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1. INTRODUCTION 

It is often useful to be able to access past states of a process. 
In debugging, for example, we may want to see previous states of 
a program’s execution in order to home in on the bug that led to an 
observable error. For fault tolerance, it may be necessary to revert 
to a previous state to recover from an error; for optimistic 
concurrency control, similar recovery may bc necessary in the 
face of a bad guess about possible concurrency. In a 
programming language, “undo” and “lookahead” constructs may 
allow the convenient expression of many algorithms, while in a 
general computing environment, the same kinds of operations are 
desirable for dealing with persistent data (e.g., files). 

Demonic memory is intended as an acceptably efficient 
recovery mechanism that will allow fast access to data at any time 
scale from a fraction of a second to months or years. For 
example. in a debugging session, it should take no more than a 
few seconds to look a “back in time” a few minutes. It should 
also be possible to recall within a few minutes any past state of 
data, even if that state was modified months or years previously. 
This includes the ability to recall and capture transitory versions 
in the editing of a text or design document, or intermediate steps 
in an exploratory data analysis. Ideally, the programmer/user 
should never have to explicitly save data for later use; 
conceptually, all states of the system should be saved indefinitely. 

The goal of our research is to show that it is possible to 
efficiently implement such a general recovery facility, and to 
develop an abstraction that allows it to be used effectively. If we 
are successful at achieving this vision of generality, it presents the 
possibility of a very powerful monolingual system in which a few 
simple operations apply at different levels with identical 
semantics [HeKEG]. This could be particularly appropriate for an 
environment in which many computations are interactively 
“steered” rather than straightforwardly programmed, as in 
scientific visualization, and for integrated systems in which the 
user/programmer distinction is blurred. 

(providing such a powerful memory facility will put a 
burden on the user interface of a system, in order that the user 
could use it without getting lost in uninteresting old data. We feel 
the user interface is the best place for such concerns, however; it 
is better to have too much data available than too little, and for 
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system designers to choose features rather than having them 
dictated by efficiency considerations.) 

If we are less successful in achieving generality and 
efficiency, we expect that specialized variants of demonic 
memory will be sufficient for more specialized domains, such our 
own work in reversible debuggers. 

2. OVERVIEW 

Demonic memory is a form of reconstructive memory for 
process histories. As a process executes, its states are regularly 
checkpointed. generating a history of the process at low time 
resolution. Following the initial generation, any prior state of the 
process can be reconstructed by starting from a checkpointed state 
and re-executing the process up through the desired state, thereby 
exploiting the redundancy between the states of a process and the 
description of that process (i.e., a computer program). 

The reconstruction of states is automatic and transparent. 
The history of a process may be examined as though it were a 
large two-dimensional array. or address space-time, with a normal 
address space as one axis and steps of process time as the other. 
An attempt to examine a state that is not physically stored triggers 
a “demon” which reconstructs that memory state before access is 
allowed. 

Regeneration requires an exact description of the original 
execution of the process. If the original process execution 
depends on non-deterministic events (e.g., user input), these 
events are recorded in an exception lisf. and are replayed at the 
proper points during re-execution. 

While more efficient than explicitly storing all state changes, 
such a checkpointing system is still prohibitively expensive for 
many applications; each copy (or snapshot) of the system’s state 
may be very large, and many snapshots may be required, 
Demonic memory saves both space and time by using a virtual 
copy mechanism. (Virtual copies shsre unchanging data with the 
objects that they are copies of, only storing differences from a 
prototype or original [MiBK86].) In demonic memory, the 
snapshot at each checkpoint is a virtual copy of the preceding 
checkpoint’s snapshot. Hence it is called a virtual snapshot. In 
order to make the virtual snapshot mechanism efficient, state 
information is initially saved in relatively large units of space and 
time, on the order of pages and seconds, with single-word/single- 
step regeneration undertaken only as needed. This permits the 
costs of indexing and lookup operations to be amortized over 
many locations. 
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FIGURE la. Implementation of a location’s history stack. 

Each element of the location array holds a pointer to the root node of a tree. The leaf nodes (i.e., the 
bottom row) hold state-change records which comprise the stack of values taken on by the location. The 
non-leaf nodes form a tree-structured index into this stack. 

Since state-change records are inserted in timestamp order, the stack grows monotonically to the right 
as process history is recorded. 

