
Prototyping

Abstract

Fortran-90 Compilers for Massively Parallel Machines

Marina Chen &James Cowie*
Department of Computer Science, Yale University

then-marina@cs.yale.edu cowie-james@)cs. yale.edu

Massively parallel architectures, and the languages used
to program them, are among both the most dificult
and the most rapidly-changing subjects for compilation.
This has created a demand for new compiier prototyp-
ing technologies that allow novel styl. of compilation
and optimization to be tested in a reasonable amount
of time.

Using formal speci$cation techniques, we have pro-
duced a data-parallel Fortran-90 subset compiler for
Thinking Machines) Connection Machine/2 and Con-
nection Machine/5. The prototype produces code from
initial Fortran-90 benchmarks demonstrating sustained
performance superior to hand-coded *Lisp and compet-
itive with Thinking Machines’ CM Fortran compiler.
This paper presents some new specification techniques
necessary to construct competitive, easily retargetable
prototype compilers.

1 Introduction

Existing compilers for massively parallel machines have
generally been constructed using traditional methods,
combining generation from specification for a few sub-
sets of the problem (typically the syntactic analysis)
with hand-coded solutions for most others. One such
compiler is Thinking Machines’ CM Fortran [1], which
targets the Connection Machine/2, a massively paral-
lel, SIMD supercomputer. CMF was awarded a 1990
Gordon Bell Prize honorable mention for compiled code
performance.

*Supportfor this workis providedby the DefenseAdvanced
ResearchProject Agency,monitoredby the ArmyDirectorateof
Contracting,undercontractDABT 63-91-C-0031.
Permission to copy without fee all or part of this material is

granted provided that the copies are not made or distributed for

direct commercial advantage, the ACM copyright notice and the

title of the publication and its date appear, and notice is given

that copying is by permission of the Association for Computing

Machinary. To copy otherwise, or to republish, requires a fee

and/or specific permission.

ACM SIGPLAN ’92 PLD1-6/92/CA

01992 ACM 0-89791 -476-7192 /0006 /0094 . ..$1 .50

94

While CMF and similar compilers inarguably
achieve production quality, they are difficult and ex-
pensive to construct, maintain, and extend as a re-
sult of their target-specific, highly-tuned, hand-coded
nature. By contrast, traditional systems for gener-
ating compilers from denotational semantics drew on
the flexibility and power of formal specification to
build and maintain systems that were truly machine-
independent. They remain unacceptable for produc-
tion use, however, due to the generally poor perfor-
mance of the code they produce, and their size and
speed.

The MESS system [5] introduced ‘(separable seman-
tic specification” as an alternative to denotational se-
mantics approaches. MESS used a two-level seman-
tic specification to separate high-level language prop-
erties from model detail. This enforced separation
helped alleviate the performance problems associated
wit h compilers generated from formal descriptions.
Such systems, however, were still limited in practice
to sequential-execution, uniprocessor implementations
of simple imperative languages. MESS-generated com-
pilers had no systematic framework for program trans-
formation, focusing instead on simple two-pass trans-
lation. They lacked the necessary semantic features to
express parallelism, and thus did not attempt to model
or target parallel systems.

Other research has shown the importance of a unified
intermediate representation in constructing optimizing
compilers. The SUIF language of Tjiang, Wolf, et al.
[7] successfully preserves high-level information for low-
level transformations, and begins to show how multiple
levels of optimization concerns must be coordinated,
but was not used in the context of formal compiler
specification. Pingali et al use abstract interpretation
techniques in their intermediate representation [6], and
use a true imperative store and explicit formulation of
loops. They are primarily concerned, however, with
dataflow analysis, and do not have an abstraction that
unifies data and control parallelism, nor a treatment of
back-end concerns.

In this paper we propose a methodology for com-
piler design ~hat brings “together lessons l~&ned from
previous compilers for massively parallel machines with
techniques from formal specification. Like the MESS
system, our prototype compilers define a semantic al-
gebra as their intermediate format, and use produc-
tion rule sets to define the translation process from
the user’s syntactic forms to constructs of this algebra.
Adding a framework for intermediate program transfor-
mation, support for multilayered target systems, a,nd
a shape abstraction for data parallel computation, we
then show how to model massively parallel machines in
a working compiler specification.

Finally, we present initial results from our prototype
Fortran-90-Y compiler for the CM/2 and CM/5, After
eight months of development, the prototype implemen-
tation generates code for multiple platforms exhibit ing
sustained performance superior to that of hand-coiled
*Lisp and competitive with Thinking Machines’ CM
Fortran compiler. Furthermore, the prototype’s space
and time requirements are comparable to those of na-
tive language tools for the CM. We argue that compet-
itive performance, coupled with rapid prototyping a,nd
target flexibility, have become persuasive arguments for
developing compilers for massively parallel machines
using formal specification techniques.

2 Problem Overview

To clarify our motivations, we introduce brief overviews
of the data-parallel features of Fortran 90 and the
slicewise programming model for the Connection Ma-
chine/2. We then break down the problems to be solved
in a prototype compiler for that machine, and de-
scribe the overall prototyping and optimization strate-
gies that need to be developed as a result.

