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Abstract
The parallelizing transformation (hand-crafted or compiler-assisted)
is error prone as it is often performed without verifying any seman-
tic equivalence with the sequential counterpart. Even when the
parallel program can be proved to be semantically equivalent with
its corresponding sequential program, detecting data-race condi-
tions in the parallel program remains a challenge. In this paper,
we propose a formal verification approach that can detect data-race
conditions while verifying the computational semantic equivalence
of parallelizing loop transformations. We propose a coloured array
data dependence graph (C-ADDG) based modeling of a program
for verification of program equivalence as well as data-race condi-
tion detection across parallel loops. We have tested our tool on a
set of Rodinia and PLuTo+ benchmarks and shown that our method
is sound, whereby the method does not produce any false-positive
program equivalence or data-race condition.

Categories and Subject Descriptors D.2.4 [Software Engineer-
ing]: Software/Program Verification

Keywords Translation validation, coloured array data dependence
graph (C-ADDG), parallelizing transformation, data-race

1. Introduction
Massively parallel computing infrastructure comprising of copro-
cessors like GPGPU can provide a significant speedup when the
processing logic of a sequential program that deals with a large
amount of data (hereinafter we refer to such a program as an array-
intensive program) is suitably transformed into a data-parallel
counterpart that can maximally exploit the computing power of
the underlying data-parallel processor.

Even though there have been a significant research effort to im-
prove parallelizing compilers, it has still not found inroads to the
experienced programmer community who often resorts to a hand-
crafted transformation of a sequential program, followed by careful
tuning of the transformed program for the optimal performance. In
such a case, it is all the more important to verify if the parallel trans-
formation (i) preserves the semantic equivalence of the sequential
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code and (ii) does not contain problems related to the parallel exe-
cution of the code, namely the data-race conditions, delay in mem-
ory access due to conflicts, cache misses and so on.

In this paper, we propose a verification approach, implemented
as a prototype tool, to detect data-race conditions in a parallel pro-
gram which may be introduced during the parallelizing transforma-
tion. This approach is different because our verification technique
is coupled with the equivalence checking approach. Therefore, it
works on the model of the program which is used to detect the
computational equivalence of programs. However, typical program
verification techniques rely on property verification which create a
set of predicates from a parallel program and check for the satis-
fiability. Our approach extends the existing array data dependence
graph (ADDG) model (Shashidhar 2008) of a program that cap-
tures the data transformation and the iteration domain of a loop
jointly. The extended model C-ADDG brings the notion of multi-
threaded execution that is necessary to detect possible data-race
situations. Subsequently, we propose a verification technique to de-
tect data-race conditions which works along with the computational
equivalence checking. Finally, we propose an end-to-end verifica-
tion framework for translation validation of parallelizing transfor-
mations, which involves additional steps such as, converting a pro-
gram into single assignment (SA) form. Program verification being
an undecidable problem, our method is sound, i.e., it can correctly
report an equivalence, without any false-positive cases. However,
when it reports a non-equivalence, the two programs may be equiv-
alent; in such cases, our tool reports possibly faulty program paths
which serve as strong hints for program correction. In summary, the
contributions of this paper are: (i) a data-race detection mechanism
in the context of equivalence checking, and (ii) an end-to-end veri-
fication framework for parallelizing transformations of programs.

The rest of the paper has been organized as follows. Section 2
highlights the verification challenges using a motivating example.
Section 3 illustrates the methodology with this running example.
We formally introduce the C-ADDG model and its computational
semantics in Section 4. Identification of data-race conditions is
explained in Section 5. Next we describe the overall verification
approach along with its soundness and complexity in Section 6. The
experimental result in Section 7 illustrates testing of the verifier
on a variety of benchmark applications. Section 8 provides an
overview of existing work, and Section 9 concludes the paper with
the limitations of the current approach and a future direction.

2. Motivating Example
To explain our approach, let us consider the example given in Fig-
ure 1; Figure 1(a) shows the original sequential program while
Figure 1(b) shows its parallelized counterpart using OpenMP con-
structs. Let us observe the changes in the transformed version other
than the obvious parallelization.
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void function1(
int A[], int Z[]) {
int i, B1[1000], B2[1000];
S0: Z[0] = A[0];
for (int i=1; i<N; i++) {

S1: B1[i] = A[i];
S2: B2[i] = A[N-i-1];
S3: Z[i] = Z[i-1] +

B1[i]*B2[i] + B1[i];
}

}

(a)

void function2(int A[], int Z[]){
int i, t, B[1000];
T0: Z[0] = A[0];
#pragma omp parallel {

#pragma omp for nowait
for (i=0; i<N; i++) {

T1: B[i] = A[i];
}
#pragma omp for
for (i=0; i<N; i++)
{

T2: t = N-i-1;
T3: Z[i] = B[t]+1;
T4: Z[i] = Z[i]*B[i]+Z[i-1];

} } }
(b)

Figure 1. (a) Original sequential program. (b) Transformed paral-
lel program.

Loop fission: The for loop in the original program has been split
into two.
Elimination of temporary array variable: Instead of two temporary
array variables B1 and B2 in the original program, the transformed
program has only one namely, B.
Introduction of temporary scalar variable: The variable t appears
in the transformed program.
Non-compliance to SA form: In the original program, each variable
(array element) is assigned a value only once and hence it is in SA
form whereas, in the transformed program, the array element Z[i]
is defined twice in statements T3 and T4 in each iteration of the sec-
ond for loop in Figure 1(b); also the scalar variable t is redefined
across all iterations of the second for loop.
Application of arithmetic transformations: The operation in state-
ment S3 in the original program has been captured in the statements
T3 and T4 in the transformed program by using the following prop-
erties of arithmetic expressions: (a) commutativity of the addition
operation, (b) distributive property of multiplication over addition.

