
The Key to a Data Parallel Compiler
Aaron W. Hsu

Indiana University, USA
awhsu@indiana.edu

Abstract
We present a language-driven strategy for the construction of com-
pilers that are inherently data-parallel in their design and implemen-
tation. Using an encoding of the inter-node relationships between
nodes in an AST called a Node Coordinate Matrix, we demonstrate
how an operator called the Key operator, that applies a function
over groupings of array cells grouped and ordered by their keys,
when used in conjunction with a Node Coordinate Matrix, permits
arbitrary computation over sub-trees of an AST using purely data-
parallel array programming techniques. We discuss the use of these
techniques when applied to an experimental commercial compiler
called Co-dfns, which is a fully data-parallel compiler developed
using the techniques discussed here.
Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors̟Compilers
Keywords APL, Parallel, Compilers, Key, Node Coordinates

1. Introduction
Compilers represent a peculiar class of tree/graph algorithms that
greatly alter the underlying structure of the input graph into some-
thing very diferent in structure, but equivalent by some measure
of interpretation. These algorithms are widely applicable, but have
stubbornly resisted a general approach to parallelization.Most com-
pilers are single-threaded or make very limited use of parallelism in
an ad hoc way. The design and analysis of compilers almost univer-
sally deals with compilers as recursive traversals over ASTs. Such
formulations usually include heavy reliance on branching, recur-
sion, and sometimes very sophisticated control low in practice. All
of this contributes to make it diicult to efectively parallelize such
algorithms onto architectures that are sensitive to branching and re-
cursion, such as ”P”PUs or highly vectorized CPUs.

There has been some success in eiciently executing parts of
a compiler on the ”PU, such as the parser [8], tokenization [4],
and certain compiler analyses [21, 22]. However, a generalized
framework or strategy for parallel compilation remains elusive. One
of themajor diiculties is the recursive and highly branch dependent
nature of the algorithms. These present challenges that must be
overcome in vector-centric architectures.

We present a language-driven strategy for creating an inherently
parallel compiler. We select a set of well known data-parallel prim-
itives, and then restrict program construction to the composition

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for proit or commercial advantage and that copies bear this notice and
the full citation on the irst page. Copyrights for components of this work owned by others than the author(s) must be
honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists,
requires prior speciic permission and/or a fee. Request permissions from Permissions@acm.org.
ARRAY’16, June 13-17 2016, Santa Barbara, CA, USA
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-4384-8/16/06…$15.00
DOI: http://dx.doi.org/10.1145/2935323.2935331

of these operations into functions, without any forms of non-linear
control low, such as branching, recursion, or pattern matching. Pro-
grams constructed in such a style are data-parallel by construction.
A key problem to the construction of compilers in such a restricted
environment is dealing with the inherently recursive and nested
structure of the AST. By working over a linearized representation
of the AST as a matrix, combined with a structure we call a Node
Coordinate Matrix, and using data-parallel primitives, we are able
to tame the recursive and nested nature of the AST into something
that can be processed handily using only data-parallel, data-low
programs, without requiring branching or other forms of non-data
parallel control low. The methods are general and independent of
the language being compiled.

In the following sections we describe the core methods and id-
ioms surrounding the AST encoding, construction of the Node Co-
ordinate Matrix, and the use of these structures in handling nested,
recursive AST relationships. This enables us to perform arbitrary
computation over arbitrary sub-trees of an AST selected by parent-
child relationships in the manner often seen in compiler transfor-
mations. These ideas have been further implemented and tested
through the implementation of a complete data-parallel by con-
struction compiler, called Co-dfns, that compiles a lexically scoped,
functionally oriented dialect of APL with nested functions [13, 14].
The compiler targets both the ”PU and the CPU, and its core is im-
plemented in this pure, restricted language that uses only function
composition over data-parallel primitives.

Contributions
• We describe a method of computing over arbitrary sub-trees
selected by their parent-child relationships in a data-parallel
manner using the Key operator and Node Coordinates.

• We situation this technique into a broader, language-driven strat-
egy for compiler construction that enables the development of
parallel by construction compilers that are high-level in their
implementation, exceptionally concise, and independent of the
language being compiled.

• We provide analysis of these techniques as used in a commer-
cial compiler project called Co-dfns and report on the results,
including the overall architecture of the compiler, the uses of
these techniques within the compiler, and the demonstration of
these techniques applied to two speciic compiler passes.

2. Notational Conventions
“or space and convenience, we use a concise array notational con-
vention to describe our techniques and approach. The notation is
executable and well established in the array community (it is a lim-
ited subset of APL). This is in fact the same notation used within the
Co-dfns compiler itself, whose source code is available online and
provides a complete example of the use of both these algorithms
and this notation in the large. All code examples are given in the
following form:

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ARRAY’16, June 14, 2016, Santa Barbara, CA, USA
ACM. 978-1-4503-4384-8/16/06...$15.00
http://dx.doi.org/10.1145/2935323.2935331

32

5×3+4 ⍝ Right to Left ⍀valuation
35

That is, we indent the expression by 6 spaces, followed by the value
of the expression without indent. All expressions are evaluated right
to left and all function application is inix; that is, a function appli-
cation may apply a function (such as +) to one or two arguments,
called monadic and dyadic application respectively, which must ap-
pear on the right and (optionally) on the left of the function name,
as in the above example. Tables 2 to 4 provide a listing of all of the
primitives used in the Co-dfns compiler, a selection of which are
used here.

