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Abstract 

This paper discusses an implementation of 
Glanville's code generator generator for 
producing a code generator for a production 
Pascal compiler on an Amdahl 470. 

We successfully replaced the hand written 
code generator of an existing compiler with 
one which was produced automatically from a 
formal specification. This paper first 
outlines Glanville's original scheme, then 
describes extensions which were necessary 
for generating code for a production 
compiler. 

i. Background 

Attempts to systematize the process Of 
code emission have been ongoing since the 
appearance of compilers in the 1950s. 
There are several survey papers [4,5] 
devoted to this history. Lately, the 
techniques of formalizing code generation 
have concentrated on table driven methods. 
One research direction has used heuristic 
strategies for determining appropriate code 
sequences (see [6] for a recent 
contribution). A second direction uses a 
grammar to describe the capabilities of the 
intermediate form (IF) of the compiler 
coupled with a Syntax Directed Translation 
Scheme (SDTS) [7]. In this approach, the 
code generator parses the IF of a program 
and emits the machine instructions 
specified by the SDTS templates. 

The SDTS approach has the great advantage 
over heuristic methods in that the 
operation of the parser can be proven to be 
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correct. If the specification of the code 
generator is correct, then the code 
generator cannot emit incorrect instruction 
sequences. Instead it will stop and signal 
an error. In addition, well understood 
algorithms exist for constructing the code 
generator's tables. We are only interested 
in the second scheme in this paper. 

The work of Glanville [1,2] forms the 
basis for our research. In his method, the 
specification of a code generator is 
expressed as a simple SDTS. The form of 
the IF is described by a context-free 
grammar. Associated with each production 
of the grammar is a sequence of templates 
which specify the translation from 
intermediate code to target code. Consider 
the following translation fragment for an 
artificial machine: 

r.2 ::= word d.l 
{ LOAD R.2,D.I } 
r.l ::= iadd r.l r.2 
{ ADD R.I,R.2 } 
lambda ::= store word d.l r.2 
{ STORE R.2,D.I } 

where word, iadd and store are operators in 
the IF. Given the assignment statement 

A := A+ B ; 

the IF representation might look like 

store (word d.a, 
iadd (word d.a, word d.b)) 

Where "d.a" is the location of the variable 
"A". The code emitted will be: 

Load RI,D.A 
Load R2,D.B 
Add RI,R2 
Store RI,D.A 

The translation templates (enclosed in 
curly braces above) constitute the 
sequences of target machine instructions 
corresponding to the operation found in the 
production. The intermediate form emitted 
by the front end of a compiler (the lexical 
analyzer, parser, tree builder and static 
semantic checker) is manipulated by a 
shaping routine which resolve variable 
addresses by assigning base registers and 
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displacements. After shaping, the IF 
serves as input to the code generator. The 
code generator performs a bottom-up parse 
of the IF, and after a reduction, emits the 
appropriate machine instructions. 

2. Overview of CoGG 

CoGG accepts a specification for a code 
generator, and produces a code generator 
consisting of 

i. A skeletal parser. 
2. Tables for driving the parser. 
3. Special utility routines for 

purposes of 
i. register allocation and 

ii. symbol table management. 
The specification for the code generator 

consists of a declaration section and a 
production section. The declaration 
section is divided into five subsections, 
each corresponding to a different type of 
symbol. This allows CoGG to build a symbol 
table which contains the type of each 
identifier used, enabling the table 
constructor to type check the use of each 
identifier2. The five subsections declare 
the following entities: 

i. Nonterminals - These correspond to 
the types of registers managed by 
the register allocation routine. 
They are either base registers 
(for ~ddress computations), or the 
registers that can hold the 
results of intermediate 
computations. 

2. Terminals - These are identifiers 
whose values are set by the 
shaping routine. They are 
displacements, lengths, counts, 
etc. 

3. Operators - These are only found 
in productions. They include 
arithmetic and logical operators, 
data transfer operators, and 
indicators of different machine 
level data types (such as byte, 
halfwo~d, fullword, etc.). 

4. Opcodes - The mnemonics for the 
instructions of the target 
machine. 

5. Constants - They include both 
numeric constants as well as 
semantic operators (described in 
section 4.). 

The production section specifies the 
SDTS. It allows the use of template 
sequences (rather that single instructions) 
for each production. Currently up to eight 
machine instructions may be emitted during 
a single reduction. In the generated 
tables, the templates contain indices into 
the translation stack or the list of 

2 Such type checking is of utmost 
importance when processing the description 
of a realistic code generator. Our code 
generator for the Pascal language is 
specified with nearly 250 productions and 
600 templates. 

allocated registers to speed up the process 
of code emission. 

Many of. the problems of a real 
architecture (such as machine idioms, jump 
instructions, etc.) were not addressed by 
Glanville, as his method is merely capable 
of specifying straightforward string to 
string translations. We found it necessary 
to add operators enabling templates to 
invoke semantic operations at code 
generation time. These operators were 
needed in order to generate correct code. 
The operations fall into the following 
categories: 

I. Management of symbol tables 
internal to the code generator. 

2. Manipulations to account for 
machine idioms. 

3. Context sensitive manipulations of 
the parse/translation stack. 

Before discussing these extensions, we will 
briefly sketch the layout of a code 
generator produced by CoGG. 

3. Code Generator Structure 

The code generator consists of three 
portions: 

i. A standard LR parser. 
2. A code emission routine which is 

called to perform reductions and 
build the actual machine 
instructions. 

3. A Loader Record Generator which 
resolves all label references and 
branch instructions, and emits 
standard system loader records. 