It is important to note that if we ignore the parallelizing con-
structs in the transformed program (i.e., treat Figure 1(b) as a
sequential code), then the programs are semantically equivalent;
however, parallelism introduces data-race in the transformed pro-
gram which renders the programs in Figure 1 non-equivalent – this
clearly underlines the significance for data-race detection.

To verify the semantic equivalence of the programs in Figure 1,
the verification methodology must be able to address: (i) loop trans-
formations, (ii) arithmetic transformations, and (iii) synchroniza-
tion transformations.

Furthermore, (iv) the sequential and parallel versions involve
recurrences (S3 and T4), whereby an element of an array gets
defined in a statement S inside a loop in terms of some other
element(s) of the same array which have been previously defined
through the same statement S, and (v) the program Figure 1(b) is
not in SA form (note that exact data flow analyses can be performed
for programs in SA form).

The computational equivalence checking approach namely,
(Shashidhar 2008) can handle loop transformations only (i.e., (i)
but not (ii)–(v) ). Recent work by (Verdoolaege et al. 2012) can
only deal with (i), (iv) and (v). The work by (Schordan et al. 2014)
can handle (i) and (ii) to some extent for constant loop bounds.
Another work (Karfa et al. 2011, 2013) can handle (i) and (ii) to
a larger extent while allowing parametric loop bounds (such as,
N in Figure 1). The method reported in (Banerjee 2016) extends
the work of (Karfa et al. 2013) to address (iv). The approach pro-
posed here further extends the capability of (Banerjee 2016) to
handle synchronization transformations. Additionally, conversion
of a program from non-SA form to SA form is carried out using the
LLVM compiler (Lattner and Adve 2004). Thus, our work for the
first time, to the best of our knowledge, addresses the full spectrum

Figure 2. Tool Overview and Verification Process

of semantic equivalence checking between a sequential program
and its parallelized counterpart.

3. Methodology
A schematic diagram of the verification tool is shown in Fig-
ure 2(a). The tool comprises of three main modules namely the
program analyzer, the C-ADDG based equivalence checker and
the Thread Synchronizer Analyzer. The program analyzer module
processes a C source code to generate its corresponding C-ADDG
model. A detailed description of the model, the equivalence check-
ing calculus and the equivalence checker are described in the sub-
sequent sections. The C-ADDG equivalence checker has two im-
portant submodules namely, the loop equivalence checker and the
normalizer. The loop equivalence checker uses an external ISL li-
brary (Verdoolaege 2010) to verify the equivalence of loop expres-
sions. The normalizer module is used to evaluate integer expres-
sions. While there are several techniques to represent a Boolean
expression in a canonical form, no canonical form exists for inte-
ger expressions. For this purpose, we have adopted the normaliza-
tion technique from our previous work (Karfa et al. 2013; Banerjee
et al. 2014b). The normalizer is used for comparing two arithmetic
expressions for their equivalence. The thread synchronizer module
analyzes array variables that are accessed concurrently by multiple
threads and checks for any data inconsistency that may arise after
the completion of a data parallel loop.

3.1 Verification Activities
Here the tool takes the sequential program and the transformed par-
allel program and generates their corresponding C-ADDG mod-
els, which is an extension of the ADDG model as explained later.
The ADDG model provides a formalism that can succinctly model
subscripts to array variables and loop bounds that are (piece-wise)
affine expressions (Shashidhar 2008). As a result, effective equiva-
lence checking mechanism (such as the one described in this work)
can be used to prove equivalence for groups of elements at once.

The loop equivalence checker module compares equivalence of
the iteration space of the source and the target program. The com-
putation models of the source and the target program are also an-
alyzed for their equivalence. A flowchart describing various activ-
ities of the verification tool is shown in Figure 2(b). We illustrate
the overall equivalence checking technique with the help of the ex-
ample shown in Figure 1.

Program Analysis This step analyzes the input programs to deter-
mine whether they can be directly fed to the C-ADDG equivalence
checker or whether some preprocessing needs to be carried out to
make them amenable for our checker. In particular, a preprocessing
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Figure 3. (a) C-ADDG of the program in Figure 1(a). (b) C-
ADDG of the program in Figure 1(b).

step is applied to the programs given in Figure 1(b) to convert them
into SA form. A program which is not presently in SA form can
be made to be so by increasing the dimensionality of the variables
of the program which are being written into (Vanbroekhoven et al.
2007). For example, let us consider the statements T3 and T4 in
Figure 1(b). The SA form of these statements are:

Z[i][0] = B[t]+1;
Z[i][1] = Z[i][0]*B[i]+Z[i-1][1];

To maintain uniformity of array dimensionality, statement T0 is
converted to:

Z[0][1] = A[0];
The scalar variable t in Figure 1(b), similarly, can be converted into
a single dimensional array to conform to SA form. Without loss of
generality, henceforth we shall consider all variables (except the
loop iterators) in a program as array variables; note that scalar vari-
ables are basically treated as array variables of zero dimension.