We separate out higher-order functions called operators, from
functions that operate over arrays that we call simply functions.
Operators take a function argument or two, and bind more strongly
to the left than the right. An operator may take one or two operands,
either on the left, or on the right and left, and will return a function.
In the following example, we apply the reduction operator (/) to a
function created using the composition operator (∘), as an example:

+/1 2 3 4 5
15

1+-(2+-(3+-(4+-(5))))
3

1 +∘- 2 +∘- 3 +∘- 4 +∘- 5
3

+∘-/1 2 3 4 5
3

We introduce notation as needed throughout the exposition, so the
reader is encouraged to refer to the tables as necessary to recall
particular operations.

3. Data Parallel Sub-tree Computation
Computing over sub-trees normally involves recursing down the
structure of theAST, identifying the root nodes of each sub-tree, and
then dispatching to a handler for that sub-tree, which will continue
the recursion at that point and return the modiied tree, which will
replace the previous sub-tree. More complicated transformations
may involved moving the root nodes around in the tree or other
large, distant structural modiications.

We divide the work of sub-tree computation into three basic
phases: we maintain a node coordinate with each node that uniquely
identiies it relative to others, we use these coordinates to select and
group nodes for work as a single sub-tree, and then we operate over
these groupings using the Key operator (⌸).

3.1 Encoding the AST
We represent the AST as a 3 column matrix with one row per node
in the tree. The irst column contains the inter-node relationships in
the form of a depth vector. The second column is a vector of the
node types, while the third contains the ̧valuę of the node, such
as the name in a variable.

Wewill use the following two running examples throughout. The
F tree is an example nested function, while the ⍀ tree is an example
nested expression.

F(f) ⍀(v)
│ ┌───────┼──────┐
⍀ ⍀ P(÷) ⍀

┌─┴─┐ ┌────┼────┐ ┌────┼────┐
F A ⍤(a) P(+) ⍤(b) ⍤(c) P(×) ⍤(d)
│ │
⍀ N(7)

┌───┼────┐
⍤(⍵) P(+) ⍤(⍵)

The depth vectors for these trees we name Fd and ⍀d, respectively:

Fd←0 1 2 3 4 4 4 2 3
⍀d←0 1 2 2 2 1 1 2 2 2

The node types we call Ft and ⍀t:

Ft←'F⍀F⍀⍤P⍤AN'
⍀t←'⍀⍀⍤P⍤P⍀⍤P⍤'

And inally, we call the values vectors Fv and ⍀v:

Fv←'f' 0 0 0 '⍵' '+' '⍵' 0 7
⍀v←'v' 0 'a' '+' 'b' '÷' 0 'c' '×' 'd'

We combine these to form the respective AST matrices. We write
A,B to catenate arrays A and B along their last axes and ⍪A to turn
a vector into a 1-column matrix. Thus, the two AST matrices are
given by the following expressions:

Fd,Ft,⍪Fv │ ⍀d,⍀t,⍪⍀v
0 F f │ 0 ⍀ v
1 ⍀ 0 │ 1 ⍀ 0
2 F 0 │ 2 ⍤ a
3 ⍀ 0 │ 2 P +
4 ⍤ ⍵ │ 2 ⍤ b
4 P + │ 1 P ÷
4 ⍤ ⍵ │ 1 ⍀ 0
2 A 0 │ 2 ⍤ c
3 N 7 │ 2 P ×

│ 2 ⍤ d

The depth vector stores all edge information for the tree, but this
information requires non-local access to utilize, such as traversing
potentially the entire vector to determine the children of a speciic
node. Node Coordinates ix this issue.

3.2 Node Coordinates
Every node in an AST has a Node Coordinate, named because a
coordinate is a precise location in a space. We can imagine all the
nodes arranged inside some multi-dimensional space, leading to a
speciic set of node coordinates. Many such arrangements exist, of
varying usefulness. In our case, any arrangement should allow us to
answer the following questions about any two arbitrary nodes in a
tree:

1. Are the nodes the same?
2. Are they siblings?
3. Does one appear ̧earlier̨ in the tree?
4. Are they at the same depth?
5. Is one an ancestor of another?

In short, we care about the relative position of each node in a tree
relative to any other. We deine a node coordinate as follows.

A node coordinate is a vector whose length is the depth of the
tree. Its elements are natural numbers. The count of non-zero ele-
ments in the vector is equal to the depth of that node in the tree. All
zero elements appear after the non-zero elements. That is, a coordi-
nate is zero-padded on the right. When ordered lexicographically,
the nodes for each coordinate appear in order according to a depth-
irst pre-order traversal of the tree. Each coordinate uniquely iden-
tiies a single node. Every ancestor’s coordinate is a preix of any
child’s coordinate, ignoring zeros. “rom the above it follows that
every node is lexicographically greater than its left sibling and dif-
fers from it by exactly one non-zero element, and that this element
is the last non-zero element in the coordinate.

33

3.2.1 Constructing Node Coordinates
We construct the Node Coordinate Matrix from the depth vector,
thereby encoding the depth vector into a more useful format. The
matrix has N rows and ⌿ columns, where N is the node count and ⌿
is the depth of the tree.

