L

c(x) - D(L)
Load B(J)
B(J) * ...
A(I)
Load

Z2 X+

Load
Load O

Load G(0)

F(N) + G(0)
Load E(M)
Propogate Sign
E(M) / ...
Load P

Load H(P)
H(P) * ...
Final Addition
Store X(Q)

j 1
z

~ e}

z

q are fullwords

’

b is a boolean (logical) variable,
z is a halfword

(Note that Pascalvs didn't use

3300(ri2),1
8, Labell
r1,104(r13)
rl,x0
rl,100(r13)
15,Label2

1
r2,142(r13)
r2,100(r13)

2
r3,136(r13)
r3,140(r12)
4,Label3
r4,142(r13)
r4,112(r13)

3»

Test B

Branch if false

Load J
Decrement
Store 1
Branch

Load Z
Store I

Load Q

Compare with P

Branch if <
Load 2
Store L

51

SLA

SRDA
DR

SLA
AR

SLA
ST

™
BNO
L
BCTR
ST

B
@2L1 DS

MvC
@2L2 DS

L

C

BNL

MVC
@2L3 DS

Pascalvs

03,152(,13)
03,2
04,156(,13)
04,2
05,576(03,13)
05,776(04,13)
04,148(,13)
04,2

07,05
06,376(04,13)
06,144(,13)
06,2
07,176(06,13)
06,164(,13)
06,2
03,168(,13)
03,2
04,1176(06,13)
04,1376(03,13)
05,160(,13)
05,2
03,976(05,13)
08,32

08,04
06,172(,13)
06,2
08,1576(06,13)
07,09
06,176(,13)
06,2
07,1776(06,13)

3780(13),1
@2L1
03,148(,13)
03,00
03,144(,13)
@2L2

OH

144(4,13),168(13)

OH
03,172(,13)
03,176(,13)
@2L3

156(4,13),168(13)

OoH

No subscript or range checking is performedqd.

Load K
Load L

Load C(K)
c(K)-p(L)
Load J

B(J) * ...
Load I

A(I)+...
Load N

Load 0

F(N)
F(N)+G(0)
Load M

E(M)

Propogate Sign
E(M)
Load P

H(P) * ...
Final Addition
Load Q

Store X(Q)

a halfword for the storage format).

Test B
Branch if false
Load J
Decrement
Store 1
Branch

I :=12 ;

Load P

Compare with Q
Branch if »>=
L := 2

Appendix 2.

1 options
s¥mb91 dun{»
listing only
punch_packed

The following is the SDTS for the Amdahl 470.
The format of each line is:
i. The left aligned production
ii. The Syntax Templates to be emitted when the
roduction is used to reduce.
NOTICE: Templates MUST skip column one!

LR B R B}

Lines beginning with '®*' are comments. Blank lines are
ignored. All others are examined! Comments may be inserted
after the instructions in the templates. Not all productions
have been included.

25 $Non-terminals

27 r = register A general-register.

29 cc = cond code Condition Code register.

N dbl = doubTe A register pair (even/odd).

33 flt = floating Single precision floating point.

35 dflt = dbl float Double precision floatin% point.

37 %flt = qd Tloat Quadruple precision floating point.

39 $Terminals™

1 Ing = length Length of operand.

43 ent = count Amount of a shift (or CSE usage).

45 1bl = 1bl value The number of a label.

u7 dsp = displacement Displacement of operand (< 4096).

49 cond = condition A condition (i.e. LT, EQ, GE ...)

51 error = error num The error value for an abort.

53 stmt = stmt Tium Internal statement number.

55 elmnt = elem®&nt Constant element of variable.

57 value = v value A constant to be loaded.