The structure of the code emission 
routine is as follows: 

{ Assume that a reduction has occurred. ] 
begin 

remove current production from 
the parse stack. 

allocate all requested registers. 
for all associated templates do begin 

fill in required values 
{ registers, displacements, etc. ] 

if template requires 
semantic intervention 

then case intervention code of 
. . . o  

end 
else append instruction 

to code buffer 
end 
prefix LHS to input stream. 

end 

While parsing the IF, label locations and 
branch instructions are kept in a 
dictionary. This is necessary for reasons 
discussed in subsection 4.2. After all of 
the IF representation of a program has been 
processed, the loader record generator 
resolves the absolute addresses in a two 
pass traversal of the dictionary. When all 
label locations and branch targets have 
been resolved, the routine constructs the 
TEXT records which make up the object 
module. 
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4. Semantic Operators 

The major shortcomings of Glanville's 
method are in the areas of machine idioms, 
addressing, register allocation, common 
subexpression handling and the typing of 
operands. Because a pure string to string 
translation is inadequate for describing 
the behavior of a realistic code generator, 
we have substantially enlarged the 
specification language by adding semantic 
operators which can deal with all of the 
above problems. 

4.1 Register Allocation 

CoGG provides the operators USING, NEED 
and MODIFIES to allow the user to 
communicate with the code generator's 
register allocation routine. The first two 
tie the register allocation routine to the 
translation scheme. The last is Used for 
keeping track of common subexpressions. 

The interpretation by the code generator 
of either the USING or the NEED directive 
results in a call to the register 
allocation routine. The operands of the 
directive indicate that a register of a 
particular type is needed to perform the 
computation. The NEED directive requests a 
specific register from some type class; 
USING is more general and requests any 
register of the class. The use of a 
specific register is necessary for 
utilizing certain machine instructions, or 
for system specific purposes such as 
subroutine calls. 

The operator MODIFIES is used by the 
common subexpression handler. It informs 
the register allocation routine-that the 
contents of a register has been changed. 

For an example, consider the following 
templates: 

r.2 ::= fullword dsp.l r.l 
{ USING R.2 

L R.2,DSP.I (R.I) } 

r.l ::= iadd r.l fullword dsp.2 r.2 
{ MODIFIES R.I 

A R.I,DSP.2(R.2) } 

and the IF program segment: 

iadd (fullword dsp.a base, 
fullword dsp.b base) 

where base is the base register for the 
local data area. 

For these calculations, some register is 
needed for temporarily holding the result 
of the computation. The value returned 
from the USING directive is inserted into 
the Load template, and then used as the LHS 
of the production. The resulting system 
370 code sequence is: 

L RI,D.B(BASE) 
A RI,D.A(BASE) 

The IADD template uses the MODIFIES 

directive to invalidate any common 
subexpression held in R.I. 

If a specific register is requested, and 
that register is in use, then the current 
contents of that register is transferred to 
another register of the same type, and the 
translation stack is updated to reflect the 
change in the location of the result of 
that computation. 

As was shown in the description of the 
code emission routine above, the call to 
the register allocator is made prior to 
acting upon any of the templates associated 
with the production; all registers required 
by the template sequence are allocated at 
one time. When a register is allocated, 
its use count is decremented. If a 
register is used as the LHS of the 
proQuction, its use count is incremented 
when the LHS is pushed back on the parse 
stack3. 

We use a "least recently used" register 
allocation strategy in an attempt to reduce 
operand contention in the pipeline of the 
machine (see [8] for a discussion including 
algorithms for minimizing instruction 
contention). Each register has a usage 
index associated with it. Every time a 
reduction occurs, a global index value is 
incremented. When a register is allocated 
for use in templates, or when it is 
modified, the current global index value is 
recorded in the register record. Thus, the 
register with the lowest usage index was 
changed at a time previous to all other 
registers and in terms of pipeline 
contention, it is "least recently used". 
When the register allocator is called, the 
free registers with the lowest index values 
are allocated first. 

4.2 Addressin~ 

Without knowledge of how (and where) 
instructions are emitted, it is impossible 
for any routine which only operates on the 
IF to specify the target location of any 
branch instruction. For some 
architectures, even if a code generator 
emits assembly code and an assembler is 
used to generate object modules, the 
problem of addressability of the target 
location remains. This is true for two 
reasons: 

I. Routines operating only on the IF 
have minimal knowledge of the 
number of instructions it takes to 
implement a language construct. 
In our case, since the templates 
associated with a production may 
change (because the code generator 
is retargetable) it is 
inappropriate to hardwire this 
information into the shaper. 

2. The problem of long and short 
instruction sizes [9,10] (and 
hence the absolute size of the 

3 Actually every LHS is prefixed to the 
input stream. 
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object module) cannot be resolved 
until after all labels have been 
located in the generated code. 
Even if all instructions are 
generated using the long format4, 
the exact target location for a 
forward branch is unknown until 
after the label is encountered in 
the code generation process. 

We have solved this problem by installing 
the code emiss In operator: 

lambda ::= label def Ibl.l 
[ LABEL LOCATION LBL.I ] 

The interpretation of the LABEL LOCATION 
directive causes the code gene?ator to 
record a relative label in the dictionary 
at the location of the current program 
counter. 

A branch instruction may take the 
following form: 

lambda ::= branch op ibl.l cond.l cc.l 
{ USING R.3 

BRANCH COND.I,LBL.I,R.3 ] 

As was discussed above, the binding of 
jump instructions to the target is resolved 
after all code for a module has been 
generated. If the target for a jump 
instruction resides on another page,5 then 
an additional load instruction (loading a 
page multiple value into a register) is 
required to establish addressability of the 
target location. When interpreted, the 
BRANCH template will allocate two 
instructions in the code buffer (for the 
case of the long instruction) and will 
enter into the dictionary a branch existing 
at the current program counter targeting 
this label. The allocated register (R.3 in 
the above templates) is to be used in the 
event that a long instruction is needed; 
this will serve as the index register. 