Wewritef⍺A to reduce the irst axis ofA using functionf. Thus,
+⍺⍤ is the sum of the elements in vector ⍤. The function x⌈y gives
the maximum of its two arguments. We compute the depth of each
tree as follows:

1+⌈⍺Fd
5

1+⌈⍺⍀d
3

We can obtain the ordered sequence by writing ⍳n:

⍳3
0 1 2

So the depths of all nodes that appear in the depth vectors is thus:

⍳1+⌈⍺Fd
0 1 2 3 4 5

⍳1+⌈⍺⍀d
0 1 2

The function table or outer product of f over vectors ⍣ and ⍤ is
written ⍣ ∘.f ⍤ giving a ⍣ ⍤ shaped matrix as a result. Thus,
(⍳3)∘.×⍳3 gives a small multiplication table:

(⍳3)∘.×⍳3
0 0 0
0 1 2
0 2 4

If we use = instead, we have a Boolean identity matrix:

(⍳3)∘.=⍳3
1 0 0
0 1 0
0 0 1

If we use ∘.= on the depth vector and its set of depths instead, we
see an expanded Boolean representation of the depth vector:

Fd∘.=⍳1+⌈⍺Fd
1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 1
0 0 0 0 1
0 0 1 0 0
0 0 0 1 0

⍀d∘.=⍳1+⌈⍺⍀d
1 0 0
0 1 0
0 0 1
0 0 1
0 0 1
0 1 0
0 1 0
0 0 1
0 0 1
0 0 1

These matrices let us see the nesting features of each tree more
visually, but also suggest another step. We can compute a sum scan
with +⍻, also called a preix sum, along the irst axis. Applying this
function on the above matrices leads to an interesting result:

+⍻Fd∘.=⍳1+⌈⍺Fd
1 0 0 0 0
1 1 0 0 0
1 1 1 0 0
1 1 1 1 0
1 1 1 1 1
1 1 1 1 2
1 1 1 1 3
1 1 2 1 3
1 1 2 2 3

+⍻⍀d∘.=⍳1+⌈⍺⍀d
1 0 0
1 1 0
1 1 1
1 1 2
1 1 3
1 2 3
1 3 3
1 3 4
1 3 5
1 3 6

These matrices are lexicographically ordered, and each ancestor
shares a common preix with its descendants. They are also unique
coordinates. Only the spurious digits at the end of each coordinate
prevent these matrices from meeting all our requirements for valid
node coordinates.

The expression⍤ f⎌¯1⊢M appliesf to corresponding elements
of ⍤ and rows of M:

3 3⍴⍳9
0 1 2
3 4 5
6 7 8

(⍳3)+⎌¯1⊢3 3⍴⍳9
0 1 2
4 5 6
8 9 10

If n↑⍤ takes the irst n elements of ⍤, then we can obtain coordinate
matrices from the preix sums by noting that the spurious digits
all come after column d+1 where d is the depth corresponding
to that coordinate. The following gives a complete expression for
computing a node coordinate matrix from a depth vector, shown
using Fd and Fe:

⊢Fc←(1+Fd)↑⎌¯1⊢+⍻Fd∘.=⍳1+⌈⍺Fd
1 0 0 0 0
1 1 0 0 0
1 1 1 0 0
1 1 1 1 0
1 1 1 1 1
1 1 1 1 2
1 1 1 1 3
1 1 2 0 0
1 1 2 2 0

⊢⍀c←(1+⍀d)↑⎌¯1⊢+⍻⍀d∘.=⍳1+⌈⍺⍀d
1 0 0
1 1 0
1 1 1
1 1 2
1 1 3

34

1 2 0
1 3 0
1 3 4
1 3 5
1 3 6

A careful study of the deinition of a node coordinate and the
above construction should reveal why this works. Intuitively, we
are creating a multi-dimensional space or a number system in which
each digit place or dimension contains or circumscribes a smaller
space in which are contained all the descendant nodes that appear
lower in the tree. Each coordinate is a sort of special path through
the tree encoded to have desirable properties relative to other paths.
3.2.2 Operations on Node Coordinates
The simplest operation over a node coordinate is to extract the depth
of the node. The dyadic expression C⍳0 inds the irst occurrence of
0 in C and returns the index of that occurrence. Thus, we compute
the depth of a node as follows:

C←1 1 2 0 0
¯1+C⍳0

2

In many compiler passes, we primarily care about which nodes are
ancestors of other nodes. To determine whether one node is a child
of another, we compute whether one node is a preix of the other,
ignoring zeros. We write (f g h) to represent the composition of
functions f, g, and h as a function train. “unction trains obey the
following equivalences, where A and B are arrays.
A(f g h)B ←→ (A f B) g (A h B)
A(0 f h)B ←→ 0 f (A h B) ⍝ Constant Case
A(f g)B ←→ f (A g B)

With this, we write a function to compute whether a given coordi-
nate preixes another.

P←1 1 0 0 0
C(=∨0=⊢)P

1 1 1 1 1
∧⍺C(=∨0=⊢)P

1

The above determines whether P is an ancestor to C. The logical
functions =, ∧, and ∨ are all extended point-wise over arrays. The
function ⊢ returns its right argument. The function (=∨0=⊢) reads
as, ̧equal or a zero right argument.̨ We take this point-wise opera-
tion and reduce it with ∧⍺ (“or All). This pattern is a special case of
inner product, written f.g. “or example, +.× is matrix multiplica-
tion. We transform our reduction and Boolean function to a single
predicate with the inner product operator:

C∧.(=∨0=⊢)P
1

The use of inner product extends to cases where C or P are
matrices. “or our examples, we want to lift the functions and latten
expressions, so we will select the F nodes and ⍀ nodes, respectively,
as our parent/ancestor nodes in Fp and ⍀p. ”iven a boolean vector
B⍤, the expression B⍤⍺M selects rows from M based on the non-zero
elements of B⍤.