ADDG Construction The ADDG corresponding to Figure 1(a)
and Figure 1(b) are given in Figure 3(a) and 3(b) respectively. A
formal definition of C-ADDG will be given later in Definition 1.
Informally, a node in ADDG can either represent an array variable,
or an operator (or a barrier which is required for synchronization
purpose, as elaborated later). For brevity, an operator node has
been marked with the corresponding statement id. For statement
S3, the operator node has an incoming edge (hereinafter called
write-edge) from array node Z and four outgoing edges (hereinafter
called read-edges) to arrays B1, B1, B2 and Z; note that there are
two edges to array B1 because this array appears twice in the right
hand side (rhs) expression twice. During ADDG construction, each
operator node also stores information about the loop body where
the corresponding statement belongs.

It may be important to note that whenever an array variable
is assigned with a constant value (not shown in this example),
we assume that those values are supplied by some fictitious array
having dimension equal to that of the array variable being defined
and each member of this fictitious array has value equal to that
constant.

Recurrence Identification Recurrences lead to cycles in an
ADDG. Since the same array may be recursively defined through
multiple statements, instead of simple cycles, strongly connected
components (SCCs) are identified using the mechanism proposed
by Tarjan (Tarjan 1972). However, cycles (SCCs) in an ADDG
do not always mean recurrences; for example, the cycle involving
Z[i] on the rhs of the statement T4 in Figure 3(b) does not rep-
resent a recurrence because the variable Z[i] defined in statement
T4 does not depend upon an earlier definition of Z[i] through
the same statement, it simply depends on the definition of Z[i] at
statement T3. The cycle involving Z[i-1] (in statements S3 and
T4), on the other hand, does represent a recurrence because it has a

loop-carried dependency on the same statement. We refer to such a
vertex (Z) as a recurrence array vertex (Banerjee 2016).

Recurrence subgraph construction Once an SCC is found to
lead to a recurrence, we need to construct a subgraph from the
ADDG which represents the recurrence. For this, we first iden-
tify a basis subgraph. To illustrate the process, let us consider Fig-
ure 3(a). Here the SCC comprises only two nodes: Z and S3 with
Z being the recurrence array vertex. The basis subgraph consists of
the nodes Z, S0 and A along with the connecting edges shown in
red colour. Next, we create an induction subgraph which consists of
the nodes Z, S3, B1, B2 along with the connecting edges shown
in blue colour. Finally, the recurrence subgraph in Figure 3(a)
comprises the nodes Z, S0, A, S3, B1, B2 and the connecting
edges shown in red and blue colours. Similarly, the recurrence sub-
graph in Figure 3(b) is also constructed whose connecting edges
have also been shown in matching red and blue colours. The details
about the recurrence subgraph construction can be found in (Baner-
jee 2016).

Extension of the recurrence subgraph It is to be noted that till
now all the steps were carried out in isolation for each ADDG,
that is, we did not try to compare the original and the transformed
ADDGs prior to this step. However, now we need to compare the
recurrence subgraphs from the two ADDGs. In order to do so, the
elements of the recurrence array vertex must be defined in terms
of the elements of some common arrays, i.e., arrays which appear
in both the original and the transformed programs. In Figure 3(a),
the recurrence array vertex Z is defined in terms of A, B1 and B2
whereas, in Figure 3(b), the recurrence array vertex Z is defined in
terms of A and B. Thus, there is a difference due to the temporary
arrays B1, B2 and B; also, there is a mismatch in the definition of
Z in the two recurrence subgraphs (vide statements S3 and T4 in
Figure 1). So, the recurrence subgraphs are extended until Z can
be defined in terms of some common arrays only. As it happens in
case of Figure 3, extension results in the recurrence subgraphs cov-
ering the entire original and the transformed C-ADDGs, i.e., Z gets
defined in terms of A.
In case there are multiple recurrence subgraphs in each C-ADDG
then we pair up individual extended recurrence subgraphs (one
from each C-ADDG) based on the common arrays appearing in
a recurrence subgraph. Failure to pair up some recurrence sub-
graph results in immediate termination of the equivalence checker
reporting possible non-equivalence and that recurrence subgraph as
the possible source of mismatch between the two C-ADDGs (pro-
grams).

Equivalence of recurrence subgraphs To establish the equiva-
lence of two recurrence subgraphs, one has to first establish equiv-
alence of their basis subgraphs followed by establishing equiva-
lence of their induction subgraphs. Note that after converting to
SA form, we are now trying to establish equivalence of Z1[i] =
Z2[i][1], ∀i, 0 ≤ i < N , where Z1 and Z2 represent the val-
ues assumed by the array Z in the source program and the trans-
formed program, respectively. Obviously, the data computations
and the array index spaces for the basis subgraphs (statements S0
and T0) are equivalent, i.e., Z1[0] = Z2[0][1]. Next, we concen-
trate on the induction subgraphs and compute their data transforma-
tions by employing the normalizing technique described in (Karfa
et al. 2013; Banerjee et al. 2014b). It can be deduced using back-
ward substitution and applying the distributive and the commuta-
tive properties of arithmetic expressions mentioned in Section 2
that Z[i] = A[i] +A[i] ∗A[N − i− 1] + Z[i− 1] in the original
program whereas, for the transformed program, the data transfor-
mation is the same with Z[i] and Z[i − 1] replaced by Z[i][1] and
Z[i − 1][1], respectively. The index spaces of the two induction
subgraphs can be verified to be equivalent using a standard equiva-
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lence checker for polyhedral models (Verdoolaege 2010). This step
establishes Z1[i] = Z2[i][1], ∀i, 1 ≤ i < N , and thus concludes
the proof of equivalence of the recurrence subgraphs.
A pertinent point to note is that in a normalized expression all the
variables are ordered using a consistent ordering of the variable
names in the program; when the same array variable with different
index expressions occur in the same normalized expression (such
as, Z in statement T4), they are ordered according to the variables
appearing in their index expressions (Karfa et al. 2013); this is in
sharp contrast with the method of (Verdoolaege et al. 2012) which
tries out all different permutations for such arrays which occur mul-
tiple times.