Each node contains a pointer back to its parent node, and the root node always keeps a reference to the 
most recently accessed element of the tree (not shown.) These features facilitate searches of the tree. 
They especially facilitate successive insertions, since the last-accessed reference generally acts as a 
top-of-stack pointer. 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..*....................................................................... 
Up to 245 state-change records 
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Direction of stack growth (monotonic with process time) - 

FIGURE lb. Growth of a location’s history stack 

History stack/tree growth is extremely regular, due to the constraint that records are inserted in key 
(timestamp) order. All trees with the same number of elements have exactly the same shape. 

When a tree of a given number of levels is full, the next insertion causes a new, higher-level root node 
to be generated. The full tree then becomes the leftmost child of the new root node. 

Because of this regularity, and with the help of backpointers and the last-accesed-reference cache, 
insertion and search time increase slowly with tree size. 
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FIGURE 2. A space-time implementation with multiple levels of time resolution. 

A space-time is initially generated at a lowered level of time resolution. For each chapter, one state-change 
record is generated for each changed location. Subsequent changes to a location within a chapter cause 
that state-change record to be overwritten. At the end of the chapter it therefore contains the last value 
for that location within that chapter. In order to examine states within a chapter, a cache space-time must 
be generated, re-executing the process to generate state-change records for the chapter at single-step 
time resolution. 

(Note that the location history stacks, suggested here by greyed pointers, are really tree-structured, 
as in Figure 1). Though in this example chapters are 10 steps long, they are actually thousands of times 
longer; there are also more levels of resolution than the two shown here. 
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One of the requirements of such a scheme is that there be 
considerable locality of state changes. If only a few locations 
change in many pages, much needless copying, indexing, and 
lookup of unaltered data will still be required. Thus we require a 
memory management scheme that tends to group state changes 
into a small subset of the pages of memory, within a given 
checkpointed interval. Coordination with garbage collection also 
allows garbage data to be omitted from checkpoints, a critical 
factor in demonic memory’s efficiency. For these reasons we 
have devised a special-purpose garbage collector which operates 
in concert with demonic memory. 

3. DEMONIC MEMORY BASICS 

Demonic memory implements a space-time abstraction. It is 
logically a two-dimensional array, indexed by memory location 
(we assume word addressing here for simplicity) and process step. 
A step may be any action defined as atomic by the process 
interpreter that runs in demonic memory. (“Process interpreter” is 
used here to mean the process whose execution history is being 
recorded - it may be a compiled program as well as an 
interpreted one. The idea is that it interprets a process description 
and generates state changes to be recorded.) 

3.1 Array-of-stacks implementation 

If the logical array were implemented as a straightforward 
physical array, the time and space costs would be enormous. At 
each step it would be necessary to copy each state (array column) 
into the next column of the array, except for the changed 
elements. 

The first step in making the abstract array efficient is to 
implement each row of the array as a history stuck, indexed by 
time. An address space, then, is a single array, with each element 
representing the history of changes to a single memory location. 
The tops of the stacks act as a flat address space from the Point of 
view of the history-generating process interpreter; it sees only the 
latest values for each location. 

Each time a new value is stored into a location (pushed onto 
the location’s history stack), it is paired with a timestamp 
indicating which step of the process generated it. In order to fiid 
the value of location x at tiie step t. we simply use x as an index 
into the location array and search the stack stored there for the 
most recent change prior to t. 

Figure 1 shows an efficient way of implementing history 
stacks. The state-change records (timestamp/value pairs) are 
stored in the terminal nodes of a multi-way search tree. Since 
records are always inserted in key (timestamp) order, the tree 
grows very smoothly and simply; all trees with a given number of 
elements have exactly the same shape. When a tree of a given 
depth is full, it becomes the left subtree of a newly generated root 
node. 

3.2 Multiple levels of time resolution 

While the constraints on tree growth make access to state- 
change records locally efficient, the simple array-of-stacks 
implementation remains inefficient in a broader sense, since it 
stores every state change. Efficiency can be vastly improved by 
saving only occasional (checkpointed) states; intervening states 
can be reconstructed by re-running the process from the previous 
checkpoint. 

Demonic memory implements a hierarchy of time 
granularities, storing only a subset of history at full resolution 
(single steps). Process history is divided into groups of 
consecutive steps called chapters. A state-change record is 
created the fist time a location is modified in a chapter, while 
subsequent changes within the chapter cause this information to 
be overwritten rather than pushed onto the history stack (see 
Figure 2). A state-change record is created the first time a 
location is changed within a chapter, but it ends up holding the 
& value, since all intervening values are overwritten; the 
process of overwriting successive changes amounts to 
checkpointing “on the fly.” 