2.1 Source Language: Data Parallelism
in Fortran 90

The Fortran 90 language [2] contains many extensions
to the old Fortran 77 standard that are of interest for
data parallelism. Specifically, the ability to refer to
and compute directly with whole arrays and arbitri~ry
subsections give the programmer the ability to express
program parallelism that would previously have been
stated only implicitly or through the use of source-
level annotation. The wide selection of intrinsic pro-
cedures for examining, reshaping, or performing re-
ductions over Fortran 90 arrays serve to replace many
common transformations that programmers were pre-
viously forced to approximate with serial syntax.

For example, the Fortran 77 code

INTEGERK(128,64) , L(128)
DO 10 1=1,128

L(I) = 6
DO 20 J=I,64

K(I, J) = 2 * K(I, J) + 5
20 CONTINUE
10 CONTINUE

could be replaced by the Fortran 90 assignments

L=6
K = 2*K+5

Similarly, the loop

DO 30 1=32 ,64
L(I) = L(I+64)
DO 40 J=I,64

K(I, J) = K(I, J)**2
40 CONTINUE
30 CONTINUE

can be rewritten in Fortran 90 as

L(32:64) = L(96:128)
K(32:64,:) = K(32:64, :)**2

To some extent, then, our compiler has high-level
parallelism pre-packaged for it by the user’s choice of
Fortran-90 constructs. We can therefore concentrate
on mat thing the source’s parallelism to that of the tar-
get, and avoid the tangle of extracting parallelism from
serial code.

2.2 Machine Model: Slicewise CM/2

Programming

The Connection Machine Model CM/2 in slicewise
mode 1 consists of up to 2,048 Slicewise Processing El-
ements (nodes or PEs), each consisting of 32 bit-serial
processors coupled with one Weitek WTL3164 64-bit
floating-point ALU. The PEs are connected by a 11-
dimensional boolean hypercube with two wires along
each dimension. The bit-serial nature of the processor
set is hidden from the programmer, who sees a conven-
tional bit-parallel, word-serial interface to memory and
to the Weitek FPU.

The programming language designed by the CM For-
tran group for this PE abstraction is PEAC (Process-
ing Element Assembly Code). PEAC allows the Weitek
chip to be programmed as a four-wide vector processor;
it also allows accesses to CM memory to be overlapped
with arithmetic operations, and supports the Weitek
chained multiply-add instruction.

Each slicewise processor synchronously executes in-
structions issued from the CM sequencer. Each instruc-
tion processes a vector of four 32- or 64-bit elements
– “slices” through local memory. PEAC code is only

1as opposedto the more traditionalfieldwise,or Parismode.

95

used to express purely elemental program segments;
that is, under the normal programming model, there
can be only pointwise dependencies between data that
are aligned to the same geometry and used in the same
PEAC routine. When an instruction sequence is ap-
plied serially to each of the (potentially very many)
elements local to each processor memory, the result is
a virtual subgrid loop parameterized by a set of strided
data pointers and a subgrid loop count.

For computations that are not purely elemental, but
have some degree of locality or regularity, the CM run-
time system provides a large set of special-purpose
uniform communication primitives, efficient y imple-
mented in microcode. When dependencies in user code
exceed the restrictions of both the elemental and the
special-purpose uniform styles, however, general router
communications result, at significant performance ex-
pense.

For example, the Fortran 90 code fragment

real, array (n, n) :: I
1(:,:) = 6.0

might be compiled as a single PEAC node routine stor-
ing the 32-bit scalar value 6.0 to each local element
serially, in batches of four. On the other hand, the
Fortran 90 assignment

I(:,2:n) = I(:,l:n-1)

might be implemented by the CM runtime system call
CMRT_cshif t, and the negative-strided array section
assignment

1(:, n:l:-2) = I(:,l:n:2)

would be implemented via the router as general point-
to-point communication from I to 1.

2.3 Main Compiler Issues

Clearly, the main tension in CM code arises between
communication and computation. Specifically, given a
section of user code, an effective compiler must perform
decompositions and transformations to minimize in-
terprocessor communication. Simultaneously, the code
generation process should maximize in-processor per-
formance through efficient vectorization. There are,
therefore, multiple levels of program optimization to
consider.

The relatively high cost of data movement forces
the compiler to address the high-level challenges of
data layout and communication. Simultaneously, those
codes that are naturally computation-dominated, eas-
ily vectorized due to elemental locality, will benefit
most from treatment of processor-level concerns.

These two optimization levels are not entirely or-
thogonal. High-1evel compilation strategies for re-
ducing interprocessor communication, which typically
group computations with similar layout, minimize con-
version between rival layouts, and aggressive y unroll
serial loops, all help to maximize the PEAC elemen-
tal codeblock size as well. This in turn allows more
efficient low-level coding.

Node processor complexity, which continues to track
advances in microprocessor technology, will continue to
increase this pressure for multilevel optimization. As
the CM/ 1 bit-serial processor gave way conceptually
to the Weitek-augmented abstraction of the CM/2, so
too the CM/2 PE will eventually be replaced by the
CM/5’s SPARC node, augmented with optional vector
hardware. For massively parallel architectures in gen-
eral, increases in node sophistication will dramatically
increase the need for compilers that can orchestrate
strategies for cooperative optimization at many levels
of target abstraction, from high- to low-level.

