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Abstract
Due to computer architecture evolution, more and more HPC
applications have to include thread-based parallelism and
take care of memory consumption. Such evolutions require
more attention to the full memory management chain, par-
ticularly stressed in multi-threaded context. Several memory
allocators provide better scalability on the user-space side.
But, with the steadily increasing number of cores, the im-
pact of the operating system cannot be neglected anymore.
We measured performance impact of the OS memory sub-
system for up to one third of the total execution time of a real
application on 128 cores. On modern architectures, we mea-
sured that up to 40% of the page fault time is spent in page
zeroing. In this paper, we detail a proposal to improve pag-
ing performance by removing the needs of this unproductive
page zeroing through an extension of the mmap semantic.
To this end, we added a kernel-level memory page pool per
process to locally reuse free pages without content reset. Our
experiments show significant performance improvements es-
pecially for huge pages.

Categories and Subject Descriptors D.4.2 [Storage Man-
agement]: Allocation/deallocation strategies – Virtual mem-
ory

General Terms Design, Performance, Measurement

Keywords Memory pool, Memory allocator, Kernel, Page
fault, Zero page, Parallel, Process, Linux, NUMA, Many-
Core
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1. Introduction
Computing architectures evolutions have deeply impacted
the High Performance Computing landscape. Since several
years, the great majority of supercomputers are clusters.
However the number of computing units within each node
tends to increase. From multi-core, which become common
even in our laptops, the HPC systems evolved towards many-
core architectures. Consequently, software developers have
to expose sufficient parallelism at all levels, from the oper-
ating system to applications. Such a task requires important
efforts to transform existing sequential codes.

HPC are commonly operated through distributed memory
programming models, generally thanks to the MPI (Mes-
sage Passing Interface) standard. Most of the implementa-
tions are process-based ones, so the increasing number of
cores per node starts to show some limitations of this ap-
proach. Limitations which are mainly related to inter-process
communication efficiency, increasing number of communi-
cation buffers and data replication (ghost cells, constants...).
More and more simulation codes try to solve the issues by
combining the Message Passing model with other ones that
have proved their advantages and performance results over
shared memory architectures. Thus we can especially quote
the thread-based models, such as OpenMP, TBB, Cilk...

Production grade parallel memory allocators are now
available, improving the user-space part of the memory man-
agement chain. But, the Linux kernel still has some scala-
bility issues in its memory management sub-system, making
page faults a major limitation on large compute nodes. We
observed kernel overhead up to 30% of the execution time
by running applications on 128 cores.

In this article, we looked down to the operating system
itself and observed that the clear page function (respon-
sible of page zeroing) accounts for 40% of the page fault
cost. As a consequence, we suggest to limit the use of
this function by doing page reuse at kernel level thanks
to the introduction of a new per process memory pool.



We implemented this solution and observed significant im-
provements on tested HPC applications.

The first section of this paper introduces some basics
about memory management in parallel context and describes
the page zeroing problem. The second one provides some
related results motivating the needs to improve the kernel it-
self. It is followed by the description of some related work
in memory management field. Then, we propose an improve-
ment in kernel-space to limit this performance loss. Finally,
the last section shows and analyzes its performance impact
on micro-benchmarks and applications.

2. Reminder on Memory Management
This first section provides some basics on memory manage-
ment, detailing its trade-offs and performance issues. In par-
ticular, we focus on page fault and page zeroing which are
partly responsible of the overhead.

2.1 Usage of Memory
Although processors are able to gather an increasing num-
ber of cores while keeping the same size, this is not the
case for memory banks. As a result, the memory available
per core tends to stabilize or even in some cases to become
smaller[7]. In the best case, current supercomputers offer a
ratio of 2GB (Tera100) or 4GB (Curie) per core. Other ar-
chitectures such as BlueGene machines with higher number
of cores (more than a million) have lower ratios (1GB). Sim-
ilarly, new architectures like the Intel Xeon Phi will provide
a total memory of 8GB for 60 cores or 240 threads. It lowers
the ratio to 130MB per core or 34MB per thread.

In such context, developers have to limit the memory
footprint of their applications. Hence, keeping unused mem-
ory buffers cannot be acceptable anymore. In some cases, it
might imply more calls to the allocator. Similarly, the allo-
cator cannot keep too much memory in user-space and have
to hand it back to the underlying system. Consequently the
whole memory chain is impacted, with a growing impact of
the operating system, leading to new performance issues.