⊢Fp←('F'=Ft)⍺Fc
1 0 0 0 0
1 1 1 0 0

⊢⍀p←('⍀'=⍀t)⍺⍀c
1 0 0
1 1 0
1 3 0

We could useFp and⍀p to compare againstFc and⍀c to determine
which nodes belong to which parent in Fp or ⍀p, but our preix
function returns 1 when C≡P. Instead, we drop the last non-zero
element from each coordinate. This will permit matching against
all ancestors, but not against itself. We use the depth vector and
the Take (↑) function to take all but the last non-zero element. We
extend the resulting array with an extra zero column to ensure we
have a compatible shape.

⊢Fcp←(Fd↑⎌¯1⊢Fc),0
0 0 0 0 0
1 0 0 0 0
1 1 0 0 0
1 1 1 0 0
1 1 1 1 0
1 1 1 1 0
1 1 1 1 0
1 1 0 0 0
1 1 2 0 0

⊢⍀cp←(⍀d↑⎌¯1⊢⍀c),0
0 0 0
1 0 0
1 1 0
1 1 0
1 1 0
1 0 0
1 0 0
1 3 0
1 3 0
1 3 0

We use Fcp and ⍀cp to determine the F and ⍀ ancestors for each
node (⍉A transposes A):

Fcp∧.(=∨0=⊢)⍉Fp
0 0
1 0
1 0
1 1
1 1
1 1
1 1
1 0
1 0

⍀cp∧.(=∨0=⊢)⍉⍀p
0 0 0
1 0 0
1 1 0
1 1 0
1 1 0
1 0 0
1 0 0
1 0 1
1 0 1
1 0 1

In the above, the closest ancestor is the rightmost 1 in each row.
We can extract the column number of the rightmost 1 by replacing
each 1 with its column number and selecting the maximum of each
row with ⌈/. “or space we will show only the ⍀ example. In the
following, ⍤×⎌1⊢M gives a matrix where each row is given by
⍤×i⌷M where i⌷M is the ith row of M.

(⍳3)×⎌1⊢⍀cp∧.(=∨0=⊢)⍉⍀p
0 0 0
0 0 0
0 1 0

35

0 1 0
0 1 0
0 0 0
0 0 0
0 0 2
0 0 2
0 0 2

⊢⍀i←⌈/(⍳3)×⎌1⊢⍀cp∧.(=∨0=⊢)⍉⍀p
0 0 1 1 1 0 0 2 2 2

We use these column numbers to index into ⍀p to obtain an ancestor
matrix where the node coordinate of the closest ancestor is given for
each node, one per row. The expression I⌷⎌0 2⊢M gives a matrix,
one row per index in I, consisting of rows of M selected by row
indices in I.

⊢⍀k←⍀i⌷⎌0 2⊢⍀p
1 0 0
1 0 0
1 1 0
1 1 0
1 1 0
1 0 0
1 0 0
1 3 0
1 3 0
1 3 0

At this point we have two values, ⍀k and Fk, which indicate the
closest containing node that we care about for each node in the tree,
using its node coordinate.

Fi←⌈/(⍳2)×⎌1⊢Fcp∧.(=∨0=⊢)⍉Fp
⊢Fk←Fi⌷⎌0 2⊢Fp

1 0 0 0 0
1 0 0 0 0
1 0 0 0 0
1 1 1 0 0
1 1 1 0 0
1 1 1 0 0
1 1 1 0 0
1 0 0 0 0
1 0 0 0 0

We use these keys to compute over the AST, particularly for func-
tion lifting and expression lattening as demonstrated in the next
section. The repeating pattern is to leverage node coordinates and
array operations to do stackless reasoning about inter-node relation-
ships. This pattern occurs often in our compiler and is particularly
useful to enable straightforward data-parallel transformations over
an AST.

3.3 The Key Operator
“irst introduced in the J language [15], the Key operator (written
⌸) is central to our strategy for compilation. It allows us to use
the Node Coordinates to their full efect. The expression K f⌸ M
groups rows of M by their corresponding keys in K and computes
k f m for each unique key k in K and the matrix m of rows of M
with key k. The corresponding rows of matrices K and M form key-
value pairs. Let’s compute a histogram using Tally (≢) and Key (⌸):

10⍴5
5 5 5 5 5 5 5 5 5 5

⊢X←?10⍴5
1 1 4 0 1 3 1 1 2 1

≢⍳5
5

X(⊣,(≢⊢))⌸X
1 6
4 1
0 1
3 1
2 1

To understand a bit better how the Key operator applies its function,
consider the function {⍺ ⍵} which returns the pair of its right and
left arguments. If we apply it to the same value as above, we get the
following:

X{⍺ ⍵}⌸X
1 1 1 1 1 1 1
4 4
0 0
3 3
2 2

In our case, we use either Fk or ⍀k as our keys applied to the
corresponding AST. We also will drop of the irst row in each AST
using 1↓ since this node ̧contains̨ everything. In a complete AST
this is usually the Module boundary node which contains the entire
set of functions and values in the module.

4. Case Studies
The following compiler passes are found in any compiler from a
nested function, nested expression language to a language without
nested functions or expressions. They were the chief motivating
examples for developing the techniques presented above as a part
of developing the Co-dfns compiler, and represent a challenging
problem to data-parallel compilation without the above techniques,
but fall out almost efortlessly once the above patterns are available.