These, then, are the primary concerns that a realistic
prototype compiler must satisfy:

●

●

☛

3

Because the project is primarily a prototyping sys-
tem, intended to serve as a testbed for research
into optimization strategies, minimizing develop-
ment time is critical, as is support for staged devel-
opment. Formal specification techniques help sup-
port “attack strategies” for extremely rapid com-
piler development.

The problem therefore requires a framework for
compilation that will help apply minimal effort to
compiler scaffolding (front end data, serial code,
and bookkeeping concerns) while optimizing the
compiler’s critical paths — selecting appropriate
forms of communication, efficient register alloca-
tion and effective vectorization of the node code.

The final goal is to produce compiled object code
whose performance is competitive with traditional
compilation techniques for massively parallel ar-
chitectures, and, in many cases, with equivalent
hand-coded solutions, for a fraction of the total
development cost. Simultaneously, generated com-
pilers must run in reasonable space and time on
available workstations, generally within an order
of magnitude of hand-coded equivalents, if they
are to be considered “realistic” for production use.

Theoretical Basis

In the Fortran-90-Y compiler we use formal specifica-
tion techniques to address the dual challenges of per-
formance and development time, using an abstract se-
mantic algebra with special operators for describing se-

96

FRONT END
(Section4.1)

TARGET-INDEPENDENTCOMPILER
SPECIFICATION

‘,Hpg
(AST) .

Optimization include

RECOGNIZINGCOMMUNICATIONS
DEAD CODE ELIMINATION
LAYOUT SPECIFICATION
LOOP UNROLLING
SHAPEBLOCKING
LOOP FUSION

t

TARGET 1:
CM/2 NIR COMPILER

SPECIFICATION
(Sections5.1. 5.2)

lr
HOST NODE

COMPILER COMPILER

(SPARC) II (SLICEWISEPE)

—

TARGET 2:
CM/5 NIR COMPILER

SPECIFICATION
(Section5.3)

1

NODE
HOST COMPILER

COMPILER (SPARC + OPTIONAL

(SPARC
VECTOR UNITS)

CONTROL
PROCESSOR)

m

SPARC VECTOR
COMPILER DATAPATH

COMPILER

TARGET-GENERIC/yR)\\...--.--------------
TARGET-SPECIFIC

Optimization include

VECTORIZATION
INSTRUCTIONCHAINING
REGISTERALLOCATION

Figure 1: Fortran-90-Y specification structure

97

rial and parallel iteration to formulate an appropriate
machine model.

These operators are collected in the central notation
of the Fortran-90-Y compiler specification, Yale Inter-
mediate Representation (YR). YR serves as the basis
for target-independent program transformation, as well
as for specific compilation to the SPARC control pro-
cessor, the CM/2 slicewise node processor, the CM/5
SPARC node processor, and the CM/2 and CM/5 as
a whole. The following sections describe YR and pro-
vide some examples of computations expressed in it.
Then we describe the actual structure of the prototype
compiler, and show how compilation to, transformation
over, and code generation from YR take place.

The overall structure of the compiler, and YR’s role
in it, are shown in Figure 1.

3.1 YR Core Language

Core YR defines a series of semantic domains and sets
of operators within each domain that model program
actions. We will refer to these semantic domains as or-
thogonal facets of a semantic algebra defined by the YR
operators, to avoid overloading the more usual interpre-
tation of the term “domain” from the parallel process-
ing literature. A partial listing of YR semantic facets
and their operators are shown in Figure 2. Together,
the core facets define a space of scalar program behav-
iors, and YR constructs are programs for the abstract
machine characterized by these behaviors. Generating
a compiler for a specific machine then reduces to the
problem of compiling YR programs – constructs of this
semantic algebra - to native code, by implementing the
abstract machine for the intended target.

3.2 YR + Shapes

Using only the core YR operators, we could model im-
perative languages implemented serially, such as For-
tran 77, Pascal, or Algol. A complete implementa-
tion of our operator set for a given target environment
would comprise a complete, working compiler. How-
ever, for the data-parallel extensions of Fortran 90 we
require the addition of primitive shaping actions.

User code that iterates over data or time, as well
as target hardware that exhibits both parallelism and
sequential restrictions, can be thought of as forms of
serial or parallel iteration over abstract spaces. We
represent such spaces in YR using shapes, a class of
primitive semantic operators that model iteration. The
basis for shapes in the current work is the basic Carte-
sian product space, although future work may include
tree, hypercube, or butterfly domains as shape primi-
tives, as suggested by previous research into domains
and data fields [4].

To integrate these shape operators into scalar YR,
bridge actions are added to each of the other seman-
tic facets. The additional operators are marked with
asterisks in figure 2.

Types. To model array types, we add the type op-
erator df ield: S*T, which defines a new type whose
shape is S and whose elements are each of type T. T
may itself be a dfield, which may be interpreted as a
shape cross-product. Each value action has a declared
or inferred shape and type, which can be checked stat-
ically at compile time.

Declarations, Because the existing declaration op-
erators allow identifiers to be bound to any ex-
pressible type, array declarations just take the form
DECL(i, dfield(S, T)).

