
Demonic Memory for Process Histories

Paul R. Wilson and Thomas G. Moher
Human-Computer Interaction Laboratory

Dept. of Electrical Engineering and Computer Science
University of Illinois at Chicago

Box 4348 (M/C 154), Chicago, IL 60680

1. INTRODUCTION

It is often useful to be able to access past states of a process.
In debugging, for example, we may want to see previous states of
a program’s execution in order to home in on the bug that led to an
observable error. For fault tolerance, it may be necessary to revert
to a previous state to recover from an error; for optimistic
concurrency control, similar recovery may bc necessary in the
face of a bad guess about possible concurrency. In a
programming language, “undo” and “lookahead” constructs may
allow the convenient expression of many algorithms, while in a
general computing environment, the same kinds of operations are
desirable for dealing with persistent data (e.g., files).

Demonic memory is intended as an acceptably efficient
recovery mechanism that will allow fast access to data at any time
scale from a fraction of a second to months or years. For
example. in a debugging session, it should take no more than a
few seconds to look a “back in time” a few minutes. It should
also be possible to recall within a few minutes any past state of
data, even if that state was modified months or years previously.
This includes the ability to recall and capture transitory versions
in the editing of a text or design document, or intermediate steps
in an exploratory data analysis. Ideally, the programmer/user
should never have to explicitly save data for later use;
conceptually, all states of the system should be saved indefinitely.

The goal of our research is to show that it is possible to
efficiently implement such a general recovery facility, and to
develop an abstraction that allows it to be used effectively. If we
are successful at achieving this vision of generality, it presents the
possibility of a very powerful monolingual system in which a few
simple operations apply at different levels with identical
semantics [HeKEG]. This could be particularly appropriate for an
environment in which many computations are interactively
“steered” rather than straightforwardly programmed, as in
scientific visualization, and for integrated systems in which the
user/programmer distinction is blurred.

(providing such a powerful memory facility will put a
burden on the user interface of a system, in order that the user
could use it without getting lost in uninteresting old data. We feel
the user interface is the best place for such concerns, however; it
is better to have too much data available than too little, and for
Permission to copy without fee all or part of this material is granted provided that
the copies are not made or distributed for direct commercial advantage, the ACM
copyright notice and the title of the publication and its date appear, and notice is
given that copying is by permission of the Association for Computing Machinery.
To copy otherwise. or to republish. requires a fee and/or specific permission.
0 1989 ACM O-8979 1-306-X/89/0006/0330 $1.50

system designers to choose features rather than having them
dictated by efficiency considerations.)

If we are less successful in achieving generality and
efficiency, we expect that specialized variants of demonic
memory will be sufficient for more specialized domains, such our
own work in reversible debuggers.

2. OVERVIEW

Demonic memory is a form of reconstructive memory for
process histories. As a process executes, its states are regularly
checkpointed. generating a history of the process at low time
resolution. Following the initial generation, any prior state of the
process can be reconstructed by starting from a checkpointed state
and re-executing the process up through the desired state, thereby
exploiting the redundancy between the states of a process and the
description of that process (i.e., a computer program).

The reconstruction of states is automatic and transparent.
The history of a process may be examined as though it were a
large two-dimensional array. or address space-time, with a normal
address space as one axis and steps of process time as the other.
An attempt to examine a state that is not physically stored triggers
a “demon” which reconstructs that memory state before access is
allowed.

Regeneration requires an exact description of the original
execution of the process. If the original process execution
depends on non-deterministic events (e.g., user input), these
events are recorded in an exception lisf. and are replayed at the
proper points during re-execution.

While more efficient than explicitly storing all state changes,
such a checkpointing system is still prohibitively expensive for
many applications; each copy (or snapshot) of the system’s state
may be very large, and many snapshots may be required,
Demonic memory saves both space and time by using a virtual
copy mechanism. (Virtual copies shsre unchanging data with the
objects that they are copies of, only storing differences from a
prototype or original [MiBK86].) In demonic memory, the
snapshot at each checkpoint is a virtual copy of the preceding
checkpoint’s snapshot. Hence it is called a virtual snapshot. In
order to make the virtual snapshot mechanism efficient, state
information is initially saved in relatively large units of space and
time, on the order of pages and seconds, with single-word/single-
step regeneration undertaken only as needed. This permits the
costs of indexing and lookup operations to be amortized over
many locations.

330

state-change records
(tlmestamp/value pairs
for thls location

Location
Array

FIGURE la. Implementation of a location’s history stack.