There is necessarily a trade-off between keeping and re-
turning unused memory. Trade-off which tends to become
more complex as it impacts multiple levels: application, al-
locator, operating system. Each of these levels comes with
its own policy which combined might lead to undesirable
performance effects.

In addition, current architectures are now multi-core and
distributed programming models start to show their limits
due to memory duplications. It implies that the system is
now stressed with threads instead of processes. Hence, the
kernel has to manage the contention on shared resources be-
tween the threads of a given process. This is particularly true
for the memory management part which needs to maintain
a coherent view of a common address space between ev-
ery core. With multiple sequential processes, this problem
is tempered by the use of separated address spaces.

2.2 Memory Semantic
From the operating system point of view, the memory man-
agement is done at the granularity of a page which represents
a small contiguous memory segment of 4KB for standard
x86 architectures. At processor level, an independent virtual
address space is established for each process. The mapping
between virtual addresses and physical ones is the respon-
sibility of the operating system. This mapping is stored in
a page table which is used by the processor for translation
purposes. Each thread of a given process shares the same
mapping along with the same page table. Hence, the page
table becomes a contention point in multi-threaded context
due to locks.

When a program needs some memory, it requests it via
mmap or brk system calls. It establishes a new authorized
segment in the process’s virtual address space or extends a
fixed one. In Linux, those memory segments are named Vir-
tual Memory Area (VMA)[3] and are freed by the munmap

system call.

2.3 Lazy Memory Allocation: Page Fault
Memory allocation performance must not be limited to the
malloc call itself. On modern operating system, large mem-
ory segments are directly allocated through mmap. But, such
segments are not truly allocated and only depict authorized
memory regions. This is called lazy page allocation. Phys-
ical pages are then provided upon a first touch policy via
a page fault. Therefore the allocation cost is not limited to
malloc, but partly delayed to the first memory access. This
approach permits to save memory by physically mapping
only the accessed virtual pages, at the cost of an overhead
at the first access.

This paper focuses on the cost of those first accesses. We
start by studying the cost of such page fault and their scal-
ability over a large number of cores. To this end, we placed
us on the application side, and measured the time needed for
first access to a newly allocated segment. Measurement pro-
cedure is as follows and repeated multiple times: (1) Create
N OpenMP threads or N MPI processes. (2) Each of them al-
locates a large segment for a total of 10GB. (3) First write ac-
cesses time to each page are measured with RDTSC counter
in order to build a per page per thread time distribution.

To confirm with a more stressing and simpler test, we also
did the measurement with a single write access (memset) on
the whole segment while measuring the total access time.
It allows to compute the mean time of a page fault, hence
avoiding potential biases of the first method.

Figure 1 presents the results on a 128 core computer. Er-
ror bars depict the median, 50% and 80% quartiles. A per-
fect scalability might produce a horizontal line. We can see
that the median time increases linearly with the number of
threads, whereas, when dealing with processes, it scales cor-
rectly with a twofold increase when leaving a single socket
(8 cores). The scalability issue is hardly enforced by the two-
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Figure 1. Page fault time measurement on a 128 core com-
puter with 4*4 two-level NUMA with 8 core CPUs. It pro-
vides median, 50% and 80% quartiles of page fault time per
thread. The measurement was done with 10GB of memory.

level NUMA of the tested Bull BCS. Such thread scalability
issue has already been observed by Austin T. C. and al. onto
2.6.37 version of Linux kernel with up to 80 cores[5].

Figure 2 provides the same measurement on Intel Xeon
Phi with up to 240 threads. In this case, our previous mea-
surement methodology largely underestimates the cost of
page faults. It was due to larger overhead of the data aggre-
gation code which was too slow on this architecture. Conse-
quently, we had to fall back on the confirmation method (a
simple memset). This explains the lack of time dispersions
for this architecture. It can be noticed that the scalability is-
sue remains starting from eight threads. At the opposite of
what we expected, Xeon Phi’s Linux has an issue with al-
locations in processes which degrades in the same way as it
does with threads. We currently have no confirmed explana-
tion for this phenomenon.

Numerical simulations based on MPI or OpenMP tend to
have allocation phases, favoring those pathological cases.

2.4 Page Zeroing in Kernel
During page faults, the kernel needs to reset all the physical
pages it provides to a process in order to prevent information
leaks from another one or even from the kernel itself. Such
behavior is performed by the clear page kernel function.

