
THE SEMANTICS OF PROGRAM DEPENDENCE

Robert Cartwright, Matthias Felleisen’
Department of Computer Science

Rice University
Houston, TX 77251-1892

Abstract

Optimizing and parallelizing compilers for procedu-
ral languages rely on various forms of program de-
pendence graphs (pdgs) to express the essential con-
trol and data dependences among atomic program
operations. In this paper, we provide a semantic jus-
tification for this practice by deriving two different
forms of program dependence graph-the output pdg
and the def-order pdg-and their semantic definitions
from non-strict generalizations of the denotational se-
mantics of the programming language. In the pro-
cess, we demonstrate that both the output pdg and
the def-orderpdg (with minor technical modifications)
are conventional data-flow programs. In addition, we
show that the semantics of the def-order pdg domi-
nates the semantics of the output pdg and that both
of these semantics dominate-rather than preserve-
the semantics of sequential execution.

1 Program Dependence Graphs

Optimizing and parallelizing compilers for procedural
languages rely on intermediate graph representations
to express the essential control and data dependences
of atomic program operations. Some prominent ex-
amples in the literature are the control flow graph,
the call graph, the def-use chain [l], the data depen-
dence graph [I], and the extended data-flow graph [2].
Recently, Ferrante, Ottenstein, and Warren [3] pro-

*The work of both authors was partially supported by NSF
and DARPA.

Permission to copy without fee all or pan ofthis material is granted provided that
the copies are not made or distributed for direct commercial advantage, the ACM
copyright notice and the title of the publication and its date appear, and notice is
given that copying is by permission of the Association for Computing Machinery.
To copy otherwise, or to republish, requires a fee and/or specific permission.
0 1989 ACM 0-89791-306-X/89/CCG5/0013 $1.50

posed a comprehensive graph representation called
the program dependence graph (pdg) that is suitable
for scalar optimization [3, 81, vectorization [14], and
general parallelization [15]. Subsequently, Horwitz,
Prins, and Reps [4] revised the pdg representation and
used it as a basis for integrating program revisions.
We refer to the original pdg [3] as the output pdg and
to the revised form [4] as the def-order pdg.

A program dependence graph represents “[the] par-
tial ordering on the statements and predicates in the
program that must be followed to preserve the seman-
tics of the original program” [3:322]. It expresses the
informal non-sequential semantics that compiler writ-
ers assign to programs. The widespread use of the pdg
representation as a basis for program compilation and
optimization raises many interesting questions about
the semantic properties of the analysis process.

Does the program dependence graph representa-
tion have a “natural” interpretation as a data-
flow programming language?

What are the appropriate denotational and op-
erational semantics for this language?

Does the translation from a textual representa-
tion into a dependence graph representation pre-
serve the program semantics?

Does the semantics of pdgs justify the common
optimizing transformations?

Can a semantic characterization of program de-
pendence provide the insight for better program
optimization techniques?

As a first step towards a formal theory of pro-
gram dependence, Horwitz, Prins, and Reps recently
proved that the def-order pdg representation is ade-
quate: programs with the same program dependence
graphs have the same meaning. But no attempt has
been made to provide a semantic justification for the

13

program optimization process based on dependence
analysis.

This paper, in conjunction with a companion paper
by Selke [lo], tackles the first three questions in the
preceding list and presents three results:

1.

2.

3.

The output pdg and def-order pdg representations
[3,4] for a program-with some minor technical
modifications -are conventional data flow pro-
grams that can be derived from the denotational
semantics of the original program.

The derivation also yields a denotational seman-
tics of program dependence graphs that explains
the significance of the data flow and control flow
information.

The semantics of the output pdg is closer to the
semantics of sequential execution than is the se-
mantics of the def-order pdg. More precisely, the
semantics of the def-order pdg dominates the se-
mantics of the output pdg, and both dominate the
semantics of the original programming language.

The remainder of the paper consists of four sec-
tions. The next section defines the syntax and con-
ventional semantics for a simple procedural program-
ming language and describes the output pdg and def-
order pdg representations for this language. In Sec-
tion 3, we analyze the semantics of this language from
the perspective of program optimization and intro-
duce two non-strict (“lazy”) generalizations of the
semantics that expose more parallelism. The fourth
section contains our principal technical results. By
semantically interpreting the concepts of control and
data dependence, we derive a denotational definition
of the control and data demand generated by pro-
gram expressions. We then perform a staging analy-
sis on the demand semantics, which produces a nat-
ural decomposition of the meaning function into two
components: (i) a construction algorithm that builds
program dependence trees and (ii) a meaning function
that interprets these trees. At the end of Section 4, we
describe how to build pdgs from program dependence
trees. The final section presents directions for future
research and some of the potential applications of our
semantic characterization of program dependence.

2 The Programming Language W and
Program Dependence

The typical programming language for optimizing
and parallelizing compilers has a simple core consist-
ing of assignment statements, sequencing constructs,
loop constructs, and branching facilities. For the pur-
pose of this discussion, we will focus our attention on

a simple statement-oriented programming language
W with the following abstract syntax:

6 ::= x :=e 1

s;sl

if b then s else s 1

while b do s

where s ranges over statements, x ranges over a set
of identifiers ide, and b and e range over a set of ex-
pressions exp. For the sake of generality, the set of
expressions exp is left unspecified, but we assume that
expressions may refer to identifiers in ide. The two
functions %?efs[.] and Deefs[.I map programs and
expressions to the sets of identifiers that occur in ex-
pressions and on the left-hand sides of assignment
statements, respectively.