Values. We add a new value-producing operator,
AVAR(i, S), which references array storage bound to
identifier i through shape action S. Shape actions used
as subscripts can further specialize the declared shape
of an array variable, or default to the declared shape
using the special shape action all. This allows us to
construct array references that are implicitly parallel,
Shapes can also be filled in with integer coordinate val-
ues using the LOCALLYvalue-constructor.

Imperative actions. Finally, we model serial and
parallel iterations over spatial and temporal domains
with the operators DO(V, S, 1) and DOALL(V,S, I).
These operators carry out the action I at each point in
the shape action S with either serial or concurrent se-
mantics, borrowing the storage referenced by the value
set V for maintaining the loop variables.

The body action I may itself be another DO- or
DOALL-construct, providing a way to inductively de-
fine loops over Cartesian product spaces. We can then
begin to define such standard transformations as loop
interchange and loop fusion.

Moving data between like shapes is handled normally
as part of the general data motion operator MOVE,where
the left- and right-hand types are dfields with match-
ing shapes and elemental types, and the storage phase
of the movement is executed under an optional mask.

98

TYPE FACET (T)

integer.32
logical.32
float.32
float_64
dfield

DECLARATIONFACET (D)

DECL
DECLSET
INITIALIZED

VALUE FACET (V)

COMPUTE
SVAR
SCALAR
FUNCALL
AVAR
LOCALLY

IMPERATIVEFACET (I)

PROGRAM
SEQUENTIALLY
CONCURRENTLY
MOVE
MMOVE
IFTHENELSE
WHILE
REF.OUT
COPY-OUT
WITH
SKIP
DO
DOALL

SHAPE FACET (s)

point
gen-interval
interval
prod-dom
dyn
all

operator signature

T
T
T
T
S*T->T

id* T->D
D list -> D
id* T*ll->D

op*v*v -> v
id -> V
T*s-rep -> V
id*(T*V)lLst -> V
ld*S -> V
S*lnt -> 1$

1->1

I list ->1
I list ->1[
(V*V)list -> I
(V*(V*V))l.ist -> I
(v*I*I) -:, I

(V*I) -> :[
V->1
V->1
D*1 -> 1

I
V list*S*I -> I
V list*S*I -> I

int -> S
S*S*~nt -:) S
S*S -> s
S list -> S
V->s
s

interpret ation
* –Shape augmentation tocore YR

32-bit integer
32-bit logical
single-precision floating point
double-precision floating point
* afield of elements of the given type

simple declaration
multiple declarations
declaration plus initial value

arithmetic computation
scalar variable
scalar constant
function call
* array variable
* coord arrav constructor

top-level program action
sequential composition
concurrent composition
data movement
move under mask
classical if-then-else
classical while-construct
passes call-by-reference parameter
passes call-by-value parameter
execute in extended environment
defines (SEQUENTIALLY nil)
* execute over the given shape
* ..in parallel

* single point
* strided interval
* stride-1 interval
*shape cross-product
* dynamically determined shape
* select all elements

Figure2: Partial Listing of YR Domains and Operators

99

The Fortran 90 code mentioned earlier,

INTEGERK(128,64), L(128)
L=6
K= 2*K+5

might be expressed in full YRas

WlTH (DECLSET
[DECL(‘k’ ,df ield
{shape=prod.dom

[interval(point I,point 128),
interval(point I,point 64)],

element=integer_32)),

DECL(’1’,dfield
{shape=interval(point I,point 64),

element=integer-32})1 ,
SEQUENTIALLY
[. . .

MOVE[(SCALAR(integer_32, ’6’),
AVAR(’1’,all))],

HOVE [(CORPUTE(bin Plus,
[C014PUTE(bin Hul,

[SCALAR(integer-32 ,’2’),
AVAR(’k’,all)]),

SCALAR(integet_32 ,’5’)]),
AVAR(’k’, all))],

. . . 1);

The program consists of a declaration section,
wrapped around two data movements composed se-
quentially. The first assigns the scalar integer value
6 to all elements of array 1 in parallel; the second com-
putes the function 2k+6 for all points in k simultane-
ously, and moves the result back into corresponding el-
ementsofk. Note that the all operator isused for the
array variable subscript to specialize different shapes,
with the meaning specified by context. All thus allows
us to express elemental parallelism in data movement
decoupled from the specific shape associated with the
array variables.

The target-independent phases of the prototype corn-
piler include modules for syntactic analysis, initial
translation to YR and static semantic analysis, and YR
source-to-source optimization. Each phase is specified
as a set of Standard ML modules.

4.1 Syntactic Analysis

Syntactic analysis is performedby afront end system
whose target is a generic AST format. The implemen-
tation of syntactic analysis by way of formal specifi-
cation is well understood, and we elide further details
here. The current front end in the Fortran-90-Y pro-
totype, for example, is a custom subset lexer/parser in
the form of a ruleset guiding the accumulation of lex-
ical tokens into simple tree form, and the recognition
and tagging of anumber ofmultistatement constructs.