4.1 Function Lifting
If we use the Key operator with Fk, we get the following (the
monadic use of ↓ converts Fc from a matrix to a vector of vectors):

(1↓Fk){⍺ ⍵}⌸1↓Fd,Ft,Fv,⍪↓Fc
┌─────────┬─────────────────┐
│1 0 0 0 0│┌─┬─┬─┬─────────┐│
│ ││1│⍀│0│1 1 0 0 0││
│ │├─┼─┼─┼─────────┤│
│ ││2│F│0│1 1 1 0 0││
│ │├─┼─┼─┼─────────┤│
│ ││2│A│0│1 1 2 0 0││
│ │├─┼─┼─┼─────────┤│
│ ││3│N│7│1 1 2 2 0││
│ │└─┴─┴─┴─────────┘│
├─────────┼─────────────────┤
│1 1 1 0 0│┌─┬─┬─┬─────────┐│
│ ││3│⍀│0│1 1 1 1 0││
│ │├─┼─┼─┼─────────┤│
│ ││4│⍤│⍵│1 1 1 1 1││
│ │├─┼─┼─┼─────────┤│
│ ││4│P│+│1 1 1 1 2││
│ │├─┼─┼─┼─────────┤│
│ ││4│⍤│⍵│1 1 1 1 3││
│ │└─┴─┴─┴─────────┘│
└─────────┴─────────────────┘

Notice that we have now grouped all of the relevant parts of the
tree according to which nodes would appear in their respective func-
tions after lifting. Refer to the original lifting example in the intro-
duction to verify this. Indeed, the second row in the above example

36

Pass Description Core Traversal Pattern Uses coordinates?
Record Node Coordinates Adds a newield to each node containing that node’s node

coordinate.
Outer Product/Scan Yes

Record “unction Depths Adds a new ield to each node recording how many func-
tions surround the node.

Inner Product Yes

Drop Unnamed “unctions Eliminates some code that will not be evaluated at the
top-level.

“ilter No

Drop Unreachable Code Eliminates some unreachable code. “ilter/Inner Product Yes
Lift “unctions Moves all functions to the top-level. Key Yes
Drop Redundant Nodes Eliminates unnecessary nodes/nesting. “ilter No
“latten Expressions Removes nesting from expressions. Key Yes
Compress Atomic Nodes Atomizes nested atom nodes. Amend No
Propagate Constants Inlines all references to literal values. Amend/Rank Yes
“old Constants Converts constant expressions to literals. Amend No
Compress Expressions Converts expression sub-trees into single nodes. Amend No
Record “inal Return Value Records the value returned by each function. Key No
Normalize Values “ield Normalizes the shape and size of the values ield. Amend No
Lift Type-checking Infers some type information at compile time. Power Limit/Rank No
Allocate Value Slots Does a form of frame allocation for variables. Key No
Anchor Variables Resolves lexically scoped variables. Key Yes
Record Live Variables Records the variables that are live at each point of execu-

tion.
Key No

“use Scalar Loops Identiies “usion opportunities and fuses expressions. Key No
Type Specialization Specializes each function for a series of potential inputs. Key No

Table 1. A listing of some compiler passes in the Co-dfns compiler and their relationship with the Key operator and associated tree
computation techniques

shows the internal function complete and ready to name. Each ele-
ment in the second column corresponds to the body of one of our
lifted functions. In the case of the irst function, the outer function,
we have a spurious function node in the body. This is intentional.
When we lift these functions, we will replace each spurious func-
tion node with a variable node referring to the function’s generated
name.

Each of these function bodies has a speciic coordinate associ-
ated with it. Because these coordinates are uniquely identifying, we
can use these as input into a name generator to generate names that
we know are unique for each function body. “urthermore, because
we retain this information in the corresponding function nodes that
appear in the body of each function to be lifted, we know exactly
what name that function has been given, and we can replace the
function node with a variable node referencing that name instead,
without referring to any state outside of the immediate information
given to the function lifter. Indeed, each row in the above matrix
represents a function lifting task that can be completed without any
additional information. That is, there are no dependencies between
rows to perform lifting. This gives us a straightforward parallel ex-
ecution of function lifting.

The inal task to complete function lifting of each function body
before lifting is to shift the depths in the depth vectors to correspond
to those of a function lifted to the top-level and to attach a function
node to the top of each of the bodies. At that point, we simply
recombine all of the newly created functions into a single top level.

This function lifting works even with lexically scoped functions,
as is the case for the Co-dfns compiler. We can do this because the
node coordinates maintain the lexical information for each variable
reference, enabling us to construct the appropriate lexical binding
for each variable much later than would normally be done in a com-
piler. In other words, the above lifting operation loses no informa-
tion that would prevent us from handling lexical scoping, but de-
couples lexical scoping from the act of lifting functions.

4.2 Expression Flattening
If we use ⍀k as the key for the expression example, we get the
following:

(1↓⍀k){⍺ ⍵}⌸1↓⍀d,⍀t,⍀v,⍪↓⍀c
┌─────┬─────────────┐
│1 0 0│┌─┬─┬─┬─────┐│
│ ││1│⍀│0│1 1 0││
│ │├─┼─┼─┼─────┤│
│ ││1│P│÷│1 2 0││
│ │├─┼─┼─┼─────┤│
│ ││1│⍀│0│1 3 0││
│ │└─┴─┴─┴─────┘│
├─────┼─────────────┤
│1 1 0│┌─┬─┬─┬─────┐│
│ ││2│⍤│a│1 1 1││
│ │├─┼─┼─┼─────┤│
│ ││2│P│+│1 1 2││
│ │├─┼─┼─┼─────┤│
│ ││2│⍤│b│1 1 3││
│ │└─┴─┴─┴─────┘│
├─────┼─────────────┤
│1 3 0│┌─┬─┬─┬─────┐│
│ ││2│⍤│c│1 3 4││
│ │├─┼─┼─┼─────┤│
│ ││2│P│×│1 3 5││
│ │├─┼─┼─┼─────┤│
│ ││2│⍤│d│1 3 6││
│ │└─┴─┴─┴─────┘│
└─────┴─────────────┘

Again, we can see immediately that we have grouped each set of
nodes according to the expressions that are to be lifted. Just as in the
case of function lifting, we can adjust the depths of each expression

37

to the correct depth and we can replace each expression node with a
variable reference based on that node’s coordinate. Each expression
can be given a unique name based on its coordinate. A later compiler
pass can reduce these names down to theminimum actually required
to represent the expression if desired.