A definition of the denotational semantics of W is
given in Figure 1. Since the syntactic domain exp
is unspecified, the definition is parameterized over
the domain val of denotations for expression and the
meaning function ,C for mapping expressions to their
denotations. The only restriction that we impose is
the assumption that the domain vu1 is pat, 1 and that
it contains the domain boo1 = {I, T, F} as a subset.

The semantic domain for W-programs is con-
structed from the domain of values as the domain
of functions mapping stores to stores:

store --+ store .

A store is a mathematical representation of the ma-
chine’s memory and maps identifiers to values:

ide - val .

The infix notation C[E + v] represents a functional
update of the store u that is strict in all three
arguments.2 The updated store a[~ + v] is identical
to u except that a[x t v] has the value v for variable
z (assuming that o, 2, and v are all defined). Hence,
the strict update function .[a c .] : store ---t ide -
val - store is defined by the following rules:

u[zcv] = I ifa=IVz=IVv=I

and

u[x +--v](z) = {$f) ; f ;
lA jlat domain D is a partially ordered set ordinary data

values augmented by the undefined value bottom (I) denoting
a divergent computation. The ordering relation 5 is the least
relation such that every element approximates itself and the
undefined value I approximates every element.

2A function f is strict in an argument G iff it is undefined
(I) for all inputs where 1: is undefined (I).

14

Semantic Domains:
u,v E val (unspecified)

0 E store = ide + val

Semantics:
CT : exp - store - val (mspecified)

W strict : stmt -4 store - store

W strict 2 [:= e]l = Xu.u[a: c E[eJju]

W,,,i,,[if b then st else sfj = Xu.$[bju - Wstr;Jst]lu, Wstrictl[sflu

Wstrict[while b do s] = fix(Awa.l[b]u - w(WStrict[slu), u)

Figure 1: The Denotational Semantics of W

j := 3

Figure 2: The pdg for program P

15

in all other cases.
A program dependence graph consists of a set of

nodes representing atomic computations and a set of
edges representing dependences. The atomic compu-
tations are assignment statements and predicate ex-
pressions. The set of edges contains dais dependence
edges and control dependence edges. .4 dependence
edge between two nodes indicates that the computa-
tion of the target node depends on the computation
of the source node.

A program node A that uses a variable v has a data
dependence on a definition B of v iff there is a path in
the flow chart representation of the program from B
to A that does not contain an intervening definition
of v. A predicate B controls a node A iff there are
paths from B through the program that contain A
and paths that do not contain A. B directly controls
A if B controls A and there is a path from B to A that
does not contain an intervening predicate that con-
trols A. A program node A has a control dependence
[3] on a predicate B iff B directly controls A.

There is another form of control dependence called
output dependence [3] that, must be respected for pro-
grams to execute in accord with the conventional se-
quential semantics. A definition A of a variable v has
an output dependence on a preceding definition B of
the same variable iff there is a path from A to B that
does not contain an intervening definition of v. There
is a relaxation of output dependence-more accu-
rately, the transitive closure of output dependence-
called def-order dependence [4] that ignores output
dependences between definitions when there is no
node that depends on both of them. A definition A
of a variable v has a def-order dependence on a pre-
ceding definition B of the same variable iff there is a
path from B to A and both A and B are the sources
of data dependence edges to some program node.

The informal semantics underlying the dependence
graph representation is an extended data-flow model
of computation [3]. An assignment node in the graph
computes a new identifier value; a predicate node de-
termines a boolean value for the selection and elim-
ination of other computation nodes. The incoming
data dependence edges of a node specify the input
values for the node’s computation; the outgoing data
edges indicate which nodes depend on the result of
the node. Control dependences have the task of or-
dering, selecting, and eliminating computations.

The crucial property of the data-flow model of com-
putation is the absence of a centralized store and
store-oriented operations. There is no notion of over-
writing values in locations. Instead, an assignment
node directly passes the generated binding to its suc-
cessor nodes in the graph.

AS an illustration of the pdg representation, con-
sider the program

P i3L i:=l;

if j < 1 then i := 2 else j := 3;

use-of(i) .

The translation of P into dependence graph form
produces the pdg in Figure 2. There are two data-
flow edges, one from each assignment to i to the
node demanding the value of i. The predicate node
j < 1 controls the second assignment to i through
a T-control edge and the assignment to j through
an F-control edge. An output or def-order edge-
depending on the graph representation-between the
two assignment nodes for i specifies the order of eval-
uation between the two assignments. Both truth-
value-labeled edges and def-order edges denote con-
trol dependences. The representation of while-
loops is similar to those of if-statements, but intro-
duces cyclic dependences and requires a classifica-
tion of data dependences as loop-dependent or loop-
independent [3, 41.

3 Non-Strict Semantics for W

The denotational semantics for W reflects the be-
havior of a sequential implementation of W. An as-
signment statement alters the contents of a memory
cell. The effect of a sequence of statements is the
compound effect of evaluating its components from
left to right. The if-statement selects the appropri-
ate branch for further evaluation. A while-loop com-
poses the effects of repeated evaluations of its body
statement until its guard evaluates to F.