In order to examine states &hir.t a chapter at single-step 
resolution, a cache space-time is generated on demand. The 
cache space-time holds the values stored into locations during the 
chapter. It is similar to the space-time just described, except that a 
hash table is used to implement the (sparse) location array. 
Regenerating requires memory fetches by the process interpreter, 
which keeps track of its “current” tune (the step it has reached in 
regenerating history). A fetch must first look in the cache space- 
time, to see if the “latest” value for the location was generated 
withii the chapter. If no value for the location is found in the 
cache space-time, the main space-time is searched for the last 
value generated prior to the chapter. 

This arrangement is not limited to two levels. In the system 
we are implementing, the main space-time has “superchapters” 
many thousands of steps long. A few of these are fleshed out at a 
chapter-by-chapter level of resolution. At a given time, a few of 
these, in turn, are available at single-step resolution. This is 
analogous to keeping some pages of memory in RAM for high- 
speed access, but paging the rest out to disk, with “chapter faults” 
causing “chaptering” (regeneration) in much the same way that 
page faults cause paging in virtual memory. 

3.3 Multiple levels of space resolution 

The implementation described so far will still be rather slow. 
Stack operations are costly, and must be done often - on a per- 
location basis. If there is sufficient locality of state changes, the 
average cost of these operations may be reduced considerably by 
operating on memory a page at a time. 

Rather than having a location array with a history stack for 
every location’s values, a space-time can have a “page array” 
holding a history stack for each (logical) page. In these history 
stacks, a state-change record contains a reference to a physical 
page (RAM or disk), which holds values for an entire pageful of 
locations. Generation and regeneration of space-time are 
analogous to the methods described above 

3.4 Using address maps to cache page lookups 

Performance may be further improved by caching page 
versions using standard virtual memory hardware (and withoa 
interfering with its usual use). If the operating system allows 
manipulation of address mappings, all of the relevant page 
versions may be mapped into the address map used by an 
inspecting or history-generating process (see Figure 3, in which 
address maps are simply represented as raw page tables). The 
process then sees a normal, flat address space. 

The virtual memory manager assists in other ways, as well. 
Write-protection is used to ensure that a new version of a page is 
generated the first time the page is modified within a chapter. At 
the beginning of each chapter, all pages are marked read-only; an 
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FIGURE 4. Only live-data pages must be recorded in virtual snapshots. 

Data that become garbage by the end of the chapter needn’t be stored; since subsequent states can’t reference 
them, they may be left out of the virtual snapshot. If an attempt is made to access a state within a chapter 
(e.g., between checkpoints), the process is replayed to generate records of the intervening states. This will 
automatically regenerate any discarded data before it is accessed. 
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attempt to write to a page causes a copy to be made and pushed 
onto the history stack. It is then marked read/write until the end 
of the chapter. 

Lookup of page versions may be done lazily. Parts of the 
flat address space may go unmapped initially; an umnapped- 
memory fault traps to a routine that looks up the correct page 
version and maps it into the address map for the process. 
(Copying may be used instead of remapping, if the operating 
system doesn’t support remapping efficiently. Write protection 
can play the role of unmapped memory, with the write-exception 
handler may be conditionahzed to do double duty. This would 
incur some extra cost in actual RAM and disk, however.) 

These hardware-controlled trap routines act as demons that 
incur almost no extra overhead except when they are invoked. In 
addition, they exploit standard hardware without interfering with 
its standard uses. Most memory accesses in demonic memory can 
therefore occur as normal memory operations at normal 
(hardware) speeds. 

4. HEAP MANAGEMENT 

The efficiency of this page-based implementation depends 
critically on the locality of the state changes made by the history- 
generating process. In the worst case, the process could change a 
single location in a different page at every step in a chapter. 
Demonic memory would then make new versions of each of those 
entire pages, one per step. 

Few processes exhibit such catastrophic tendencies; much 
activity in many languages occurs within a stack of activation 
records. In any reasonably short period of time, the stack usually 
varies in height within a rather constrained range. Heap data pose 
a more difficult problem, however. A classical stop-and-collect 
garbage collector approximates the worst case for demonic 
memory, since it uses a large amount of memory before 
reclaiming any. 

Generdon garbage collection [LiHe83] limits the scope of 
these problems. It is designed to reduce memory fragmentation 
(reducing storage requirements and virtual memory paging). 
Memory is divided into several regions, allowing more recently- 
allocated data to be garbage-collected independently of the older 
data. Since recently-allocated data are likely to become garbage 
quickly, and since long-lived data are likely to live still longer, 
this concentrates activity where it is most likely to reclaim 
significant storage. 