The only extra issue involved here is to ensure that the order
of evaluation matches. In our case, we are assuming that the order
of evaluation is right to left, which means that the above order is
actually backwards of the desired order. During recombination, we
simply reverse these orders and this ixes that problem. More work
would be required to take into consideration a speciic precedence
hierarchy.

5. The Co-dfns Compiler and Other Passes
The Co-dfns compiler is an experimental commercial compiler
funded by Dyalog, Ltd. [13, 14] It is intended to provide increased
scaling and performance for APL programmers using the dfns syn-
tax (lexically scoped, functionally oriented APL). These techniques
form one of the foundational elements to the architecture of the
compiler, which is built in the style of a Nanopass [20] compiler,
with very small passes chained together through composition, with
the added requirements that each compiler pass must be fully data
parallel.

The compiler produces good code that performs closely with
hand-written C code for the same programs on the ”PU and CPU. It
produces platform independent code, meaning that the compiler is
able to target either the ”PU or CPU from the same program source
and produce reasonable performance on both.

The compiler itself is composed of three main parts: the core
compiler, the parser, and the code generator. The code generator
includes the runtime library of the compiler. Parsing APL code in
parallel is a well-studied problem. The compiler currently uses pars-
ing combinators to do its parsing, though we plan to implement the
Two-by-Two parser given in the literature [8]. The code generator
itself is a simple parallel map over each node, as each node may
be generated independent from the other nodes, leading to a fully
parallel generator, though there are some branching elements in the
generator that still remain, currently.

The core of the Co-dfns compiler is written entirely using func-
tion trains and parallel operations in the style described above. We
use these techniques extensively throughout the compiler, and the
code is publicly available at our repository. The core of the com-
piler, including some of the large tables comes in at around 250
lines of code. Without the tables, the core logic comes in at around
150 lines of code.

The entire compiler, together with its runtime libraries, parser,
generator, and core, comes in at around 1500 lines of commented
code.

Table 1 contains a selection of passes from the Co-dfns compiler
and breaks down their features based on how they traverse the tree
and whether or not they use the Key operator or Node Coordinates.
The traversal pattern indicates the primary operator used to traverse
the AST and perform the transformation, most of which are primi-
tives; the Amend pattern is a ̧replacement̨ pattern where speciic
nodes are replaced in the AST with other nodes, and can be thought
of as a slightly modiied ilter and map. The table orders the passes
with front-end passes higher in the table and passes further down
the compiler chain at the bottom of the table. These passes give a
good idea of how the Key operator plays a part in the complete com-
piler as well as how Node Coordinates help to deal with complex
sub-tree selections.

We make a few notes on the table and the analysis. The Key
operator can be used with or without the node coordinates structure.
In cases where the AST is suiciently lat and arranged in a suf-
iciently convenient order, the grouping operations are very simple.

In these cases, the Key operator amounts to a map operation over
some selected sub-trees selected at a speciic depth. These occur
later in the compiler where the reader will note appearances of the
Key operator without the use of Node Coordinates.

Likewise, node coordinates ind their place early on in the com-
piler where it is necessary to deal with the more highly nested
AST. They are useful for identifying this information regardless of
whether the Key operator is used to handle the grouping or not. Thus
passes like ̧Drop Unreachable Codę that remove whole sub-trees
from the AST may use the Node Coordinates to do the grouping
once the correct parent node has been identiied.

In short, the goal of the structure and design of the compiler
passes given in Table 1 is to utilize Node Coordinates to remove
as quickly as possible the nested structure of the AST into a latter
form that does not require complex analysis to traverse.

6. Future Work
The current compiler represents a non-trivial instance of the suc-
cessful application of these techniques, but it focuses on an untyped,
functionally oriented language. The type inference in the current
version of the compiler is somewhat naïve. More work is required
to expand the type inferencer to include more sophisticated type in-
ference. The compiler does not currently handle errors such as sig-
nals or exceptions, nor does it implement some more sophisticated
compiler optimizations. “urther work remains to implement these
techniques on an imperative and object-oriented language instead
of a functional one. It would also be educational to implement a
version for a lazy language.

We do not have a large scale understanding of the performance
characteristics of these techniques in real life outside of daily use of
the compiler. “urther analysis is required to understand what sort of
compiler optimizations and analyses are necessary to compile the
Co-dfns compiler eiciently for the ”PU and CPU. We currently
lack a good comparison against existing techniques both for the
compiler design and the generated code. Some existing compilers
are able to compile variants of APL to target the ”PU and the CPU,
but there are subtle diferences that require care when comparing
generated code, and the architecture of these compilers is often quite
diferent. Comparing the relative performance both of the compiler
designs (human factors and execution speed) and generated code is
important to understanding these techniques more fully.

While we have found this method of compiler construction to be
very compact and to permit workingwith a data-parallel compiler as
easily or nearly as easily as with a standard Nanopass compiler, we
have not done extensive studies to determine just how comparable in
programmability, ease of maintenance, or extensibility these tech-
niques are with established compiler construction methods, such as
OOP Visitors, Nanopass, or the type-directed functional style.