The sequentiality of program execution is reflected
in the denotational semantics of W by the strictness
of store update function +[. t -1 used in the seman-
tic function Wst,-ict. If a statement s encountered in
the sequential execution of the program p diverges for
some input store 0, then the function Wstrictbl ap-
plied to cr yields the completely undefined store lstore
regardless of what statements follow s. For example,
the straight-line program

Q& := 1; 3: := e ; x := 2

diverges if the evaluation of the expression e diverges
even though the value of e cannot affect the final value
of x or y.

From the perspective of program optimization, the
semantics of sequential execution is too restrictive.
In the preceding program &, the second assignment
(Z := e) is superfluous because it can never contribute

16

Additional Semantic Domain:

6 E update = store - ide -+ val------) store

Semantics:
W : update - stmt - store - store

W6[z :=e] = Au.S(a, 2, El[e]u)

wqs1; sa] = Xu.W6[s2](W6[s1]u)

WSl[if b then st else s/l = Aa.f[b]a - Wd[st]a, W6[sJJu

Wb[while b do s] = fiz(Xwa.l[fb]o - ~(WS[S]CT),C)

Figure 3: The Generalized Denotational Semantics of W
-

to a final answer. Fortunately, it is easy to modify the
denotational definition of W so that no assignment is
evaluated unless it can affect the final contents of the
program store [9]. The trick is to replace the strict
update operation .[. c .] by an update operation that
is non-strict in the third argument. There are two
important forms of non-strict update:

1. The first option, denoted .[. + -1, is the standard
“lazy” generalization of .[a c a]. It is non-strict
in both the first (store) and third (value) ar-
guments. The store produced by the operation
C[Z + v] is defined if either z is defined and
either u or v is defined.3 From an operational
perspective, the computation of the value argu-
ment TV is deferred until the value of the assigned
identifier is demanded from the store. Moreover,
the value v is never computed if a subsequent up-
date on the same identifier is performed before
the value is needed. Hence,

I

I Xc=1
u[x -4= VI(%) = U(%) z#xAx#l

V %=xA%#I

for all 6, 2, 21, E.

2. The second option, denoted .[. + ~3, is partially
“lazy”. It is non-strict only in the third (value)
argument because the operation u[z ~-r V] forces

3There is one exception to this rule: the result is undefined
if o is defined only at I: and ‘u are undefined.

g(x) to be evaluated. Hence, updates to differ-
ent variables cannot interfere with one another,
but updates to the same variable can. In partic-
ular, g[z + v] is defined at z only if both U(Z)
and v are defined. From an operational perspec-
tive, .[. + -1 treats I as a “sticky” value: once
a variable is bound to I it will always be bound
to I regardless of subsequent updates. Hence, if

“#l

1

44 Z#X
u[x e v](z) = v 2. = x A u(x) # I .

1 I = 2 A u(x) = 1.

We refer to the update operations .[. + .] and
.[. Q .] as the lazy update and the lackadaisical up-
date, respectively. It is easy to verify that the lazy
update operation dominates4 the lackadaisical oper-
ation, and that both dominate the strict update op-
eration:

.[. + .] 5 .[. Q .] c -[- e .] . 0)

Given the two non-strict update functions, we can
formulate two less restrictive semantic definitions for
W and precisely describe their relation to the original
semantics. To this end, we define a a new semantic

function W based on Wst,+t that abstracts WJtrict

4A function j : A 4 B dominates a function g : A + B
iff Vz E A j(z) 2 g(z): if the computationof g(r) terminates,
the computation of j(z) must terminate and yield the same

answer.

17

with respect to the update function. Figure 3 con-
tains the complete definition of W. From W, we can
obtain the original semantic function Wst,.ict and the
two non-strict variants as simple instantiations:

W strict = W(-[- + *I)

Wlack = W(.[. (--, *I)

Why = W(.[- e= -1) .

Since W is a continuous function of its update func-
tion argument, the approximation relations between
update functions (t) imply the following approxima-
tion relations between the semantic functions:

W strict & Wlack !i Why .

The differences among these three semantics is best
illustrated by an example. If the expression e in the
program & is undefined for all stores, then Q has a
different meaning in each semantic definition:

Wdtrict[&j = X”.J-btOfe

Wlock 101 = Xu.a(y) f 1 - {(Y, 1))

Wl,,,[Q] = W(G)> (Y, 1)) .

In short, while the lazy semantics ignores undefined
values produced as the results of irrelevant subcom-
putations, the lackadaisical semantics only ignores
the undefined values corresponding to irrelevant vati-
ables. Consequently, we interpret these two non-strict
generalizations of the semantics of W as formaliza-
tions of two different perspectives on what assump-
tions an optimizing compiler should make. In the
following section, we show how these two perspec-
tives have influenced the design of program depen-
dence representations.

4 A Semantic Approach to Depen-
dence

The motivation behind translating programs into de-
pendence graph representations is the conviction that
the functional representation of a computation ex-
poses potential parallelism hidden by the sequential,
store-oriented evaluation model associated with the
conventional program text [Warren: private commu-
nication]. On the other hand, the goal of denota-
tional semantics [9] is to define a functional meaning
for programs that explains their operational behavior,
yet avoids machine-specific details.

The preceding observation suggests that denota-
tional semantics is closely related to dependence anal-
ysis. For this reason, we decided to investigate the

hypothesis that program dependence graphs are a
form of parallel intermediate code that can be derived
from a demand-oriented denotational semantics just
as compilers and machine code can be derived from
conventional denotational semantics [6, 11, 12, 131.