4.2 ~tatic Semantic Analysis

Following syntactic analysis, the resultant AST is
matched against aset ofproduction rules that guide the
construction ofavalid YR program and perform static
semantic checking. These rules are grouped accord-
ing to the semantic facet within which their resultant
program action is classified. The current prototype in-
cludes nine rule sets that govern the transformation
of ASTS into YR program fragments according to their
parent semantic facets: right andleft-hand side expres-
sions(valuations), types and shapes, simple and block-
structured statements (imperatives), and variable and
constant declarations,

The rule sets are mutually recursive, and call each
other to fill in the missing parts of parameterized ac-

tions. For example, the DO operator for serial itera-
tion is parameterized by a list of value-resources that
may be borrowed to serve as loop variables, a shape
over which the looping occurs, and a body instruc-
tion, possibly including the loop variables, to execute at
each iteration. The production rule that creates a DO-
statement is just one clause of the rule set AST-toStmt.
One pseudocode form of the rule to produce a YR
DO-statement from an AST encoding a simple lower-
bound, upper-bound loop with unit stride is

AST-t o_Stmt (env,
[[do /loopvar/=/lb/, /ub/ /body/]]) =>

let val bodyaction =
and lvaraction =
and lb_s.hape =
and ub_shape =

in DO([lvaraction] ,

AST_to_Stmt (body, env)
AST_to_LHS(env, loopvar)
AST_to_Shape(env, lb)
AST_to_Shape(env ,ub)

interval (lb_shape ,ub_shape) ,
bodyact ion)

end

If the user’s program contains such a simple DO-
loop, the AST fragment that encodes the loop will be
matched against each rule in the ruleset AST_to_Stmt
sequentially. It will trigger this particular clause, which
will in turn extract the syntactic subtrees containing

100

the loop bounds (point shapes), the loop index vari-
able, and the statement that forms the loop body. The
rulesets AST.t o.[Stmt, LHS, and Shape] are used]re-

cursivelyto construct their semantic values. These val-
ues are then combined under the DO-operator into a
single entity, which is returned as the YR compilation
of the original AST.

Similarly, the LHS-rule that translates unqualified
identifiers to assignable variable actions is

AST.to-LHS(env, [[/vname/]]) =>

(case t ypeof (env, vname) of
df ield{. . . } => AVAR(vname, all)

I other => SVAR vname)

Note that if the type associated with the variable
name in the static environment env is an array type
(df ield), the rule assumes that the whole-array refer-
ence is intended, and produces the correct YR encoding
for an array variable used as a left-hand side.

Finally, the rule that handles simple assignment is
just

AST-to-Stmt (env, [[/somelhs/=/somerhs/] 1) =>

let val lhs’ = AST-to-LIiS (env, somelhs)
and rhs > ❑ AST-to-RHS(env, somerhs)

in
if types-agree (env,lhs’, rhs))
andalso shapes=agree(env,lhs ’,rhs’)

then MOVE[(rhs’,lhs’)]
else

raise AST_to_Stmt-Error
(“lilsmatch in assign”)

end

Here, the functions types~gree and shapes-agree
lookuporderivethe typeandshapeofthe suppliedYR
valuation actions and trivially check them for agree-
ment before allowing the compilation to proceed. 2

The final result from this phase should be a single imp-
erative action that describes the entire user computa-
tion, and has been statically type- and shape-checked.
No attempts at program optimization have been made.
The YR action can then be passed through a series
of optimizing transformations, or directly to a target-
specific YR compiler for code generation.

4.3 YR Transformations

The current Fortran-90-Y optimization stage performs
a chain of source-to-source transformations over YR

‘Nontrivial shapes, includlng arrays and intervals with
rnntime-determinatebounds, also exist in YR in the form of
the dyn operator for dynamic shapes. Certain shape checking
operations may therefore be postponed until rnntime.

code. This framework supports program transforma-
tion within each semantic facet, propagating the effects
of transformations through the program by way of YR’s
bridging operators, where facets meet. The object is
to produce programs in which computations over like
shapes are blocked as much as possible, forming com-
putation phases punctuated by communication.

These shape-based program transformations allow us
to express standard compilation techniques such as var-
ious loop transformations, as well as specific goals such
as exploiting communication patterns that are well-
supported by the target.

Each is implemented as a single Standard ML func-
tor, defining a transformation function whose type is
YR. statement -> YR. statement. Each has a set of
input assertions that must be satisfied, or the trans-
formation fails, displaying a warning of assertion fail-
ure and passing the input program through unmodi-
fied. Like the static semantic phase, each transforma-
tion functicm is defined as a rule set partitioned along
semantic facets. Generally, each transform is triggered
by a particular context or YR construct, and so can be
defined in just a few hundred lines of SML code.

The selection and ordering of these optimization
modules are currently statically determined at the time
the compiler is built to satisfy whatever input asser-
tions the back end YR compilers may have, and to
precondition code for good performance.

4.3.1 Constant propagation

The constant propagation module performs simple
value tracking to simplify expressions in crucial con-
texts. This is primarily useful in statically resolving
otherwise compile-time indeterminate subscript ranges,
and thus can greatly extend the potential for later op-
timization. For example, if the user codes

B(2:npl) = A(2:npl) + B(l:n)

and variable npl is clearly only used to store the value
n+l for some parameter n, then rewriting the array
expressions to include that information will resolve a
dynamic shape checking dilemma at compile time.

Simple value tracking is accomplished by passing
over the input YR program with an environment that
stores, for each variable, either a current constant val-
uation, an uninitialized marker, or an unknown status.
This simple tracking does not cross the boundaries of
basic blocks.