7. Related Work
Iverson introduced the idea of the Rank operator while at Sharp As-
sociates [17] as a part of ̧Rationalized APL.̨ The rank operator (⎌)
used here derived from the J language, a continuation of the ratio-
nalized APL idea, with many ideas such as rank percolating back
into APL implementations. [1, 16] The J programming language
[15] was the irst practical, general-purpose programming language
to introduce the Key operator as a primitive operator with the pre-
sumption of its general usefulness.

Bernecky [5] argues that the increased programmability and
desirable human factors of APL-style array programming can be
implemented with competitive performance relative to more tradi-
tional techniques. This suggests that programs written in this highly
abstract style may not sufer the performance gap traditionally as-
sumed to go with their desirable features. This work is bolstered by

38

previous work on the high-performance implementation of array-
oriented languages. [3, 9̞11, 18, 19, 23]

“ritz Henglein demonstrated a class of operations, called dis-
criminators, of which the Key operator is a member [12] , namely, a
discriminator performs the same grouping computation as Key, but
does not apply a function over these groups with their keys. Hen-
glein provides a linear implementation of these operations.

The EigenC“A efort [22] demonstrated signiicant performance
improvements of a 0-C“A low analysis by utilizing similar tech-
niques to those demonstrated here. In particular, encoding the AST
and using accessor functions have a very similar feel to the node
coordinates and AST encoding given here, though they have a dif-
ferent formulation and spend considerable efort understanding the
trade-ofs of performance associated with the diferent encodings,
whereas the encodings here were chosen for their clarity and direct-
ness, rather than their performance.

Mendez-Lojo, et al. implemented a ”PU version of Inclusion-
based Points-to Analysis [21] that also focuses on adapting data
structures and algorithms to eiciently execute on the ”PU. In
particular, they use similar techniques of preix sums and sorts to
achieve some of their adaptation to the ”PU, Additionally, they
have clever and eicientmethods of representing graphs on the”PU
which enable dynamic rewriting of the graph.

The APEX compiler [2] developed vectorized approaches to
handling certain analyses to compile traditional APL, including a
SIMD tokenizer [4]. It also uses a matrix format to represent the
AST. Traditional APL did not have nested function deinitions,
however, and thus the APEX compiler does not have any speciic
approaches to dealing with function lifting.

Timothy Budd implemented a compiler [6, 7] for APL which
targeted vector processors as well as C. Budd provided thoughts and
some ideas on how the compiler might be implemented in parallel
as well.

J. D. Bunda and J. A. ”erth presented a method for doing table
driven parsing of APL which suggested a parallel optimization for
parsing, but did not elucidate the algorithm [8].

8. Conclusion
We have derived a method of performing computation over sub-
trees selected on the basis of inter-node properties through the use of
the Key (⌸) operator and node coordinates, which enable local com-
putation of these inter-node properties. This method is both general
and direct, and when combined with traditional and more mundane
array programming, suices to implement the complete core of a
compiler, modulo parsing and code generation. Themethod requires
no special operations or unique special casing primitives in the lan-
guage. Moreover, it is strictly data-parallel and data-low, without
any complex control low, which results in exceptionally concise
code. These methods permit a general, high-level approach to con-
structing a compiler that is parallel by construction by constricting
the language to only a data parallel subset of a normal array lan-
guage.

We have demonstrated the technique and the core insights be-
hind the data structures involved. It presents a solution to a very old
and traditional problem in a very uncommon light, by eschewing
the common practices that underlie every other signiicant and gen-
eral solution found in modern compilers today and replacing them
with an entirely diferent paradigm centered on parallelism and ag-
gregate operations.

References
[1] R. Bernecky. An introduction to function rank. ACM SIGAPL APL

Quote Quad, 18(2):39̞43, 1987.
[2] R. Bernecky. Apex: The apl parallel executor. 1997.
[3] R. Bernecky. Reducing computational complexity with array predi-

cates. ACM SIGAPL APL Quote Quad, 29(3):39̞43, 1999.
[4] R. Bernecky. An spmd/simd parallel tokenizer for apl. In Proceedings

of the 2003 conference on APL: stretching the mind, pages 21̞32.
ACM, 2003.

[5] R. Bernecky and S.-B. Scholz. Abstract expressionism for parallel per-
formance. In Proceedings of the 2Nd ACM SIGPLAN International
Workshop on Libraries, Languages, and Compilers for Array Program-
ming, ARRAY 2015, pages 54̞59, New York, NY, USA, 2015. ACM.
ISBN 978-1-4503-3584-3. doi: 10.1145/2774959.2774962.
URL http://doi.acm.org/10.1145/2774959.2774962.

[6] T. Budd. An APL compiler. Springer Science &BusinessMedia, 2012.
[7] T. A. Budd. An apl compiler for a vector processor. ACM Transactions

on Programming Languages and Systems (TOPLAS), 6(3):297̞313,
1984.

[8] J. Bunda and J. ”erth. Apl two by two-syntax analysis by pairwise
reduction. InACM SIGAPL APL Quote Quad, volume 14, pages 85̞94.
ACM, 1984.

[9] W.-M. Ching. Automatic parallelization of apl-style programs. In ACM
SIGAPL APL Quote Quad, volume 20, pages 76̞80. ACM, 1990.

[10] W. M. Ching and A. Katz. An experimental apl compiler for a
distributed memory parallel machine. In Proceedings of the 1994
ACM/IEEE conference on Supercomputing, pages 59̞68. IEEE Com-
puter Society Press, 1994.

[11] W.-M. Ching, P. Carini, and D.-C. Ju. A primitive-based strategy
for producing eicient code for very high level programs. Computer
languages, 19(1):41̞50, 1993.