This section presents the results of that inquiry. In
the first subsection, we show that a simple reformula-
tion of a denotational definition exposes the data de-
mands of expressions, revealing the data dependences
between statements. The following subsection ad-
dresses the issue of control dependence. We introduce
an explicit parameter for modeling the control predi-
cates along the path from the root of the program to
the current statement. The third subsection contains
a staging analysis of the demand semantics. The re-
sulting separation of the semantic function produces
an algorithm for constructing dependence trees and
a meaning function for these trees. The final subsec-
tion addresses the issue of how to generate program
dependence graphs from our dependence trees.

4.1 Data Dependence

The primary goal of dependence analysis is to elim-
inate the notion of a centralized store and to illumi-
nate the data flow between subcomputations within
a program. To achieve this goal, we must answer two
questions:

1. Which subcomputations are required to deter-
mine the value of an identifier at any given point
in the program?

2. Where is each computed value used in the re-
mainder of the program?

However, the semantic function Wstrict and its in-
stantiations are poorly suited to answering these
questions because they presume a store-oriented
model of computation. To eliminate this reliance on
a central store, we must transform the semantic func-
tion W into a function V that extracts the value of a
designated identifier-rather than the entire store-
from a program.

A naYve way to write the new semantic function
V would be to apply the result of W to an identi-
fier. But this approach would merely hide the central
store rather than eliminate it. Since we know the
name of the designated identifier before the program
is executed but know nothing about the initial store,
the insight gained from research on deriving compil-
ers from denotational semantics [6] suggests that we
should rearrange the order of the arguments in W so
that the identifier argument precedes the initial store
argument. Then we can apply the transformed se-
mantic function to the identifiers that appear in pro-

18

V : update - stmt + ide + store - val

VS[x := en =

Vlazy [x := e] =

=

l&k[x := e] =

=

Vc5[if b then st else s,j =

Vb[while b do s] = j%(Xw.Xi~.&[b~~ - -+ wi(Aj.VS[s]ju), u(i))

V(.[. -e .])[x := e]

Xii 2 x ---+ E[e], Xb.~(i)

V(.[. t--’ .])[x := e]

Xi.i 2 2 - (Xa.u(i) L I - I, tT[e]), Xa.a(i)

Figure 4: The Generalized Demand Semantics of W

gram expressions as part of a static analysis process
akin to compilation. Hence, we want to rewrite the
semantic function

W : update - stmt - store - (ide -+ val)

as a semantic function

V : update - stmt - ide - store - val

that is mathematically equivalent, i.e.,

Y6sxa = WSsux for all 6, s, x, u .

The complete definition of V is given in Figure 4.
Like W, V can be instantiated using three differ-
ent update functions to produce three different, but
closely related, semantic functions:

Ystrict = I+[* + *])

Vlack = V(*[* c-, -1)

Vlaty = V(.[- e .]) .

A closer examination of the non-strict versions of
V reveals that we can simplify the definition of their
assignment clauses. In both definitions, we can move
the equality test on the identifier forward, out of the
update operation. For the lazy update, this analysis
produces the following assignment clause:

= Xiu.i L x - E([e]b, u(i)

(by the definition of . [. e a])

= Xi.i A 2 --+ Q.], Xb.b(i) .

For the lackadaisical update, the same analysis yields
a slightly different result:

Xi.i L 2 ----+ (XU.U(~) L L --+ &El[e]l),A~.~(i) .

These two transformations show that it is possible
to identify the final assignments for a given identifier
by statically analyzing the denotational meaning of
the program-provided the update functions are non-
strict. But this form of analysis alone is too weak
to identify the data dependences in a program. For
a given identifier, the semantic functions I&, and
&k identify the final assignment(s) to the identifier
and then wait for the computation of the input store.
Without the store, it is not clear how to determine the
denotation of the right-hand side of the assignment
statement .

At this point, we must recall the second question
from the beginning of this subsection: how do we de-
termine where a value is needed? Before the semantic
function V can produce the final value for some iden-
tifier x, we.must provide the data values for evaluat-
ing the right-hand sides of the final assignments for

19

2. Since the syntactic function ‘Refs[.J determines
the finite set of identifiers referenced in an expression,
we can restrict the data demand of an expression e
to the values of all identifiers in the set Refs[e]l in-
stead of demanding the entire store. In other words,
the right-hand side of a final assignment generates
a demand for the values of a finite set of identifiers.
The definition of V tells us how to propagate this
demand. Since the input store u to each final assign-
ment is built by the recursive application of the func-
tion V, the application of u to the demanded identi-
fiers reveals the final assignments to these identifiers
within the preceding computation. This process can
be repeated to identify all of the data dependences
in the program. In fact, we could perform a stag-
ing analysis as in Section 4.3 to generate a “struc-
tural” form of program dependence graph similar to
the pdgs presented in [2]. However, this form of pdg
expresses data dependences between expressions and
compound statements instead of between expressions
and assignments. To analyze data dependence at the
level of atomic assignments and predicates, we need
to analyze control information as well.

4.2 Control Dependence

The second component of program dependence anal-
ysis is the determination of control dependences be-
tween assignments and predicates. In the definition of
the semantic function V, the code for handling if and
while is motivated by an operational interpretation
of W. After evaluating the predicate, the function
selects the appropriate branch and determines the
value of the demanded identifier computed by that
branch. However, from a mathematical perspective,
the function determines the values of both branches
and selects the relevant one afterwards. The value
generated by the non-selected branch is often bot-
tom (L,,r) because the predicates typically enforce
conditions that prevent the execution of erroneous or
irrelevant computations. This observation suggests a
strategy for reformulating V: if the revised semantic
function produces the value I for the non-selected
branches, then it can simply merge the results of al-
ternative statements.