59 cse = cSe Common Sub Expression number,

62 $Operators
addr, fullword, hlfword, byteword, typeword realword, dblrealword, quadrealword,
iadd, isub, imult, idiv, imod, icompare, iabs, imax, imin, iodd, a331%n,
long assign, var assign, clear, decr, incr, pos constant, neg constant,
aborT op, statem®nt, case check, uninit check, Wange check, slUbscript_ check,
booledn or, boolean and, Doolean not, bJolean test, Test bit value, ~
set bit~value, stor® bit value, Tlear bit valTle, load bit value, radd, rsub,
rmuIt, ¥div, rabs, rfieg, rcompare, halve, rmin, rmax,”™s x cavrt, x s canvrt,
d x envrt, x d cnvrt, s d cnvrt, d s cnvrt, 1 shift, r 3hift, branth op,
1zZb¥l def, 13b®1l index , cHEse inéexT Procedure“call, procedure entry,”
proceldure exit, Wame param, — - -
reference param, mak® common, use common

100 $O£cvdes - -
spm, balr, betr, ber, mvel, clel, lgr. lnr, 1ltr, ler, nr, clr, o r, xr, 1ir, cr, ar,
sr, mr, dr, alr, slr, lpdr, lndr, ltdr, lcdr, hdr, lrdr, mxr, mxdr, ldr, cdr, adr,
sdr, mdr, ddr. awr, swr, lper, lner, lter, lcer, her, lrer, axr, sxr, ler, cer, aer,
ser, mer, der, aur, sur, sth, la, stc, ic, ex, bal, bet, be, 1h, ch, ah,sh, mh, st,
n, cl, o, x,1,¢, a, s, m, d, al, sl, std, mxd, ld,cd, ad, sd, md, dd, aw, sSw, ste,
le, ce, ae, sSe, me, de, au, su,bxh, bxle, srl, sll, sra, sla, srdl, sldl, srda,
slda, stm, tm,mvi, ni, cli, oi, xi, 1lm, clm, stem, icm, mve, nec, cle, oc,
xc,tr, trt

115 Constants

118

Semantic ogcodes for the code generator.

label location, label pntr, branch, branch indexed, skip, case load, abort,
stmt Tecord, list reqUest, modifies ignofé lhs, IBM length, pUsh odd,

ush”even, load odd addr, load odd ful , lodd odd haTf, load odd TFeg,
oad_extended, Stor® extended , cledr_extendedy - -
134 —#* Common sub €xpressions. -
full common, half common, byte common, real common, dreal common, find common,
find_real common,™ - - - -

139 % Plain ole' boring constants.
false const, true const, false cond, true cond,
143 A FalSe cond = 8 ;— True cond™= 7

k4
zero, one, two, thr¥®e, four, seven, Tight, fifteen, shift32, 1lt, lte, eq, ne, gt,
gte, unconditional, underflow, overflow, not initialized, array underflow,
array overflow, case low, case high, one loc, minus one ioc. bitmasks,
save_area,entry code, code base, stack base, pr_base, stratch, old base

Numbering conventions.
} - Line Number
i = Production Number
{ - Template Number

L X B B]

Productions
SRERSRERERNERERRRR RN NI N0

d Assignment Temelates.
RERRARRRRREFERRR R AR R R RN ER RN RR RN RN
1 lambda ::=z assi%n fullword dsp.1 r.1r.2
1 st r.2,dsp.1{zero,r.1)

lambda ::= assign hlfword r.3 dsp.1r.1r.2
sth r.2,dsp.1(r.3,r.1)

VTSN 0

VY]
&
&=

—_
o

lambda ::= assi%n r.1r.2 lng.1t
IBM length ng.1

g Need IBM length
mvc zero(lng.1,r.1),zero(r.2)

