
Abstractions for Recursive Pointer Data Structures:

Improving the Analysis and Transformation of Imperative Programs

Laurie J. Hendren*

School of Computer Science

McGill University

Abstract

Even though impressive progress has been made in the
area of optimizing and parallelizing programs with ar-
rays, the application of similar techniques to programs
with pointer data structures has remained difficult. In
this paper we introduce a new approach that leads to
improved analysis and transformation of programs with
recursively-defined pointer data structures.

Our approach is based on a mechanism for the Ab-
stract Description of Data Structures (ADDS), which
makes explicit the important properties, such as dimen-
sionalit y, of pointer data structures. Numerous exam-
ples demonstrate that ADDS definitions are both nat-
ural to specify and flexible enough to describe complex,
cyclic pointer data structures.

We discuss how an abstract data structure descrip-
tion can improve program analysis by presenting an
analysis approach that combines an alias analysis tech-
nique, path matrix analysis, with information available
from an ADDS declaration. Given this improved alias
analysis technique, we provide a concrete example of
applying a software pipelining transformation to loops
involving pointer data structures.

1 Introduction and Motivation

One of the key problems facing both optimizing and
parallelizing compilers for imperative programming
languages is alias analysis, that is, detecting when two

“This work supported in part by FCAR, NSERC, and the
McGill Faculty of Graduate Studies and Research.

tDirect correspondence to this author, jhummel@ics.uci.edu.
i This work supported in part by NSF grant CCR8704367 ad

ONR grant NOO01486K0215.

Permission to copy without fee all or psrt of this material is

granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM cc.pyright notice and the

title of the publication and its data appear, and notice is given

that copying is by permission of the Aaaociation for Computing

Machinery. To copy otherwise, or to republish, requires a fee

and/or specific permission.

ACM SIGPLAN ’92 PLD1-6/92/CA
@l1992 ACM 0.89791 .476.7 /92/0006 /0249...$1 .5(J

Joseph Hummelt

Alexandru Nicolau$

Dept. of Information and Computer Science

UC-Irvine

distinct memory accesses may refer to the same phys-
ical memory location. Alias analysis is a critical com-
ponent of such compilers, and the effectiveness of many
compiler analysis techniques and code-improving trans-
formations rely upon accurate alias analysis. Given
the current trend towards vector, RISC, and super-
scalar architectures, where optimizing compilers are
even more important for efficient execution, the need
for more accurate analysis will grow.

Scientific codes have often been the target of optimiz-
ing and parallelizing compilers. Such codes typically
use arrays for storing data, and loops with regular in-
dexing properties to manipulate these arrays. A good
deal of work has been done in the area of analysis and
transformation in the presence of arrays and loops, and
as a result numerous techniques have been developed;
for example, invariant code motion, induction variable
elimination, loop unrolling, and vectorization [Lov77,
Kuc78, DH79, PW86, AK87, ASU87, ZC90], along with
various instruction scheduling strategies such as soft-
ware pipelining [RG82, AN88a, AN88b, Lam88, EN89].
Unfortunately, codes that utilize dynamically-allocated
pointer data structures are much more difficult to
analyze, and therefore there has not been as much
progress in this area. This is problematic, since numer-
ous data structures in imperative programs—linked-
lists and trees for example—are typically built using
recursively-defined pointer data structures, Further-
more, such data structures are used not only in sym-
bolic processing, but also in some classes of scientific
codes (e.g. computational geometry [Sam90] and the
so-called tree-codes [App85, BH86]).

The goal of this paper is to: (1) investigate why
the analysis of pointer data structures is more difficult
than the analysis of array references, (2) suggest a new
mechanism for describing pointer data structures, and
(3) show how better descriptions of such data struc-
tures lead to improved analysis and transformation of
imperative programs.

249

1.1 The Problem

To motivate the problem, consider the two code frag-
ments shown in Figure 11. The upper code fragment
adds the element b [j] to each element of array a.

Since arrays have the property that a [i] and a [j]
refer to different locations if i # j, the compiler can
immediately determine from this code fragment that
each iteration references a different location of a. Fur-
ther, arrays are usually statically allocated, and it is
straightforward to determine that the arrays a and b
are different objects. Thus any reference to a will never
refer to the same location as b [j 1, implying that b [j]
is loop invariant. These observations allow the com-
piler to perform a number of transformations, including
(1) loading b [j] into a register before the loop begins,
and (2) transforming the loop by perhaps unrolling or
applying software pipelining.

fori= ito N
a[i] = a[i] + b[j];

while p 4> NULL

{ p->data = p->data + q->data;
p = p->next;

}

Figure 1: Arrays versus linked-lists.

Now consider the lower code fragment in Figure 1,
which operates on a linked-list. This code traverses a
list p, and at each step adds the value q->data to the
node currently being visited. In this case, the prop-
erties of the structure are not obvious from the code
fragment. For example, unless we can guarantee that
the list is acyclic, we cannot safely determine that each
iteration of the loop refers to a different node p. This
makes the application of loop transformations difficult.
Secondly, since the nodes are dynamically allocated, it
is much more difficult to determine if p and q ever refer
to the same node. Hence the compiler will be unable
to detect if q->data is loop invariant. As a result, even
though the code fragment performs a similar function
to the array-based version, traditional optimizing and
parallelizing compilers will be unable to apply similar
transformations.

1.2. Previous Work

There are currently three approaches for dealing with
the problem of alias analysis in the presence of pointer
data structures: (1) assume the most conservative
case, that all pointers and nodes are potential aliases,
(2) analyze other parts of the program in an attempt to

1Treat a, b, p, and q as local variables, where a and b are
arrays of size N and p and q are pointers.

automatically discover the underlying properties of the
data structures (and hence the relationship between all
pointers and nodes), or (3) require code annotations.

