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Abstract

In this paper we describe a collection of techniques for the

design and implementation of concurrent compilers. We be-

gin by describing a technique for dividing a source program

into many streams so that each stream can be compiled con-

currently. We discuss several compiler design issues unique

to concurrent compilers including source program partition-

ing, symbol table management, compiler task scheduling

and information flow constraints. The application of our

techniques is illustrated by a complete design for a concur-

rent Modula-2+ compiler. After describing the structure of

this compiler we present an experimental evaluation of the

compiler’s performance that demonstrates that significant

improvements in compilation time can be achieved through

the use of concurrency.

1 Introduction

The Concurrent Compiler Development (CCD) Project at

the University of Toronto was a long term effort to ex-

plore issues in the design and implementation of concur-

rent compilers for modern programming languages. We

developed techniques for structuring compilers to achieve

significant compilation time speedups through concurrent
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processing. Although we describe a particular prototype

concurrent compiler in this paper, the techniques we have

developed are applicable to compilers for a broad range of

languages.

To provide a realistic environment for developing and

evaluating our ideas we built a prototype concurrent com-

piler [JW90] for the Modula-2+ superset of Modula-2

[Rov86]. Modula-2+ was chosen as the target language

partly for reasons of expediency (i.e. availability of an

existing compiler that served as a starting point) , but pri-

marily because Modula-2+ is a large modern programming

language that presented many challenges to the language

implementor. We felt that if we could produce an efficient

compiler for Modula-2+ then it would be easy to handle lan-

guages that are easier to compile concurrently such as Pas-

cal and C. During the CCD project we implemented seven

major variations of our concurrent compiler design to test

various implementation strategies. The compiler described

in this paper is the “best of 7“ compiler that represents the

culmination of our efforts.

Our paper in the 1988 PLDI conference [SWJ+ 88] dis-

cussed the narrow issues of semantic analysis and symbol

table management in concurrent compilers. A longer dis-

cussion of this topic has been published elsewhere [SW9 1].

This paper describes the design and evaluation of a complete

concurrent compiler for the Modula-2+ superset of Modula-

2. A more detailed discussion of our prototype compilers

has been published as a technical report [JW90].

The research described in this paper differs from previous

work in the area in a number of ways;

e It describes a complete, implemented, concurrent com-
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piler. In their comprehensive bibliography on Con-

current Compilation [SB90] the authors identified only

three implemented modern compilers for shared mem-

ory multiprocessors [Van87],[Sch79] and ours. The

remaining work that they cite are theoretical studiles,

paper designs or concern only one phase of compila-

tion (e.g. parallel parsing).

It goes much further than previous efforts in restruc-

turing compilers to take advantage of concurrent hard-

ware. We have taken avery aggressive approach to par-

titioning compilation into separately executable tasks

and to splitting the source program into separately colm-

pilable sub-units. For example, Vandevoorde [Van137]

split his compiler into a scanning phase and an “ev-

erything else” phase. He did not address the Doesn’t

Know Yet problem discussed in Section 2.2.

The symbol table search mechanism (Skepticrd Han-

dling) presented in Section 2.2 is a new approach to

dealing with the problem of incomplete symbol tables

that arises in concurrent compilers. It supersedes our

previous work [JW90, SW91].

The discussion of information flows that constrain con-

current processing in Section 2.4 is a new approach to

analyzing the performance of concurrent compilers.

By careful design and optimization of the entire calm-

piler, we have been able to achieve much better paral-

lel speedups than previous efforts. We have also been

able to demonstrate that compilers built using our tech-

niques perform better as the size of the program being

compiled increases. The closest comparable effort is

Vandevoorde’s parallel C compiler[Van87]. On ia 5

processor Firefly he was able to achieve a speedupl of

2.5,, 3.3 on large programs and 1.0.. 2.0 on smdller

ones. In the limiting case of a “best” source program

we have been able to demonstrate almost linear parallel

speedup (see Figure. 4).

Early in the CCD project we decided to concentrate our

efforts on compilers for modem block-structured procedur-

al programming languages. Considering a broader class

of languages would have diluted our resources. We con-

centrated on the design of compilers for shared memory

multiprocessor systems with modest numbers (i.e. tens not

hundreds) of processors. We restricted ourselves to lan-

guages in which reserved words were used to determine the

lexical structure of programs, This restriction allows us to

partition programs for concurrent processing during lexical

analysis, Languages which use keywords rather than re-

served words to determine program structure usually can ‘t

be partitioned for concurrent processing until after syntax

anal ysis thereby reducing the potential for achieving faster

compilation through concurrency.