Tools like perf (from Linux kernel sources) can report
this reset function in the top list for intensive allocation tests.
On a 12 core computer (Bi-Westmere), it costs around 1400
cycles. As a single page fault costs 3400 cycles, it implies
that 40% of the cost comes from page zeroing. Furthermore,
in multi-thread context, this function is used between locks,
possibly degrading scalability.

2.5 Huge Pages
Current architectures rely on small caches to speedup ad-
dress transitions (Translation Lookaside Buffer: TLB). 4KB
pages can be too small to exploit efficiently those TLB
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Figure 2. Page fault time measurement on the new Intel
Xeon Phi architecture with up to 240 OpenMP threads with
a 6GB segment.
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Figure 3. Page fault time measurement with Transparent
Huge Pages on a 2*6 hyper-threaded core computer. The
measurement was done by touching each 2MB page once.
For comparison we report the time per 4K dataset by divid-
ing the huge page time by 512.

with large datasets; therefore, current processors also pro-
vide support for larger pages (huge pages on Linux). Huge
pages (2MB) are larger than standard ones (4KB), thus re-
ducing the number of faults by a factor 512 for a given
amount of memory. Nonetheless, an important part of the
allocation cost persists as it consists in zeroing the newly
allocated page, a cost which increases with page size.

Figure 3 depicts page fault timings for Linux Huge Pages
on twelve cores. Fault time is measured for each 2MB page
and scaled down by a factor 512 to compare them with
standard pages on the bases of a fixed size. It can be seen
that Huge Pages cost 2000 cycles per 4K compared to 3400
for the standard ones, yielding a 40% improvement. But
with a larger number of threads (24 threads), costs are now
comparable for the two methods. Hence, huge pages provide



performance improvements for serialized faults, but suffer
from the same scalability issue.

2.6 Insights
As discussed, the whole allocation chain has to take into ac-
count parallelism constraints. Because of the evolution of
the memory per core ratio, applications might release their
memory more often, issuing more calls to the memory man-
agement chain. On the kernel side we reminded a scalability
problem with page fault (see figures 1, 2 and 3). In this pa-
per, we discuss an improvement of page fault performance
by limiting zero paging cost (40% of a page fault), with a
possible gain for scalability by reducing the work done in a
critical section.

3. Motivating Results
This section provides some related results which motivates
our kernel-level proposal. It is based on tests of different
memory allocators on large NUMA nodes with a complex
real application. Here, we were mostly interested in keeping
the memory at user-space level through the memory alloca-
tor itself in order to immune the application from the pre-
vious issue. However, even if it can solve the performance
issue we will show that it increases the memory consump-
tion, which as discussed might not be acceptable anymore
for some kind of workload.

3.1 Tested Platforms
Experimentations were done on three different platforms
with different number of cores and NUMA hierarchies. The
first one (A) is a 12 core Bi-Westmere NUMA computer with
hyper-threading support. Most of our tests were done on this
node thanks to a root access. The two others provide (B) 32
or (C) 128 cores with respectively 4 and 4*4 NUMA nodes
of octo-core Nehalem-EP CPUs. As those two platforms
were in production, we weren’t able to test our kernel patch
or huge pages impact on them.

3.2 Tested memory allocators
Although user-space memory allocators were originally
mostly, sequential there are now several parallel implemen-
tations such as Jemalloc[8] from FreeBSD, TCMalloc[17]
from Google, Hoard[2], Streamflow[13] or MAMA[11].
Here, we focus on Jemalloc and TCMalloc which are pro-
duction grade, widely used and sufficient to demonstrate our
points of interest.

Naturally, allocators are all different, providing their own
policies for varying purposes. For our goal of interest, Je-
malloc reduces the memory footprint by continuously re-
turning unused segments to the system. As a counter-part,
it delegates the pressure to the underlying operating system.
Whereas it is a good trade-off on common workstations, we
will show that such a model finds its limitation with larger
number of cores due to growing system time, and can be-
come a real issue on 128 cores.

In comparison, TCMalloc aims at keeping unused mem-
ory for faster reuse. This approach tends to use more mem-
ory and might be problematic in HPC context. In addition,
special care must be taken when reusing memory at user-
space level, particularly in NUMA context. TCMalloc does
not provide explicit NUMA support so we can observe some
side effects on large compute nodes. An experimental patch
has been developped by AMD to made TCMalloc NUMA
aware[12], nevertheless this work haven’t been tested for this
paper.