Although approach (1) is far more common (per-
haps with (3) as a backup), there has been signifi-
cant work on approach (2). One class of solutions
has been the development of advanced alias analysis
techniques (also called structure estimation techniques)
that attempt to statically approximate dynamically-
allocated data structures with some abstraction. The
most commonly used abstraction has been k-limited
graphs [JM81], and variations on k-limited graphs
[LH88a, LH88b, HPR89, CWZ90]. The major disad-
vantage of these techniques is that the approximation
introduces cycles in the abstraction, and thus list-like
or tree-like data structures cannot be distinguished
from data structures that truly contain cycles. The
work by Chase et al. [CWZ90] has addressed this prob-
lem to some degree; however, their method fails to find
accurate structure estimates in the presence of general
recursion. This is a serious drawback since programs
with recursively-defined data structures often use re-
cursion as well. Another method, path matrix analy-
sis, was designed to specifically deal with distinguish-
ing tree-like data structures from DAG-like (shared)
and graph-like (cyclic) structures [HN90, Hen90]. This
analysis uses the special properties exhibited by tree-
like structures to provide a more accurate analysis of
list-like and tree-like structures even in the presence
of recursion. However, it has the disadvantage that
it cannot handle cyclic structures (even if the cyclic
nature would not hamper optimizing or parallelizing
transformations). Related approaches include those
based on more traditional dependence analysis (e.g.
[Gua88], which assumes that structures do not have cy-
cles) and abstract interpretation techniques (e.g. Harri-
son in [Har89] presents a technique designed for list-like
structures commonly used in Scheme programs, while
more recently he has been developing a uniform mech-
anism for handling both symbolic data and arrays us-
ing the notion of generalized iteration space [Har91]).
In general, even though each of these methods work
for certain classes of pointer data structures, they un-
doubtable fail in the presence of general, possibly cyclic
structures and recursion.

Code annotations represent a compromise, since the
programmer can specify what the compiler cannot de-
termine. However, code annotations are often difficult
to use, due to the varied kinds of information that
must be conveyed to the compiler. For example, the
programmer may need to specify the data dependen-
cies [Lar89], the transformation to apply [CON], or the
“distinctness” of data [KKK90]. Also, the compiler
typically takes these annotations on blind faith, and so
is unable to warn the programmer if a coding change
invalidates an annotation; this is true for [Lar89, CON],

250

while in [KKK90] it was suggested that the system
could perform dynamic checks provided that the pr-o-
grammer uniquely “tags” each node. Finally, such an-
notations must be repeated throughout the program to
maximize performance.

2 Our Approach

Based on our past experience of developing alias anal-
ysis techniques for tree-like structures, and the fail-
ure of other techniques to find accurate information
for more general structures, we believe that a lack of
appropriate data structure descriptions is the most se-
rious impediment to the further improvement of anal-
ysis techniques. After studying a wide range of imp-
erative pointer data structures, we have developed
an approach for describing what we feel are the im-
portant properties of such structures, important in the
sense of enabling numerous optimizing and paralleliz-
ing transformations. Current imperative programming
languages provide no mechanisms for expressing this
kind of information2.

Our approach, called ADDS, provides the program-
mer with a mechanism for the Abstract Description of
Data Structures. ADDS is a minor addition to most
imperative programming languages, and was designed
to:

● be simple for the programmer to use,

● minimize and localize program annotation,

● describe complex pointer data structures, and

● enable powerful transformations.

The properties expressed through such data structure
descriptions are used to increase the accuracy and
hence effectiveness of existing analysis techniques. This
allows the application of powerful optimizing and par-
allelizing transformations, and may also lead to the de-
velopment of new pointer-specific transformations.

Asking the programmer to specify some properties of
his or her data structures should not be considered a
radical change in our way of thinking about program-
ming in imperative programming languages. In the
pointer data structures domain, programmers already
convey quite a bit of implicit information about their
data structures. For example, consider the following
two recursive type declarations:

type BinTree type TwoWayLL
{ int data; { int data;

BinTree *left; TwoWayLL *next;
BinTree *right; TwoWayLL *prev;

3; 1;

2It should be noted that Larus in [Lar89] discussed a simi-

lar approach for Lisp; however, hk approach required code (not
type) annotations, described only acyclic structures, and could
not be used in code fragments which might modify the structure.

Even though these type declarations appear identical to
the compiler (each declares a record with three fields,
one integer and two recursive pointers), the naming
conventions imply very different structures to readers
of the program. In addition, each structure has some
very nice properties which the compiler could exploit.
A binary tree naturally subdivides into two disjoint
subtrees that can be operated on in parallel. A two-
way linked-list has the property that a traversal in the
forward direction using only the next field never visits
the same node twice (likewise for traversals using only
the prev field); this property of never visiting the same
node twice enables the parallelization of node process-
ing along the list. The idea of ADDS is simply to make
this implicit information explicit to the compiler, Pos-
itive side-effects may be increased human understand-
ing of programs, and the compiler’s ability to generate
run-time checks to ensure proper use of dynamic data
structures.

Note that Fortran 90 has taken a similar stance in its
treatment of pointers to variables. Variables accessible
through pointers must be explicitly declared as either
pointers or targets [MR90]. This simple declaration
greatly improves the accuracy of alias analysis in the
presence of pointers.

However, also note that the presence of a descrip-
tion mechanism such as ADDS is not enough by itself.
Side-effects in imperative programs often rearrange the
components of a data structure, causing a temporary
but intentional invalidation of the properties we wish
to exploit. Application of optimizing or parallelizing
transformations (that rely on these properties) during
such a time would be incorrect, and intolerable. Hence
some form of data structure validation analysis, beyond
alias analysis, is necessary not only to ensure correct-
ness, but to enhance debugging as well.

In the remainder of this paper we present our view-
point that:

1. recursive pointer data structures, regardless of
their overall complexity, typically contain sub-
structures that exhibit regular properties that can
be exploited for the purpose of program analysis
and transformation, and

2. the ability to express these properties explicitly is
an important first step towards the long-term goal
of accurate and efficient program analysis in the
presence of cyclic pointer data structures.

The organization of the paper is as follows. In sec-
tions 3 and 4 we address the problem of expressing the
regular properties of recursive pointer data structures.
In section 3 we present ADDS through a series of in-
tuitive, increasingly complex examples, and in section
4 we define the properties of ADDS data structures
more formally. In section 5 we discuss how the infor-
mation provided by ADDS can be used to improve the

251

analysis and transformation of programs; in particular,
we demonstrate how ADDS enables the application of
software pipelining to a list-traversal loop. Finally, in
section 6 we present our conclusions.