For demonic memory purposes, the critical kind of program 
locality is the number of changed pages within a unit of time that 
must be checkpointed. Since garbage collecting a generation 
moves all of the live data in a copying/compacting operation, the 
pages that live data are moved to are necessarily altered in the 
process. The pages that end up holding these live data must 
therefore be stored by demonic memory. 

It is important LO note that pages that contain only garbage at 
the end of a chapter need not be saved in the chapter’s virtual 
snapshot; if they hold no live data, there can be no pointers into 
them in pages shared by subsequent chapters’ virtual snapshots. 
Any attempt to access states w&in the chapter will cause the data 
to be regenerated before they are accessed. (See Figure 4.) 

Our garbage collector [Wils88b. WiMo89b] is most similar 
to Ungar’s Generurion Scawenging algorithm [Unga84. Unga86]. 

All objects are created in new memory. If an object survives a 
number of scavenges (collections) of the new region, it is copied 
out of that region into an older region that is scavenged less often. 
If there are more than two generations (as in our system), the 
same phenomenon repeats at the next level, at a much lower 
frequency. 

Garbage collection and checkpointing may be coordinated to 
improve efficiency. Most higher-resolution cache space-times are 
quickly discarded, increasing the time granularity of stored 
history. Multi-generation garbage collection will occur at large- 
granularity time-resolution boundaries (e.g., ends of super- 
superchapters). Once the higher-resolution (e.g., chapter-by- 
chapter) information is discarded, memory requirements drop 
dramatically. There are two main reasons for this. Fist, longer 
duration snapshots contain at most one version of each page that 
changed within that interval, rather than one for each of the 
shorter submtervals. Second, many of those changed pages will 
hold only garbage at the end of the longer duration, and their 
contents need not actually be stored once the higher-resolution 
information is discarded. Thus old memory at low resolution 
takes comparatively little storage. (See Figure 5.) 

5. SINGLE-STEP REGENERATION 

Regenerating history at single-step time resolution poses 
special problems, especially when checkpointing on a paged 
basis. Using the same cache space-time mechanism used for 
lower-resolution generation will require copying whole pages at 
steps where one or a few locations change. A hash table of per- 
location history stacks could be used, as described in section 3; 
this would be very slow, however, since hashing operations are 
expensive, and it would defeat the use of page tables for caching 
version lookups. 

Our approach is to use a per-page table, as when 
regenerating at single-chapter resolution. Only a single page 
version is created for each page changed in the chapter; each 
element of the changed pages table holds a single version, not a 
stack of versions. For those locations that only take on one value 
during the chapter, the value is simply stored in the appropriate 
location in the appropriate page. For any location that changes 
more than once, a forwarding pointer to a history stack for that 
location is installed. Thus instead of retaining multiple versions 
of pages, we have one version of each page; particular locations 
may hold multiple versions of their contents (see Figure 6). Thii 
allows the pages to be accessed through a virtual memory page 
table (providing the illusion of a flat single-timestep address 
space), as described in section 3.4 Many memory operations must 
check for a forwarding pointer, however, and sometimes execute 
a history stack operation. 

6. PERFORMANCE PROJECTIONS 

Until very recently, predicting demonic memory’s 
performance was impossible: the necessary data were not 
available. Most other data on Lisp programs are gathered using 
synthetic benchmarks (e.g., [Gabr85]). While these are useful for 
testing particular aspects of Lisp systems, they do not give a 
realistic picture of the behaviors relevant to our system. Some 
other data have been published (e.g., [ClGr77]), but they do not 
include the necessary information for our purposes. 
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FIGURE 6a. A cache spacetlme at single-step resolution. 

When it is necessary to access the process history at single-step resolution, a special kind of cache 
spacetime is generated. 

Only a single page-version is generated for each changed page. If a location only takes on one value during 
the chapter, that value is stored directly in the appropriate location in the appropriate page. A second 
store into a location causes the original value to be replaced by a special forwarding pointer to a history 
stack for the location. This history stack will contain records of all changes to the location within the 
chapter. Thus each location contains either its only value during the chapter, or a pointer to a stack that 
can be searched for its value at any step. (See Figure 6b, below.) 

FIGURE 6b. Detail of hi-res cache. 

As before, the history stacks are actually the tree structures of Figure 1. 
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Fortunately, Shaw has recently published data that allow us 
to make ballpark estimates [Shaw88]. Shawls statistics were 
gathered for runs of four large compiled Common Lisp programs; 
their execution times range from several seconds to several 
minutes on a 4 MIPS processor. While this is a small number of 
data points, the programs were carefully chosen to be varied and 
realistic. At any rate, they are the best data available. 