Equivalence of recurrence-free subgraphs Had there been recurrence-
free subgraphs in the ADDGs of Figure 3, then those subgraphs
could have been proved to be equivalent by the conventional
ADDG based equivalence checking method of (Karfa et al. 2013).
Basically, for establishing equivalence of recurrence-free sub-
graphs of ADDGs, one does not have to incur the overhead of
identifying basis and induction subgraphs and establish their equiv-
alence in isolation.

Synchronization Checking Next, the thread synchronization
checker module (checkSynch()) takes the C-ADDG model cor-
responding to the transformed program and determines whether
the transformed program has barrier synchronization constructs to
avoid data-races. In the current implementation the tool is capa-
ble of understanding a subset of the OpenMP constructs. Note that
if we ignore the parallel constructs (#pragma’s) in the program
shown in Figure 1(b), i.e., we consider it as a sequential program,
then the two programs in Figure 1 are indeed equivalent; however,
presence of multiple threads without proper synchronization actu-
ally renders them (potentially) non-equivalent. We shall deliberate
on the synchronization issue and data-race detection in Section 5.
Once the source and the transformed programs are found to be
equivalent with respect to the array index spaces and data compu-
tations and the transformed program is found to be free from data-
races, our tool declares that the source and the transformed pro-
grams are equivalent. The algorithm is described in Algorithm 1.

4. The C-ADDG Model and its Computational
Semantics

Let us consider the following generalized loop structure for the
model.
for(i1 = L1; i1 ≤ H1; i1+ = r1)

for(i2 = L2; i2 ≤ H2; i2+ = r2)
.....
for(ix = Lx; ix ≤ Hx; ix+ = rx)

if (C)
S : Z[e1] . . . [ek] =

f(Y1[e
′
1,1] . . . [e

′
1,l1

], . . . , Ym[e′m,1] . . . [e
′
m,lm

]);

A program in single assignment form with a static control flow,
affine indices and bounds, and a valid schedule can be represented
as an ADDG (Shashidhar 2008). An in-depth analysis of the ADDG
model and its associated methodology can be found in (Shashidhar
2008; Karfa et al. 2013); here we present only the essential concepts
required to comprehend the extended model.

DEFINITION 1 (Coloured-ADDG (C-ADDG)). The C-ADDG is a
directed graph G = (V,E,H,L), where the vertex set V = A∪F
and the edge set E = {〈A, f〉 | A ∈ A, f ∈ F}

⋃
{〈f,A〉 | f ∈

F , A ∈ A}. The set A is a set of array nodes and F is a set of
operator and barrier nodes denoted by f and b respectively. Edges
of the form 〈A, f〉 or 〈A, b〉 are called write edges; they capture the
dependence of the left hand side (lhs) array node on the operator
corresponding to the right hand side (rhs) expression. Edges of

the form 〈f,A〉 or 〈b, A〉 are called read edges; they capture the
dependence of the rhs operator on the (rhs) operand arrays.

The loop labeling function L : F → Z associates an integer
number to each operator node.

The function H : F → C marks each operator node in the
C-ADDG a colour from the set C of infinite colours.

While the above definition captures the structure of the graph,
the association of program constructs with various C-ADDG nodes
is defined as follows:

DEFINITION 2 (C-ADDG Program Model). An assignment state-
ment S of the form Z[ez] = f(Y1[e1], . . . , Yk[ek]), where
e1, . . . , ek and ez are respectively the vectors of index expres-
sions of the arrays Y1, . . . , Yk and Z, appears as a subgraph
GS of G, where GS = 〈VS , ES〉, VS = AS

⋃
FS , and

AS = {Z, Y1, . . . , Yk} ⊆ A, FS = {f} ⊆ F and ES =
{〈Z, f〉}

⋃
{〈f, Yi〉, 1 ≤ i ≤ k〉} ⊆ E. The write edge 〈Z, f〉 is

associated with the statement name S. If the operator associated
with an operator node f has an arity k, then there will be k read
edges 〈f, Y1〉, . . . , 〈f, Yk〉. The operator f applies over k argu-
ments which are elements of the arrays Y1, . . . , Yk, not necessarily
all distinct.

The loop labeling function L(f) denotes the innermost loop
body in which the statement corresponding to f belongs. L(f) = 0
indicates that f does not belong to any loop.

A barrier statement is associated with a barrier node b ∈ F .
For a barrier node b, its data transformation is considered to be
identity. At a barrier, for each array node corresponding to an ar-
ray variable defined within that parallel construct, a duplicate ar-
ray node (with the same array name) is created with an intermedi-
ary barrier operator node b.

After defining the program model, we now define the colour
mapping.

DEFINITION 3 (Colour mapping). The colour set C of infinite
colours has two special colours – black and blue – that imposes
the following constraints on the mapping functionH:
(i) the operator nodes (f ) corresponding to statements which are
executed by a single thread are marked with black colour,
(ii) operator nodes corresponding to all statements in a parallel for
construct are marked with a distinct colour,
(iii) a barrier node (b) is marked with blue colour.