The concurrent compilers that we have designed operate

by splitting the source program into separately compilable

streams that correspond to scopes of declaration in the pro-

gram. Each stream is then processed through conventional

parsing, semantic analysis and code generation phases, At

the end of compilation the code generated for all of the

streams is merged together to produce the compiler output.

The structure of the compiler is discussed in more detail in

Section 3. We begin with a discussion of the major design

issues that lead to this structure.

2 Compiler Design Issues

During the CCD project we identified four design issues that

had a dominant effect on the performance of our concurrent

compilers:

1.

2.

3.

4.

Early splitting of the source program into separately

compilable streams and late merging of separately

compiled object code into a a complete object mod-

ule.

Management of the compiler symbol table and the

Doesn’t Know Yet Problem.

Management and scheduling of the compiler tasks for

each stream.

Inter-scope flows of information that constrain concur-

rent processing.

There are many other small design details that mu~t be ham

died well to achieve maximum compiler performance, but

doing well on these four issues is essential.
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2.1 Source Splitting and Merging

Opportunities for concurrent processing are increased by

splitting the program being compiled into independently

compilable streams as early in the compilation as possible.

In compiling a Modula-2+ module, separately compilable

streams arise from three sources:

The body of the module being compiled.

Procedures contained in the module body.

Interfaces (definition modules) that are directly or in-

directly imported by the module.

The requirement that reserved words determine source pro-

gram structure means that these streams can be identified by

a simple finite state recognize that processes the sequence

of tokens produced during or just after lexical analysis. A

small amount of token stream lookahead may be necessary

to resolve lexical tokens that have multiple interpretations

(e.g., PROCEDURE in Modula-2). In our concurrent com-

piler design the procedure is the smallest program unit that

is compiled concurrently. It is a straightforward exercise to

generate code for each procedure separately and to merge

this code using simple concatenation. Most previous efforts

to build concurrent compilers performed splitting during

parsing and thereby limited opportunities for parallel pro-

cessing of the source program. Many paper designs for

concurrent compilers proposed splitting the source program

being compiled at at-bitt-m-y points without adequate con-

sideration for the difficulties that arbitrary splitting would

cause for symbol table management and code generation.

2.2 Symbol Table Management and the

Doesn’t Know Yet Problem

Management of the compiler’s symbol table is a critical

issue in achieving good performance and correct seman-

tic analysis in a concurrent compiler, The compilation of

parts of a program concurrently introduces new problems in

symbol table management that do not exist in conventional

sequential compilers [SWJ+ 88, SW91].

In our compiler the units of compilation correspond di-

rectly to major scopes of declaration. The main reason for

this design decision was to allow the compiler symbol table

to be organized on a scope basis [SGR79]. This has the de-

sirable effect of minimizing inter-stream dependencies and

making the detection of incomplete tables easier. We use a

separate symbol table for each scope of declaration ( defini-

tion module, main module, procedure). These symbol tables

are linked together to provided the correct scope ancestry

path for resolving names.

A problem unique to our style of concurrent compilers

is the Doesn’t Know Yet (DKY) problem [SWJ+ 88, Ses88,

SW91]. In a sequential compiler, a search of the symbol ta-

ble for a given identifier either succeeds indicating that the

identifier is known or fails, indicating unequivocally that the

identifier is not known to the compiler (assuming a suitable

scheme for handling allowable forward references). In a

concurrent compiler there is a third possible result from a

search of the symbol table. The identifier may not be found

because the symbol table being searched is incomplete.

The table that was being searched may be being constructed

concurrently by some other compiler task. A concurrent

compiler must recognize when this Doesn’t Know Yet con-

dition arises and deal with it in a way that doesn’t violate

the semantics of the language being compiled. Symbol table

search must correctly locate declared symbols and never fail

to detect an undeclared symbol.

We experimented with a number of strategies for dealing

with the DKY problem [Ses88, JW90]. The differences

between these strategies are in the amount of delay incurred

when a DKY occurs, the amount of concurrent processing

that can be achieved, and the effort required to implement the

strategy. The list of strategies presented below is roughly

ordered by decreasing DKY delay, increasing concurrent

processing potential and increasing implementation effort.