4.3.2 DOALL reduction

Unlike the Fortran 90 standard, but like most compil-
ers that implement a subset of Fortran 90 features, the

101

Fortran-90-Y prototype implements a FORALLstate-
ment, though the YR operator is named DOALL.Per-
haps its most significant use is to allow pointwise com-
putations in which the local array coordinates partici-
pate.

The subset of FORALL expressions that involve
only local array elements and coordinates are detected
and reduced by this transformation module to whole-
array expressions that use the YR value-constructor
LOCALLY.For example, the Fortran 90 statement

forall (i=l:m, j=l:m)
c A(i, j) = i.*B(i, j)+j

where A and B were defined over the common sha~pes
equal to (I :m)* (I: m), would emerge from the static
semantic phase as the YR fragment

DOALL([SVAR i , SVAR j] , DOMAIN“S” ,
140VE

[COHPUTE(bin Add,
[CO14PUTE(binHul,

[AVAR(IIBII,prod_dom
[dyn(SVAIt “1”) ,dyn(SVAR “j”)]) ,

SVAR “i”]) ,
SVAR “j”]) ,

AVAR(“A”, prod_dom
[dyn(SVAR “i’’), dyn(SVAR “j’’)])])

Although theindividual shapes can be inferred, the
exact subscript values remain unspecified, leaving com-
plicated source and target expressions for the M(DVE.
The problematic subscript expressions each exactly
match the list of variables that the DOALLborrows to
store loop indices, triggering the DOALLreduction mod-
ule. This transformation introduces parallel YR tem-
poraries of the same shape and distribution as A and B
using the YR LOCALLYoperator, and reduces this YR
fragment to the simpler pointwise computation

MOVE

[COMPUTE(bln Add,
[COMPLJTE(binMul,

[AvAR(’’BII ,all),
LOCALLY(S,dimenslon 1)1) ,

LOCALLY(S,di.mension 2)1) ,

AVAR(”A” ,all)]

4.3.3 Communication introduction

Expressions that involve mixed communication ilnd
computation must be broken into separate pieces ex-
ecuted serially, often with temporary storage to hold

intermediate results. This module passes over the in-
put YR program, using a rule set to detect such ex-
pressions and perform the necessary splitting transfor-
mations. For example, if the module sees YR code
expressing

A = B + CSHIFT(B, DIM=2, SXIFT=2)

such as

MOVE

[COMPUTE(bin Add,
[AVAR(IIBII,all),
PRIM(“cshif t”,

AVAR(’’B’’, all), . ..)1).

AVAR(’’A’’, all)]

it converts this to multiple moves with a local declara-
tion

WITH(DECL(’’tO” ,dfield{shape=S, . . .}) ,
SEQUENTIALLY

[MOVE
[PRIM(’’cshift”,

AVAR(’’B’’, all), . ..).

AVAR(’’tO’’, all)] ,

MOVE
[COMPUTE(bin Add,

[AVAR(’’B’’,all),AVARtO’,all)]ll)]),

AVAR(’’A’’,all)]])

that computes the CSHIFTinto locally scoped storage
toofthe appropriate shape before performing the ad-
dition and (presumably) releasing the local storage.
Later transformation phases may choose to bring some
outside computations within the scope of the generated
temporary storage, increasing the length of the elemen-
tal code block at the expense of keeping some allocated
heap space longer than necessary.

4.3.4 Parallel loop fusion

Finally, the loop fusion module passes over the YR
program, looking for successive MOVEstatements with
purely elemental computation and like shape. Those it
finds itgroups together within asingle MOVEset. In the
CM/2 YR implementation, this results in these assign-
ments being compiled into a single PEAC node routine,
potentially resulting in increased vectorization. This is
equivalent to fusing sequences of parallel loops, since
in a synchronous context

102

SEQUENTIALLYIDOALL(V,S,11),DOALL(V,S,12)1

is exactly equivalent to

DOALL(V,S,SEQUENTIALLY[11,121)

5

5.1

The

Fortran-90-Y: Target-Specific
Phase

CM2/YRCompiler

problemof compilinga validYR program into
codeforthe CM/2 is broken down into a hierarchy of
YR compilers for different levels of target abstracticm,
The top-level abstraction (CM2/YR) models the CM/2
host and nodes together as a single machine, and then
partitions input YR programs into YR subprograms
for each half.

The source YR program will have been restructured
by the optimization phase to consist of blocked compu-
tation and communication phases. The CM2/YR co]m-

piler passes over this series of blocks, cutting out and
compiling a list of the elemental computation phases.
Then it patches the remaining program skeleton with
the appropriate YR calling code. Each extracted comp-

utation phase is passed to the CM/2 node YR com-
piler to be turned into a node procedure. The remain-
der is transformed into native frontend code by the
CM/2 front end compiler.