Each element of the location array holds a pointer to the root node of a tree. The leaf nodes (i.e., the
bottom row) hold state-change records which comprise the stack of values taken on by the location. The
non-leaf nodes form a tree-structured index into this stack.

Since state-change records are inserted in timestamp order, the stack grows monotonically to the right
as process history is recorded.

Each node contains a pointer back to its parent node, and the root node always keeps a reference to the
most recently accessed element of the tree (not shown.) These features facilitate searches of the tree.
They especially facilitate successive insertions, since the last-accessed reference generally acts as a
top-of-stack pointer.

. ..*...
Up to 245 state-change records

. . . .
UP

. . . .
UP

. . . .
UP

Direction of stack growth (monotonic with process time) -

FIGURE lb. Growth of a location’s history stack

History stack/tree growth is extremely regular, due to the constraint that records are inserted in key
(timestamp) order. All trees with the same number of elements have exactly the same shape.

When a tree of a given number of levels is full, the next insertion causes a new, higher-level root node
to be generated. The full tree then becomes the leftmost child of the new root node.

Because of this regularity, and with the help of backpointers and the last-accesed-reference cache,
insertion and search time increase slowly with tree size.

331

Main space-time (lo-step time resolution)

(..i..................i.................-;...............-..:..................;

;E; toy *

33

, ..:.

:

....

time --I,

Cache
\

space-time for chapter
containing steps 90 through 99 :

j HI......................... FJ I,......................... fzJ q ,)...... /J ,,.....“.................. -J: <z B . , , .
FJ ,,...... H I)...... q I....... FJ I....... FlJ .I...... fJ I)...... q I....... 7-J; <E [

q ‘........................ fIJ ,).....................................-...... frJ 1, . 7: <z g t on -. -
time -k ii

00

01

02

03

00

09

10

11

FIGURE 2. A space-time implementation with multiple levels of time resolution.

A space-time is initially generated at a lowered level of time resolution. For each chapter, one state-change
record is generated for each changed location. Subsequent changes to a location within a chapter cause
that state-change record to be overwritten. At the end of the chapter it therefore contains the last value
for that location within that chapter. In order to examine states within a chapter, a cache space-time must
be generated, re-executing the process to generate state-change records for the chapter at single-step
time resolution.

(Note that the location history stacks, suggested here by greyed pointers, are really tree-structured,
as in Figure 1). Though in this example chapters are 10 steps long, they are actually thousands of times
longer; there are also more levels of resolution than the two shown here.

332

One of the requirements of such a scheme is that there be
considerable locality of state changes. If only a few locations
change in many pages, much needless copying, indexing, and
lookup of unaltered data will still be required. Thus we require a
memory management scheme that tends to group state changes
into a small subset of the pages of memory, within a given
checkpointed interval. Coordination with garbage collection also
allows garbage data to be omitted from checkpoints, a critical
factor in demonic memory’s efficiency. For these reasons we
have devised a special-purpose garbage collector which operates
in concert with demonic memory.

3. DEMONIC MEMORY BASICS

Demonic memory implements a space-time abstraction. It is
logically a two-dimensional array, indexed by memory location
(we assume word addressing here for simplicity) and process step.
A step may be any action defined as atomic by the process
interpreter that runs in demonic memory. (“Process interpreter” is
used here to mean the process whose execution history is being
recorded - it may be a compiled program as well as an
interpreted one. The idea is that it interprets a process description
and generates state changes to be recorded.)

3.1 Array-of-stacks implementation

If the logical array were implemented as a straightforward
physical array, the time and space costs would be enormous. At
each step it would be necessary to copy each state (array column)
into the next column of the array, except for the changed
elements.

The first step in making the abstract array efficient is to
implement each row of the array as a history stuck, indexed by
time. An address space, then, is a single array, with each element
representing the history of changes to a single memory location.
The tops of the stacks act as a flat address space from the Point of
view of the history-generating process interpreter; it sees only the
latest values for each location.

Each time a new value is stored into a location (pushed onto
the location’s history stack), it is paired with a timestamp
indicating which step of the process generated it. In order to fiid
the value of location x at tiie step t. we simply use x as an index
into the location array and search the stack stored there for the
most recent change prior to t.

Figure 1 shows an efficient way of implementing history
stacks. The state-change records (timestamp/value pairs) are
stored in the terminal nodes of a multi-way search tree. Since
records are always inserted in key (timestamp) order, the tree
grows very smoothly and simply; all trees with a given number of
elements have exactly the same shape. When a tree of a given
depth is full, it becomes the left subtree of a newly generated root
node.