There are many instances when it is not 
desirable to have all the details of a 
template declared in the production; 
unnecessary details complicate both the 
construction of a shaper and the form of 
the productions for the code generator. 
Consider the templates used for storing a 
the result of a comparison into a boolean 
variable: 

4 In the case of certain older 
architectures, the long jump instruction 
actually consists of two machine 
instructions, the first of which is used to 
establish a base register for the second 
instruction. 
5 On an Amdahl (or an IBM 370), all memory 
references are performed using base 
registers. The maximum range of 
addressability with one base register is 
4096 bytes. On our machine, 1 page equals 
4096 bytes. 

lambda ::= assign boolean dsp.l r.l cc.l 
[ USING R.3 

MVI DSP.I(R.I),FALSE 
SKIP FALSE COND,R.3 
MVI DSP.I~R.I),TRUE ] 

It is undesirable to force the shaper to 
allocate all of the labels needed to 
perform the above SKIP operations. 
Instead, the code generator enters the 
branch instruction and target into its 
dictionary, to be resolved with the others 
declared in the IF representation. 

4.3 Machine Idioms and 
Translation Stack Manipulations 

As with Branch instructions above, we 
found it easier to handle machine idioms by 
semantic actions. One very important idiom 
concerns double register usage. The IBM 
360 architecture uses an even/odd register 
pair when performing integer 
multiplication, division, or modulo 
arithmetic. 

There are instructions which treat 
even/odd pairs as a single 64 bit operand, 
such as SLDA (shift left double arithmetic) 
and SRDA (shift right double arithmetic). 
For example, "SRDA E.I,32" will transform 
the 32 bit signed value in the even 
register into a 64 bit signed value in the 
even/odd pair. This is a necessary prelude 
to performing a division or modulo 
operation. 

The following simple translation scheme 
(from [2]) 

d.l : := e.l 
[ SLDA E.I,32 } 

ignores what is happening with the odd 
register of the even/odd pair (aside from 
actually destroying the contents of E.I). 
This will greatly complicate the role of 
register allocation, possibly forcing a 
considerable amount of unwanted movement of 
register contents. 

Consequently, we have included several 
operations in our templates which are 
intercepted by the code emission routine, 
and either cause a modified instruction to 
be emitted, or the translation stack to be 
manipulated. For an example, consider the 
following: 

r.2 ::= imult r.2 fullword dsp.l r.l 
[ USING DBL.I 

LOAD ODD DBL. I,DSP.I(R.I) 
MR DBL. I,R.2 
PUSH ODD DBL.I 
IGNORE LHS } 

The special LOAD operator will load the 
fullword value into the odd half of the 
double register pair. PUSH will then 
"push" the odd register on the top of the 
parse stack (it does so after performing a 
type conversion of the odd register into 
type "R.n"). IGNORE LHS prevents the 
parser from pushing the LHS of the 
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production since this has already been 
done. 

Although this approach requires a fair 
amount of intervention, it seems necessary 
that certain contextual information be used 
to insure that the proper result is placed 
on the stack. Otherwise the scheme 

r.l ::= d.l ( } 

may fail to retrieve the proper register. 
Since the results of IMULT/IDIV or IMOD 
operation leaves the result in a different 
register of the even/odd pair, the context 
of the operation defines the location of 
the result register. It is possible that 
the code emission routine (and the register 
allocation routine) could both recognize 
that the odd register in 

o.i ::= imult .... 

is associated with a 
through 

double register 

d.l ::= <e.l,o.l> 

but this amounts to hardwiring the result 
register into both the code emitter and the 
table constructor. 

It is necessary to have the LHS of the 
multiplication production included in the 
grammar even though it is never pushed. A 
result is pushed when the reduction occurs 
(with the PUSH ODD operator), but the LHS 
declared with (he production is used so the 
table constructor recognizes that the IMULT 
operation is accessible to integer 
arithmetic computations. 

4.4 Common Subexpressions (CSE) 

All CSEs are detected, and their use 
counts established, by an IF optimizer. 
Two sets of productions are associated with 
CSEs: definition of the CSE in the code 
generator's symbol table, and usage of the 
CSE. 

Establishment of a CSE requires: 
i. A CSE number. Each CSE is 

assigned a unique identifier which 
is valid throughout the 
compilation. 

2. A usage count. 
3. A temporary storage location This 

is allocated by the shaper 
routine, and is used only in the 
event that the register value is 
modified. 

4. A register holding the result of 
the computation. 

The following templates are used for the 
declaration of a CSE: 

r.2 ::= make common cse.l cnt.1 
fullword dsp.l r.l r.2 

[ COMMON CSE.I,CNT.I,R.2,DSP.I,R.I } 

Using the CSE for a computation only 
requires the symbolic name of the CSE as 
demonstrated by the following template: 

r.l ::= use common cse.l 
{ usING R.Y 

FIND COMMON CSE.I,R.I 
IGNORE LHS } 

At code generation time, the effect of the 
FIND COMMON operation is as follows: if the 
CSE still resides in a register, then that 
register value is prefixed to the input 
stream. If the CSE resides only in memory, 
however, then the address of the CSE is 
prefixed to the input stream. In either 
case, the actual current location of the 
CSE is needed only at the time this 
reduction is performed, and its management 
is left to semantic routines in the code 
generator. 