For our projections, we assume a processor that runs Lisp 
four times as fast as Shaw’s. This needn’t actually be a 16-MIPS 
machine, if the hardware is more amenable to fast Lisp execution. 
We see this as reasonable performance for a high-end workstation 
in the next few years. 

The target configuration is one that is intended to provide 
high-performance demonic memory for a monolingual software 
development environment on a high-end workstation. Our goal is 
to allow access to any previous state of the system within 6 or 7 
minutes (even states that may have occurred months or years 
previously). More recently-accessed states should be accessible 
much more quickly. We assume that two half-hour stretches of 
history are always available at higher resolution, so that any state 
within them can be accessed within a minute or two. Four five- 
minute stretches can be kept at still higher resolution, so that any 
state within them can be reconstructed within about fifteen 
seconds. Finally, a few half-second intervals can be retained at 
single-step resolution, allowing instant access to any step within 
them (approximately 8 million machine instructions each.) 

To support such performance, we use a demonic memory 
with five levels of resolution, ranging from single-step to 
supetichapters. Garbage collection of new memory end chapter 
bounding occur at half-second intervals. History is not initially 
retained at this resolution, however; initial checkpoints occur at 
2.5 second intervals, or superchapter resolution. The initial 
snapshots are kept in RAM only; super%hapter snapshots are 
saved to magnetic disk every 10 seconds. Most of these snapshots 
are discarded, to reduce resolution to about a minute, or 
super3chapters. At five-minute intervals. supeflchapter snapshots 
are saved to WORM disk for permanent storage. 

The copying and space costs of such a system fall into three 
major categories: changed stack and symbol table values, new 
data objects that have survived garbage collection, and data in 
older generations that have been changed. [Shaw88] shows how 
to compute very similar costs in predicting the performance of hi 
garbage collector for Lisp. (Following Shaw, we assume that 
symbol table organization is favorable to our scheme, being 
organized as parallel vectors rather than an array of records.) Due 
to space constraints, we will only summarize our results here; 
detailed performance projections are available from the authors on 
request [Wils88a]. 

Approximately four extra megabytes of RAM, eleven 
megabytes of magnetic disk, and a write-once optical disk drive 
will support the specified performance level; blank WORM disks 
will be consumed about every six months at 40 hours per week of 
compute-bound computation, or several years for the average 
user. The time costs should be under 10 percent of normal 
running time, including trap-handling time, etc. Another 
reasonable configuration would use fifteen megabytes of RAM 
and eliminate the use of magnetic disk entirely. This would 
eliminate most disk access time and greatly reduce wear and tear 
on moving parts. 

Some caveats are in order here. These projections (like 
Shaw’s) do not include a cost that we consider potentially 
important - costs due to changed pages of data that have been 
creating during the execution of a program, but which have 
survived to be copied out of the newer generation(s). If locality is 
poor in such data, the cost could be significant. It may be 
necessary to use locality-increasing techniques to cluster written- 
to objects onto a small number of pages. These techniques will 
themselves incur additional costs. 

Our garbage collector can easily support such a policy due to 
peculiarities in its mechanism for recording intergenerational 
pointers [WiMo89a]. This scheme will also allow some easy 
optimizations to reduce storage costs. With these techniques, the 
basic costs should not go beyond the costs stated above, unless 
write locality is extremely bad. 

This garbage collector design incurs a continual runtime 
speed overhead of a few percent, however, when compared to 
some other advanced designs (e.g., [Moon84], [Shaw88]). This 
could raise the total time overhead for demonic memory to around 
fourteen percent. Gn the other hand, our garbage collector’s 
improved locality may pay for itself in reduced paging during 
garbage collection, irrespective of demonic memory. If it pays for 
its overhead simply by reducing backing store operations, the time 
cost of demonic memory (over and above the cost of garbage 
collection) should still be under 10 percent. 

It should be borne in mind that these speed costs are relative 
to the speed of Shaw’s compiled Common Lisp. (His system 
performed only basic optimizations such as tail-recursion 
elimination and inlining of the most frequent operations.) For 
faster systems, the overhead will be proportionally higher, while it 
may be considerably lower for slower systems such as existing 
Smalltalks. 

7. RELATED WORK AND APPLICATIONS 

Our system shares important features with other systems, 
both at the implementation level and at the language level. 