These two allocators cover the policies spectrum by either
carefully freeing memory to limit the footprint or keeping
memory to improve performance (limiting the number of
interactions with the OS).

In addition, we used the allocator from MPC (Multi-
Processor Computing)[4, 15] framework. This framework
aims at providing a unified parallel runtime to mix different
parallel programming models (currently MPI, pthreads and
OpenMP) for multi-processors/multi-cores NUMA nodes.
From the memory management point of view, the MPC allo-
cator provides a configurable reuse policy of large segments.
As we have more control (especially NUMA support) we
can use several profiles to observe the effects which impact
the performance with a unique allocation algorithm. Hence,
it provides a coherent way to extract parameters’ impact. We
used three different profiles in this paper. The low memory
(lowmem) profile return all the unused memory to the kernel
similarly to Jemalloc. The NUMA and UMA ones try to keep
up to 500MB of unused memory per NUMA node. The two
last policies differ by their explicit or non-support of NUMA
hierarchy. The UMA profile is quite similar to TCMalloc be-
havior, except for the amount of unused memory it maintains
in the allocator and some implementation details.

3.3 User-Space Pools for Large Segments
We validated both our approach (user and kernel-space) with
a large MPI application. Hera[10] is a 2D/3D multi-material,
multi-physic simulation code with Adaptive Mesh Refine-
ment (AMR). Due to the AMR mechanisms, this application
consumes a lot of memory and stresses the allocator with a
huge number of allocation cycles of various sizes.

Tests were executed in multi-threaded context by using
the MPC framework which provides a thread-based MPI
implementation. It executes MPI tasks in threads instead of
processes. Table 1 provides some measurements obtained
while running Hera in hydrodynamic 3D/AMR mode on the
three different architectures with four allocators: the default
one from glibc, Jemalloc, TCMalloc and the MPC one.

Those results show the large impact of the allocator
choice for this application. Of course, such large nodes
imply NUMA effects, but we can also notice the effect of
consumption policy on system time. On each test, jemalloc
provides gains around 2GB of memory compared to default
glibc, but it multiplies system time by 7 on the 128 core node
(C4,C5). TCMalloc provides better performance on the 12



A: Bi-Westmere 12 cores (2 * 6)
Allocator Total (s) User (s) Sys. (s) Mem (GB)

1 MPC-NUMA 135.14 132.63 1.79 4.3
2 MPC-UMA 146.11 143.50 1.86 4.3
3 MPC-lowmem 162.96 130.98 16.20 2.0
4 Standard glibc 143.89 130.10 8.53 3.3
5 Jemalloc 143.05 128.07 14.53 1.9
6 tcmalloc 141.14 139.98 0.65 6.9

B: Nehalem-EP 32 cores (4 * 8)
Allocator Total (s) User (s) Sys. (s) Mem (GB)

1 MPC-NUMA 89.33 64.34 2.39 15
2 MPC-UMA 94.82 71.41 2.58 15
3 MPC-lowmem 248.17 74.19 87.21 6.7
4 Standard glibc 101.11 67.43 9.41 8.1
5 Jemalloc 145.73 70.49 57.32 6.7
6 TCMalloc 106.28 82.97 1.96 8.6

C: Nehalem-EP 128 cores (4 * 4 * 8)
Allocator Total (s) User (s) Sys. (s) Mem. (GB)

1 MPC-NUMA 120.07 100.44 5.64 16.9
2 MPC-UMA 229.38 207.25 5.88 16.5
3 MPC-lowmem 762.47 460.53 56.13 14.1
4 Standard glibc 284.06 170.94 15.9 14.1
5 Jemalloc 351.49 214.54 123.99 12.2
6 TCMalloc 438.42 396.59 27.57 14.4

Table 1. Performance measurement of Hera on various
NUMA nodes by using different memory allocators with a
single process and one thread per core. To be comparable,
the user and system times are given per thread.

core computer (A6) but shows some limits on larger ones
(B6,C6).

The three policies provided by MPC allocator help us to
decouple the origin of such large performance gap (NUMA
or system time). Comparing the NUMA to UMA mode ex-
tracts the cost related to non-explicit NUMA support in al-
locators. On the 128 core computer it improves the perfor-
mance by 48% (C2,C1). Comparing NUMA with the low
memory profile extracts the cost of freeing intensively the
memory. This case shows a huge degradation on all archi-
tectures, increasing with the number of cores up to a factor
6 on 128 cores (C1,C3).