3 ADDS - Abstract Description
of Data Structures

The transformation of codes involving data structures
requires knowledge about the properties exhibited by
that structure, e.g. shape, size, and method of element
access. With arrays, these properties are readily iden-
tifiable. The shape of an array is fixed and declared at
compile-t ime, its size is known at the time of crest ion
(and often at compile-time), and locations are refer-
enced using integer indices. For example, given a state-
ment S of the form i = i + c (c # O), the compiler is
guaranteed that a [i] refers to different elements of a
before and after the execution of S. Contrast this with
user-defined pointer data structures, in which none of
these properties are made explicit. Unlike the array
example, even a simple traversal statement T such as
p = p->next will prevent the compiler from determin-
ing whether p denotes a different “element” after the
execution of T, or the same element.

In this section we shall present our mechanism—
ADDS—for describing what we feel are the important
properties of recursive pointer data structures: shape,
and a sense of direction. We begin with an intuitive
summary of these properties, and then demonstrate
through a series of increasingly complex examples how
such properties are captured using ADDS, We post-
pone a more formal definition of ADDS to section 4.

3.1 Dimensions, Directions in Pointer

Data Structures

Suppose you have a recursive pointer data structure
and you wish to describe its shape. Consider the
structure in its general form, and select a node as
the “origin’’-it doesn’t matter which node you choose,
though some choices make more sense than others (e.g.
the root of a tree versus a leaf). Next, think of your
structure as having “dimensions, ” different paths em-
anating from the origin, with typically one dimension
per path. Finally, select a node n other than the ori-
gin, and for each recursive pointer field j in n, de-
cide which dimension f traverses and in which “direc-
tion.” The “forward” direction implies traversing ~
moves one unit away from the origin, and “backward”
implies traversing ~ moves one unit back towards the
origin. A field is limited to traversing one dimension in
only one direction3.

3Thisrestrictioncanbe overcomeby theprogrammerwithout
too muchdifficulty.

By default, a structure has one dimension D, where
it is assumed that all recursive pointer fields traverse
D in an “unknown” direction. The idea is to override
this default and provide more specific information. For
example, we can specify that a singly linked-list has
one dimension X, and one recursive pointer field next
that traverses X in the forward direction. As illustrated
below, a two-way linked-list is best described as hav-
ing a single dimension X, with next traversing forward
along X and prev traversing backward along X:

To differentiate such a list from a more general DAG-
like list, e.g.

~

~

we introduce the notion of a field f traversing “uniquely
forward,” which implies that for any node n, at most
one node n’ (n’ # n) points to n using ~. Syntactically,
the ADDS declaration of a two-way linked-list would
then look like:

type Two’dayLL[X]
{ int data;

TwoWayLL*next is uniquely forward along X;
TwoWayLL*prev is backward along X;

3;

A binary tree can be thought of as having two di-
mensions left and right, but for reasons soon to be
apparent, we shall consider a binary tree as having only
one dimension, doun. The important property of a bi-
nary tree (and of trees in general) is that for any node
n, all subtrees of n are disjoint. This information can
be expressed by saying that the left and right fields
“combined” traverse down in a uniquely forward man-
ner. More formally, left and right exhibit the prop-
erty that at most one left or one right points to any
node n, but not both. The motivation for choosing one
dimension to describe a binary tree is to support the
notion of parent pointers, a field that refers from either
a left or right child back to its parent. Pictorially, we
view a binary tree with parent pointers as:

252

Its ADDS declaration would thus be:

type PBinTree [down]
{ int data;

PBinTree *left, *right
is uniquely forward along down;

PBinTree *parent
i.s backward along down;

};

Note that by declaring left and right together, we
are expressing this notion of a combined traversal.

The flexibility of ADDS is illustrated by more ex-
otic recursive pointer data structures. Typically such
structures exhibit multiple dimensions, where dimen-
sions are either “independent” (disjoint) or “depen-
dent.” For example, an orthogonal hst[Sta80], usedto
implement sparse matrices, has two dependent dinnen-
sions X and Y (much like the two-dimensional array it
represents):

cl C2 C3 C4

rl
across

r2

up

r3

r4

lVe say X and Y are dependent since one traversal along
X and another traversal along Y may lead to a common
node or substructure. For example, traversing along
X from r4 and along Y from C3 may lead to the same
node. However, even though the dimensions are de-
pendent, notice that orthogonal lists still possess regu-
lar properties. For example, traversing forward along
X, or forward along Y, is guaranteed never to visit the
same node twice. Further, each row is disjoint, so that
parallel traversals of different rows along X will never
visit the same node (likewise for columns and the Y
dimension). These properties are captured in the fol-
lowing ADDS declaration by declaring that the fields
across and down are uniquely forward:

type OrthL [Xl [Y]
{ int data;

OrthL *across is uniquely forward along X;
OrthL *back i.s backward along X;
OrthL *down is uniquely forward along Y;
OrthL *up is backward along Y;

3;

Note that unless stated otherwise, dimensions (in this
case X and Y) are considered dependent. Such conser-
vative nature is intentional.

A similar data structure that has two independent di-
mensions is a list of lists. Consider the following which
illustrates a list of lists, including back pointers along
each dimension:

IY

IF--C-Q
1$=’

-

Note that each node may be accessed by a forward
traversal along either the X dimension or the Y di-
mension, but not both; this is identical to the situation
for binary trees. Hence X and Y are considered inde-
pendent, which is conveyed using I I in the following
ADDS declaration:

type LOLS [X] [Y] where X ! I Y
{ int data;

LOLS *across is uniquely forward along X;
LOLS *back is backward along X;
LOLS *down & uniquely forward along Y;
LOLS *UP is backward along Y;

3;

An interesting three-dimensional structure that has

both dependent and independent dimensions is the
two-dimensional range tree [Sam90], used to answer
queries such as “find all points within the interval
xl. . .x2” or “find all points within the bounding rect-
angle (xl ,yl) and (x2,y2).” As illustrated below, it is
a binary tree of binary trees, where the leaves of each
tree are linked together to form a two-way linked list:

leaves
>

The dimensions down and leaves are dependent; each
leaf node can be reached by a forward traversal along

253

both the down dimension and the leaves dimension.
However, observe that sub is independent of both down
and leaves. That is, any node that can be accessed by
a forward traversal along sub, cannot be accessed by a
forward traversal along down nor along leaves. This
leads to the following declaration:

type TwoDRT [down] [sub] [leaves]
where sub 1Idown, sub I Ileaves

{ int data;
TwoDRT *left, *right

is uniquely forward along down;
TwoDRT *subtree is uniquely forward along sub;
TwoDRT *next is uniquely forward along leaves;
TwoDRT *prev is backward along leaves;

3;

Note that aunion (variant record) can beused tosave
space by overlaying the storage for (left ,right) with
that of(next, prev). This can be done without aloss
of expressive power.