The obvious choice for the merge operation is the
least upper bound operation U, which on a flat do-
main always returns the defined value when applied
to a defined value and bottom. Unfortunately, the
u operation is not defined on the entire domain val,
because the least upper bound of two non-bottom
values does not exist. Although this situation cannot
occur within W-programs, we need to extend the val
domain to cast the least upper bound operation as

a continuous function on the entire domain. We can
accomplish this task by attaching a top element T to
the domain vu1 above all of the other elements. The
resulting domain vaIT then forms a complete lattice
and the least upper bound operation is a continuous
function. An added benefit of this extension is that
it creates a framework in which we can define the se-
mantics of program dependence graphs that are not
the images of W-pro

$
rams.

To incorporate val in our revised denotational def-
inition of W, we must also modify the definition of
the domains &ore and bool, which depend on val. We
will use the domains

storeT = ide --+ valT

and
boolT = boolu {T}

instead of the domains store and bool.
Given the extended domain of values valT, we can

now abstract V with respect to an explicit control pa-
rameter (K) that represents the accumulated boolean
value of the predicates along the control path from
the root of the program to the current statement.
This parameter passes information to atomic assign-
ments indicating whether or not they are reachable
in a given computation. In the former case, they
pass their computed values to all of the sites (assign-
ments and predicates) that demand them. In the lat-
ter case, they pass the default value 1. When the
values from all of the final assignments to an identi-
fier in a program component are merged to produce
the demanded answer, only one of the final assign-
ments is reachable. Without this extra control in-
formation, we cannot transmit data values directly
from definition sites (assignments) to their use sites
(assignments and predicates). The control parameter
directly corresponds to the control information that
is passed along control dependence edges in a pdg.

The abstraction V with respect to the control pa-
rameter K yields a new function C with the type

update - stmt - ide - bool’ - storeT

- valT ,

A complete definition of C including instantiations for
the non-strict updates .[. e -1 and .[. + .] appears in
Figure 5. The clause defining the meaning of assign-
ments is:

CS[z := e]I = Xifca.~ -+ 6(u, z, S[e]u)(i), I .

When the update operation 6 is instantiated as
a[- e .] or a[* & e], we can unfold the definition of the

20

Modified Semantic Domains:

u, v E valT w u V-H
u E doreT = ide - valT

Semantics:
C : update - stmt - ide --+ boo1 -+ storeT - va17

C6[t := e] = Aifcu.rc - b(u, 2, E[ee]lu)(i), I

Gaayi@ := eIl = C(*[* e .])[z := e]l

= Aircc7.i Z t - (K - tI[e]u, L), u(i)

Lk[z := e] = C(.[- c-, -I)[2 := e]

= Xitca.i ~2 t - (tc A u(i) # I - f[e]u, I), u(i)

CS[if b then st else srl = Xk7.i $! Defs[sJ U Defs[sf] - u(i),

let rc+ = K A E[b]lu; K- = K A -$[bb]lu

in (i $2 Defs[st]I - (AT+ - u(i), I), CS[st 3i n+ u) Ll
(i $Z Defs[sj] - (K- - u(i), I), C6[sf]i K- a)

Cb[while b do s] = fiz(Xw.Xitcu.

i $! Defs[s] -4 u(i),

let IE+ = K, A &lb]u; K- = rc A lC[b]u

in (wiK+(Aj.G[s]jK+u)) U (6- - u(i), I)

Figure 5: Demand and Control Semantics of W

update operation to reveal both the control depen-
dences and the data dependences between statements
and expressions.

The definition of C includes one important feature
that does not occur in the definition of V. In par-
ticular, the clauses in C defining the meaning of if
and while statements interpret these statements as
identity transformations (empty statements) if they
are irrelevant (no definition of the demanded variable
occurs in the text of the statement). This feature
changes the meaning of W because it eliminates a
possible source of divergence, namely the evaluation
of the predicates governing the execution of irrele-
vant if and while statements. Hence, C satisfies the
following two conditions

I = G&p]iF(Aj.l) .

We could eliminate this difference between V and C at
the cost of generating extra control dependences on
the predicates of irrelevant if and while statements.
In this case, C would satisfy the stronger condition

Vb I[ppiu = CSbjjiTu

instead of the inequality relation given above.