3.4 Conclusion
Those results show that we can obtain significant improve-
ments (up to a factor 2) by using memory pools at allocator
level. This technic requires an explicit NUMA support to be
efficient on large NUMA nodes. But it encounters two major
limitations while controlling memory consumption. Firstly,
the reuse of large segments can increase the memory con-
sumption if the application rely on lazy paging and do not
use all the memory it requests. Secondly, the kernel has no
ways to request the ununsed memory from user-space pools
in case of memory starvation. This work motivates our pro-
posal to improve page fault performance.

4. Related Work
Previous part of this paper refers to and completes the scal-
ability issue observed on Linux by Austin T. C. and al.[5]
with up to 80 cores. In their paper, they proposed a new
scalable algorithm to update the page table. In contrast, our

article focus on reducing the other part of page fault time:
the clear page function, approach which can complement
their own one.

Similar work on page zeroing strategy has already been
done by Microsoft developers and currently used in Win-
dows kernel[16]. Their implementation moves the call to
page reset into an independent low priority system thread.
Experimentally, a single page fault of windows 7 64bit on
Intel Core i7 Sandy Bridge cost 1900 cycles. The Linux
3.6.8 one cost 3700 cycles on same hardware. We propose
to be stricter and avoid as much as possible the unproductive
work done by clear page. It can be achieved by introduc-
ing page reuse at kernel level. As shown in section 6, we
achieve similar performance improvements without an ex-
tra system thread. In HPC context it might be preferable to
avoid the extra noise of a system thread or one per NUMA
node (16 on our 128 core node).

Since version 2.6.38, thanks to the work of A. Arcangeli
(Transparent Huge Pages[1]) Linux huge pages can be used
without being “booked” at boot time, making them more
usable. This patch was also back-ported to the version 2.6.32
provided by Redhat and Centos, hence, all Huge Pages tests
from this paper were done with this implementation. Most
of the time, huge pages are studied to reduce TLB misses
[9, 14, 18]. But, in this article, we studied them for their
potential improvement of allocation performance.

5. Kernel-Level Memory Pools
Section 3.3 is interested in limiting interactions with the
OS thanks to user-space memory pools. Of course it im-
plies higher memory consumption which can be problem-
atic for upcoming architectures. In contrast, this section fo-
cuses on improving the cost of memory page faults in order
to help finding a more favorable balance between memory
consumption and performance. It targets the clear page

function with the goal of reducing its usage to the minimum.

5.1 General Design
In order to optimize page faults, Windows uses an indepen-
dent thread to reset the memory on unused CPU cycles. In
contrast, we decided to relax the zeroing constraints. Af-
ter allocating memory, most users do a first write access
to initialize their data segments making zeroing unproduc-
tive. Moreover page zeroing accounts for an important part
of page faults’ costs. Hence, it might be better to avoid them
as most as possible, saving CPU cycles, bandwidth and en-
ergy. Nonetheless, page zeroing is required for security rea-
son. Thus, constraints can be expressed as follows:

1. Page zeroing is required to prevent information leaks
between processes or from the kernel itself.

2. Some user-space tools suppose lazy page allocation and
rely on page zeroing to initialize their segments on first
use.
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The malloc function commonly recycles small segments
to allow quicker allocations. So, we propose the same at
kernel level. We considered that pages coming from one
process can be reused in the same process without being
zeroed. Hence, we implemented a per process kernel level
memory pool with a page granularity (figure 4).

It completely removes page zeroing costs but alter mmap’s
semantic by possibly returning non zeroed pages. To main-
tain compatibility this behavior is triggered only explicitly
via new flags for mmap and madvise. This approach has sev-
eral benefits compared to the user-space memory pools:

1. At kernel level, it does memory reuse at page granularity
where allocators use virtual segment granularity, so have
no control for the inner part of large segments.

2. It supports transparently kernel’s NUMA policies with
the advantage of manipulating pages instead of virtual
segments.

3. Kernel can easily reclaim those pages to reuse them into
other processes or for its own usage.

The malloc and realloc definitions do not impose
to reset the requested chunks, allowing those functions to
safely exploit this new feature.

5.2 Memory Consumption and Swap
With such a memory pool per process, one can question the
limits on memory consumption. We answer this question
here even if this part is currently not fully implemented.