[12] “. Henglein and R. Hinze. Sorting and Searching byDistribution: “rom
”eneric Discrimination to ”eneric Tries. In Programming Languages
and Systems, pages 315̞332. Springer, Dec. 2013.

[13] A. W. Hsu. Co-dfns: Ancient language, modern compiler. In Pro-
ceedings of ACM SIGPLAN International Workshop on Libraries, Lan-
guages, and Compilers for Array Programming, page 62. ACM, 2014.

[14] A. W. Hsu. Accelerating information experts through compiler design.
In Proceedings of the 2nd ACM SIGPLAN International Workshop on
Libraries, Languages, and Compilers for Array Programming, pages
37̞42. ACM, 2015.

[15] R. Hui. Essays/key. URL http://www.jsoftware.com/
jwiki/⍀ssays/Key.

[16] R. K. Hui. Rank and uniformity. In ACM SIGAPL APL Quote Quad,
volume 25, pages 83̞90. ACM, 1995.

[17] K. E. Iverson. Rationalized APL. IP Sharp Associates, 1983.
[18] D.-C. Ju and W.-M. Ching. Exploitation of apl data parallelism on

a shared-memory mimd machine. In ACM SIGPLAN Notices, vol-
ume 26, pages 61̞72. ACM, 1991.

[19] D.-c. Ju, W.-M. Ching, and C.-l. Wu. On performance and space usage
improvements for parallelized compiled apl code. ACM SIGAPL APL
Quote Quad, 21(4):234̞243, 1991.

[20] A. W. Keep and R. K. Dybvig. A nanopass framework for commercial
compiler development. In ACM SIGPLAN Notices, volume 48, pages
343̞350. ACM, 2013.

[21] M.Mendez-Lojo, M. Burtscher, and K. Pingali. A gpu implementation
of inclusion-based points-to analysis. ACM SIGPLAN Notices, 47(8):
107̞116, 2012.

[22] T. Prabhu, S. Ramalingam, M. Might, and M. Hall. Eigencfa: acceler-
ating low analysis with gpus. ACM SIGPLAN Notices, 46(1):511̞522,
2011.

[23] W. Schwarz. Acorn run-time system for the cm-2. In Arrays, Func-
tional Languages, and Parallel Systems, pages 35̞57. Springer, 1991.

39

http://dx.doi.org/10.1145/2774959.2774962
http://doi.acm.org/10.1145/2774959.2774962
http://www.jsoftware.com/jwiki/Essays/Key
http://www.jsoftware.com/jwiki/Essays/Key

Symbol Monadic Dyadic Symbol Monadic Dyadic
Scalar “unctions

+ Identity Plus (Add) ~ Not
- Negative Minus (Subtract) ? Roll
× Direction (Signum) Times (Multiply) ∧ And
÷ Reciprocal Divide ∨ Or
| Magnitude Residue (Modulo) ⍲ Nand
⌊ “loor Minimum ⍱ Nor
⌈ Ceiling Maximum < Less
* Exponential Power ≤ Less Or Equal
⍟ Natural Logarithm Logarithm = Equal
○ Pi Times Circular (Trigonometric) ≥ ”reater Or Equal
! “actorial Binomial > ”reater
≠ Not Equal

Selection Mixed “unctions Structural Mixed “unctions
⊃ Disclose Pick ⍴ Reshape
↑ Take , Ravel Catenate/Laminate
↓ Drop ⍪ Table Catenate “irst/Laminate
/ Replicate ⌽ Reverse Rotate
⍺ Replicate “irst ⊖ Reverse “irst Rotate “irst
\ Expand ⍉ Transpose Transpose
⍻ Expand “irst ↑ Mix
~ Without (Excluding) ↓ Split
∩ Intersection ⊂ Enclose Partitioned Enclose
∪ Unique Union ∊ Enlist
⊣ Same Left
⊢ Identity Right

Selector Mixed “unctions Miscellaneous Mixed “unctions
⍳ Index ”enerator Index Of ⍴ Shape
∊ Membership ≡ Depth Match
⍋ ”rade Up ”rade Up ≢ Tally Not Match
⍒ ”rade Down ”rade Down ⍎ Execute Execute
? Deal ⍕ “ormat “ormat
⍷ “ind ⊥ Decode (Base)

⊤ Encode (Representation)
⌹ Matrix Divide Matrix Inverse

Table 2. Primitive “unctions

Symbol Name Description
⍨ Commute Swaps arguments or distributes right argument to both sides
¨ Each Applies its operand point-wise over the left/right arguments
/ Reduce Reduce along the last axis
⍺ Reduce “irst Reduce along the irst axis
\ Scan Scan along the last axis
⍻ Scan “irst Scan along the irst axis
⌸ Key Apply operand once for each sub-array grouped by key

Table 3. Primitive Monadic/Unary Operators, each takes a single left operand and describes a function operating over one or two arguments

Symbol Name Description
∘ Compose Composes two operands as in traditional mathematics
. Inner Product Inner product operation, e.g. +.× for matrix multiplication
∘. Outer Product Cartesian product or ̧function tablę
⎋ Power Iteration, Limited use only
⎌ Rank Apply a function along cells of an array

Table 4. Primitive Dyadic/Binary Operators, each takes a left and right operand and describes a function operating over one or two arguments

40

	Introduction
	Notational Conventions
	Data Parallel Sub-tree Computation
	Encoding the AST
	Node Coordinates
	Constructing Node Coordinates
	Operations on Node Coordinates

	The Key Operator

	Case Studies
	Function Lifting
	Expression Flattening

	The Co-dfns Compiler and Other Passes
	Future Work
	Related Work
	Conclusion