4.3 Program Dependence Trees

Now that we have produced a denotational semantics
that identifies the essential data and control depen-
dences for computing the value of each identifier, we
can perform a staging analysis to extract a code rep-
resentation for W-programs [6, 11, 12, 131. A staging

21

C’ : update - stmt - ide - (storeT - boolT) - (ide - storeT - valT) --+ storeT - valT

C’+ := en = Ainyu.m7 - (6(u, 2, e))(i), yiu

C&[2 := en = C’(.[. (: -])[z := e]

= Xky.i & 3 - h7.(tcu - &[ejj(Aj.qja), I), Au.7iu

C,&I[z := e]l = C’(-[- tJ -])o[z := e]

= Mc7.i 2 2 - AU.(KU A u(i) + I - E[e](Aj,yju), L), Au.yiu

C'@1; s2D = ~iRy.c’b[sz]i~(xj.c’~~s~~~~~)

C’S[if b then st else sr] = A&7.

i @ Defs[st] U Deefs[sf]I - 7i,

let KI+ = XU.KU A &[b](Xj.yju); K- = Xu.tcu A -Z[b](Xj.yju)

in (; $ Defs[st] - (Xu./c+u - yiu, I), (Xu.C’S[s*]k+7u)) u
(i 6 Defs[sf] - (X0.K0. - yiu, I), (Xu.C’S[sjli IC- 7u))

C’b[while b do s] = fiz(Xw.Xiq.

i $t Defs[s] - yi,

let K;+ = htdfpb]l(~j.7ju); K- = Au.K: A y&[b](Xj.7ju)

in (Xa.rc-u -+ 7i~,l)u (wi,+(xj.c’s[sgj~+7))

Figure 6: Staged Semantics of W

analysis decomposes a denotational definition into a
static meaning function, which constructs an inter-
mediate representation for a program, and an inter-
preter, which executes the intermediate code. A crit-
ical preliminary step in a staging analysis is to trans-
form the definition of the meaning function to make
as many phrases as possible independent of the pro-
gram input. Then the static meaning function can
construct concrete representations for the results of
applying these phrases to program text.

In our case, the staging analysis must determine
which parameters of the semantic function C depend
on the initial store. We can then construct a new
semantic function C’ that abstracts the affected pa-
rameters with respect to the initial store and passes
the initial store as the final argument. From the spec-
ification of C’s domain

stmt - ide - boolT - store T T -4 val

and its semantic clauses, it is clear that at an arbi-
trary point in the evaluation, both the control pa-

rameter and the store parameter depend on the ini-
tial store. This observation suggests that function C’
should have the the type

stmt - ide - (storeT - boolT)

- (storeT - storeT)

- storeT - valT.

But this formulation of C’ treats the program text
preceding the current statement as a function from
storeT to storeT. As we noted earlier, the meaning of
the current statement does not depend on the entire
input store, but only on the values of selected vari-
ables. Hence, we can re-apply the same trick that
we used to eliminate the central store from W: move
the identifier argument from the answer store (pro-
duced in this case by the preceding program text) to
the beginning of the argument list yielding the type

22

stmt - ide - (storeT - booZT)

- (ide - store T - v,ir)

- storeT - WIT.

In writing new semantic function C’, we must pre-
serve the semantics given by the function C. The
initial control parameter T and the initial store of
C become parameters that are abstracted over the
initial store, and the initial store becomes the last
argument:

Given this invariant, it is straightforward to rewrite
C’s clauses to match the types of the new semantic
domain.

The result of the staging analysis appears in Fig-
ure 6. This definition shows that it is possible to
determine which decisions made during conventional
program execution are independent of the initial store
and where the initial store is really needed. More
importantly, the evaluation of a program using the
function C’ does not rely on a central store; the only
stores involved are local stores for each assignment
statement and predicate expression.5

The last step in our staging analysis is the decom-
position of C’ into two functions: a static meaning
function and an interpreter. If we apply C’ to all the
required arguments except the initial store, it returns
a function that maps the initial store to a value. But
this function has exactly the same type as abstract
machine code, which maps initial stores to answers.
If we devise a concrete representation for this code, we
can decompose C’ into a “compiler” function G that
constructs the code and an “interpreter” function P
that determines the meaning of code.

The separation of the semantic function C’ into the
functions G and P is a simple process governed by
the invariant

W(+ e ~1)bIl~(t~w)(W, 0, O>)>~O

= C’(-[- e .])~~i(Xa.T)(~ia.a(i))ao.

To accomplish this separation, G must construct a
concrete representation every time C’ returns a func-
tion that maps the initial store to a value. For exam-
ple, when C’(.[. + .I) returns the function

XU.(KU - E[e](Aj.yja), I)

5By making more assumptions about the expression lan-
guage, we could construct graph representations for expressions
and eliminate the local stores.

in the assignment clause, the parameters of this defi-
nition are the expression e, the control parameter K,
and the intermediate function 7 that maps the iden-
tifiers in e to the code trees for computing the respec-
tive values. Hence, the code representation for this
function is the triple

since the rest of the function is reconstructible from
this information. The other clauses of G are derived
in a similar way.

The semantic function P reconstructs the denota-
tions of C’ from the code produced by G. The finite
set formation operation (denoted by braces {e}) in
the definition of P, is strict. Consequently, a code
expression c is never evaluated until all of its data
dependences and control dependences have been sat-
isfied.

Figure 7 defines the concrete code representation
and the functions Q and P. These definitions rely
on standard domain constructions and operators ex-
plained in the Appendix. An assignment statement
x := e produces a data-node consisting of the unin-
terpreted right-hand side expression e, a finite set of
dependence trees indexed by the identifiers in e and
a control-node. A control-node is either the atomic
code true,, which represents the initial predicate,
or a data-node tagged with the value T or F; the
expression field in the tagged data-node is the text
of the controlling predicate and the tag indicates
the boolean value that the predicate must produce
to satisfy the control dependence. An if-statement
generates a pair of data-nodes, one for each arm of
the if-statement. A while-loop produces an infinite
sequence [do, dl, . . . , dk, . . .] of data-nodes, where dk
computes exactly k iterations of the loop.