In order to limit the memory consumption, we capture
only the pages from freed segments with page reuse flag en-
abled. It avoids the pathological case which consists in cap-
turing all the pages but not reusing all of them if part of the
new allocated segment does no enable the page reuse flag.
This approach naturally limits the memory consumption of
the pool to the maximal fraction of virtual space with page
reuse flag.

This default behavior is the best case for performance
without needing a shared counter (which may add inter-
thread contention) to enforce this limit. The non-capture of
standard segments also maintains the security of potential

cryptographic libraries which might not want their keys to
be reused elsewere in the process after freeing the memory.

Another and more important question is about swap and
page reclaim. In case of memory needs, the page reclaim
algorithm must loop over those kinds of pages as a first
priority before checking the current inactive page list. In
term of implementation, it may be done by adding an ad-
ditional list near to the current LRU (Least Recently Used)
active/inactive page lists in each memory zone (NUMA).
This new list has to point per process pools and not pages
to ensure synchronizations. We propose to use round robin
or random selection to reclaim pages in a different process
between each pass. Round robin or random selection algo-
rithm may provide smoother impact on running applications.
Searching the larger pool may be another solution, but seems
costly compared to the others available solutions. Of course
in case of high memory pressure, it could be a good idea to
disable or force a lower limit on local memory pools size.

Swap being a very critical area of memory management;
we decided to postpone our integration into the page reclaim
algorithm. Nonetheless we made sure that there are no major
difficulties in its implementation. This choice can be justified
in HPC context where we deal with a reduced number of pro-
cesses which can monopolize resources, so current support
is sufficient for a first evaluation of interest.

5.3 Support of Huge Pages
Our current patch was tested on both kernel version 2.6.36
and Redhat 2.6.32, so, with basic support of huge pages.
Such a support was obtained by applying the same approach
as for standard pages. The cache structure was modified to
support two page sizes in two distinctive lists. Page capture
and reuse was done in the same way as for standard 4K
pages.

Supporting dual page size may require a more complex
counter to ensure a global limitation on the two sub memory
pools. If an application uses successively both page sizes
we may keep a large unused pool. Page reclaim support
can solve this issue which might be considerd uncommon
in practice.

5.4 Integration in User-space Memory Allocator
The user-space memory allocator (malloc) is the main entry
point to support this new feature in applications. Most allo-
cators base their implementation on mmap for large memory
segments, in this case, the new mmap flag can be activated
for malloc and realloc while making sure that calloc
provides zeroed memory in order to preserve the semantic.

Such support in allocators can be trivial if current alloca-
tor doesn’t rely on zero pages to setup their headers. Oth-
erwise integration might require more work to make sure
that all segments are correctly initialized. For instance this
support was implemented in MPC parallel memory alloca-
tor without too much change except propagating a boolean
over the call paths leading to mmap, possibly activating the
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Figure 5. Micro-benchmarking of the patched kernel while
binding the measurement process on a single 6 core West-
mere socket to avoid NUMA effects.

reuse feature. We also patched Jemalloc in the same way as
it already propagates such a boolean in its call paths. This
one is a good candidate to validate this approach due to its
low memory profile.

5.5 Conclusion
This section developed an approach to reduce Linux page
fault time for applications doing frequent large memory al-
locations. We went further than Windows by removing as
most as possible the needs of page zeroing instead of mov-
ing it elsewhere. We extended current mmap and page fault
semantic such that the caller can express his constrain about
zeroing. In order to avoid page zeroing while maintaining
tightness between processes, we added a per process mem-
ory pool at kernel level for local memory reuse. Such im-
provement may benefit to user-space allocators by allowing
them to free memory more regularly with lower system over-
head.

6. Experimental Results
The previous section describes a kernel-level solution to im-
prove allocation performance by reducing the need of page
zeroing. This section provides some measurement showing
benefits of our approach on a micro-benchmark and two
HPC applications. Remark that the given experiments have
been repeated with reproducible results.

6.1 Micro-benchmark
The first test consists in running the micro-benchmark from
section 2.3 bound on one socket of architecture A (Bi-
Westmere) to avoid NUMA conflicts. Thanks to hyper-
threading, measurements used up to twelve threads. Fig-
ure 5 shows significant gains on page fault performance.
The sequential time decreases from 3400 to 1900 cycles
(a 45% improvement). In this configuration, scalability is
also slightly improved falling from 8950 cycles for twelve
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Figure 6. Micro-benchmarking of the patched kernel while
running on 12 core Bi-Westmere NUMA node.
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Figure 7. Micro-benchmarking of the patched kernel while
running on a 12 core Bi-Westmere NUMA node with huge
pages.

threads to 2900 cycles thanks to the patch, so a performance
improvement of 66%.