The major DKY strategies that we investigated are:

Avoidance: delay the start of semantic analysis for a

scope until the declaration analysis of its parent scope

is complete. This order guarantees that symbol table

searches originating in the scope will never encounter

an incomplete symbol table in an outer scope.

Pessimistic Handling: symbol table search blocks and

‘We assume that creation of symbol table entries is atomic with respect

to symbol table search so that the possibility of symbol table search finding

an incomplete symbol table entry does not arise.
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waits for table completion when it encounters an in-

complete symbol table in some outer scope.

Skeptical Handling: symbol table search blocks and

waits for table completion when it fails to find the

identifier it is searching for in an incomplete symbol

table in some outer scope,

Optimistic Handling: symbol table search blocks md

waits for completion of a symbol table entry or the

completion of a symbol table (whichever comes first)

when it fails to find the identifier it is searching for in

an incomplete symbol table in some outer scope.

When a symbol table search blocks, the embedded scheduler

in our compiler (See Section 2.3) is notified. It attempts

to find another task to run, It will preferentially try to

run the task which will resolve the DKY blockage. In our

performance testing, the choice of a method for dealing

with the DKY problem caused a variation of about 11D70

in overall compiler performance. The Skeptical Handling

algorithm described in Figure 6 is our recommendation for

the best compromise between compiler performance and

ease of implementation. This algorithm incurs the cost c~fa

duplicate search for identifiers that are found after a DKY

blockage, but it gains performance by searching incomplete

tables before incurring a DKY blockage. The performance

of the Skepticat Handling algorithm is analyzed in Section

4.3.

Another symbol table issue is the handling of builkin

names, i.e., identifiers that are automatically provided by

the compiler, These names are typically builtin input/output

routines or mathematical routines like sin and sqrt, In a

conventional compiler the typical way to implement builltin

names is to create a global scope that is logically the panent

scope of the module being compiled, The symbol table for

this global scope is preinitialized by the compiler to con-

tain all builtin names. With this organization, the normal

scope-chaining symbol table search will automatically find

the builtin names if they have not been redeclared in Ithe

program. This mechanism is not suitable for a concurrent

compiler because it causes the first reference to a buil tin

name to potentially incur DKY waits on all scopes out to

the global scope. In particular, the scope corresponding, to

the module body can be quite large so an unnecessary DKY

wait on this scope can cause a significant delay. We took ad-

vantage of the fact that builtin names could not be redefined

in Modula-2+ and treated builtin names as if they were de-

clared local to each scope. This approach did not require any

replication of symbol table entries, instead it was done by a

simple modification of the symbol table search mechanism.

2.3 Compiler Task Scheduling

In our compiler structure, we exploit parallelism on two lev-

els, First, as already mentioned, the compilation is split into

streams which are processed in parallel. There is one stream

for the main module, one for each procedure stream defined

therein and one stream for each definition module imported

directly or indirectly by the module. Second, we exploit

parallelism within the processing of a stream by partitioning

the stream into a number of tasks, which correspond to the

traditional phases of compilation. The number and type of

the tasks a particular stream is partitioned into depends not

only on the type of the stream but also on the version of the

compiler. There are bet ween 2 and 5 tasks per stream (see

Figure 5), The task types of the skeptical handling compiler

are described in section 3, The task types were chosen to

partition the compilation as quickly as possible, in an effort

to get all the compiler’s worker threads busy, The early tasks

are large in number but, in general, small, while the later

ones, such as the statement analyzer/code generator tasks,

are large but fewer in number. However, there is no need

to partition these later tasks further (although there may be

parallelism that can be exploited) because there are almost

always enough of these tasks to ensure that all processors

are fully utilized,

2.3.1 Tasks

The task is the atomic unit of parallelism in our compilers.

The execution of a given task is constrained by the rate the

tasks on which it depends for information are progressing

(See sections 2,2 and 2.4). These constraints are embodied

by events, the concurrency mechanism used. An event is

simply something that either has or has not occurred. A task

waits on an event if and only if it hasn’t occurred. Events

are discussed further in section 2.3.3 below.
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A task communicates with the tasks on which h depends,

and which depend on it, as a producer/consumer pair on a

particular data structure. Each such data structure has asso-

ciated with it one or more events, signaled by the producer

when the events occur. The signaling of such an event in-

dicates that a particular portion of a shared data structure is

complete and ready to be used. As an example, the Splitter

task and the Lexor task of a main module stream communi-

cate via a lexical token queue, The elements in this queue

are blocks of tokens. Each block is associated with one

event. When the Lexor fills a token block, the block’s event

is signaled, indicating to the Splitter that it now may begin

to read the tokens of that block.