4.5 Typing of Operand ~ 

Included in the operators of the IF are 
unary operators which give the implementer 
both access to and checking of different 
data types of the architecture. As an 
example, consider: 

r.2 ::= fullword dsp.l r.l 
[ USING R.2 

L R.2,DSP.I(R.I) 

which forces a fullword integer be loaded, 
while 

r.2 ::= halfword dsp.l r.l 
[ USING R.2 

LH R.2,DSP.I(R.I) 

loads a halfword. 
Without an operator to indicate a 

variable's storage format, the code 
generator is constrained in its ability to 
generate code suitable to the machine's 
architecture. The code generator could 
ignore all but one of the machine's data 
types, but this would be fairly inefficient 
storage utilization. Alternatively, it 
could examine the symbol table of the front 
end of the compiler each time an operand 
was referenced. This would require a 
significant amount of semantic intervention 
as well as decreasing the modularity of the 
components of the compiler. 

5. Comparisons 

Table 1 contains information about the 
number of declarations used to define the 
tables for the code generator. 

Entry (i) is a count of all identifiers 
used in constructing the tables. (ii) on 
the other hand is a count of only those 
symbols which can be encountered in the IF 
during a parse. (v) is a count of those 
entries which do NOT contain an error 
entry. (viii) is a count of the number of 
operators which can be encountered in the 
IF. These include IADD, FULLWORD, etc. 
(ix) is the number of operators designed to 
produce semantic intervention. 

Table 2 contains information about the 
size of the object modules for the tables 
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i. Number of symbols declared 247 
ii. X dimension of parse table 87 

iii. States in parsing automaton 810 
iv. Parse table entries 70470 
v. Significant Entries 30366 

vi. Productions 248 
vii. SDT templates 578 

viii. Production operatorb 68 
ix. Semantic operators 28 

Table i. 

and the code generator, and compares this 
to an existing production compiler with a 
handwritten code generator. Entry (v) is a 

i. Template Array 8.5 
ii. Compressed Parse Table 32.7 

iii. Uncompressed Parse Table 71.5 
iv. Code generation routines 7.5 
v. PascalVS Translation routines 41.9 

vi. Full PascalVS Code generator 53.8 

Table 2. 
(Sizes are in pages) 

measurement without support routines from 
the PascalVS runtime library. (vi) is a 
measurement using these routines. 

The SDTS represented by these tables 
supports bitset operations with inline code 
generation, as well as quadruple precision 
(128 bit) floating point arithmetic. 

Many productions have been included to 
take advantage of the index registers used 
for addressing in most instructions, as 
well as the various data types in this 
architecture. There are no less than 
thirteen productions associated with 
integer addition (IADD), where one 
production (add register to register) would 
be sufficient to generate accurate code. 
All of the integer operations (ISUB, IMULT, 
etc) have the same level of redundancy. As 
we see from table 2, however, the size is 
not significantly larger than for the 
translation phase of a currently used IBM 
program product. Additionally, the 
"compressed" tables are by no means 
minimally compressed. 

6. Conclusion 

The use of formal specifications of code 
generators for their implementation is 
clearly superior to the traditional 
approach of hand crafting them. This is 
especially true in the attempts to retarget 
a compiler to a new machine, where a hand 
crafted code generator would require 
extensive rewriting. In an SDTS approach, 
retargetting the code generator merely 
requires a rewriting of the templates 
associated with productions and minor 
modifications of the routines which 
actually emit the machine instructions. 

The approach specified in [1,2] works in 
a production environment only through the 

introduction of substantial extensions. 
Code generation is a translation process 
which needs more information than is 
available to the parser on its stack. We 
saw this problem above with label handling 
and common subexpressions. The more 
sophisticated, the utilization of machine 
idioms, the greater the contextual 
intervention required by the code 
generator. 

The input to the code generator is 
actually a linearized tree structure. The 
process of parsing the IF by the code 
generator is in fact the detection and 
transformation of subtrees which correspond 
valid computations [3]. Each production in 
the grammar corresponds to a valid subtree 
which might be encountered in a computation 
tree. The size of the parse tables 
described in the last section are due to 
our attempt to recognize a very large 
number of possible tree shapes. With a 
larger number of recognizable patterns, the 
code generator can produce better code. As 
was stated above, a single IADD production 
would be enough to produce executable code, 
but the large number of productions allows 
the code generator to produce code which is 
as good as that produce by IBM's PascalVS 
[12]. See appendix one for a comparison 
emitted code. 

This scheme should prove successful on 
microcomputers with limited memory. By 
reducing the number of productions in the 
grammar, the size of the parse tables is 
also reduced. A language implementer can 
therefore control the size of the compiler 
by changing the complexity of the grammar. 
This size change can be accomplished 
without losing the guarantee of generating 
correct code. 

The code generator we replaced [ii] 
produced code for a PDP-10. It encompassed 
17 separate compilation units and was 5000 
lines long (not including several files of 
type declarations). CoGG is less than 3000 
lines. The code generator it produces is 
less than 2500 lines (not including parse 
tables) and is contained in 2 separate 
compilations. The process of adapting the 
original code generator to generate code 
for an an Amdahl is of considerable 
complexity when using traditional methods 
which require rewriting the code generator. 
In contrast, writing the specification for 
the code generator and using CoGG for its 
implementation was much less complicated 
and less error prone. It seems clear that 
establishing and maintaining a grammar is a 
much simpler task than writing and 
maintaining a code generator. 
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Code examples. 
Appendix I. 