We now formalize the notion of the iteration domain.

DEFINITION 4 (Iteration domain of statement S (IS)). For each
statement S within a generalized loop structure with nesting depth
x, the iteration domain IS of the statement is a subset of Zx defined
as

IS = {[i1, i2, . . . , ix] |C∧
x∧

k=1

(Lk ≤ ik ≤ Hk∧∃αk ∈ Z(ik = αkrk

+Lk))}, where, for 1 ≤ k ≤ x, the loop iterators ik are integers, Lk, Hk

are affine expressions over the loop iterators and some integer variables,
and rk are integer constants.

Using the iteration domain, we define the notion of usage and
definition of array variables.

DEFINITION 5 (Definition mapping (SM
(d)
Z )). The definition map-

ping of a statement S describes the association between the ele-
ments of the iteration domain of the statement S and the elements
of its lhs array Z (depicted as a suffix). SM

(d)
Z = IS → Zk s.t.

∀v ∈ IS , v 7→ [eZ,1(v), . . . , eZ,k(v)] ∈ Zk.

The range of the function SM
(d)
Z is called the definition domain

of the lhs array Z, defined as SDZ . So, SDZ = SM
(d)
Z (IS). Due
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#pragma omp parallel
{
#pragma omp for nowait
for (i = 1; i < 100; i++) {
T1: B[i] = A[i] * A[i];
T2: D[i] = g(B[i], B[i-1]);

}
#pragma omp for
for (i = 1; i < 50; i++)
T3: C[i] = B[i]*2;

}//barrier b
#pragma omp parallel for
for (i = 50; i < 100; i++)
T4: C[i] = B[i]*2;

(a)

A

D

B

C B

D C

(b)

T1

T3 b

b T4b

T2

Figure 4. (a) An OpenMP program. (b) Its corresponding C-
ADDG.
to single assignment form, each element of the iteration domain
of a statement defines exactly one element of the lhs array of the
statement. Therefore, the mapping between the iteration domain of
the statement and range of SM

(d)
Z is injective (one-one). Hence,

(SM
(d)
Z )−1 exists.

In a similar way, the usage mapping for each operand array
variable of a statement can be defined as follows.

DEFINITION 6 (Usage mapping (SM
(u)
Yn

)). The nth operand map-
ping of a statement S describes the association between the el-
ements of the iteration domain of the statement S and the ele-
ments of its rhs array Yn; specifically, SM

(u)
Yn

= IS → Zln s.t.
∀v ∈ IS , v 7→ [en,1(v), . . . , en,ln(v)] ∈ Zln .

The range SM
(u)
Yn

(IS) is the operand domain of the rhs array Yn

in the statement S, denoted as SUYn . One element of the operand
array Yn may be used to define more than one element of the array
Z. It means that more than one element of the iteration domain may
be mapped to one element of the operand domain. Hence, SM

(u)
Yn

may not be injective.

5. Data-race Detection
A program is said to satisfy synchronization constraint if all its
executions are free from data-races namely, read after write (RAW),
write after read (WAR) and write after write (WAW) (Hennessy
and Patterson 2012). It is worth noting that for a program in SA
form, WAR and WAW cannot occur. So, in effect, it is sufficient to
show the absence of RAW race condition in the programs which we
consider. Barrier is a well-known synchronization construct, that
forces all the running threads to join. If l is a barrier, it ensures any
write operation defined in statement S prior to l to finish memory
updation before executing statement T posterior to l in the control
flow of a program.

The checkSynch() module checks the existence of a RAW race
condition on C-ADDG as follows:
Let there be operator nodes corresponding to two statements S and
T which are in the same path but @b s.t. H(b) =blue (b is the
barrier node) in between S and T . The module reports a potential
RAW race condition if any of the two rules is satisfied:

R1: L(S) = L(T ) and H(S),H(T ) 6=black and ∃i1, i2 ∈ If
(where f represents the for loop within which S and T appear) s.t.
SM

(d)
A (i1) = TM

(u)
A (i2) ∧ i1 6= i2.

R2:H(S) 6= H(T ).
It may be noted that L(S) = L(T ) implies H(S) = H(T ) al-
though the converse is not true (because there can be multiple for
loops which are executed by a single thread).

We explain these rules using the example shown in Figure 4(a)
and 4(b). The first rule R1 considers a potential RAW race condi-

Algorithm 1 equivalenceChecker(C-ADDG G1, C-ADDG G2)
Inputs: Two C-ADDGs G1 and G2.
Output: Boolean value true if G1 and G2 are equivalent and G2 ad-
heres synchronization constraints, false otherwise; in case of failure,
it reports possible source of non-equivalence or synchronization viola-
tion.
1: if G1 ≡ G2, i.e., the output arrays have identical data computations

and mappings with respect to the input arrays, by the method of (Baner-
jee 2016) then

2: if checkSynch(G2) reports NO RAW-race then
3: return true.
4: else
5: return false and report the path in G2 which violates synchro-

nization constraint.
6: end if
7: else
8: return false and report the subgraph in a C-ADDG which has no

equivalent subgraph in the other C-ADDG.
9: end if

tion when the parallel for-loop comprising of statements T1 and T2
in Figure 4(a) is executed by multiple threads (in a GPU for in-
stance). Here, B[i-1] may not have been written into by statement
T1 of some other thread by the time it is read in statement T2 in
the current thread. The R1-rule states that there are two distinct it-
eration vectors i1 and i2 (with a possibility of them being executed
by different threads) such that some element of A defined in S dur-
ing iteration i1 is used in T during iteration i2. The checkSynch()
does not report a RAW race condition for the first operand B[i] in
statement T2 of Figure 4(a) because no such distinct i1 and i2, as
explained above, can be found but it does so for the second operand
B[i-1]. Programmers typically place a barrier in between T1 and
T2 to avoid this case.