Figure 6 presents the results on two sockets with up to
24 threads. There are still performance gains, but NUMA
becomes the new limitation on page fault performance. In
this situation our patch provides a constant gain of 1500 cy-
cles corresponding to 33% for 24 threads. Performing the
same measurement without using our pool but returning di-
rectly non zeroed pages (creating a security hole) left the re-
sults unmodified, proving that NUMA related performance
impact mostly comes from page fault implementation itself
(locks), excluding zeroing and our pool implementation. As
shown, our approach improves Linux page fault system per-
formance and scalability. However, page fault’s scalability
on large number of cores with NUMA effects still requires
important work.

Transparent Huge Pages gains are larger as page fault’s
cost mainly imputes to page zeroing. In this case, we ob-



Huge pages with Hera.
Allocator Total (s) User (s) Sys. (s) Mem (GB)

1 MPC-NUMA 137.89 135.13 1.86 6.2
2 MPC-UMA 147.15 144.38 1.97 6.2
3 MPC-Lowmem 196.51 140.39 28.24 3.9
4 jemalloc 144.72 129.62 14.66 2.5
5 std 149.77 130.08 12.92 4.5
6 Tcmalloc 150.13 149.03 0.51 6.5

Table 2. Huge page benchmark with Hera application on
the Bi-Westmere computer. User and system times are given
per thread.

served (figure 7) improvements up to a factor of 57 in se-
quential with a cost of 35 cycles per 4K page.

6.2 Hera Application
We start by looking for improvements through the standard
huge pages of Linux kernel for the Hera application in the
same way as section 3.3. Table 2 can be compared to the one
from section 3.3 (architecture A). It shows that in our spe-
cific case, the 2MB huge page size is too large and tends to
increase memory consumption of all memory allocators ex-
cept TCmalloc which maintains fix consumption. This grow-
ing effect can be explained by the use of virtual allocations
which are fully mapped with physical huge pages where it
wasn’t with 4K pages. In addition, due to the page fault scal-
ability issue and zeroing of more physical memory, it de-
grades slightly the performance compared to the results from
section 3.3.

Table 3 depicts results from running Hera with and with-
out our kernel patch on the Bi-Westmere computer (A). On
the two tested allocators with standard pages (S2,S3 and
S4,S5), it improves the global performance by 2%. But sys-
tem time shows an overall improvement of 33%, matching
our previous micro-benchmark. Huge pages now improve
the global execution time by 30% and 5% for the two low
memory consumption allocators (H2,H3 and H4,H5). Sys-
tem time was respectively improved by a factor 9.7 and 2.3.
With MPC allocator, it made the low memory mode as fast
as the NUMA one (H1,H3), in other words, we compensate
the overhead induced by freeing the memory.

6.3 HydroBench Application
HydroBench[6] is a lighter numerical simulation available
on github. This application is a 2D hydrodynamic bench-
mark with hybrid MPI + OpenMP support. It is executed
in full OpenMP mode with 12 threads on the Bi-Westmere
computer (A). The first version of this benchmark suffered
from a large number of memory allocations. As it stresses
the memory management chain, we run our tests with this
slower version and also compare to the patched one. Due a
simpler allocation pattern it has roughly the same memory
consumption with all tested allocators.

Table 4 shows gains around 12% on the overall runtime
and a reduction of 37% on system time imputes to our kernel
patch (S2,S3). Of course, we can reach better performance

Kernel patch and standard 4K pages (S)
Allocator Kernel Tot. User Sys. Mem.

1 MPC-NUMA Std. 135.14 132.63 1.79 4.3
2 MPC-Lowmem Std. 161.58 131.00 15.97 2.0
3 MPC-Lowmem Patched 157.62 132.70 10.60 2.0
4 Jemalloc Std. 143.05 128.07 14.53 1.9
5 Jemalloc Patched 140.65 130.80 9.32 3.2

Kernel patch and Transparent Huge Pages (H)
Allocator Kernel Tot. User Sys. Mem.