The trees that we generate for the lazy semantics
and the lackadaisical semantics, respectively, are es-
sentially the infinite unwindings of the corresponding
def-order pdgs and output pdgs. The only difference
between the lazy code trees and the infinite unwind-
ings of def-order pdgs is the presence of valve nodes
in the code trees instead of def-order edges.6 Sim-
ilarly, the only difference between our lackadaisical
code trees and the infinite unwindings of output pdgs
is the presence of valve nodes in our code trees in
addition to the output dependence edges.

6There are two other minor differences between our code
trees and de&order pdgs as defined by Horwitz et al. Their
version of the pdg is designed to support program integration
instead of program optimization. Consequently, they include
nodes corresponding to dead code because dead code may be-
come live after subsequent integration steps. In addition, they
omit loop-carried dej-order edges, which apparently are unnec-
essary for program integration.

23

Semantic Domains:

c,, E code-table = ide -s+ code
data-node = exp 6~ code-table 6~ control-node

c E code = data-node @ (data-node @ data-node) @
data-node’

ch E control-node = true, @ data-node $ data-node

(finite table of code)
(data node: (e, cb, c,))
(code)

(control node:

true,, (T, b, c,, 4, (F, b, co, 4)

Generating Dependence Trees:

G : update -+ stmt - ide - control-node - code-table - code

GlazyEx := e]l = Xk7.i 2 t - (e, {(ird I j E JW44l~, 4,7i
hack [x := e] = Xilc7.2 * z 2 - (5 {(j, 73 I j E -W4I4l~ U {(CY~)), 4,7i

G@1; s2]1 = Xiq.G6 b2niK(xj.(8s b1njK7))

46[while b do s] = fiz(Xw.Xi~7.

i $ Defsls] - yi,

let K+ = (T, b, {(A 73 I j E W4Pll}, 4;

- = (F, h {(A 7d I j E Refil[b]lh 4
in

Interpreting Dependence Trees:

P : code - storeT - T val

WC1 > c2, * * .]I = xu.p~cl~u u p[lc2, . . .]nu

P[(c,, c2)n = kpj[c,~u u puc2ju

P[(e,kck)n = ~dW& - Gd{(iPBcjBu) I (j,cj) E ~~1~1

P, : control-node -----i storeT -+ boolT

P&we,] = XU.T

R[(T, k c,, ck)n = wwk]lU P\ C[[bll{(i P[r,,.llU) I (j, Cj) E 4

P&F, b, c,, 41 = ~u.P,I[4~ A --eO[b]{ (i P[[cj]u) I (j, cj) E 4

Figure 7: Dependence Tree Semantics of W

24

(4 (b)
Figure 8: Semantic pdg for Program P

Valve nodes are produced by the code generator y
when it discovers the definition (final assignment) of
a demanded identifier in while-loop or in only one
arm of a if-statement. The valve controls the flow of
the value produced by the preceding definition to the
demanding site. If the new definition of the identi-
fier is executed then the valve blocks the flow of the
value from the preceding definition. As we mentioned
above in the discussion of the semantic function C, the
valve nodes ensure that only one non-bottom value is
transmitted to a consuming node. From a semantic
perspective, the de&order and output edges included
in conventional pdg representations are insufficient.
Neither form of edge passes the precedence informa-
tion about multiple definitions of the same identifier
to the consuming nodes that must make the discrim-
ination. Thus, in a conventional def-order or output

pdg, a consuming node may receive several different
values for the same identifier, but it cannot determine
which one is “correct” without access to global infor-
mation about the status of the associated output or

def-order dependences.

Figure 8 illustrates the difference between our code
trees and the unwound def-order pdgs for the simple
program P (presented as a conventional pdg in Fig-
ure 2). When the use-node for i has received the
value from the first assignment to i and the second
assignment has yet to provide a value, the use-node
cannot tell whether to accept the first value for i as
the final one or to wait for a value to be transmitted
along the second data-flow edge for i. The decision
depends on the evaluation of the def-order or output

edge between the first and second assignment to i,
which is completely disassociated from the use-node
for i. The introduction of valve nodes as in Figure 8
solves this problem. Since the new valve node (*) is
under the control of the if-predicate and causes either
the second assignment node or the valve node to send
the value lvol, only one defined value ever reaches
the use-node. As a result, the evaluation of the use-
node no longer depends on non-associated pieces of
the graph.

4.4 Collapsing Trees into Graphs

To collapse a tree into a graph, we partition the nodes
of the tree into a finite set of equivalence classes and
construct the graph determined by merging all of the
nodes in the same equivalence class. The equivalence
relation is defined by equating all of the tree nodes
that correspond to the same assignment statement or
predicate in the program. Valve nodes are equated if
they have have the same controlling predicate (in the
program text), the same demanded variable, and the
same truth label (Tor F) on the edge to the control-
ling node.

For loop-free programs, the unwinding of the col-
lapsed graph is identical to the original code tree
because all of the nodes in an equivalence class in
the tree have exactly the same predecessors (sub-
trees): see Figure 8. For programs with loops, how-
ever, the collapsed graph does not contain enough
information to reconstruct the original code tree.
The problem is that we cannot distinguish loop-

25

Figure 9: Semantic-based Pdg for Program R

carried data dependence edges from loop indepen-
dent edges. We can overcome this problem by ap-
propriately labeling the edges involving loop nodes,
but the details of the tree reconstruction process
are complex and lie beyond the scope of this pa-
per. For a simple example, we include our variant
for the lazy pdg for the following simple program:

R s! .- ,z:= 1; s-o-

while z < IV do

s:=s+2;
2:=2+1

The result appears in Figure 9. Edges with a bar
represent loop-carried data dependence edges, others
are either control or data dependences.