The base type of all arrays is integer. No subscript or range checking is performed. 
The equation compiled is: 

x[q]:=(a[i]+b[j]*(c[k]-d[l])+(e[m] div (f[n]+g[o]))*h[p]); 

CoGG PascalVS 

i 
sla 
1 
sla 
i 
sla 
i 
sla 
1 
1 
sla 
s 
1 
mr 
a 

I 
sla 
I 
sla 
1 
sla 
1 
a 

1 
srda 
dr 
I 
sla 
I 
mr 
ar 
st 

rl,132(r12) Load Q 
rl,2 Multiply by 4. 
r2,100(r12) Load I 
r2,2 
r3,104(r12) Load J 
r3,2 
r4,108(r12) Load K 
r4,2 
r5,850(r4,r12) Load C(K) 
r6,112(r12) Load L 
r6,2 
r5,1250(r6,r12) C(K) - D(L) 
r7,450(r3,r12) 
r6,r5 
r7,150(r2,r12) 
r8,116(r12) 
r8 
r9,20(r12) 
r9 
r2,24(r12) 
r2 
r3 
r3 
r4q 
r4 
r4 
r6 
r6 
r3 
r2 
r7 
r7 

Load B(J) 
B(J) * ... 
A(Z) + ... 

Load M 

Load N 

Load O 

2450(r2,r12) Load G(O) 
2050(r9,r12) F(N) + G(O) 
r8,r12) Load E(M) 
32 Propogate Sign 
r3 E(M) / ... 
28(r12) Load P 
2 
2850(r6,r12) Load H(P) 
r5 H(P) * ... 

r3 Final Addition 
3250(rl,r12) Store X(Q) 

L 03 
SLA 03 
L 04 
SLA 04 
L O5 
S O5 
L O4 
SLA 04 
LR 07 
M 06 
L O6 
SLA 06 
A 07 
L 06 
SLA 06 
L 03 
SLA 03 
L 04 
A O4 
L O5 
SLA 05 
L 08 
SRDA 08 
DR 08 
L O6 
SLA 06 
M O8 
AR 07 
L O6 
SLA 06 
ST O7 

152(,13) Load K 
2 
156(,13) Load L 
2 

576(03,13) Load C(K) 
776(04,13) C(K)-D(L) 
148(,13) Load J 
2 
O5 
376(04,13) B(J) * ... 
144(,13) Load I 
2 
176(06,13) A(I)+... 
164(,13) Load N 
2 
168(,13) Load O 
2 
I176(06,13) F(N) 
1376(03,13) F(N)+G(O) 
160(,13) Load M 
2 
976(05,13) E(M) 
32 Propogate Sign 
04 E(M) / ... 
172(,13) Load F 
2 
1576(06,13) H(P) * ... 
09 Final Addition 
176(,13) Load Q 
2 
1776(06,13) Store X(Q) 

if flag 

if p < q 

then i := j - 1 
else i := z ; 
then 1 := z ; 

where: i, j, k, p, q are fullwords , 
b is a boolean (logical) variable, 
z is a halfword 

(Note that PascalVS didn't use a halfword for the storage format). 

tm 3300(r12),i Test B 
bc 8,Labell Branch if false 
1 rl,104(r13) Load J 
bctr rl,r0 Decrement 
st rl,100(rl3) Store I 
bc 15,Label2 Branch 

Label: 1 
lh r2,142(r13) Load Z 
st r2,100(r13) Store I 

Label: 2 
1 r3,136(r13) Load Q 
c r3,140(r12) Compare with P 
bc 4,Label3 Branch if < 
lh r4,142(r13) Load Z 
st r4,112(r13) Store L 

Label: 3" 

TM 3780(13),I Test B 
BNO @2LI Branch if false 
L 03,148(,13) Load J 
BCTR 03,00 Decrement 
ST 03,144(,13) Store I 
B @2L2 Branch 

@251DS OH 
MVC 144(4,13),168(13) I := Z ; 

@2L2 DS OH 
L 03,172(,13) Load P 
C 03,176(,13) Compare with Q 
BNL @2L3 Branch if 7= 
MVC 156(4,13),168(13) L := Z 

@2L3 DS OH 
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1 

25 
27 
29 
31 
33 
35 
37 

43 
45 
47 
49 
51 
53 
55 
57 
59 
62 

100 

115 
118 

134 

139 

143 

loptions 
symbol dump 
listinE o n l y  
punch p~cked 

SNort-terminals 
r = register 

cc = cond code 
dbl = doubTe 
fit = floating 

dflt dbl float 
qflt = gd Tloat 

STerminals-- 
Ing = length 
ant : coun t  
Ibl : ibl value 
dsp : dis~lacement 

cond condition 
error = error num 
stmt = stmt ~um 

elmnt : element 
value = v value 

cse = c~e 

Appendix  2 .  

The following is the SDTS for the Amdahl 470. 
The format o f  each line is: 

i. The left aligned production 
ii. The Syntax Templates to be emitted when the 

production is used to reduce. 
NOTICE: Templates MUST skip column one! 

Lines beginning with '~' are comments. Blank lines are 
ignored. All others are examined! Comments may be inserted 
after the instructions in the templates. Not all productions 
have been included. 

A general register. 
Condition Code register. 
A register pair (even/odd). 
Single preczsion floating point. 
Double precision floating point. 
QUadruple precision floating point. 

Length of operand. 
Amount of a shift (or CSE usage). 
The number of a label. 
Displacement of operand (< 4096) 
A condition (i.e. LT, EQ, GE .~.) 
The error value for an abort. 
Internal statement number. 
Constant element of variable. 
A constant to be loaded. 
Common Sub Expression number. 