Lastly, let us consider a common cyclic data struc-
ture, the circular linked-list:

nex

This type of structure can beproblematic, since a sin-
gle field next is used for what areessentially twopur-
poses, (1) traversing uniquely forward and (2) circling
around. One declaration is thus:

type CirL [X]
{ int data;

CirL *next is unknown along X;

1;

This is equivalent to saying nothing at all (the default),
and the unknown nature of next prevents the compiler
from performing possible optimizing or parallelizing
transformations (e.g. given the statement p = q->next
the compiler must conservatively assume that p and q
are aliases). One solution is to provide a more explicit
declaration that more accurately reflects the properties
of a circular list:

type CirL [Xl
< int data;

int un_type;
union

{ CirL *next is uniquely forward along X;
CirL *around is unknown along X;

} Un;
3;

Obviously, this may require some rather clumsy coding
mactices. A second solution is to extend ADDS with
another
next as

type of direction, “circular”, and then declare
traversing in this direction:

type CirL [X]
{ int data;

Ci.rL *next is circular along X;
};

This solution is more desirable, since the declaration
does not require a change in the coding of the pro-
gram. However, one needs to know the length of the
list in order to perform accurate alias analysis, which
is generally unavailable at compile-time. This implies
information must be collected and maintained at run-
time, which is not considered in this paper.

3.2 Speculative Traversability

In all cases, a data structure declared using ADDS is
required to be speculatively traversable [HG92]. This
property allows onetotraverse past the “end’’ofad ata
structure without causing a run-time error. It can be
automatically supported by the compiler, and places
no additional burden on the programmer (except good
programming practices—e.g. in C, they must use the
name NULLand not an arbitrary integer). This prop-
erty is analogous to computing an array index outside
the bounds of an array, but not actually using it. It
is often useful when applying various optimizing and
parallelizing transformations.

3.3 Summary of ADDS

In summary, ADDS is a technique for abstractly de-
scribing the important properties of a large class of
useful data structures. Once known, these properties
can be exploited by the compiler for analysis and trans-
formation purposes. By default, a structure has one
dimension D, and all recursive pointer fields traverse
D in an unknown fashion. The programmer may refine
this by describing (1) additional dimensions, (2) the in-
teraction between dimensions, and (3) how the various
fields traverse the dimensions. As illustrated with our
examples, the choice of dimensions and directions is
quite intuitive, and the use of ADDS does not place a
heavy burden upon the programmer.

It should be noted that a programming language
and its compilers could directly support data struc-
tures such as TwoWayLLand PBlnTree via predefined,
abstract data types (e.g. see [Gro91] for a tool that gen-
erates, from a context-free grammar description, ADTs
for graph-like structures, and [S0190]for an implemen-
tation of parallelizable lists). However, a quick sur-
vey of the literature (or a data structures text [Sta80])
would reveal a wide variety of important pointer data
structures. Implementations for these structures can
differ widely aa well. Thus, instead of trying to pre-
define the most common types of pointer data struc-
tures (and constrain the implementation), we chose
the opposite approach, namely to develop a technique
which allows the programmer to define and implement
their 0W71data structures. We believe ADDS is flexible
enough to describe the important properties of nearly
all pointer data structures, while providing the com-

254

piler with the information necessary to enable powerful

optimizing and parallelizing transformations.

4 Formal Properties of ADDS

In this section we present an overview of the formal
properties of ADDS data structures. These definitions
are not crucial to the understanding of the ideas, but

they do show that our ADDS approach has some well-

specified properties. For each definition we summarize
the importance of the property being defined. If the
reader is comfortable with the intuitive definitions pre-
sented in section 3, this section can be safely skipped.

Let N be a data structure declaration with n re-
cursive pointer fields, n ~ 1. Let k be the number of
programmer-specified dimensions over N, 1< k < n.
The dimensions of N are denoted by dl, dk,
and the recursive pointer fields of N are denoted by

.fl ,f~. A recursive pointer field ~ may traverse
along only one dimension d, and in only one of three di-
rections: forward, backward, or unknown. pN denotes
a dynamically-allocated node of type N, and pN. f is ei-
ther NULL4 or denotes the dynamically-allocated node
of type N reached by traversing the pointer stored in
field f of pN. Traversing a series of non-NULL fields
is denoted using a regular expression notation, e.g.

● pN(.f)2 denotes the node pN.f.f,

● pN(.f)+ denotes any one of the nodes pN.f,
plv.f.f,

● pN((.f) + (g))* denotes any one of the nodes pN,
pN.f, pN.g, pN.f.f , pN.f.g, pN.g.f, pN.g.g,

For any such regular expression R, R denotes a list of
nodes which may or may not cent ain duplicates. If
this list is run-time finite (i.e. for all fields f in R,

there exists a node pN’ denoted by R such that pN’.j’
is NULL), then there are no duplicates. Otherwise R

denotes a run-time infinite list of nodes, in which
case there must be duplicates.

All nodes pN can be thought of as forming a single
data structure pDS of type N. pDS is considered well-
behaved if the abstraction defined for N is valid. In
cases where pDS is not well-behaved (e.g. pDS is under

modification) the abstraction must be ignored at these
points in the program 5. The definitions presented here
assume a well-behaved data structure.

Def 4.1: if N is speculatively traversable, then for
all fields f and for all nodes pN, if pN. f = NULL
then plV.j.f is a valid traversal and also yields
NULL.

4Treat NULL as denoting a typelessnode that is dynamically-
allocated by the system at startup.

5The problem of “~jdatjon is discussed in section 5.

[Implication: legal to traverse past what would nor-
mally be thought of as the “end” of a structure.]