5 Directions for Future Research

Although the semantic analysis presented in this pa-
per is instructive, it is too narrow to serve as a prac-
tical framework for expressing and justifying pro-
gram optimizations. To satisfy this goal, we must
expand the programming language to include the all
of the fundamental operations included in real pro-
gramming languages, namely composite data struc-
tures (arrays, pointers and records), procedures, and
more general control structures. In conjunction with
this effort, we also intend to develop an equational
calculus for reasoning about pdgs. Given this machin-

ery, it should be possible to construct an optimization
laboratory that enables compiler writers to specify
optimizing transformations in concise, formal nota-
tion; to generate experimental optimizing compilers
from these specifications; and to prove the correctness
of the incorporated optimizations.

Acknowledgements. We gratefully acknowledge
several discussions with Joe Warren, Thomas Reps,
and Susan Horwitz.

References

1. AHO, A., R. SETHI, AND J. ULLMAN.
Compilers-Principles, Techniques, and Tools.
Addison-Wesley, Reading, Mass., 1985.

2. FERRANTE, J. AND K. OTTENSTEIN. A pro-
gram form based on data dependency in predicate
regions. In PTOC. 10th ACM Symposium on Prin-
ciples of Programming Languages, 1983, 217-236.

FERRANTE, J., K. OTTENSTEIN, AND J. WAR-
REN. The program dependence graph and its use
in optimization. ACM Trans. Program. Lang.
Syst. 9(3), 1987, 319-349.

HORWITZ, S., J. PRINS, AND T. REPS. On
the adequacy of program dependence graphs rep-
resenting programs. In Proc. 15th ACM Sympo-
sium on Principles of Programming Languages,
1988, 146-157.

HOR~ITZ, S., J. PRINS, AND T. REPS. Inte-
grating non-interfering versions of programs. In

26

Proc. 15th ACM Symposium on Principles of
Programming Languages, 1988,133-145.

6. JBRRING, U. AND W. L, SCHERLIS. Compil-
ers and staging transformations. In Proc. 13th
ACM Symposium on Principles of Programming
Languages, 1986, 86-96.

7. KUCK, D. J., R. H. KUHN, D. A. PADUA, AND
M. WOLFE. Dependence graphs and compiler
optimizations. In Proc. 8th ACM Symposium on
Principles of Programming Languages, 1981,207-
218.

8. OTTENSTEIN, K. J. An intermediate program
form based on a cyclic data-dependence graph.
Technical Report No 81-1, Department of Com-

9.

10.

11.

12.

13.

14.

15.

puter Science, Michigan Tech. -University, 1981.

SCHMIDT, D.A. Denotational Semantics: A
Methodology for Language Development. Allyn
and Bacon, Newton, Mass., 1986.

SELKE, R. P. A Rewriting Semantics for Pro-
gram Dependence Graphs. In Proc. 16th ACM
Symposiffm on Principles of Programming Lan-
guages, 1989, 12-24

WAND, M. Loops in combinator-based compil-
ers. In Proc. 10th Symposium on Principles of
Programming Languages, 1983, 190-196.

WAND, M. Semantics-directed machine architec-
ture. In Proc. 9th Symposium on Principles of
Programming Languages, 1982, 234-241.

WAND, M. Deriving target code as a represen-
tation of continuation semantics. ACM Trans.
Program. Lang. Syst. 4(3), 1982, 496-517.

WARREN, J. A hierarchical basis for reordering
transformations. In Proc. 11th ACM Symposium
on Principles of Programming Languages, 1984,
272-282.

WOLFE, M. J. Optimizing Supercompilers for
Supercomputers. Ph. D. dissertation, University
of Illinois, 1982.

Appendix

The definitions of the semantic functions g and P
rely on the domain constructors @I (product), $
(sum), + (infinite sequences), and -a+ (finite func-
tions) together with the associated functions (a, a) and
o for constructing pairs and infinite sequences, respec-
tively. The domain operators 8, @, and + are defined
by the following equations:

ACBB = {@,a) I a~A\{J-l)u
uw I bg B\cwJu-1

Al = U-)ui(T,4 I UEA)
A+ = A@(A+),

The values T and F are used as “tags” in the con-
struction of composite objects; the objects p, a) and
(F, u) are distinct from I regardless of the value of a
(including a = I). The binary function

(., a) : A x B - A @I I3

constructs elements of A @ B as follows:

(qb) ifu#I~b#I
b,b) = { J- otherwise

The expression (el , ez, . . . , e,) abbreviates

(el, 6% . . J)

Similarly, the expression [el , ez, eg, . . .] abbreviates

(el, fr, (e2, Cr, (e3, Cr,. . J)))

The infix operator

o:AxA+-A+

is defined by:

ao+1,a2,...] = (~o,(T,[~1,~2,...1))

= [ao, a1,a2, * * 4.

The domain A --8-) B is the set of all finite subsets S
of A@ B that correspond to functions: ((a, b) E S and
(a, b’) E S implies b = b’. We frequently interpret
elements of A -e+ B as functions in A - B.

A@B = {I}U

{(u,b)luEA\{I)AbEB\{I))

27