$Operators 
addr, fullword, hlfword, byteword, typeword realword, dblrealword, quadrealword, 
iadd, isub, imult, idly, imod, icompare, labs, imax, imin, iodd, assiEn, 
lone assign, vat assiEn, clear, deer, incr, pos constant, nee constant, 
abor¢ op, statement, case check, unlnit check, Fange eheck~ s~bscript check, 
boolean or, boolean and, ~oolean not, b~olean test, ~est bzt value, -- 
set bit--value, stor~ bit value, ~lear bit val~e, load bi~ vaTue, radd, rsub, 
rmuTt, Fdiv, tabs, r~eg,--reompare, haTve,--rmin, rmax,--s x--envrt, x s envrt, 
d x cnvrt, x d cnvrt, s d cnvrt, d s cnvrt, 1 shift, r -~hYft, bran~h--op, 
l~bT~l def, l~b~rl index,--c~se index~ ~rocedure--call, prUcedure entry,-- 
procedure exit, ~ame param, -- -- -- 
reference--param, mak~ common, use common 

$Opc~des -- -- 
spm, balr, bctr, bet, mvcl, elel, ipr, Inr, itr, let, nr, elf, o r, xr, It, er, at, 
st, mr, dr. alr, slr, ipdr, indr, itdr, Icdr, hdr, irdr, mxr, mx~r, idr, edr, adr, 
sdr, mdr, ddr, awr, swr, iper, iner, Iter, leer, her, fret, axr; sxr, let, cer, aer, 
set, mar, der, aur, sur, sth, la, stc, ic, ex, bal, bet, be, lh, ch, ah,sh, mh, st, 
n, el, o, x, i, c, a, s, m, d, al, sl, std, mxd, Id,cd, ad, sd, rod, dd, aw, sw, ate, 
le, ce, me. se, me, de, au, su,bxh, bxle, srl, all, sra, sla, srdl, sldl, srda, 
slda, stm, tm,mvi, ni, eli, oi, xi, ira, clm, stem, icm, mvc, nc, clc, oc, 
xc,tr, trt 

~Constants 
Semantic opcodes for the code generator. 

label location, label pntr, branch, branch indexed, skip, case load, abort, 
stmt Fecord, list request, modifies, ignor~ lhs, IBM length, p~sh odd, 
push--even, load oc~d addr, load odd full, lo~d odd haTf, load odd FeE, 
load--extended, ~tor~ extended,--cle~r extended7 -- 

--• Common sub ~xpressions. -- 
full common, half common, byte_common, real common, drealeommon, find_common, 
find--real common,-- 

--• ~lain cle' boring constants. 
false coniC, true const, false cond, true ccnd, 

v Fal~e cond = 8 ;-- True eond--: 7 ; 
zero, one, two, thr~e, four, seven, ~iEht , fifteen, shift32, it, ICe, eq, ne, Et, 
Eta, unconditional, underflow, overflow, not initialized, arra~ underflow, 
array overflow, case low, ease hiEh, one loc~ minus one loc, bz~masks, 
save_~rea,entrycode-~ code_bas~, staek_b~se, pr_bas~, s~ratch, old_base 

Numberin8 conventions. 

- Production Number 
- Template Number 

IProduetions 

• AssiKnment Templates. 

lambda ::= assiEn fullword dsp.1 r.1 r.2 
st r.2,dsp.1(zero,r.1) 

lambda ::= assiEn hlfword r.3 dsp.1 r.1 r.2 
sth r.2,dsp.1(r.3,r.1) 

lambda ::= assign r.1 r.2 ing.1 
IBM l e n g t h  inK. I 
m v c - - z e r o ( l n g . l , r . 1 ) , z e r o ( r . 2 )  

w 

m I - Line Number 
l 

159 
161 
162 
163 
164 I 
165 I 

17 4 
17~ 4 

191 10 
192 10 
193 11 

Need IBM len&th 
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195 
196 
197 
198 
199 
20O 
201 
202 

204 
205 
206 
207 
208 
209 
210 
211 
212 
213 

216 
217 
218 
238 
2 9  2~o 
242 

307 
308 

315 
316 

318 
319 
32O 

326 
327 
328 

350 
351 
352 

356 
357 
358 
359 
36O 

488 
q89 
1190 
1191 
492 
493 

495 
49b 
497 
498 
1199 
500 
501 

511 
512 

515 
516 
517 

585 
586 
587 
588 
589 
590 

592 
59 59~ 
595 
596 
597 

/ 
11 ~ 

12 

15 
16 
17 

12 

18 
~9 
20 
21 
22 

17 

29 

18 

30 

32 
56 
57 

33 
58 
59 

35 
62 
63 

41 

74 
75 
76 

42 

77 
78 
79 

63 
14q 
145 

64 

146 
147 
148 
149 
150 

66 

156 
157 
158 
159 
160 

74 
202 
203 

75 
204 

205 
206 
2O7 

lambda :;: long assign r.1 r.2 Ing.1 
using dbl.l,d~l.2 
IBM length ing.1 
loa~ odd addr dbl.l,lng.1(zero,zero) 
load--odd--addr dbl.2,1ng.1(zero,zero) 
Ir ~rbl.~,r.1 
Ir dbl.2,r.2 
mvcl dbl.l,dbl.2 

lambda ::= var assign r.1 r.2 r.3 
* r.1 is the a~dress of the target 
* r.2 is the address of the source 
* r.3 is the computed size of the move 

using dbl.l,dbl.2 
load odd reg dbl.l,r.3 
load-odd-reg dbl.2,r.3 
lr ~i01.X,r.1 
ir dbl.2,r.2 
mvcl dbl.l,dbl.2 