2.3.2 The Supervisors Approach

The number of tasks in a compilation ranges from a dozen

or so in a very small compilation to a few hundred in a

large compilation. We concur with the results of Vande-

voorde and Roberts [VR88] that the best performance on

the type of multiprocessors we are considering results from

carefully limiting the amount of concurrent activity in the

system so as not to overwhelm machine resources. If an

attempt was made to execute all of these tasks concurrently

saturation of the operating system and the virtual memory

would make concurrent compilation effective only for small

source modules, Instead, we initiate one compiler process

(Worker) for each real hardware processor. These workers

are managed by a supervisor which oversees the assignment

of tasks to workers. This approach, called “Supervisors”, is

an extension of WorkCrews [VR88] that handles blockable

tasks.

At compiler initialization time, the tasks of the main mod-

ule stream are created by the compiler initialization thread,

and then a number of worker threads corresponding to the

number of hardware processors are created. The initializa-

tion thread then blocks, waiting for the workers to perform

the compilation. The workers begin by searching the su-

pervisor’s task queuing structure for tasks to perform. One

begins the main module stream’s Lexor task, and the com-

pilation begins.

2.3,3 Events

Events are classified into three categories. First, avoided

events are those events that must occur before the task(s) that

will wait on them can begin. They are called this because we

avoid waiting on the event by simply not assigning the task

to a worker until the event has occurred. The rationale is

that the amount of work a task could do before being forced

to wait on such an event is so little so as to be outweighed

by the scheduling cost when the wait occurs,

The second type of event is the handled event. We allow

tasks that may wait on handled events to begin, hoping that

the amount of work they can do before being forced to wait

on such an event outweighs the scheduling cost should the

wait occur. If the wait does occur, the worker performing the

task searches for other tasks to execute, showing preference

to those tasks whose execution will lead toward the event

occurring.

Lastly, barrier events are a special kind of handled event

for which the worker executing the waiting task is not

rescheduled. The worker simply waits for the event to occur.

Barrier events are only used in the token streams. We know

it is safe to simply wait because token consumers (the Split-

ter task and the parser tasks of definition module streams)

are only started once their corresponding Lexor tasks have

begun, and Lexor tasks never block, Thus, the possibility

of deadlock is avoided. Our measurements show that the

delays due to workers waiting on barrier events are quite

small in typical compilations,

The tasks and events of the different major versions of our

compilers vary primarily in how DKY events are treated. In

the Avoidance compiler, there is one DKY event per symbol

table, and it is an avoided event. This means that the tasks of

a stream that depend on another stream’s symbol table are not

begun until that symbol table is complete. In the Pessimistic

Handling compiler, there is again one DKY event per symbol

table, but each is a handled event. Here, tasks are allowed

to begin regardless of the completion status of the symbol

tables on which they (may) depend, but must block as soon as

they try to lookup a symbol in an incomplete symbol table.

These events are signaled when their corresponding symbol

table is completed. A refinement of this strategy is presented

in a Skeptical Handling compiler, where a searching task is



allowed to look into an incomplete symbol table and will

block only if the symbol is not found. As before, the blocked

task is signaled when the symbol table is completed, and it

attempts again to find the symbol in the now complete table.

The Optimistic Handling compiler implements a diffefient

scheme. Here, there is one DKY event per symbol. In

this method, when a task looks up a symbol, it waits on

the symbol’s DKY event (should it be in the process of

being defined), or creates an empty symbol with the nwme

being searched for (if it isn’t in the table) and waits on tlhat

symbol’s event, If the symbol is really in that scope, the

task is signaled and allowed to proceed. Otherwise, wh~en

the table is completed, it is traversed and all unsignalled

events (corresponding to symbols that are being looked up

in the table but are not defined in the scope) are signated,

atlowing blocked tasks to continue searching, While tlhis

method allows the maximum parallelism to be exploited,

and indeed has the best self-relative speedup, the overhead

of maintaining so many events outweighs the advantages of

the technique,

2.3.4 Worker Scheduling

The role of the Supervisor is to assign tasks to workers

in such a manner as to minimize compilation time. This

is accomplished in two ways. First, free workers are {ls-

signed tasks in an intelligent manner, attempting to select

the tasks whose execution will benefit the most tasks. Sec-

ond, handled events are implemented in such a way that

allows workers whose tasks are blocked on handled events

perform other tasks.