P T o Jur g gurguny
OO =3~ hOO\O\oMNn

W=
—
S0

52

(V{ DV VNI VE LV UL
N
N EWN~O o~ OO

LALDLAL LWL ool
I it N

EEEE SEssEs WW
O OWOC\OND OO0\ OOCe OWAWLY
S OWOO~I0WT W= OO0 OWX

VIV IO nhJle
~NOWVIEWRN OWo-10MWT IO W N —

\OWOAO\OWOND WO O0ROO0COC0 =i —b ok b i

VI U

12

17

18

32

33

35

Lh

42

63

64

66

T4

75

— b S
~IOW BN

MNIMON) =
N =00

29

30

33
oW

-~y
Do~

144
145

o b i A
\SAE ¥
OV ~Ion

—— s
oW
OO~

202
203
204
205
207

lambda ::= long assign r.1 r.2 lng.1
using dbl.1,dbl.2
IBM length Ing.1
load odd addr dbl.1,1ng.1(zero,zero)
load odd addr dbl.2,1ng.1(zero,zero)
1r dbl.T,r.1
1r dbl.2,r.2
mvel dbl.1,dbl.2

lambda ::= var assign r.1r.2 r.3
* r.11is the address of the target
r.2 is the address of the source
*® r.3 is the computed size of the move
using dbl.1,dbl.2
load odd reg dbl.1,r.3
load~odd reg dbl.2,r.3
i1r dbl.T,r.1
1r dbl.2,r.2
mvel dbl.1,dbl.2

(2232223322222 2222222 2222222232212

* Loadin Temglates.
I I I I s S R I Y

r.2 :i= fullword dsp.1 r.1
using r.

1 r.2,dsp.1(zero,r.1)
r.2 ::z fullword r.3 dsp.1 r.1
using r.2

1 r.2,dsp.1(r.3,r.1)

D336 066 36 00 36 6 30 00 96 36 36 06 36 38 6 30 6 36 36 20 30 36 3% 36 36 3 06 36 6 3 36 36 9% 9 9 %

* Addition Temglates.
BN NIRRT AN RN RN NN
r.1 ::= iadd r.1 r.2

modifies r.1

ar r.1,r.2

r.2 ::= iadd fullword dsp.1 r.1 r.2
modifies r.2
a r.2,dsp.1(zero,r.1)

r.2 ::= iadd r.2 fullword dsp.1 r.1
modifies r.2
a r.2,dsp.1(zero,r.1)

r.3 ::= iadd byteword dsp.1 r.1r.2
using r.3
xr r.3,r.3
ic r.3.dsp.1(zero,r.1)

ar r.3,r.
r.4 ::= iadd byteword r.3 dsp.1 r.1r.2
using r.4
xr r.4,r. 4
ic r.u.dsg.1(r.3,r.1)
ar r.l4,r.

R RN NI IR
* Division Temglates
B0 0600000000000 0600 0060636 3000 00 00000 900000 00000 00 00 00 01 36 06 6 6
r.1 ::= r shift r.1 cnt.1

modified r.1

sra r.l,ent.1

r.2 ;:= idiv r.2 fullword dsp.1 r.t
using dbl.1
1ir dbl.1,r.2
srda dbl.1,shift32
d dbl.1,dsp.1(zero,r.1)
push_odd dbl.1 3
ignore_lhs

r.2 ::= idiv fullword dsp.1 r.1 r.2
using dbl.1
1 dbl.1,dsp.1(zero,r.1)

srda dbl.1,shift32
dr dbl.t,r.2
push odd dbl.1 Push odd register onto stack.

ignoTe 1lhs

I I I i Iyt T Ty Y Y TITY
Standard functions
TR0 0006 00 0000 30 06 06 06 36 36 30 00 00 00 00 10 0 00 96 06 6 00 00 00 96 90 3 3 3
r.1 :i= iabs r.1

modifies r.1

lpr r.t1,r.1

r.t ::z imax r.1 r.2
modifies r.1
using r.3
cr r.1,r.2
skip gte,two,r.3
1r r.1,r.2

Load counters,

Commutative template.

ush odd register onto stack.