3.2 Multiple levels of time resolution

While the constraints on tree growth make access to state-
change records locally efficient, the simple array-of-stacks
implementation remains inefficient in a broader sense, since it
stores every state change. Efficiency can be vastly improved by
saving only occasional (checkpointed) states; intervening states
can be reconstructed by re-running the process from the previous
checkpoint.

Demonic memory implements a hierarchy of time
granularities, storing only a subset of history at full resolution
(single steps). Process history is divided into groups of
consecutive steps called chapters. A state-change record is
created the fist time a location is modified in a chapter, while
subsequent changes within the chapter cause this information to
be overwritten rather than pushed onto the history stack (see
Figure 2). A state-change record is created the first time a
location is changed within a chapter, but it ends up holding the
& value, since all intervening values are overwritten; the
process of overwriting successive changes amounts to
checkpointing “on the fly.”

In order to examine states &hir.t a chapter at single-step
resolution, a cache space-time is generated on demand. The
cache space-time holds the values stored into locations during the
chapter. It is similar to the space-time just described, except that a
hash table is used to implement the (sparse) location array.
Regenerating requires memory fetches by the process interpreter,
which keeps track of its “current” tune (the step it has reached in
regenerating history). A fetch must first look in the cache space-
time, to see if the “latest” value for the location was generated
withii the chapter. If no value for the location is found in the
cache space-time, the main space-time is searched for the last
value generated prior to the chapter.

This arrangement is not limited to two levels. In the system
we are implementing, the main space-time has “superchapters”
many thousands of steps long. A few of these are fleshed out at a
chapter-by-chapter level of resolution. At a given time, a few of
these, in turn, are available at single-step resolution. This is
analogous to keeping some pages of memory in RAM for high-
speed access, but paging the rest out to disk, with “chapter faults”
causing “chaptering” (regeneration) in much the same way that
page faults cause paging in virtual memory.

3.3 Multiple levels of space resolution

The implementation described so far will still be rather slow.
Stack operations are costly, and must be done often - on a per-
location basis. If there is sufficient locality of state changes, the
average cost of these operations may be reduced considerably by
operating on memory a page at a time.

Rather than having a location array with a history stack for
every location’s values, a space-time can have a “page array”
holding a history stack for each (logical) page. In these history
stacks, a state-change record contains a reference to a physical
page (RAM or disk), which holds values for an entire pageful of
locations. Generation and regeneration of space-time are
analogous to the methods described above

3.4 Using address maps to cache page lookups

Performance may be further improved by caching page
versions using standard virtual memory hardware (and withoa
interfering with its usual use). If the operating system allows
manipulation of address mappings, all of the relevant page
versions may be mapped into the address map used by an
inspecting or history-generating process (see Figure 3, in which
address maps are simply represented as raw page tables). The
process then sees a normal, flat address space.

The virtual memory manager assists in other ways, as well.
Write-protection is used to ensure that a new version of a page is
generated the first time the page is modified within a chapter. At
the beginning of each chapter, all pages are marked read-only; an

333

A
dd

re
ss

m

ao

fo
r

r-
--

--
-n

A

dd
re

ss

m
ap

 f
or

.._

-.-
--

. r

pr

oc
es

s
in

sp
ec

tin
g

M
ei

n
l p

ec
e-

tim
e

(1
00

-•t
ep

tim

e
re

eo
lu

tio
n,

44

0c
et

ro
n

l p
ec

e
re

eo
lu

tio
nl

st
ep

75

0
_,

,,.
.w

+-
--

-u

hi
st

or
y-

ge
ne

ra
tin

g
+,

‘“f
lM

i

*x
w

-*
 j

,~
~~

&
,m

.“Y
”-

~‘
-

FI
G

U
R

E
 3

.
S

to
rin

g
hi

st
or

y
at

pa

ge
w

is
e

sp
ac

e
re

so
lu

tio
n,

us

in
g

vi
rtu

al

m
em

or
y

ad
dr

es
s

m
ap

pi
ng

s
as

 l
oo

ku
p

ca
ch

es

Th
e

ad
dr

es
s

m
ap

 u
se

d
by

 t
he

 h
is

to
ry

-g
en

er
at

in
g

pr
oc

es
s

(u
pp

er
 r

ig
ht

)
co

nt
ai

ns

re
fe

re
nc

es

to
 t

he
 m

os
t

re
ce

nt
 v

er
si

on
s

of
 a

ll
pa

ge
s

(i.
e.