Task assignment is optimized in two ways. First, avoided

events prevent a task that will have to wait almost immed-

iately from being selected for execution. Also, the Super-

visor implements the list of tasks waiting to be executed as

a priority queue. In the Skeptical Handling compiler, the

queues are searched for new work in the following way:

1. Lexor tasks

2. Splitter task

3. Importer tasks

4. Definition Module Parser/Declarations Analyzer taslks

5.

6,

7.

8.

Module Parser/Declarations Analyzer task

Procedure Parser/Declarations Analyzer tasks

Long Procedure Statement Analyzer/Code Generator

tasks

Short Procedure Statement Analyzer/Code Generator

tasks

Code is generated for long procedures before short ones

to avoid a long sequential tail at the end of the compilation,

as one worker struggles to generate code for one long proce-

dure after finishing a number of short ones and atl the other

workers are finished,

When a task waits on a handled event, its associated

worker does not simply block but instead is assigned another

task that it is eligible to execute, This task is always the one

that signats the event on which the worker is waiting, unless

that task has been started by another worker.

This leads to an interesting problem, A task that is begun

by a particular worker must be completed by that worker,

even if it blocks during execution. This is required by the

underlying implementation of threads. Thus, the set of tasks

a blocked worker is eligible to execute consists of only those

tasks that do not block on any event not yet signated by some

task in the set of tasks being executed the worker (who are

all currently blocked), otherwise deadlock may occur.

2.4 Inter-scope Information Flows

The implementation of block structured programming lan-

guages requires that information in the compilers symbol ta-

ble be shared among different scopes. By processing scopes

concurrently we introduce constraints on this sharing that

do not exist in a sequential compiler. Delays waiting for

this shared information can constitute a major impediment

to concurrent processing,

An example of an information flow constraint arises in

the processing of procedure headings in Modula-2+. A pro-

cedure heading contains the procedure’s name, the name

and specification for each of the procedure’s formal param-

eters. The information in the procedure header needs to be

shared between the parent scope in which the procedure is

declared where it is used to validate and generate code for
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calls on the procedure and the child scope (the body of the

procedure) where it is used to validate and generate code

for access to the procedure parameters, In sequential com-

pilers the sharing of this information occurs automatically

given the usual order of program processing and symbol

table construction, The information that is shared consists

of the compiler symbol table entry for the procedure and the

entries for its parameters.

We investigated three alternatives for implementing this

particular case of sharing in our concurrent compiler:

1.

2.

3.

Process the procedure heading in the parent scope and

copy the symbol table entries generated by this pro-

cessing into the symbol table for the child scope.

Process the procedure heading in the child scope and

copy the symbol table entries produced into the parent

scope.

Process the parameter heading separately in the parent

and child scopes taking care to guarantee that identical

symbol table entries are produced in both scopes,

In the first alternative, processing of the child scope should

be delayed until the procedure header has been processed in

the parent scope. This synchronization is in effect a DKY

blockage from the child scope to its parameter definitions

in the parent scope. Since this DKY is inevitable and since

very little work can be done on a procedure stream until the

procedure’s parameters have been processed, we found it

more efficient to change this particular instance of a handled

DKY event into an avoided event by delaying processing the

child scope until the parent scope had completely processed

the procedure heading2. The second alternative is very dif-

ficult to implement without introducing the possibility of a

parent/child deadlock. The third alternative eliminates the

information sharing between parent and child scopes. It is

the cleanest solution, however in our evaluation it was about

3% slower than the first alternative due to redundant effort.

‘Procedures with no parameterscould be startedearlier as a special
case, butwe found themto be so infrequentthatthe extra effort was not
justified

3 Compiler Structure

The unit of compilation is a Modula-2+ module (M) that is

physically represented as a definition module file (M.def)

and an implementation module file (M.mod)3. The file

M.def contains declarations for the interface between M

and its clients. The file M.mod contains declarations for

constants, variables, types and procedures that are the im-

plementation of M.