*************************************** 

* Loading Templates. 
* l i * * * * * t * * * * J i l i l i i l i l N * * * * * * * * * * i i l i *  
r . 2  :;: fullword dsp.1 r.1 

using r.2 
i r.2,dsp. 1(zero,r. I) 

r.2 ::= fullword r.3 dsp.1 r.1 
using r.2 
1 r.2,dsp. 1(r.3,r. I) 

*************************************** 

* Addition Templates. 
* * * * * * i l * * t i l i * * l t * i i * * * * * * * * * * l i N l i * * *  
r . 1  : :=  *add r . 1  r . 2  

modifies r.1 
ar r.l,r.2 

r.2 ::= iadd fullword dsp.1 r.1 r.2 
modifies r.2 
a r.2,dsp.1(zero,r.1) 

r.2 ::= iadd r.2 fullword dsp.1 r.1 
modifies r.2 
a r.2,dsp.1(zero,r.1) 

r.3 ::= iadd byteword dsp.1 r.1 r.2 
using r.3 
x r  r.3,r.3 
ic r.3,dsp.1(zero,r.1) 
ar r.3,r.2 

r.4 ::= iadd byteword r.3 dsp.1 r.1 r.2 
using r.4 
xr r.4,r.4 
ic r.4,dsp.1(r.3,r.1) 
ar" r.4,r.2 

l J J J J i J i J J J l J J J J J * J * * J J i J l J J * l J J J J J J J J J  
* Division Templates 
*************************************** 

r.1 ::= r shift r.1 cnt.1 
modifie~ r.1 
s ra  r.1,cnt.1 

r . 2  : :=  i d i v  r . 2  f u l l w o r d  dsp.1 r . 1  
us ing  d b l . 1  
l r  d b l . l , r . 2  
s rda  d b l . l , s h i f t 3 2  
d d b Z . l , d s p . l ( z e r o , r . 1 )  
push odd d b l . 1  Push odd r e g i s t e r  on to  s t a c k .  
zgnoYe_Ibs 

r.2 ::= idiv fullword dsp.1 r.1 r.2 
using dbl.1 
1 dbl.1°dsp.1(zero,r.1) 
s rda  db!.1,shift32 
dr dbl.l,r.2 
~ush odd dbl.1 Push odd register onto stack. 
zgno~e_Ibs 

* Standard functions 
m*mmJ*R*****minmIN*****miII***J***Jlg** 

r.1 ::= iabs r.1 
modifies r. 1 
ipr r.l,r.1 

r.1 ::= imax r.1 r.2 
modifies r.1 
using r.3 
er r . l , r . 2  
skip g te , two , r .3  
i r  r . l , r . 2  

Load c o u n t e r s .  

Commutative template. 
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681 
682 
685 
684 
685 

687 
688 

690 
691 
692 

694 
695 
696 

698 
699 
7OO 
701 
7O2 

7O5 
706 
708 
710 94 
711 
712 
71 

716 95 
717 
718 
719 

721 96 
722 
723 
724 
725 

781 
782 
783 
784 107 
785 
786 

788 108 
789 
790 

821 
822 
82 
87~ 124 
872 
873 
874 
875 
876 

878 125 
879 
88O 
881 
882 
885 

902 
9O4 
910 
912 128 
913 
914 
915 
916 
917 

919 129 
920 
921 
922 
923 

932 131 

935 
936 

89 
252 

90 
253 

91 

254 

92 

255 

93 

256 
257 
258 

• J J i • • J • J J • • i • • • J J • J J J J J J J • J J J • J • J • • • * J  

* Label and Branching Templates 
J J J • J J J • • J J J J J J J J • J J J • J J • J • J • J J • • • • • • • J  

lambda : : =  l a b e l  d e f  l b l . 1  
label location-- Ibl.1 Label definitiQn found. 

lambda ::= label index ibl.1 
label_pntr IbT. 1 Set up pointer to laDel. 

la~bda ::= branch_op Ibl.1 cond.1 cc.1 
using r.3 
branch cond.1,1bl.l,r.3 Branch instruction. 

lambda ::= branch op ibl.1 
using r.3 
branch unconditional,lbl.l,r.3 Jump instruction. 

lambda ::= case index ibl.1 r.1 
using r.3 
sll r.l,two 
case load r.1,1bl.l,r.3 A branch table load. 
bc -- uneonditional,zero(r.l,code_base) 

l • • * • • • • t • • • • • * i i • • • * * t • * * * t • • t i t • i • i m l  

• Procedure Calls, Entry and Exit. 
* J • i i J i J • i J • * • • J • i l J J J J • J • i • J J J i J J i J J J J  

l ~ n b d a  : : =  p r o c e d u r e  c a l l  e n t . 1  f u l l w o r d  d s p . 1  r . 1  
need r . 1 4 , r . 1 5  -- 

259 list request cnt.1 
260 i --r.15,dsp.1(zero,r.1) 
261 balr r.14,r.15 

lambda ::= procedure entry 
need r.14,r.15 -- 

262 stm r.14,stack base,save area(stack base) 
263 bal r.14,entryZcode(pr_b~se) BUild new stack frame. 

l~nbda ::= procedure exit 
using r.14 

264 i stack base,old base(stack base) Get old stack frame 
265 im r.14,~tack bas~,save area~stack base) Restore all registers. 
266 ber unconditio~al,r.14 -- -- 

J J J J J J J J J J J J * J J J W * * * J J J J J J J J J J • J J J J J J J J  

• Integer Comparison Templates *************************************** 
cc.1 ::= icompare r.1 r.2 

using cc.1 
284 er r.l,r.2 

cc.1 ::: icompare r.2 fullword dsp.1 r.1 
using cc.1 

285 e r.2,dsp.1(zero,r.1) 