Def 4,2: if f traverses d in the forward direction,
then for all nodes PN, the list of nodes denoted
by pN(.f)* is run-time finite.
[Implication: f is acyclic, traversing f never visits a
node twice.]

Def 4.3: if f traverses din a uniquely forward direc-
tion, then Def 4.2 holds for f, and for all distinct
nodes pN and pN’, either

1. pN.f = pN’.$ = NULL, or

2, pN,f + pN’.f.

[Implication: f is acyclic and list-like, traversing f
from different nodes never visits the same node.]

Def 4.4: if f traverses d in an unknown direction,
then there may exist a node pN such that the list
of nodes denoted by pN(.f)* is run-time infinite.
[Implication: f is potentially cyclic, traversing ~ is
unpredictable and could visit a node twice.]

Def 4.5: if a field b traverses d in the backward di-
rection, then there exists a field f that traverses d
in the forward direction.

Def 4.6: if f traverses d in a uniquely forward direc-
tion and b traversesd in the backward direction,
then for all nodes pN, either:

1. pN.f = NULL,

2. pN.f.b = NULL, or

3. pN.f.b = pN.

[Implication: traversing f then b forms a cycle, other-
wise f or b is NULL.]

Def 4.7: if f and g (f # g) traverse d in a combined
uniquely forward direction, then Def 4.3 holds
for f, Def 4.3 holds for g, and for all distinct nodes
pN and pN’,

1. pN.f # pN’.g Or pN.f = pN’.g = NULL,
and

2. pN.g # pN’.f or pN.g = pN’.f = NULL.

[Implication: $ and g are tree-like, they separate a
structure into disjoint substructures.]

Def 4.8: if fields fl, fz, ,.., fm (2 < m < n) traverse
d in a combined uniquely forward direction, then
for all fi and fj, l<i, j<rn and i#j, Def 4.7
holds for fi and fj.
[Implication: generalization of Def 4.7–the m fields
separate a structure into m disjoint substructures.]

Def 4.9: (a) let di and dj be dimensions of N (i # ~).
If di and dj are independent, then for any field
f traversing di in the forward direction, for any
field g traversing dj in the forward direction, and
for all distinct nodes pN and pN’,

255

1. pN.j # pN’.g or pN.f = pN’.g = NULL,
and

2. pN.g # pN’.f or pN.g = pN’.f = NULL.

(b) Further, for any field U$ traversing di in a
uniquely forward direction and for any field b
traversing di in the backward direction, either

3. pN.uf = NULL, or

4. for all pN” in the list denoted by pN.uf (g)”,
pN”.b = pN or pN”.b = NULL.

[Implication: (a) d, and d, separate a structure into
disjoint substructures, (b) uniquely forward/backward
cycles hold across an independent dimension.]

Def 4.10: let di and dj be dimensions of N (i # j).
If di and dj are not independent, then they are
dependent and Def 4.9 does not hold for di and
d].
[Implication: traversal along di and dj could lead to
the same node/substructure.]

5 Analysis and Transformation

using ADDS

The principal goal of ADDS is to improve the analy-
sis of codes utilizing pointer data structures. As dis-

cussed in section 1.2, existing analysis-only approaches
exhibit various limitations when faced with such struc-
tures. Our approach is to use the information avail-
able in the ADDS declarations to guide the analysis.
This synergy between the abstract data structure de-
scriptions and the analysis technique provides a more
general and more accurate approach. For example, by
using information about the dimensionality and direc-
tion of field traversals, the abstraction approximations

are freed from estimating needless cycles (such as those
formed by the forward and backward directions along
the same dimension), and can therefore avoid making
needless conservative approximations.

Let us make this idea more concrete. Analysis-only
approaches begin with initial assumptions about what
properties are important to estimate, and then tailor
the approximation domain and analysis rules appropri-
ately. For example, by choosing k-limited graphs as the

approximation domain, one is forced to conservatively
approximate non-cyclic structures with cycles, which
implies the approximation cannot distinguish tree-like
structures from cyclic ones. To further illustrate how
the choice of analysis depends on the type of data struc-
ture under consideration, consider once again the fol-
lowing two data types, BinTree and TwoWayLL:

type BinTree type TwoWayLL
{ int data; { int data;

BinTree *left; TwoWayLL*next;
BinTree *right; TwoWayLL*prev;

}; 1;

Without additional information, these types will ap-
pear identical to the compiler, and thus the same sort

of analysis must be applied. Clearly however, there are
some analyses that will be more appropriate for one

structure than the other; after all, binary trees exhibit

much different properties than two-way linked-lists.

In the case of two-way linked-lists, the appropriate
approximation for the paths between two nodes p and
q is the number of next links from p to q. In addi-
tion, the analysis rules for traversing next links from

q (q = q->next) should lengthen paths between p and
q, while analysis rules for traversing prev links from q

(cl = Ci->prev) should shorten paths. Both the aPProx-
imation domain and the appropriate rules for traversals

can be easily inferred from an ADDS declaration that
says (1) there is one dimension, (2) the field next tra-

verses uniquely forward, and (3) the field prev tra-

verses backward.

Now consider binary trees. In this case, the appro-
priate approximation of paths is that of going left,
right or clown (where down is a conservative approx-
imation for going either left or right). Traversing
along either the left or right fields lengthens paths;
there is no field for which a traversal shortens a path.
This information can be expressed by an ADDS decla-

ration that which states that left and right traverse
uniquely forward along the same dimension. This in
turn can be used to build an appropriate approxima-
tion domain, and set of analysis rules, for binary trees.

Thus, the problem is that initial assumptions bias
program analysis. If the analysis starts with very weak
assumptions, then the resulting analysis will be overly
conservative; this is the current situation with struc-
ture estimation techniques. If the initial assumptions
are valid for only one class of data structures, then
applying the analysis to other classes will lead to in-

accurate and conservative analysis; this is the case of

applying ordinary path matrix analysis to cyclic struc-
tures. Hence it appears crucial that in order to perform
accurate analysis in the presence of a wide variety of
data structures, we must begin with accurate informa-

tion about the structure. This is the essence behind
ADDS, and our approach.