As for the rule R2, consider two statements T1 (green coloured)
and T3 (red coloured) that are in different loop bodies as shown in
Figure 4. The threads computing the values of array B and D will
not wait to join after T1 and T2, but will rather proceed to compute
the values of array C in statement T3; this may result in reading
some element B[i] in T3 before it has been written into in T1.
Once again, a blue barrier node is required in between T1 and T3 in
Figure 4(b) to avoid a potential data-race hazard.

Now, let us revisit the program given in Figure 1(b) whose
corresponding C-ADDG is given in Figure 3(b); for this example,
potential data-race hazards will be detected for the statement pairs
〈T1, T3〉 and 〈T1, T4〉, and hence the two programs in Figure 1
will be declared as possibly non-equivalent.

6. The Overall Equivalence Checking Method
The overall equivalence checking method is shown in Algorithm 1.
The soundness and the complexity of this algorithm is provided
next.

6.1 Soundness
Program verification being an undecidable problem, completeness
of a verification procedure cannot be guaranteed; hence, due to
page limitation, here we provide only a sketch of the proof of
soundness of our method. The following lemmas are in order before
the final proof is presented.

LEMMA 1. If two ADDGs are declared equivalent by the equiva-
lence checker of (Banerjee 2016), then they are indeed equivalent.

Proof: The detailed proof of this lemma can be found in (Banerjee
2016). �
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LEMMA 2. If two statements in a parallel for loop are free from
R1 RAW race condition, then there cannot be any (other) RAW race
condition between these two statements.

Proof: We prove this lemma by the method of contradiction. So, let
there be an array D which is defined in statement P and used in
statement Q within the same for loop f ′ for which there does exist
a RAW race condition.

First possibility is there may be a barrier b between the state-
ments P and Q due to which R1 RAW race free condition was
reported. Obviously, due to b, the elements of D written into in
statement P across all iterations of f ′ must have been updated be-
fore statement Q is executed in any iteration of f ′. (contradiction)

We consider the next possibility. Substituting A by D, S by
P , T by Q, and f by f ′ in the condition R1 we get, ∃i1, i2 ∈
If ′(= IP = IQ) s.t. PM

(d)
D (i1) = QM

(u)
D (i2) ∧ i1 6= i2. which

must have been found to be false by checkSynch(). Therefore, either
PM

(d)
D (i1) = QM

(u)
D (i2) or i1 6= i2 is evaluated as false. Now,

if the first conjunct is considered to be false then that implies
PM

(d)
D (i1) 6= QM

(u)
D (i2) which is a scenario where there is

no define-use relationship and therefore no possibility of a RAW
race condition; otherwise, if we consider the second conjunct to
be false then that implies i1 = i2 which must be executed by a
single thread and hence again there is no possibility of RAW race
condition. (contradiction) �.

LEMMA 3. If two statements in two different parallel for loops are
free from R2 RAW race condition, then there cannot be any (other)
RAW race condition between these two statements.

Proof: We again prove this lemma by method of contradiction. So,
let there be a RAW race condition for an array, A say, which is
defined in statement P in some parallel for loop and latter used in
statement Q in a different parallel for loop, i.e., PDA

⋂
QUA 6=

∅. Since checkSynch() found R2 to be false, and since the oper-
ator nodes corresponding to P and Q are differently coloured,
checkSynch() must have found a blue barrier node b between the
operator nodes for P and Q. The presence of b will enforce a bar-
rier and hence there cannot be a RAW race condition between state-
ments P and Q. (contradiction) �

THEOREM 1. If Algorithm 1 terminates in step 3 then the two C-
ADDGs are indeed equivalent and the transformed ADDG is free
from synchronization constraint violation.

Proof: It is to be noted that Algorithm 1 can erroneously output
true only in one of the following cases: (i) the checker erroneously
declares two actually non-equivalent C-ADDGs as equivalent in
step 1 – this is impossible by Lemma 1; (ii) the checker erroneously
declares the C-ADDG corresponding to a parallel program to sat-
isfy synchronization constraint in step 2 – this is impossible by
Lemma 2 and Lemma 3. �

6.2 Complexity Analysis
In this subsection, we concisely analyze the worst case time com-
plexity of Algorithm 1. The time complexity for finding data-race
condition is O(V + E) = O((a + s) + (a + s × t)), where the
number of arrays in each C-ADDG is a, the number of statements
(write edges) is s, and the maximum arity of a function is t. The
costliest step in the method of (Banerjee 2016) is finding the transi-
tive dependence (among multiple statements) and the union of the
mappings for which the ISL tool (Verdoolaege 2010) has been used,
whose worst case time complexity is the same as the deterministic
upper bound on the time required to verify Presburger formulae,
i.e., O(22

2n

), where n = O(t × a) is the length of a Presburger
formula. Thus, the worst case time complexity of Algorithm 1 is