*************************************** 
* Checking templates 
J J J J J l J J J * J J i i J J J J J J J J J J i J * J J * J J J J J J J J *  
r.3 ::: range check r.3 fullword dsp.1 r.1 fullword dsp.2 r.2 

need r.14-- 
315 c r.3,dsp.1(zero,r.1) 
316 hal r.14,underflow(pr base) 
317 c r.3,dsp.2(zero,r.~) 
318 bal r.14,overflow(pr_base) 

r.3 ::= range check r.3 r.1 r.2 
need r.14-- 

319 cr r.3,r.1 
320 bal r.14,underflow(pr_base) 
321 cr r.3,r.2 
322 hal r.14,overflow(pr_base) 

* J J i J i J i J i J * l i J J J i J J i l i J l i * i J J J J J J J J J i J  

* Boolean Templates. *************************************** 

r.1 ::= cond.1 cc.1 
* This puts the condition code into a register. 

using r.l,r.3 
331 la r.l,zero(zero,zero) Since this doesn't affect Cond code 
332 skip cond.l,two,r.3 R.3 used for long branch 
333 la r.l,one(zero,zero) 

lambda ::= assign byteword dsp.1 r.1 cc.1 
using r.3 

334 mvi dsp. 1(r.1),false const 
335 skip false cond,two,r73 
336 mvi dsp. ITr.1),true_const 

cc.1 ::= boolean and byteword dsp.l r.1 byteword dsp.2 r.2 
using cc.I,r.3-- 

341 tm dsp. 1(r. I) ,one 
342 skip false cond,two,r.3 
343 tm dsp. 2Yr.2) ,one 
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938 132 

941 
942 
943 

996 
998 

1000 
1003 142 
1004 
1005 

1007 143 
10o8 
1009 

1011 144 
1012 
lO13 
1014 
1015 
1016 
1017 
1018 
1019 

1021 145 
1022 
1023 
1024 
1025 
1026 
1027 
1028 
1029 

I031 
1033 146 
1034 
1035 

1037 147 
1038 
1039 

1041 148 
1042 
1043 
1044 
1045 
1046 
1047 
1048 
1049 
1050 

1052 149 
1053 
1054 
1055 
I056 
1057 
I05~ 
1059 
1060 
1061 

ec.1 ::= boolean and r.1 byteword dsp.2 r.2 
using cc.I,r.3-- 

344 modifies r.1 
345 tm dsp.2(r.2),one 
346 skip false cond,two,r.3 
347 n r.l,o~e_loc(zero,pr_base) 

*************************************** 

* Set manipulation templates. *************************************** 

cc.1 ::= test bit value addr dsp.1 r.1 elmnt.1 
using cc.1 

372 tm asp.1(r.1),elmnt.1 

ec.1 ::= test bit value r.1 elmnt.1 
using cc.1-- -- 

373 tm zero(r.1),elmnt.1 

cc.1 ::= test Bit value addr dsp.1 r.1 r.2 
using cc.17~.3-- 

374 modifies r.2 
375 I r  r.3,r.2 
376 srl r.2,three 
377 n r.3,seven(zero,pr base) 
378 ic r.2,dsp.1(r.2,r.17 
379 sll r.3,two 
380 n r.2,bitmasks(r.3,pr_base) 

ee.1 ::= test bit value r.1 r.2 
using cc.17r.3-- 

381 modifies r.2 
582 Ir r.3,r.2 
383 srl r.2,three 
384 n r.3,seven(zero,pr base) 
38~ ie r.2,zero(r.2,r.1)-- 
386 sll r.3,two 
387 n r.2,bitmasks(r.3,pr_base) 

* Setting a bit value in a set. 
lambda ::= set bit value addr dsp.1 r.1 elmnt.1 

' usin~ ce 
~88 Ol asp.i~r.1),elmnt.1 

lambda ::= set b i t  value r.1 elmnt.1 
using ee.l - -- 

389 oi zero(r.1),elmnt.1 

lambda ::= set bit value addr dsp.1 r.1 r.2 
using cc.I,~.3,~.4 

390 modifies r.2 
391 Ir r.3,r.2 
392 srl r.2,three 
~ n r.3,seven(zero,pr base) 

ic r.4,dsp.1(r.2,r.17 
395 sll r.3,two 
396 o r.4,bitmas~s(r.3,pr base) 
397 sic r.4,dsp.1(r.2,r.1) -- 

lambda ::= set bit value r.1 r.2 
using cc.I,~.3,~.4 

398 modifies r.2 
399 Ir r.3,r.2 
400 srl r.2,three 
401 n r.3,seven(zero,pr base) 
402 ie r.4,zero(r.2,r.1)-- 
403 sll r.3,two 
404 o r.4,bitmasKs(r.~ipr_base) 
405 sic r.4,zero(r.2,r 

DIV 8 -- (byte index in set). 
MOD 8 -- (bit index in byte) 
Load byte from set. 

4 (for fullword index) 
Test if bit set. 

DIV 8 -- (byte index in set). 
MOD 8 -- (bit index in byte) 
Load bySe from set. 
* 4 (for fullword index) 
Test if bit set. 

DIV 8 -- (byte index in set). 
MOD 8 -- (bit inJex in byte) 
Load byte from set. 
* 4 (for fullword index) 
Or in bit setting. 
SCore updated byte. 

DIV 8 -- (byte index in set). 
MOD 8 -- (bit index in byte). 
Load byte from set. 
* 4 (for fullword index) 
Or in bit setting. 
Store updated byte. 
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