,
th

e
“to

ps
”

of
 a

ll
lo

gi
ca

l
pa

ge
s’

 h
is

to
ry

st

ac
ks

).
Th

us
 t

he
 h

is
to

ry
-g

en
er

at
in

g
pr

oc
es

s
se

es
 i

ts
 “

cu
rr

en
t

tim
e”

 a
s

a
no

rm
al

(fl

at
)

ad
dr

es
s

sp
ac

e,
 a

nd
 m

os
t

m
em

or
y

re
fe

re
nc

es
 o

cc
ur

 a
t

no
rm

al
 h

ar
dw

ar
e

ad
dr

es
s-

tra
ns

la
tio

n
sp

ee
ds

.
P

ag
es

 g
en

er
at

ed

du
rin

g
pr

ev
io

us

ch
ap

te
rs

 a
re

 m
ar

ke
d

re
ad

-o
nl

y;

an
y

at
te

m
pt

 t
o

m
od

ify
 t

he
m

 c
au

se
s

a
tra

p
th

at
 g

en
er

at
es

a

ne
w

 v
er

si
on

.
Th

e
ad

dr
es

s
m

ap
 u

se
d

by

th
e

in
sp

ec
tin

g
pr

oc
es

s
(u

pp
er

 l
ef

t)
al

lo
w

s
th

at
 p

ro
ce

ss
 t

o
se

e
an

 o
ld

 s
ta

te
 a

s
a

fla
t

ad
dr

es
s

sp
ac

e,
 a

s
w

el
l.

New
Memory

I

;-
Old L
Memory i

f.,

f.,
i
i h.

end of
previous
chapter

Page Allocations

I

. “.I- 1:

/” ,.,..... .+
/ \

Memory Allocation

,d

/“‘“’

1

..r....

”

0
.._..........._...._......................._........._._...._...._.....
.._..........._...._....................._._...._..........._...._.....

i

\
Unchanged pages of old memory are
shared with previous chapters’ virtual
snapshots, not copied, so no new
storage is required for them.

time-,

..:,

i
~ i
, i
i i

Ii
i ;
I i : :
I : : :
/ : : :
I : : :
I :
! i
I i : :
I : : :
I : : :
: : : : : : : :

;

: i end of
currenl
chapter

Only altered
pages holding
live data at
end of chapter
require new

. . . . storage.

FIGURE 4. Only live-data pages must be recorded in virtual snapshots.

Data that become garbage by the end of the chapter needn’t be stored; since subsequent states can’t reference
them, they may be left out of the virtual snapshot. If an attempt is made to access a state within a chapter
(e.g., between checkpoints), the process is replayed to generate records of the intervening states. This will
automatically regenerate any discarded data before it is accessed.

335

attempt to write to a page causes a copy to be made and pushed
onto the history stack. It is then marked read/write until the end
of the chapter.

Lookup of page versions may be done lazily. Parts of the
flat address space may go unmapped initially; an umnapped-
memory fault traps to a routine that looks up the correct page
version and maps it into the address map for the process.
(Copying may be used instead of remapping, if the operating
system doesn’t support remapping efficiently. Write protection
can play the role of unmapped memory, with the write-exception
handler may be conditionahzed to do double duty. This would
incur some extra cost in actual RAM and disk, however.)

These hardware-controlled trap routines act as demons that
incur almost no extra overhead except when they are invoked. In
addition, they exploit standard hardware without interfering with
its standard uses. Most memory accesses in demonic memory can
therefore occur as normal memory operations at normal
(hardware) speeds.

4. HEAP MANAGEMENT

The efficiency of this page-based implementation depends
critically on the locality of the state changes made by the history-
generating process. In the worst case, the process could change a
single location in a different page at every step in a chapter.
Demonic memory would then make new versions of each of those
entire pages, one per step.

Few processes exhibit such catastrophic tendencies; much
activity in many languages occurs within a stack of activation
records. In any reasonably short period of time, the stack usually
varies in height within a rather constrained range. Heap data pose
a more difficult problem, however. A classical stop-and-collect
garbage collector approximates the worst case for demonic
memory, since it uses a large amount of memory before
reclaiming any.

Generdon garbage collection [LiHe83] limits the scope of
these problems. It is designed to reduce memory fragmentation
(reducing storage requirements and virtual memory paging).
Memory is divided into several regions, allowing more recently-
allocated data to be garbage-collected independently of the older
data. Since recently-allocated data are likely to become garbage
quickly, and since long-lived data are likely to live still longer,
this concentrates activity where it is most likely to reclaim
significant storage.