1 MPC-NUMA Std. 137.89 135.13 1.86 6.2
2 MPC-Lowmem Std. 196.51 140.39 28.24 3.9
3 MPC-Lowmem Patched 138.77 131.70 2.90 3.8
4 Jemalloc Std. 144.72 129.62 14.66 2.5
5 Jemalloc Patched 138.47 130.44 6.40 3.2

Table 3. Benchmarking our kernel patch with the Hera ap-
plication on the Bi-Westmere computer. We used 12 threads
in one process. User and system times are given per thread.
Times are given in seconds and memory in GB.

Standard pages. (S)
App. Kernel Allocator Tot. User Sys. MFlops

1 Std. Std. Glibc 1:29 543.3 30.7 1770
2 Std. Std. Cust. 1:28 532.9 31.5 1775
3 Std. Patch Cust. 1:19 534.9 19.7 1775
4 Std. Std Cust. KM 0:59 528.6 0.5 2649
5 Patch. Std Glibc 0:43 475.0 0.4 3606

Transparent Huge Pages. (H)
App. Kernel Allocator Tot. User Sys. MFlops

1 Std. Std. Glibc 1:13 533.3 18.8 2140
2 Std. Std. Cust. 1:18 550.7 17.8 2007
3 Std. Patch Cust. 1:11 557.0 7.0 2224
4 Std. Std Cust. KM 1:05 566.3 1.0 2412
5 Patch. Std Glibc 0:50 539.2 0.4 3554

Table 4. Measurements with HydroBench OpenMP code
with 12 threads on the Bi-Westmere computer. The KM
(Keep Memory) option of our allocator tries to keep large
memory segments in user-space level for future reuse.

improvement (44%) by working at allocator level as the
number of fault is drastically reduced (S2,S4). Huge pages
improve by themselves performance by 12% (S1,H1) and
our kernel patch improves the related system time by a
factor 2.5 (H2,H3) making the user-space memory pool less
efficient (H3,H4). Better gains, up to 52%, are logically
obtained by fixing the problematic allocations pattern at
code level (S4,S5 and H4,H5). But such a patch might not
be possible in more complex applications.

6.4 Conclusion
This section provides results obtained by introducing mem-
ory pools at kernel-space level for the Bi-Westmere com-
puter. The results of our kernel prototype show improvement
close to 30% on system time for the tested cases. It gener-
ates in one case gains of 12% on total run time. Coupled
with huge pages, our kernel patch provides improvement of
33% on the Hera application, hence, providing the same im-
provement as the user-space approach but with lower mem-
ory consumption.



7. Conclusion
This paper focuses on page fault cost for memory intensive
applications in multi-threaded context. As it starts becoming
a bottleneck on large NUMA nodes, we explored some pos-
sible solutions. As user-space solutions tend to increase the
memory consumption, we looked down to the kernel.

Hence, we studied the page fault strategy and more pre-
cisely the use of kernel clear page function which is re-
sponsible of clearing the physical pages before their usage
by processes. With current Linux kernel and hardware, it
costs 40% of a page fault. Some OSs like Windows already
uses optimizations to move the use of this function out of
page fault management. Conversely, by looking to the page
fault semantic we proposed a stricter approach by removing
as most as possible the need of this function. Hence we can
expect to save some CPU cycles, memory bandwidth and
possibly energy.

We proposed to add a per-process memory pool in kernel
structures. This way, free pages are reused by the same
process; so, do not need anymore to be cleared. Its usage
is enabled by extending the flags provided to mmap and can
be supported by patching memory allocators for malloc and
realloc. At the opposite of user-space methods, it handles
reuse at page granularity which is better to fit with the real
access pattern of large segments and to maintain NUMA
properties. In addition, those free pages can be reclaimed for
others processes or for the kernel itself.

We prototyped our kernel-space proposal in Linux 2.6.32
and 2.6.36 and ran some tests on a 2*6 core NUMA com-
puter. By micro-benchmarking, we observed performance
improvements up to 45% on sequential page faults and up to
66% for 12 threads. But on NUMA architectures, additional
effects increase the cost of the other part of the fault system
reducing gains to the expected constant cost of a page reset.
Anyway it still significantly improves the page fault time by
32% for 24 threads.

We finally tested two multi-threaded applications (Hera
and HydroBench) with our patched kernel. Depending on
their compute/allocation ratio, it provided respectively an
improvement of 1% and 12% on the global runtime. In
the two cases we observed the expected 30% reduction of
system time. With huge pages, it provides improvements of
33% comparable to the user-space memory pools without
increasing the memory consumption of the application.
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