The task structure of our concurrent compiler is shown in

Figure 5 The three columns in the figure show the compiler

tasks that are applied to the streams for definition modules,

implementation modules4 and procedures respectively. The

tasks in the left column are applied to each definition module

that is imported directly or indirectly by the module. The

tasks in the right column are applied to each procedure in the

module. We have used an unorthodox task division in the

middle and back part of the compiler as a part of our strat-

egy for dealing with DKYs. One compiler task performs

syntax analysis on the entire stream and semantic analysis

on declarations as would be done in a traditional sequential

compiler. A parse tree is built for statements, but semantic

analysis of statements is deferred to a subsequent task that

performs semantic analysis on statements and then generates

code for the statements. The symbol table for the declara-

tions is marked complete before the statment parse tree is

built. Building the statement parse tree is sufficiently fast

that the added complexity of parsing statments separately

was not considered. The rationale behind this division is

that fast processing of the declaration parts of streams will

assist in resolving DKY blockages by causing symbol ta-

bles to be completed earlier in the compilation. By the time

the statement analysis and code generation tasks are ready

to run there is usually many more parallel tasks available to

run than there are processors on which to run them, so we in-

cur no loss in processing efficiency by combining statement

semantic analysis with code generation in a single task.

The compilation of module M begins with the lexical

analysis of the file M.mod. The compiler optimistically

anticipates the existence of a file M.def and tries to start

3We ignore therelatively rareself containedprogrammodule
4the import taskfor the implementationmodule is shown in tbe left

columnfor convenience.



processing this file as soon as possible. The token stream

produced by the lexical analysis phase is directed to the

splitter and import tasks. The import task searches the token

stream for IMPORT declarations and starts anew stream for

each imported definition module that it discovers, It starts

a lexical analysis, importer, syntax and semantic analysis

sequence for each new definition module stream. The token

stream produced by the lexical analysis of each imported

definition module is also fed into its import task to detect

indirectly imported interfaces. A “once-only” table is used

to guarantee that each definition module referenced in a

compilation is processed exactly once.

The splitter task searches for the reserved word PRO-

CEDURE in the token stream of M.mod. It creates a new

stream for each procedure it detects and diverts the lexical

tokens for the procedure to that stream. It then starts a syn-

tax analysis, semantic analysis, code generation sequence

for that stream. The main module body which has now been

striped of all embedded streams is processed through syn-

tax analysis, semantic analysis and code generation, At the

end of compilation, a merge task concatenates the output

of separate code generation streams to form the complete

compiler result, Because the unit of merging is the code for

an entire procedure, this concatenation can be done in any

order and concurrently with other compiler activity.

4 Compiler Performance

We have conducted numerous experiments to evaluate tlhe

performance of our prototype concurrent compilers. In this

section we summarize the results of those experiments,

4.1 Test Environment

The concurrent compiler was written in Modula-2+. The

compiler runs on DEC Firefly prototype workstations

[TSS88] under the Topaz operating system [MS87]. The

Firefly used to obtain the results presented here was con-

figured with 64 Mb of main memory and eight CWX pro-

cessors. The compiler perfommnce results presented in this

section should be view in the context of the known perfor-

mance limitations of the Firefly hardware. At high levels

of concurrent activity, memory bus saturation effects and

fixed processor priorities for access to memory degrade the

performance of all processors [TSS88]. Topaz provides

a lightweight threads mechanism within a single address

space. This mechanism was used extensively within the

compiler.

The suite of 37 programs used to evaluate our compiler

were taken from a very large library of Modula-2+ soft-

ware that was made available to us by the DEC Systems

Research Center. The programs in the test suite represent

the efforts of a large number of authors and include a variety

of programming styles. The programs in the test suite were

chosen at the start of the CCD project to be a representative

sample of the load that might be seen by a typical compiler.

The programs in the test suite range from very small to very

large. The gross characteristics of the test suite are given

in Table 1. In this table imported Interfaces are the number

if definition modules imported directly or indirectly by the

module being compiled. Import Nesting Depth is the max-

imum length of the import nesting chain for each module.

More details on the test suite are available in [SW91, JW90],

Attribute Minimum Median Maximum
7

Module size (bytes) 2,371 13,180 336,312
Seq. Compile Time (see) 2.30 10.27 107,85
Imported Interfaces 4 17 133
Import Nesting Depth 1 5 12
Number of Procedures 2 16 221
Number of Streams 15 37 315

Table 1: Description of Test Suite

4.2 Speedup Results

To evaluate the improvement in compilation time that we

were able to achieve through concurrent processing, we

evaluated our concurrent compiler against a traditional se-

quential compiler for Modula-2+ and against itself. All test

runs were made on an otherwise idle Firefly workstation.