7.1 Language constructs for recovery and tentative execution 

Demonic memory would be an appropriate mechanism for 
the probe, try, guard and undo recovery constructs advocated by 
Heering and Klint [HeKl85] for integrating command, 
programming, and debugging languages in a monolingual 
programming environment. We plan to use demonic memory to 
implement undo, allowing a Process to revert to any previous 
state. (We may not use it for probe, try, or guard, however, 
because we have devised another mechanism, alter~te universes, 
that may be more suitable [Wils88a] in general. Alternate 
universes are virtual copies of a program’s entire execution 
environment, allowing multiple threads of computation to proceed 
without being affected by each others’ side-effects. This allows a 
fme-grained multiway generalization of side effect recovery 
constructs, or side ej%2f isolation.) 

Demonic memory can also be used to implement tentative 
execution constructs for backtracking or lookahead, such as those 
those available in Interlisp [Teit81] and T-Pascal [StCo87]. It is 
considerably more efficient in the large, however, and more 
comprehensive than the facilities in other languages such as Icon 
[G&83]. Demonic memory could also support constructs for 
software fault tolerance [Rand75]. 
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Note that while most language-level recovery constructs are 
variants of “undo,” ours is more precisely a “revert” command. 
Conceptually, past states are never thrown away, even if we 
“undo” to an earlier state. The current state may be transformed 
into a past state by bringing the old versions of data up to the 
present, without discarding the intervening information. (Our 
recovery is much like Leeman’s phi operator [Leem86] or “undo 
forward” [Leem85]. Where Leeman’s recovery applies to a 
specified set of variables, ours applies by default to the whole 
program state. Ours has a larger scope in time as well, allowing 
reversions to long-past states rather than for some limited number 
of steps.) A single control construct providing this facility can be 
used to implement all of the recovery constructs we have 
mentioned, as well as many others. 

This construct, call-with-captured-state, is a very general 
escape mechanism, much like Scheme’s call-with-current- 
continuation. Call-with-current-continuation (or “call/cc”) 
captures the current control context (continuation) when it is 
executed, usually by saving the stack of activation records. This 
control context is packaged up into an escape procedure. Later 
execution of this escape procedure will restore the original control 
context (e.g., activation stack); this effectively causes a jump 
back to the control point at which call-with-current-continuation 
was executed. Thus call/cc can be used to implement a variety of 
control constructs, including backtracking [FrHK84]. 

In contrast, call-with-captured-state (or “call/es”) captures all 
state at the time of its execution, not just the control information. 
If the escape procedure is executed, the captured state is restored. 
(This is achieved by restoring all pages to their versions at that 
point. It generally entails reconstructing from the previous 
checkpoint, replaying the relevant segment of the exception list.) 

Both call/cc and call/es allow the escape procedure to be 
executed any number of times. It is also a first-class object that 
can be passed around like any other, with indefinite extent. Once 
a computation has been escaped from, it is thus possible to escape 
back into it and resume the computation. In the case of call/cc 
this allows the implementation of control constructs such as 
coroutines entirely within the Scheme language [HaFW84]. Our 
call/es will similarly enable nonlinear version maintenance, such 
as Vitter’s “undo, skip and redo” [Vitt84], which generates a tree 
~pol%Y- 

It should be noted that call/es has the potential to cause a 
performance problem if usage patterns are malign. Regeneration 
a previous state may itself cause re-execution of a previous 
escape, in turn causing regeneration of another previous state. 
Such “chained” recoveries could in the worst case be equivalent to 
re-executing an entire process. This is not an issue for most 
applications, which require only simple recovery; e.g., for 
reversible debugging of conventional programs. We also expect a 
caching scheme to avoid most chained rollbacks at moderate costs 
when call/es is used freely as a language construct. For some 
applications however, it may be preferable to actually truncate a 
space time to restore a previous state, rather than retaining the 
intervening history as in Leeman’s “undo backward”. 

In addition to call/es, we will eventually incorporate a 
construct that allows reverting to any previous state (rather than 
particular “control points” created by call/es). This relatively 
unstructured, low-level capability would allow the 
implementation of features like stepping debuggers within the 
language. It is unclear at this time what the details of this 
construct should be, to allow the maximum clarity, flexibility and 

efficiency; we expect to do considerable experimentation before 
settling on a particular scheme. 

7.2 Checkpoint and replay systems 

Demonic memory uses full, not partial checkpointing (in the 
sense of [Arc!%]), since the entire state of the system is saved at 
each checkpoint. Most of the efficiency of partial checkpointing 
is achieved instead through copy-on-write virtual copy techniques 
[cf. MiBK86, Rash87. StYB88]. Looked at another way, 
however, every non-checkpoint past state may be regarded as a 
partial checkpoint - the exception list and history-generating 
program form the “log” of changes required to transform a fully 
checkpointed state (snapshot) into a partially checkpointed one. 
Note that demonic memory keeps the intervening history fully 
checkpointed at some resolution. When a chapter has been fully 
fleshed-out at single-step resolution, for instance, every step 
within it is fully checkpointed. 