5.2 CM2/Host and CM2/Node YR
Compilers

The CM2/Host YR compiler translates the YR remain-
der progam into SPARC assembly code plus CM run-
time system library calls. DO-and MOVE-constructsover
serial shapes become explicit front-end iteration. Ref-
erences to front-end data, along with CM data used in a
front-end context all become front-end code. Declara-
tive YR constructs become memory allocations, with
their home determined by usage. Certain primitive
function calls that represent communication intrinsic
are replaced by calls to their CM runtime library im-
plementations. For each computation block being ex-
ecuted remotely, the compiler inserts calling code to
push PEAC procedure arguments over the IFIFO to
the node processors. The Node/YR compiler then
passes over the chain of extracted loopnests, transform-
ing each straightforwardly into a single PEAC node
routine. An illustration of the code partitioning p]ro-

cess can be seen in Figure 3.
The host and node compilers in the current CM/2

implementation represent the point where true speci-
fication ends. They compile YR fragments to native
code directly, using hand-coded algorithms to achieve
competitive performance. The formalism of YR is still

(B~- .

!3
DO

DOAL ---

DO

‘~ (A)

1
(D.1)

(c)1cloned

(D.2) loopnest

---- —, -.

El
DO

(A)

DO

BD

DO

(B)

(D)

(c)

D.1,D.2

have like

shapes

(A) 1~1

(B) WI

a

DOALL
(c) DOALL

DOALL

(D) DOALL

DOALL.

DOALL

CM/2 HOST CODE cM/2 NODE CODE

Figure 3: Decomposition to Host and Node Code

present, however, insofar as these implementations are
organized internally at the top level as production rule
sets. The CM2/Host compiler, for example, defines
functions compile- [i, v, d] action that compile YR
fragments from the imperative, valuation, and declar-
ative semantic facets, respectively, to SPARC assem-
bly code. The CM2/Node compiler performs a similar
function, translating a narrow set of pointwise parallel
loop constructs into optimized slicewise PE assembly
code. Pushing the level of specification down into the
FE and PE compilers is an ongoing process, guided by
this facetwise organization.

Recall that earlier compiler stages defined the trans-
lation of AST fragments to YR fragments, and syn-
thesized a single YR imperative program from them.
The backend rulesets perform componentwise decom-
position, rather than synthesis, of the constructed YR
imperative, producing an equivalent program in the
target language.

Having these separate compilers for the host and
nodes allows effort to be expended intelligently to bring
the prototype up to speed. In codes that contain a
high degree of data parallelism, the node processor and
runtime libraries’ speeds are the limiting factor for per-
formance. The SPARC front end can easily keep up,
feeding PEAC code and data through the sequencer
and calling the runtime system. As problem size in-
creases, front end time comprises a negligible fraction
of the overall execution profile. This allows SPARC

103

front-end performance questions to be postponed. The
current front-end YR implementation uses a simple
memory-to-memory load/store model with little atten-
tion to effective register use or delay slot filling. Al-
lowing the host and node implementations to be fully
separated gives us the freedom to filter out and focus
on the performance-critical parts of the prototype com-
piler instead.

The prototype CM/2 node compiler is tuned for op-
timizing the virtual subgrid loop over the local data
in each processor. Since the role of the processing ele-
ments is limited in this programming model to purely
local, pointwise computations, the set of YR programs
that the node compiler accepts can be restricted. Each
computation burst is derived from computations over
like shapes in the source program. The compiler there-
fore only needs to be able to to process procedures
whose body is a single loop containing a sequence of
(optionally masked) moves from the local points of
source arrays to the corresponding points in the tar-
get. The node YR compiler emits an optimized PE
assembly code routine for each subgrid loop passed to
it by the CM/YR code partitioned.

After the host and node compilers have reduced their
YR source programs to SPARC assembly code and
PEAC, their output is then compiled and linked nor-
mally, and can be executed on any CM/2 equipped
with Weitek 64-bit FPUS.

5.3 CM5/YR Compiler

The initial CM/5 YR compiler retains the majority of
its structure and, therefore, its specification from the
CM/2 version. To use the CM/5 in SIMD mode to run
codes written for the CM/2, the Fortran-90-Y proto-
type shares all code in common up to and including
the CM/2 whole-machine YR compiler, which splits a
single program into host and node code.

The CM/5 host compiler required less than 200 lines
of additional code to handle both machines’ front end
requirements. A CM/5 node compiler that translates
old node YR to regular C programs similarly allows
CM/2 node code to compile transparently to the new
machine. As a result, the total additional time required
to construct this preliminary CM/5 prototype compiler
was less than two weeks.

Compiling to a CM/5 augmented with optional vec-
tor hardware at each node will present more target lev-
els due to the increased node complexity. In the new
model a single YR program will be split three ways
rather than two; one part will go to the control pro-
cessor, as before; a second part will be executed on the
SPARC node processor, and a third part will carry out
floating point vector operations on the CM/5 vector
datapaths. This structure is represented in the sec-
ond back-end diagram of Figure 1. Most importantly,

the new system will still be able to take advantage of
the machine-independent block-lengthening YR trans-
formations defined in the common compiler modules.

5.4 Other Computation Moclels

There are, in practice, no reasons why the compiler
should adhere to a single, restrictive programming
model at the expense of flexibilityy. For example, many
codes would benefit from the ability to occasionally
break the CM/2’s virtual processor runtime model,
restricted to pointwise locality and subgrid looping.
A more flexible model would allow the compiler to
pipeline communication and computation, or perform
general neighborhood computations directly, using the
full register set to store intermediate results and per-
forming physical communications as required.