Table 1. Transformations applied
Benchmark Transformations
DCT (discrete cosine transform) Loop tiling, speculative code

motion
LU (matrix LU decomposition) Loop tiling, loop fission
FDTF-2D (finite difference time domain) Loop tiling, boosting down
FLOYD (shortest path calculation) Loop tiling
NW (Needleman Wunsch algorithm) Loop fission, constant folding
K-MEANS (clustering algorithm) Loop reversal, partial evaluation
MATMUL (matrix multiplication) Loop reordering, loop tiling
CFD (computational fluid dynamics) Loop tiling, loop fission

Table 2. Results for sequential to parallel benchmarks
Benchmark Original Trans C-ADDG (sec) DFG EC Our EC

#Ar #Op Dep #Ar #Op Dep #Par Orig Tran Time (sec) Time (sec)
DCT 5 5 3 5 5 6 14 0.53 0.54 × 1.43
LU 1 2 3 3 8 5 10 0.37 0.40 1.73 1.21
FDTD-2D 3 4 3 5 16 5 16 0.44 0.46 × 1.32
FLOYD 1 1 3 3 3 5 5 0.34 0.32 0.71 0.95
NW 6 8 2 8 20 4 4 0.97 1.30 × 4.22
K-MEANS 4 10 3 5 12 3 4 1.02 1.43 × 3.78
MATMUL 3 2 3 3 2 4 3 0.34 0.38 0.40 0.96
CFD 6 12 2 6 16 4 8 1.12 1.33 2.16 4.56

O(22
2n

); the worst case behaviour, however, is never exhibited in
our experiments.

7. Experimental Results
The equivalence checking procedure has been implemented in C
on a 3.0-GHz Intel R© CoreTM2 duo CPU machine with 2-GB RAM
and satisfactorily tested on several parallel benchmarks taken from
PLuTo (Acharya and Bondhugula 2015) and Rodinia (Che et al.
2009) benchmark repositories. Table 1 depicts the benchmarks
(first four are from PLuTo and the next four are from Rodinia) and
corresponding transformations applied on those benchmarks. It is
to be noted that other than the loop and arithmetic transformations
(as mentioned in Table 1), loop parallelization was also carried out
for each of our benchmarks.

For the first four benchmarks, the translations are carried
out by PLuTo (Acharya and Bondhugula 2015) compiler where
the original (sequential) program is fed to the PLuTo compiler
to obtain the transformed behaviour, followed by application of
some human-guided transformations. For the remaining bench-
marks, only human-guided transformations are applied. The origi-
nal and the transformed programs are then fed into our equivalence
checker.

Table 2 characterizes the original and the transformed C-ADDG
models in terms of their array nodes, operator nodes, maximum
depth of loop nestings and the number of parallelized for loops
in the transformed program. The next two columns respectively
record the C-ADDG construction time for the original and the
transformed programs. The last two columns compare the end-
to-end equivalence checking (EC) time taken by the data-flow
graph (DFG) equivalence checking tool reported in (Verdoolaege
et al. 2012) and our equivalence checking tool (including the C-
ADDG construction time). Note that the tool of (Verdoolaege et al.
2012) reports non-equivalence of programs (indicated by ×) DCT,
FDTD-2D, NW and K-MEANS, whereas our tool is able to es-
tablish the equivalence. The reason for this is that the tool (Ver-
doolaege et al. 2012) cannot handle arithmetic transformations
and reports non-equivalence for cases where such transformations
have been applied. Furthermore, we observed that the tool of (Ver-
doolaege et al. 2012) is able to establish equivalence in lesser time
because: (a) our tool invokes ISL (Verdoolaege 2010) as a separate
process whereas, ISL comes as an integrated package within (Ver-
doolaege et al. 2012) itself, (b) the tool of (Verdoolaege et al. 2012)
ignores the parallel constructs since it does not perform any check
for synchronization constraint.
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Table 3. Equivalence checking of faulty translations
Error Benchmark #Op chngd C-ADDG covered
Type1 LU, DCT 4, 2 50%, 33%
Type2 NW 2 40%
Type3 K-MEANS, CFD 2, 3 20%, 33%

Additionally, we take the original behaviours and manually in-
ject the following three types of errors in the behaviours in order to
check the efficacy of the equivalence checker in detecting incorrect
parallelizing code transformations.
Type1 Computation error: In LU and DCT, we introduced a false
data dependency from one branch of an if-then-else block to the
block preceding it. This is a typical case of non-uniform boosting
up code motion.
Type2 Index space error: In NW we have wrongly written the loop
iterators to enforce erroneous loop boundary calculation.
Type3 Synchronization error: We have injected a synchroniza-
tion constraint violation by placing dubious nowait signals in
K-MEANS and CFD benchmarks. Table 3 depicts the type of the
error along with the benchmarks in which it has been introduced,
the number of operations changed in the transformed program and
the percentage of the transformed C-ADDG covered before the
error is revealed by our equivalence checker.

Furthermore, some hand-fabricated code snippets were tested
upon for R1 and R2 RAW race conditions; these test cases were
constructed from the examples provided in (Xu 2015; Breshears
2009). Our tool terminated reporting possible non-equivalence in
all these cases; the details of these experiments is omitted for page
limitation.

8. Related Work
Transformation of programs for parallel execution has gained re-
newed focus in recent times. Recent body of literature reports var-
ious techniques such as graph partitioning (Andión et al. 2013),
polyhedral loop transformation (Jimborean et al. 2014), affine loop
transformation in PLuTo (Acharya and Bondhugula 2015). These
attempts have mostly focused on improving the performance of the
transformed program but have not analyzed if the transformation
preserves the semantics.