The particular checkpointing and reconstruction techniques 
used in demonic memory are most similar to those used in some 
recovery systems for distributed processing (e.g., [BoBG83, 
PoPr83, StYe851). In these systems, states are checkpointed and 
interprocess communication is recorded for later replay, much like 
our virtual snapshots and exception lists. These systems retain 
only a small amount of history, while demonic memory’s 
hierarchical checkpointing retains long histories at some 
resolution. Demonic memory allows random access to states, not 
just (forward) replay. It thus also supports reverse execution 
facilities [Balz69, TeRe81, Mohe88]. It is in several ways similar 
to Feldman’s IGOR debugging system [FeBr88], though 
coordination with garbage collection should yield much better 
performance due to increased effective locality. 

Checkpointing and message replay mechanisms have been 
used for recovery [StYe85, StYB88]. and to allow concurrent 
processes to be replayed independently for debugging (e.g., 
[CuWi82, PaLi88]). A distributed version of demonic memory 
could provide such a facility, while allowing jumping or stepping 
forward or backward to arbitrary steps of the process, and 
efficiently supporting dynamic data structures in a garbage- 
collected heap. 

Demonic memory’s hierarchical checkpointing and 
reconstruction bears an interesting similarity to Miller and Choi’s 
incremental tracing [MiCh88]; both allow regeneration of 
program history at multiple levels of resolution. Their system 
uses sophisticated static analysis to determine which variables 
may be changed during the execution of each block of code, 
however, while ours relies on dynamic detection of changes to 
parts of memory. Miller and Choi’s system exploits its analysis of 
code in performing flowback analysis [Balz69] and in 
guaranteeing deterministic re-execution of parallel programs 
operating on shared memory. Their system does not currently 
support heap data, however. (It may be difficult to extend such 
techniques to pointer data while preserving efficiency, especially 
for dynamically-typed languages and those with first-class or 
higher-order procedures.) 

7.3 Optimistic systems 

Optimistic techniques involve the “premature” computation 
of results that may or may not turn out to be useful (e.g., 
[KuRodl], [JeffgS]). Rather than blocking while waiting for the 
result of an interprocess interaction, a process guesses what the 
outcome will be and proceeds on that assumption. If it guesses 
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wrong, it may have to “roll back” to the error and re-execute when 
the true outcome is known. If the guess is right, it has increased 
the effective parallelism of the computation. Thus, processors 
that would otherwise be idle can perform potentially useful 
computation. 

Optimistic techniques work we11 for asynchronous processes 
where interactions usually fail to occnr (as in distributed 
simulation). and other relatively predictable situations. Like 
demonic memory, optimistic systems require the ability to return 
to a previous state, and employ checkpointing and “replay” 
mechanisms. Demonic memory’s efficiency in handling heap data 
should make it attractive for such applications; current optimistic 
systems generally restrict the use of dynamically allocated data or 
disallow it completely [e.g., StYe85, Jeff87]. 

Optimistic systems for executing Lisp programs have 
previously been proposed by Knight [Knig86] and Katz [Katz86]. 
These designs are intended to execute overtly serial programs 
optimistically in parallel. We envision a different sort of 
optimistic system, in which the parallelism is explicit, using 
demonic memory and alternate universes to implement parallel 
control structures. Thii would favor an optimistic computational 
style, much in the spirit of Halstead’s speculative computation 
[Hals86]. Unlike speculative computation, however, optimistic 
computation would still be completely deterministic, with all of 
the corresponding advantages that determinism yields for 
debugging and verification. 

Smith and Maguire’s multiple worlds facility supports 
optimistic and speculative computation using pagewise copy-on 
write virtual copying for side-e&t isolation [SmMa89]. Our 
own alternate universes design performs a similar function, 
though it is finer grained and coordinated with garbage collection. 
These systems support a tree topology of states; recovery is fast 
and efficient, but limited to branch points rather than arbitrary 
process steps. 

7.4 Production systems and inference systems 

production systems and inference systems are frequently 
used in artificial intelligence and cognitive modeling, but they 
tend to be difftcult to use and debug. Many systems provide only 
rudimentary trace functions giving dependencies among the rule 
firings (or resolutions) and their effects. We would often Iike to 
examine some prior state of the system’s working memory, not 
only to find out what caused a rule to fire, but also to understand 
why other rules did not. (Roughly, we may want to know what 
information was missing such that some inference was not 
made.) This “negative” information is lost in current systems, but 
could be made available through demonic memory. 