et S = OO0 OOOWL WO WOWOW e (o

N NN NN O OO O ONONOOOh
OVE OVEWNSWN— OWE CUNEWNS VEWN = Oe~0 £SO oS00 OMIE Na0 G OBt fo—

CCO000 COCOOCOCOCOOOM0 ~d=d=d =3=~d=~J=dd=] ~I=d=J=~J=J
Ol i =INN WO® OO NN

ADOWOADOND \O\OAOADND \D\DAOAGADNC D
I WV =00 =~10WNTEWNO

Wil RN =

I2ZI 2222222222222 2222322222222 2222

* Label and Branchin Temelates
RARREREERRERRRER R RN RT RN R R RR RN R AR
89 lambda ::z label def 1bl.1
252 label location™ 1lbl.1 Label definition found.
90 lambda ::= label index 1lbl.1
253 label pntr 1bT.1 Set up pointer to label.
91 lambda ::=z branch op 1bl.1 cond.1 cc.1
using r.3 -
254 branch cond.1,lbl.1,r.3 Branch instruction.
92 lambda ::= branch op 1bl.1
using r.3 -
255 branch unconditional,lbl.1,r.3 Jump instruction.
93 lambda ::=z= case index 1bl.1 r.t
using r.3
256 sll r.1,two
257 case load r.1,1bl.1,r.3 A branch table load.
258 be ~ unconditional,zero(r.1.code_base)

L3222 2332222222222 22222222 222222222t

* Procedure Calls Entrx and Exit,
P It It I e T T Iy
94 lambda ::= procedure call cnt.1 fullword dsp.l r.1
need r.14,r.15 -
259 list request ent.1
260 1 ~r.15,dsp.1(zero,r.1)
261 balr r.14,r.15
95 lambda ::= procedure entry
need r.14,r.15 -
262 stm r.14,stack base,save area(stack base)
263 bal r.1u,entrj:code(pr b3ase) Build new stack frame.
96 lambda ::= ﬂrocedure exit
using r.1 -
264 1 stack base,old base(stack base) Get old stack frame
265 Im r.14,Stack bas®,save area(stack base) Restore all registers.
266 ber unconditiomal,r.1d4 — -

L1322 22 2222222222222 22222 2223

* Integer Comgarison Temglates
BRRRENRATERERRE RN RN RN AR ERRRNNNR RN

107 cc.1 ::= icompare r.1r.2
using cc.1
284 cr r.1,r.2

108 cc.1 ::z icompare r.2 fullword dsp.1 r.1
using cc.1
285 ¢ r.2,dsp.1(zero,r.1)

I3 222 SRS SIS 222222232224

* Checkin temelates
ERERRRERRET SRR RN R R R R RERARRRRRRR NN

124 r.3 ::= range check r.3 fullword dsp.1 r.1 fullword dsp.2 r.2
need r.i4

315 c r.3,dsp.1(zero,r.1)

316 bal r.14.underflow(pr base)

317 ¢ r.3,dsp.2(zero,r.2)

318 bal r.14,overflow(pr_base)
125 r.3 ::= range check r.3 r.1r.2

need r.l4—

319 cer r.3,r.1

320 bal r.14,underflow(pr base)

321 cr r.3,r.2 -

322 bal r.14,overflow(pr_base)

FE3E 0306 3 3600 3 36 3% 36 38 30 00 30 3 3630 30 3 06 06 36 30 0606 30 36 3 0% 3 06 36 96 3 N N N

*# Boolean Temglates.
ERRERRRARRNEE RN RR RN R R AR ERERRRRNANR
128 r.1 :;= cond.1 cc.1
This puts the condition code into a register.
using r.1,r.3

331 la r.1,zero(zero,zero) Since this doesn't affect Cond code
332 skip cond.1,two,r.3 R.3 used for long branch
333 la r.1,one(zero,zero)
129 lambda ::= assign byteword dsp.1 r.1 cc.1
using r.3
334 mvi dsp.1(r.1),false const
335 skip false cond,two,r7.3
336 mvi dsp.ilr.1),true_const
in cc.1 ::= boolean and byteword dsp.1 r.1 byteword dsp.2 r.2
using cc.1,r.3°
341 tm d5f.1(r.1).one
342 skip false cond,two,r.3