In this section we show how the properties of ADDS
data structures can be used to improve the accuracy
of program analysis, and thus enable the application of
powerful optimizing and parallelizing transformations.
In particular, we present in section 5.1 a new approach
combining ADDS with an existing analysis technique.
Then in section 5.2 we demonstrate a new application
of software pipelining made possible by our approach.

5.1 Program Analysis

As discussed earlier, the presence of a description mech-
anism such as ADDS is not enough in itself to en-

256

able optimizing and parallelizing transformations in the
presence of pointer data structures. Imperative pro-

grams routinely rearrange components of such a struc-
ture, and it is during these points in a program that the

abstraction (or parts thereof) must be ignored by the

compiler, Otherwise transformations may be applied
that are based on invalid assumptions, causing incor-
rect code generation. Hence some form of abstraction

validation analysis is required to enable a given trans-
formation; this is in addition to more traditional alias
analysis which is needed to ensure that the transfor-
mation is safely applied.

Our approach to the analysis problem is a combined
one, in which safe analysis techniques are used in con-
junction with ADDS declarations, In particular, we
are developing an approach to the static analysis of
ADDS data structures that is an extension of path rna-
triz analysis [HN90, Hen90], called general path matrix
analysis. Path matrix analysis was originally designed
to automatically discover and exploit the properties of

acyclic data structures. With the help of ADDS, gen-
eral path matrix analysis is capable of handling cyclic
data structures as well.

General path matrix analysis computes, at each pro-
gram point, a path matrix PM which estimates the
relationship between every pair of live pointer vari-
ables; PM is thus a function of the current path matrix
and the program statement under analysis. The entry
PiW(p, q) denotes an explicit path or alias, if any, from
the node pointed to by p to the node pointed to by
q. The analysis does not attempt to express all possi-
ble paths between two nodes, since cyclic data struc-
tures would soon overwhelm the matrix. Instead, the
paths explicitly traversed by the program are captured
in the PM, while the remaining paths and aliases are
deduced from the current state of the path matrix and
the ADDS declarations.

5.1.1 Abstraction Validation Analysis

In order to validate an ADDS declaration, the effect of

certain pointer statements on the path matrix must be
compared with the original ADDS declaration, In par-
ticular, statements of the form p->f = q may change
the shape of the data structure. This in turn may re-
sult in a violation of the declared abstraction. However,
this is generally not an error in an imperative program,
and so is not treated as one. Instead, we note that the
abstraction is invalid at this point in the program, and
we do not perform any transformations that rely on the
validity of the necessary ADDS properties.

Though the actual process of validation is beyond the
scope of this paper, the idea is as follows. The ADDS

6Of course, such a violation could in fact be an error. Warning
the programmer, or providing a compiler switch to enable these
warnings, would be a useful debugging tool.

declaration is encoded as a series of relationships be-
tween the various pointer fields of the node. During

analysis, if the path matrix ever denotes a relationship
between two fields that is illegal, this part of the ab-

straction is deemed invalid and an entry is added to the

path matrix encoding the violation. Later, if another
program statement fixes the relationship between these
two fields, the entry is removed and the abstraction is
once again considered valid.

A common example of a temporary break in an ab-
straction is the moving of a subtree from one node to
another within a binary tree. Here is a possible code
fragment:

dest->lef t = src->left;
src->left = NULL;

After analysis of the first statement, it is obvious that

src and dest share a common subtree, even though
this violates the disjointness property of a binary tree.
However, the violation is immediately corrected, as is
usually the case.

5.1,2 Alias Analysis

Alias analysis is best explained via example. Consider
the following code fragment, in which the pointer vari-
able M denotes the head of a two-way linked-list of
nodes. Each node represents a point in 2D space, and
contains its x and y coordinates. The code shifts the
origin from (O, O) to (hd->x, O) by subtracting the x-
coordinate of this first point from all remaining points:

P = hd->next;]M] ply’ I
while p <> NULL

{ P->X = P->X - hd->x;
p = p->next;

3 7
Alias Matrix AM

Ha
If the compiler fails to discover that next traverses a
list in the forward direction (i.e. that Def 4.2 holds for
next), then its analysis of the above code will be overly
conservative—the compiler must assume that next is

cyclic, and hence that hd and all values of p are poten-
tial aliases for the same node. The effect of this conser-
vative alias analysis is summarized above in “alias ma-
trix” form7. The p’ entries are used to denote aliasing
during the loop, where definite aliases are indicated by
= and possible aliases are indicated by =?. Observe
that all the entries denote some form of aliasing. In
particular, the entry AM[hd, p’] indicates that hd is a
possible alias for the iterative values of p. As discussed
in section 1.1, this prevents a number of useful loop
transformations.

Now suppose the programmer declared his or her
linked-list using the ADDS declaration TwoWayLL, as

TpleaSe note that this is just a convenient waY of expressing
aliases, and is not the result of path matrix analysis.

257

given in section 3.1. Assuming general path matrix

analysis determines that the structure abstraction is
well-behaved (valid) at the start of this code fragment,

the compiler can use the acyclic nature of the next field
(from Def 4.2) to infer that the statement p = p->next

never visits the same node twice. As a result, general
path matrix analysis would produce the following path
matrices, which denote (from top to bottom): just be-
fore the loop, after one iteration, and after the loop
analysis has reached a fixed point. The important dif-
ference between these path matrices and the previous
alias matrix AM is the replacement of the =? entires

with more accurate information about paths.

I I&I

hd p P’

hd = next+ next+

P =

P’ next =

An entry in the path matrix like next+ indicates a path
of one or more next links; all paths are either explic-
itly encoded within an entry, implicitly encoded within
other entries and the ADDS declarations, or both, All
aliases are explicitly encoded, so an empty entry guar-
antees that the two pointers are not aliases, Thus, we

see that the ADDS declaration and general path ma-
trix analysis have captured the desired property in the

PM necessary for performing numerous optimizing and
parallelizing transformations, namely that hd, p and p’
are never aliases,

5.2 Transformations

Optimizing and parallelizing transformations come in
many forms, including:

e fine-grain transformations (e.g. improved instruc-
tion scheduling),

● loop transformations (e.g loop unrolling or soft-
ware pipelining), and

e coarse-grain transformations (e.g. parallel execu-
tion of code blocks).