8. CURRENT STATUS 

We are currently buikdiig a prototype of demonic memory, 
with a subset of the features we have described. This prototype 
does not actually use any special virtual memory techniques, but 
does allow simulating them for gathering statistics. As in IGOR 
[FeBr88], checkpointing is accomplished by flushing dirty pages 
at checkpoints, rather than by copy-on-write. (This requires some 
redundant memory so that information is not lost when a page is 
written to, but allows simulating various page sizes.) The 
prototype also uses copying of data rather than page remapping, 
which slows some operations but is acceptable for a prototype 
dealing with small-to-medium-sized address spaces. 

We are currently using the Scheme-48 language processor, a 
bytecoded implementation of Scheme [StSu75,ReC186] 
developed by Jonathan Rees (MIT), Richard Kelsey (Yale), and 
Bob Brown (MIT). We have implemented and instrumented onr 
own generational garbage collector, with several innovations for 
high efficiency /Wils88b, Wils89a, WiMo89a, WiMo89b]. 

We intend to port this garbage collector to other language 
processors to gather statistics on more and larger programs than 
will run in our prototype. We will evaluate demonic memory’s 
efficiency using a combination of statistics from the running 
prototype and relevant data from other systems. By scaling 
appropriately for our system’s deficiencies, we should get a fairly 
accurate view of the true costs of demonic memory for high- 
performance systems. 

9. FUTURE WORK 

After gaining experience with our prototype, we must 
address several important issues that arise in a real high- 
performance systems. These include efficient support for the 
forwarding pointers used during single-step regeneration, and the 
maintentance of the notion of a “step” when no interpretive 
instruction counter is available. We also wish to address issues 
that arise in parallel systems. 

Single-step regeneration (to record timestamps) is difficult 
with compiled code, because the code must check for forwarding 
pointers when fetching and storing values, such checks should not 
slow the system down in normal nmning, however. If parallel 
hardware support and/or microcoding is available (as on Lisp 
machines), the situation is greatly simplified. If not, several other 
strategies are possible. 

One solution is to replace the compiled fetch and store 
instructions with subroutine jumps, much like breakpoint insertion 
in a debugger; subroutines can then do the checking and tree- 
accessing operations. This entails fmding all of the relevant code 
and modifying it before it is re-executed, however. This can be 
accomplished fairly easily in some systems (e.g., those with a 
small cache of throwaway-compiled code). In other systems it is 
more complex; it may involve access-protecting pages containmg 
machine code so that traps can insert subroutine jumps into each 
page that is actually accessed by the nnming program. 

The stepping problem is similarly simplified if hardware 
support is available; e.g., a special counter registers for 
debugging purposes, as has been advocated and/or implemented 
by others. Failing that, several software approaches are available. 
The crudest is to make the same distinction as is conventionally 
made in Lisp systems - interpreted code is steppable, but 
compiled code executes atomically. Alternatively, we might 
actually compile in operations on a counter, most of which could 
be optimized out again. Or we could use the heap allocation 
pointer as an kind of crude counter between scavenges, making it 
do double duty. (This would allow halting the program at an 
arbitrary “high-water mark” allocation operation during 
regeneration, by setting the allocation limit pointer at that height.) 

For the present, we assume that truly asynchronous hardware 
interrupts are handled by low-level code, insulating the program- 
level notion of “states” from changes that occur ‘between” steps. 
Higher-level interrupts are assumed to be handled only at step 
boundaries. This seems appropriate for a high-level programming 
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environment, but we are exploring alternative strategies for a 
comprehensive monolingual system. 

Eventually, we hope to parallelize demonic memory, in two 
senses. First, we would like to make a demonic memory that 
implements a single space-time across several processors. 
Second, we would like to generalize demonic memory’s linear 
sequence of states to an efficient tree topology like that of 
multiple worlds or alternate universes. This would result in a 
branching space-time manifold, allowing access to any past state 
along any path. 

10. CONCLUSIONS 

Demonic memory supports a comprehensive recovery 
facility allowing fast access to past states of a computational 
process. It supports a space-time abstraction in which memory is 
viewed as a two-dimensional virtual array, or space-time. A 
reconstructive memory technique allows long histories to be 
stored sparsely, regenerating detailed information on demand. A 
copy-on-write virtual copying scheme is used for checkpointing, 
with sophisticated indexing and caching allowing fast access to 
stored states without undue space costs. Hierarchical 
checkpointing allows fast reconstruction at several levels of time 
resolution. Most importantly, coordination with garbage 
collection allows checkpointing of heap data at a moderate cost. 
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