343 tm dsp.2(r.2),one

———
PSS ammma O00 COOOW & ELEutL

- LNV EWN = O~ NEWOY W —Owo

S G G G N
O OCOCOCOO0OOO0 OO0 COQOWND DOV

—_——

132 cc.1 ::= boolean and r.1 byteword dsp.2 r.2
usin§ ce.1,r.3
1

34y modifies r.1
345 tm dsp.2(r.2),one
346 skip false cond,two,r.3
347 n r.1,0ofle_loc(zero,pr_base)
Illlilll*ll*iill*ill&lllii&il*i!ill*ﬂ!i
* Set manlgulation teme
PR~ TR I] 3 R
142 cc.l1 ::= test bit value addr dsp.1 r.1 elmnt.1l
u51n§ ce. 1™
372 sp. i(r. 1) ,elmnt .1
143 cc.1 ::i= test bit value r.1 elmnt.1
using cc,1™
373 tm zero(r 1) ,elmnt .1
144 ce.t iz test Elt value addr dsp.1r.1 r.2
u51n% ce.1
374 modl 1es r.
375 r.3,r. 2 : .
376 srl r.z2, three DIV 8 —- (byte index in set).
371 n r.3,seven{zero,pr base) MUD 8 -- (bit index in byte).
378 ic r.2,dsp.1(r.2,r.\7 Load byte from set.
379 sll r 3,LWo 4 (for fullword index)
380 n .2,bitmasks(r.3,pr_base) Test if bit set.
145 cec.1 ::= test bit value r.1 r.2
usln% ce. 1 r. 3‘
381 mwll .
382 r. j
383 srl r.2, three DIV 8 -- (byle index in set).
384 n r.3,seven(zero, pr base) MOD 8 -- (bit index in byte).
3859 ic r.2,zero(r.2,r.1 Load byte from set.
386 sll r.3,two * 4§ (for fullword index)
387 n r.2, bltmasks(r 3,pr_base) Test if bit set.

* Settlng a bit value in a set.
146 lambda ::= set bit value addr dsp.? r.1 elmnt.1
u51ng ce.1 ™
sp. i(r. 1) ,elmnt .1

1u7 lambda ::= set_bit valus r.1 elmnt.1
u51ng ce.t ™

389 oi zpro(r 1),elmnt .1
148 lambda ::= set bit value addr dsp.tr.1r.2
using cc.1,F.3,F.4

modifies r.2

e QU G QU QU
COCOCOCOCOOC OOO0OCOOOOCOO OO COQO
O OCVIVIVIVIVIVIUIVT VIS S sSE WWww Wloww
=OLCE~NOWNMEUWN OO EWN = OO~ Uisw—

PP N Y

1r .3,r.2
srl r.2,three DIV 8 -~ (byte index in set).
n r.3,seven(zero,pr base) MOD 8 -- (bit index in byte).
ic r.i dsp HWr.2,r. 17 Load byte from set.
s11 r. 3, WO 4 (for fullword index)
o r.b, bltmasks(r 3 gr base) Or in bit setting.
ste r.4,dsp.i(r.2 tore updated byte.
lambda ::= set bit value r.1r.2
using cc. I.T 3,F
mwl ies r.2
r.3,r.2
srl r.2,three DIV 8 -- (byte index in set).
n r.3,seven(zero,pr_base) MOD 8 -~ (bit index in byte).
ic r.b,zero(r.2,r.1 Load byte from set.
sll r.3,two 4 (for fullword index)
o r.4,bitmasks(r.3,pr_base) Or in bit setting.
ste r.b4,zero(r.2,r. Store updated byte.