The results presented are the average of 10 runs, The run-

to-run variation in our timing results was very small, on the

order of 1VO. Running on one processor, the concurrent com-

piler was 4.3% slower than the sequential compiler. This is

due to the extra processing that was introduced to achieve

concurrency which is wasted on a single processor. Figure

1 shows the self-relative speedup of our compiler as it was
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run on 1 through 8 processors. To test the limits of our (10 programs), 5..10 seconds (8 programs), 10..30 seconds

technique, we mechanically generated a synthetic module

(Synth.mod) that would have the best possible speedup for

our technique, This module has been constructed so that it

generates ample parallel work for the compiler and never in-

curs a DKY blockage. The speedup results for the synthetic

module are shown in Figure 2. For comparison we have in-

cluded a reference line for linear speedup and results for the

human-authored module that had the best overall speedup

in the test suite.
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(10 programs) and 30..109 seconds (9 programs). Figure 3

shows the self-relative speedup data plotted separately for

the programs in each quartile. From these plots we can see

that the speedup obtainable through concurrent processing

is limited for small programs, but increases as the size of

program being compiled increases. For programs with a se-

quential compile time of less than 10 seconds, a speedup of

2.5 is obtained with 4 processors and there is no real advan-

tage in using more processors. It is evident from the first two

compilations in Figure 6 that small modules don’t generate

enough parallel work to fully utilize the multiprocessor. For

larger programs (sequential compile time greater than 10

seconds), the speedup continues to increase although at a

decreasing rate as more processors are used. We attribute

this to the greater amount of parallel work available in these

programs. As a graphical illustration of our compilers oper-

ation, we present the WatchTool snapshots in Figure 4. This

figure shows processor activity (vertical axis) as a function

of time (horizontal axis) as a program from each of the quar-

tiles was compiled on an eight processor Firefly. There is

a ten second delay between compilations. For comparison

purposes, the rightmost peak in this figure is a compilation

of the synthetic module that was described above.
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Figure 2: Best Case Self Relative Speedup

Figure 3: Speedup by Quaxtiles

To get an indication of how our techniques scale as a

function of the size of module being compiled, we divided

the programs in the test suite into approximate quartiles

based on their l-processor compilation times: 0..5 seconds

4.3 Analysis of Skeptical Handling

The skeptical handling symbol table lookup mechanism de-

5Table3 conminstbe datausedto generateFlgUres3,4~d 5 scribed in Section 2.2 is an attempt to gain performance by
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Figure 4: WatchTool Snapshot

searching incomplete symbol tables. To measure the effec-

tiveness of this strategy, we gathered performance data for

this mechanism for one compilation of our test suite. The

lookup mechanism is applied in two circumstances: sermch

for a simple identifier occurring in a procedure or the ma~in

module, and search for a qualified identifier (i.e. an identi-

fier explicitly associated with an imported definition mod-

ule). The statistics for identifier search are given in Table

2. The “Found when” column indicates the conditions un-

der which the identifier was found. “Search” indicates that

the identifier was found during an outward search throuigh

the scope parentage chain. “After DKY” indicates that tlhe

identifier was found in a scope that was completed after a

DKY blockage. The “scope” column indicates the scope in

which the identifier was found. “Self” is the scope of tlhe

stream that initiated the search, “other” is some other explic-

itly designated initial search scope, “outer” is a scope thlat

was accessed chaining outward through the scope parerLt-

age chain, “WITH” is the scope of a WITH statement and

“Builtin” is the scope containing all identifiers predefincd

by the compiler. The “completeness column” indicates that

state of the scope at the start of the search. The last two

columns given the number and percentage of lookups that

succeeded for the particular combination of Found, scope

and completeness. The interesting cases in this table are

the searches that found an identifier in an incomplete ta-

ble. This is the case where Skeptical Hanclling has an edge

over more conservative strategies. The higher frequency (of

search success in incomplete tables and DKY blockages in

the case of qualified names can be attributed to to the higher

usage of qualified names in declarations. The majority of

simple identifier references arise from the statements in the

bodies of procedures. By the time these are processed there

is a high probability that the symbol tables for outer scopes

and definition modules have been completed. ‘This table also

shows that blockage due to the DKY conditicm is relatively

rare. The low frequency of DKY blockages is one reason

why the choice of a DKY strategy has only a small effect on

overall compiler performance.