The application of such transformations typically re-
quires accurate alias analysis. As shown in the previ-
ous subsection, ADDS and general path matrix anal-

ysis provide such accuracy. This will clearly aid in
fine-grain transformations where dependency analysis
is crucial. I&%en transforming code that operates on

a data structure, loop transformations typically re-
quire the structure to exhibit list-like properties, while

coarse-grain transformations typically- require tree-like

properties. Such properties are all expressible using
ADDS.

Earlier work [HG92] has shown the applicability of
loop unrolling [DH79] on scalar architectures. For ex-
ample, a simple loop to initialize every node of a linked-
list showed 47% speedup on the MIPS architecture for
a list of size 100 with 3-unrolling (see [HG92] for more

details and timings). In this section we present an ex-
ample of a more powerful loop transformation, soft-
ware pipelining [RG82, AN88a, AN88b, Lam88, EN89].

Given the current trend towards machines supporting
higher degrees of parallelism, e.g. VLIW and super-
scalar, this type of optimization offers larger speedups.

Once again, consider the code fragment discussed in
the previous subsection 5.1.2, which manipulates a two-
way linked-list of points. The following is an equivalent
loop body written in pseudo-assembly code:

S1 if p==NULLgoto done
S2 load p->x, Rl
S3 load hd->x, R2
S4 sub RI, R2, R3
S5 store R3,p->x
S6 load p->next ,p
S7 goto SI

As we saw earlier, if the compiler’s analysis is overly
conservative, then the compiler will incorrectly assume
that hd and all values of p are potential aliases for
the same node. In this case the data dependency
graph shown in Figure 2 is constructed, with false loop-
carried dependencies from S5 to S2 and S3. The result
is that the loop appears to exhibit very little parallelism
between iterations. However, as we also discussed, if
the data structure is declared as a TwoWayLL, general

path matrix analysis will be able to determine that in
fact hd and all the iterative values of p are never aliases.
This will eliminate these false dependencies, and the
loop now appears as a sequence of nearly independent,
parallelizable iterations.

To exploit this parallelism, we can apply software
pipelining. First we need to minimize the effect of the
loop-carried dependence from S6 to S1. By renaming,
we can move S6 above S2, calling it S1 .6, and then
replace S6 with a copy statement. The result is the
following semantically equivalent loop:

Si if p==NULLgot o done
S1.6 load p->next ,p’
S2 load p->x, Rl
S3 load hd->x ,R2
S4 sub R1, R2, R3
S5 store R3,p->x
S6 move P(>P
S7 goto S1

The next iteration of the loop can now begin as soon
as S1.6 of the current iteration completes, allowing the

258

Figure 2: Dependency graph for pseudo-code.

loop bodies to nearly overlap in execution. But in ad-

dition, since the list must be speculatively traversable
(by Def 4.1), it is safe to swap S1 and S1.6, further
increasing the amount of available parallelism. Finally,
since hd and p are never aliases, we can deduce that
hd->x is loop invariant. Hence S3 can be moved out-
side and above the loop.

The code below incorporates the above-mentioned
transformations, producing a semantically equivalent
loop:

so load hd->x , R2
SI load p->next ,p’
S2 if p==NULLgot o done
S3 load p->x, Rl
S4 sub RI, R2, R3
S5 store R3,p->x
S6 move P’ $P
S7 goto SI

This loop can be pipelined as follows (the columns de-
note different iterations, rows denote statements exe-

cuting in parallel):

S1

S2 S1

S3 S2 S1

S4 S3 S2 S1

c===
S5 S4 S3 S2

S5 S4 S3

S5 S4

S5

The boxed “statement” represents the new parallel
pipelined body of the loop. As a result, the code ex-
hibits a theoretical speedup of 5. Note that the copy
statement S6 is removed as part of the pipelining
cess, via (enhanced) copy propagation [NPW91].

pro-

In general, software pipelining can lead to even larger
speedups, depending on the characteristics of the 100P

body. Obviously, the actual speedup also depends
heavily on the target machine’s architecture.

6 Conclusions

As we have shown with numerous examples, many
recursively-definedpointer data structures exhibit im-
portant properties which compilers can exploit for op-
timization and parallelization purposes. These proper-
ties are often known to the programmer—conveyed im-
plicitly e.g. through the use of appropriate identifiers—
and yet unavailable to the compiler. This lack of in-

formation hinders the accuracy of alias analysis and
thus restricts the transformations that can be applied

to codes using pointer data structures.

In this paper we have proposed an abstract descrip-

tion technique, ADDS, which allows the programmer
to state such properties explicitly. The description of
a recursive pointer data structure using ADDS is quite
intuitive, and does not place an excessive burden on
the programmer. By combining ADDS and general
path matrix analysis, we demonstrated that the result-

ing approach enables more accurate and more general
alias analysis, and hence the application of powerful op-
timizing and parallelizing transformations. As we have
seen, software pipelining is one such transformation.

ADDS represents an important first step in our long-
term goal of efficient compiler analysis of codes involv-
ing cyclic pointer data structures. ADDS is a simple
extension to most any imperative programming lan-
guage, and yet can lead to analysis and transforma-

tions that are otherwise not possible using traditional
methods. With the increasing use of languages that
support pointers and recursively-defined pointer data
structures, the import ante of such an approach will no
doubt increase.

References

[AK87]

[AN88a]

[AN88b]

[App85]

Randy Allen and Ken Kennedy. Automatic trans-
lation of FORTRAN programs to vector form.
ACM Trcmsactions on Programming Languages
and Sgstenw, 9(4), October 1987.

A. Aiken and A. Nicolau. Optimal Loop Paral-
lelization. In Proceedings of the SIGPLAN 1988
Conference on Programming Language Design and
Implementation, pages 308-317, June 1988.

A. Aiken and A. Nicolau. Perfect Pipelining: A
new loop parallelization technique. In Proceed-
ings of the 1988 European Sumpositimon Program-
ming. Springer Verlag Lecture Notes in Computer
Science No.300, March 1988.

Andrew W. Appel. An Efficient Program for
Many-Body Simulation. SIAM J. Sci. Stat. Com-
put., 6(1):85–103, 1985.

259

[ASU87] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Unm-
an. Compilers: Principles, Techniques, and
Toois. Addison-Wesley, 1987.