Likewise, a more flexible compiler will be able to take
advantage of the MIMD features available in the CM/5
and other machines. Implementing new programming
models only requires the specification of new host and
node YR compilers, and adjustments to the top-level
compiler to make use of them. The YR source trans-
formation stage would also benefit from extra modules
to provide services from the runtime system previously
taken for granted, such as explicit data layout.

6 Experimental Results

The basic specification methods were tested in the
Fortran-90-Y compiler prototype, which we regard as
“realistic” by the following standards:

Development time. The current work began in
July 1991, with initial research into the slicewise CM
programming model, the Fortran-90 language, and the
CM Fortran compiler. Implementation of the pro-
totype compiler actually began in mid-August. The
CM/2 compiler began generating code for simple test
programs by late October, and was compiling bench-
mark code by November. We gained access to a work-
ing CM/5 in February, and began compiling simple
codes to it as well shortly thereafter.

Direction of Effort. By modeling the CM with a
unified phase (CM/YR), we recognized that the ma-
chine taken as a whole is still a useful abstract target
for compilation. But by dividing the labor of compi-
lation between the host and node compilers, impos-
ing restrictions on the constructs each accepts, and
optimizing the compiler’s critical path first, we were
able to develop a competitive system for multiple tar-
get machines, and an interesting subset of the source
language, in less than eight months.

104

Compiler Performance. The time and space re-
quirements for building and using generated compilers
have been traditional obstacles to their acceptance fc,r
production use. By constrast, on a moderately loaded
Sun 4/390 with 32 MB of physical memory, the cur-
rent prototype CM/2 compiler can be generated from
specification source code in about ten minutes. During
actual development, rebuilds generally take much less
time - on the order of two or three minutes - due to
specification modularity and Standard ML’s separate
compilation facilities. The resultant CM/2 compiler
image is just over one megabyte in size; this compares
favorably with other language tools available for the
Connection Machine. Object files produced by the gene-
rated prototype system are, on average, close in size
to those produced by CM Fortran. Compilation rates
are generally within twenty percent of CMF as well.3

Object Code Performance. The initial benchmark
was an updated Fortran-90 version of a dusty deck code
to implement a meteorological model, the “shallow-
water equations,” or SWE. It has good locality, consist-
ing of a series of circular shifts interspersed with blocks
of local computation, and so represents an ideal prob-
lem for a SIMD, data-parallel machine like the CM/2!.

A hand-coded *Lisp version of SWE running under
fieldwise mode peaked at 1.89 gigaflops. The slicewise
CM Fortran compiler (v1.1) reached an extrapolated
2.77 gigaflops. The prototype Fortran-90-Y compiler,
after the first eight months of development, produced
code that attained a competitive sustained rate of 2.71
gigaflops. The initial CM/5 prototype, using untuned
C program stubs for expressing node code, still attains
roughly 85% of the gigaflop rate of CM Fortran on the
CM/5.

7 Conclusions

In this paper we have presented a brief overview of an
approach to parallelizing compiler design incorporat-
ing concepts from both formal specification and tradi-
tional high-performance computing. The original moti-
vation of this work was to demonstrate that developing
scalable, portable, competitive compilers from specifi~-
cation for massively parallel computing environments
was feasible, in terms of reasonable development time
and competitive performance.

The achievements of the current Fortran-90-Y protc~-
type implementation suggest that these methodologies
are on their way to being generally applicable to the
real-world challenge of developing compilers for con-i-
plex parallel targets at reasonable cost.

8 Acknowledgements

The authors thank Young-Ii Choo for his advice re-
garding earlier versions of YR, and Yu Hu for his many
comments and technical advice. Also, thanks to Woody
Liechtenstein, Bob Millstein, and Gary Sabot of Think-
ing Machines for their help with CM Fortran, CM/RT,
and the slicewise programming model. Finally, special
appreciation is due Lennart Johnsson, also of Think-
ing Machines, for his help in formulating the problems
to be addressed and information on all aspects of the
CM.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

Cikl Fortran Reference Manual, 1991,

Fortran 90 Standard, 1991.

M. Bromley, S. Heller, T. McNerneyl and G. Steele
Jr. Fortran at ten gigaflops: The connection ma-
chine convolution compiler. ACM SIGPLAN ’91
Conference on Programming Language Design and
Engineering, 26(6):145-156, 1991.

Marina Chen, Young-ii Choo, and Jingke Li. The-
ory and pragmatic of generating efficient parallel
code. In Parallel Functional Languages and Com-
pilers, chapter 7. ACM Press and Addison-Wesley,
1991.

Peter Lee. Realistic Compiler Generation. MIT
Press, 1988.

K. Pingali, M. Beck, R. Johnson, M. Moudgill, and
P. Stodghill. Dependence flow graphs: An alge-
braic approach to program dependencies. In J3igh-
ieenth Annual ACM Symposium on Principles of
Programming Languages, pages 67-78, 1991.

S. Tjiang, M. Wolf, M. Lam, K. Piper, and J. Hen-
nessy. Integrating scalar optimizations and par-
allelism. In Fourth Workshop on Languages and
Compilers for Parallel Computing, pages c1-c16,
1991.

sExclusive of finf@ time; as linking can comprise two-thirds

or more of overall compile time, practical compilation rates are
thus almost identical.

105