4.4 An Activity View of Concurrent Compi-
lation

In the early part of a compilation the dominant activity is the

lexical, syntax and semantic analysis of definition modules.

The definition modules imported directly and indirectly by

the main module form a tree. The need to resolve DKY

blockages quickly and the task scheduling strategy used by

our scheduler typically causes this tree to be processed in a

bottom up order. At this point, the streams corresponding

to the procedures in the main module have been identified

by the splitter but processing of these streams is deferred

until the corresponding procedure headings have been pro-

cessed in the main module stream. Once processing of the

main module stream reaches the procedure headers, a large

amount of parallel work becomes available as processing of

many procedure streams can be initiated. From this point

on a high level of concurrent processing is possible through

to the end of the compilation.

Figure 7 illustrates the compiler activities in a typical

concurrent compilation. The horizontal axis is time, the

vertical axis is processor number for an eight processor

Firefly. The bars in this figure indicate different kinds of

compiler activity. The dark gray bars at the left side are

lexical analysis tasks. The light gray bars in the middle are

parser/declaration semantic analysis tasks. The darker gray

bars on the right side of the figure represent statement am-

ysis/code generation tasks. The light gray bar for processor

7 is the splitter task. At the scale of this figure,, the importer

and merge tasks are too small to be easily visible. The ac-

tivity lull in the center of this figure is caused by delays

waiting for DKYs to be resolved and by the delay involved

in waiting for procedure headers to be processed in the main

module body as described in Section 2.4.
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Figure 4: WatchTool Snapshot
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our scheduler typically causes this tree to be processed in a

bottom up order. At this point, the streams corresponding

to the procedures in the main module have been identified

by the splitter but processing of these streams is deferred

until the corresponding procedure headings have been pro-

cessed in the main module stream. Once processing of the

main module stream reaches the procedure headers, a large

amount of parallel work becomes available as processing of

many procedure streams can be initiated. From this point

on a high level of concurrent processing is possible through

to the end of the compilation.

Figure 7 illustrates the compiler activities in a typical
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vertical axis is processor number for an eight processor

Firefly. The bars in this figure indicate different kinds of

compiler activity. The dark gray bars at the left side are

lexical analysis tasks. The light gray bars in the middle are

parser/declaration semantic analysis tasks. The darker gray
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waiting for DKYs to be resolved and by the delay involved

in waiting for procedure headers to be processed in the main
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Implementation

Module

First try other complete

L

5,45’7 6,01

Search outer incomplete 3,228 3.55

Search outer complete 12,87!) 14.18
AfterDKY outer complete 6!) 0.08

First Try WITH complete 2,69!1 2.97

First Try Builtin complete 13,744 15.14
Never 184 0.20

*

SYNTAX

ANALYSIS
___________
DCL.
SEMANTIC

ANALYSIS

STATEMENT
SEMANTIC

ANALYSIS
------------

CODE
GENERATOI

I

Procedure

Found when ~

First try
First try
After DKY

incomplete 505 4.00

complete 11,775 93.30
complete 341 2.70

Table2: IdentifierLooku pStatistics
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IN II Test Suite II BestCase II ChmrtilesrMin

2 1,42

3 1.80

4 1.91

5 1,94

6 1,99
7 1,86
8 1.95

Mean Max Synth VM Q1 Q>

1.81 1.91 1.99 1.81 1.68 1.70

2.49 2.62 2.85 2.62 2.13 2.2’?

3.07 3.43 3.57 3.43 2.34 2.57

3.58 4.07 4.26 4.07 2.38 2.76

3.93 4.67 5.18 4.67 2.42 2.85
4.20 5.29 6.01 5.29 2.36 2.91
4,34 5.47 6.67 5.32 2.43 2.89

Table 3: Summary of Speedup Data

Q3

1.81
2.50

3.05

3.56
3.88
4.03
4.19

Record the completion state of the scope’s symbol table
Search the scope’s symbol table for the identifier.

If identifier was found then
exit with success.

If the symbol table was initially incomplete then
Wait for the symbol table to be completed.
Search the scope’s symbol table for the identifier.
If identifier was found then

exit with success.
If current scope is outermost scope then

exit with failure
else

Continue search in next outermost scope

-@-
1.84
2.55

3.24

3.88
4.37
4.83
5.02

Figure6: Skeptical Handling Symbol TableLookup
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