[BH86] Josh Barnes and Piet Hut. A Hierarchical
O(NlogN) Force-Calculation Algorithm. Nature,
324:446–449, 4 December 1986. The code can be
obtained from Prof. Barnes at the University of
Hawaii.

[CON] CONVEX Computer Corporation. CONVEX C
and FORTRAN Language Reference Manuals.
1990.

[CWZ90] D.R. Chase, M. Wegman, and F.K. Zadek. Anal-
vsis of Dointers and structures. In Proceedings

[DH79]

[EN89]

[Gro91]

[Gua88]

[Har89]

[Har91]

[Hen90]

[HG92]

[HN90]

. .
of the SIGPLA N ’90 Conference on Prograrnrni;g
Language Design and Implementation, pages 296-
310, 1990.
J.J. Dongarra and A.R. Hinds. Unrolling looPs
in FORTRAN. Software-Practice and Experience,
9:219-226, 1979.
Kemal Ebcioglu and Toshio Nakat ani. A New
Compilation Technique for Parallelizing Loops
Loops with Unpredictable Branches on a VLIW
Architecture. In Proceedings of the Second Work-
shop on Programming Languages and Compiiers
for Paraliel Computing, Research Monographs in
Parallel and Distributed Computing. MIT-Press,
1989.
Josef Grosch. Tool support for data structures.
Structured Programming, 12(1):31-38, January
1991.
Vincent A. Guarna Jr. A technique for analyz-
ing pointer and structure references in parallel re-
structuring compilers. In Proceedings of the Inter-
national Conference on Parallel Processing, vol-
ume 2, pages 212–220, 1988.

W. Ludwell Harrison III. The interprocedural
analysis and automatic parallelization of scheme
programs. Lisp and Symbolic Computation,
2(3/4):179-396, 1989.
W. Ludwell Harrison III. Generalized iteration
space and the paralleiization of symbolic pro-
grams. In Ian Foster and Evan Tick, editors, Pro-
ceedings of the Workshop on Computation of Sym-
bolic Languages for Parallel Computers. Argonne
National Laboratory, October 1991. ANL-91/34.
Laurie J. Hendren. Parallelizing Programs with
Recursive Data Structures. PhD thesis, Cornell
University, April 1990. TR 90-1114.
Laurie J. Hendren and Guang R. Gao. Design-
ing Programming Languages for Analyzability: A
Fresh Look at Pointer Data Structures. In Proceed-
ings of the ~th IEEE International Conference on
Computer Languages (to appear, also available as
A CA PS Technical Memo 28, McGiii University),
April 1992.
Laurie J. Hendren and Alexandru Nicolau. Paral-
lelizing Programs with Recursive Data Structures.
IEEE Trans. on Parallel and Distributed Comput-
ing, 1(1):35–47, January 1990.

[HPR89] Susan Horwitz, Phil Pfeiffer, and Thomas Reps.
Dependence analysis for pointer variables. In Pro-
ceedings of the SIGPLA N ’89 Conference on Pro-
gramming Language Design and Implementation,
pages 28–40, June 1989.

[JM81] N. D. Jones and S. S. Muchnick. Program
Flow Analysis, Theory and Applications, chapter
4, Flow Analysis and Optimization of LISP-like
Structures, pages 102–131. Prentice-Hall, 1981.

[KKK90] David Klappholz, Apostolos D. Kallis, and Xi-
angyun Kang. Refined C: An Update. In David
Gelernter, Alexandru Nicolau, and David Padua,
editors, Lanouaqes and Comvilers for Parallel

[Kuc78]

[Lam88]

[Lar89]

[LH88a]

[LH88b]

[Lov77]

[MR90]

Comp~ting, ~age~ 331-357. Th} MIT ‘Press, 1990.

D.J. Kuck. The Structure of Computers and Comp-
utations: Volume I. Wiley, 1978.

Monica Lam. Software Pipelining: An Effective
Scheduling Technique for VLIW Machines. In
Proceedings of the SIGPLA N 1988 Conference on
Programming Language Design and Implemerzta-
tion, pages 318-328, June 1988.

James R. Larus. Restructuring Symboiic Pro-
grams for Concurrent Execution on Multiproces-
sors. PhD thesis, University of California, Berke-
ley, 1989.

James R. Larus and Paul N. Hilfinger. Detecting
conflicts between structure accesses. In Proceed-
ings of the SIGPLA N ’88 Conference on Program-
ming Language Design and Implementation, pages
21-34, June 1988.

James R. Larus and Paul N. Hilfinger. Restruc-
turing Lisp programs for concurrent execution.
In Proceedings of the A CM/SIGPLAN PPEALS
1988- Parallel Programming: Experience with Ap-
plications, Languages and Systems, pages 100-110,
July 1988.

D.B. Loveman. Program Improvement by Source-
to-Source Transformation. Journal of the ACM,
24(1):121-145, January 1977.

Michael Metcalf and John Reid. Fortran 90 Ex-—
plained. Oxford University Press, 1990.

[NPW91] A. Nicolau, R. Potasman, and H. Wang. Register

[PW86]

[RG82]

[Sam90]

[s0190]

[Sta80]

[ZC90]

“Allocation, Renaming and their impact on Fine-
grain Parallelism. In Proceedings of the Fourth
Workshop on Languages and Compilers for Par-
allel Computing, August 1991.

David A. Padua and Michael J. Wolfe. Advanced
compiler optimization for supercomputers. Com-
munications of the ACM, 29(12), December 1986.

B. R. Rau and C. D. Glaeser. Efficient Code
Generation for Horizontal Architectures: Com-
piler Techniques and Architectural Support. In
Proceedings of the 9th Symposium on Computer
Architecture, April 1982.

Hanan Samet. The Design and Analysis of Spatial
Data Structures. Addison-Wesley, 1990.

Jon A. Solworth. The PARSEQ Project: An
Interim Report. In David Gelernter, Alexandru
Nicolau, and David Padua, editors, Languages and
Compilers for Parallel Computing, pages 490-510.
The MIT Press, 1990.

Thomas A, Standish, Data Structure Techniques.
Addison- Wesley, 1980.

Hans Zima and Barbara Chapman. Supercompilers
for Parallet and Vector Computers. ACM Press,
1990.

260