There are two well known verification techniques in general.
First, the property verification technique typically focuses on cer-
tain aspects of the system, such as potential race conditions, safety
property, liveness etc. Second, the behavioural verification on the
contrary, checks the computational semantics of the system for-
mally. Unlike property verification, which is performed through
model checking or theorem proving, behavioural verification is car-
ried out by equivalence checking. As our main target is to vali-
date semantics preserving transformations, our verification method
falls under equivalence checking category, which was pioneered by
Pnueli (Pnueli et al. 1998), followed by (Necula 2000), and (Kundu
et al. 2008). This body of research primarily focused towards struc-
ture preserving transformation of scalar programs. The body of lit-
erature such as (Chang et al. 2005a; Necula and Gulwani 2005;
Rosu 2015) reports several validation techniques using sequen-
tial models of computation for scalar programs using bisimulation
based equivalence; therefore they cannot validate programs with
different control structure. Subsequently, the work by (Banerjee
et al. 2014a) proposes a path based validation method which can
validate programs with modified control structures. However, these
methods can handle only scalar programs; thus making them un-
suitable for array-intensive programs and several loop parallelizing
transformations.

A bisimulation method for concurrent program verification was
first reported by Milner et al. (Leifer and Milner 2000), which can-

not handle parallel code motion transformations beyond the basic
block boundaries. The work by (Raudvere et al. 2008) performs a
piece-wise verification of every non-semantic preserving transfor-
mation and then performs a global analysis of the entire program.

There have been several attempts of property verification of
a parallel program. In (Chen et al. 2003), verification is done
by translating the program into PROMELA description which
SPIN model checker (Holzmann 1997) can analyze. A recent work
by (Leung et al. 2012) verifies the control-flow of a GPU kernel
considering all possible interleaving statically, without considering
the data path. The work by (Li and Gopalakrishnan 2010) reports
a symbolic model checking technique for a real life GPU kernel to
verify data-race conditions, incorrect synchronization barriers and
possible bank conflicts. Parametrized symbolic equivalence check-
ing between two CUDA programs is reported in (Li et al. 2012).

Mateev et al. (Menon et al. 2003) proposed a fractal symbolic
analysis (which was used to verify the C11 compiler (Vafeiadis
et al. 2015)) for verification of loop transformations. However,
this technique cannot handle data parallel loop transformations
for both scalar and array handling programs. A path based vali-
dation method for validating data parallel loop transformations is
reported in (Bandyopadhyay et al. 2015) which also cannot han-
dle data parallel loop transformations for array handling programs.
The work by (Chang et al. 2005b) can validate loop transforma-
tion using symbolic approach. However, this method cannot han-
dle recurrence as well as several arithmetic transformations. Array
data dependence graph, first proposed by Sashidhar et al. (Shashid-
har et al. 2005), is one of the popular models for array-intensive
programs. Our approach is based on this representation. Several
validation techniques for loop transformations are reported using
ADDG model in (Shashidhar et al. 2005; Karfa et al. 2013). Sim-
ilar to (Chang et al. 2005b), these attempts also cannot validate
programs with recurrences. Verdoolaege et al. (Verdoolaege et al.
2012) proposes a DFG based bisimulation method where validation
of loop transformation can handle recurrences. However, this work
cannot handle arithmetic transformations.

For parallel programs, thread synchronization is an important
aspect for correctness. An early work (Flanagan et al. 2002) pro-
poses a new programming model and a static checker to analyze
various thread synchronization issues. A similar work by (Deng
et al. 2002) also proposes an approach to synthesize synchroniza-
tion implementation from a high level specification. Recently, the
work (Sharma et al. 2015) proposes a property verification tech-
nique for the correctness of warp-specialized kernels in terms of
deadlock-freedom, barrier recycling and shared memory data-race
freedom.

9. Conclusion and Future Directions
In this paper we proposed a novel approach to verify the equiva-
lence of parallelizing loop transformation based on computational
semantics. Our approach, based on the C-ADDG model, can eval-
uate arithmetic expressions of array variables, statements that are
not in SA form, as well as recurrence relations. We have proposed
a technique to verify thread synchronization after a data parallel
loop.

We have considered benchmarks which have been transformed
by PLuTo compiler, as well as a few from Rodinia benchmark suite,
transformed by human experts and have successfully showed them
to be equivalent by our method. In addition, deliberately injected er-
rors such as, computation errors, loop boundary errors and synchro-
nization errors, were also correctly identified as (possibly) faulty
transformations by our tool. Program verification being an unde-
cidable problem, while reporting possible non-equivalence, our tool
also produces strong hints (in terms of possibly erroneous program
snippets) which may be used for program correction by the user.
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Our current approach has a few limitations. Firstly, our equiv-
alence checking method does not presently support co-induction
(mutual recurrence) and nested recurrence. While the former can
be tackled by tracking SCCs with multiple recurrence array ver-
tices, the latter can be alleviated by incorporating a recursive call
in our equivalence checking algorithm such that the innermost re-
currence is first checked for equivalence before moving on to outer
recurrences – these schemes are yet to be implemented in our tool.

Our method cannot verify programs if the recurrence in the orig-
inal program is replaced by some iterative code Without recurrence
in the transformed program or vice versa since each recurrence
subgraph in the original program is paired with a recurrence sub-
graph from the transformed program by our equivalence checker.
However, it may be worth noting that we have not found any au-
tomated code optimizer to apply such transformation. Above men-
tioned scenarios are the possible improvements of our current work
which we intend to take up in future.
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