For demonic memory purposes, the critical kind of program
locality is the number of changed pages within a unit of time that
must be checkpointed. Since garbage collecting a generation
moves all of the live data in a copying/compacting operation, the
pages that live data are moved to are necessarily altered in the
process. The pages that end up holding these live data must
therefore be stored by demonic memory.

It is important LO note that pages that contain only garbage at
the end of a chapter need not be saved in the chapter’s virtual
snapshot; if they hold no live data, there can be no pointers into
them in pages shared by subsequent chapters’ virtual snapshots.
Any attempt to access states w&in the chapter will cause the data
to be regenerated before they are accessed. (See Figure 4.)

Our garbage collector [Wils88b. WiMo89b] is most similar
to Ungar’s Generurion Scawenging algorithm [Unga84. Unga86].

All objects are created in new memory. If an object survives a
number of scavenges (collections) of the new region, it is copied
out of that region into an older region that is scavenged less often.
If there are more than two generations (as in our system), the
same phenomenon repeats at the next level, at a much lower
frequency.

Garbage collection and checkpointing may be coordinated to
improve efficiency. Most higher-resolution cache space-times are
quickly discarded, increasing the time granularity of stored
history. Multi-generation garbage collection will occur at large-
granularity time-resolution boundaries (e.g., ends of super-
superchapters). Once the higher-resolution (e.g., chapter-by-
chapter) information is discarded, memory requirements drop
dramatically. There are two main reasons for this. Fist, longer
duration snapshots contain at most one version of each page that
changed within that interval, rather than one for each of the
shorter submtervals. Second, many of those changed pages will
hold only garbage at the end of the longer duration, and their
contents need not actually be stored once the higher-resolution
information is discarded. Thus old memory at low resolution
takes comparatively little storage. (See Figure 5.)

5. SINGLE-STEP REGENERATION

Regenerating history at single-step time resolution poses
special problems, especially when checkpointing on a paged
basis. Using the same cache space-time mechanism used for
lower-resolution generation will require copying whole pages at
steps where one or a few locations change. A hash table of per-
location history stacks could be used, as described in section 3;
this would be very slow, however, since hashing operations are
expensive, and it would defeat the use of page tables for caching
version lookups.

Our approach is to use a per-page table, as when
regenerating at single-chapter resolution. Only a single page
version is created for each page changed in the chapter; each
element of the changed pages table holds a single version, not a
stack of versions. For those locations that only take on one value
during the chapter, the value is simply stored in the appropriate
location in the appropriate page. For any location that changes
more than once, a forwarding pointer to a history stack for that
location is installed. Thus instead of retaining multiple versions
of pages, we have one version of each page; particular locations
may hold multiple versions of their contents (see Figure 6). Thii
allows the pages to be accessed through a virtual memory page
table (providing the illusion of a flat single-timestep address
space), as described in section 3.4 Many memory operations must
check for a forwarding pointer, however, and sometimes execute
a history stack operation.

6. PERFORMANCE PROJECTIONS

Until very recently, predicting demonic memory’s
performance was impossible: the necessary data were not
available. Most other data on Lisp programs are gathered using
synthetic benchmarks (e.g., [Gabr85]). While these are useful for
testing particular aspects of Lisp systems, they do not give a
realistic picture of the behaviors relevant to our system. Some
other data have been published (e.g., [ClGr77]), but they do not
include the necessary information for our purposes.

336

N
ew

G

en
er

at
io

n
M

em
or

y

Ap
pr

ox
.

on
e

m
sg

ab
yt

b,

pr
im

ar
ily

R

AM

ra
si

do
nt

In
te

rm
ed

ia
te

G

en
er

at
io

n

ne
w

m

em
or

y
ga

rb
ag

e
co

lle
ct

ed

ev
er

y
0.

5
se

c.

in
iti

al

ch
ec

kp
oi

nt
s

.T

ev
er

y
2.

5
se

co
nd

s
”

..,
.

,.:
:

,.,
. :.:

 .,.
,.,

:
T-

:--

--
:::

,
..:

.::
: ;,

_,

m
ul

ti-
ge

ne
ra

tio
n

ga
rb

ag
e

co
lle

ct
io

ns

us
ua

lly

m
in

ut
es

or

ho

ur
s

ap
ar

t
M

em
or

y
Ap

pr
ox

.
on

e
m

eg
ab

yt
e,

pr

im
ar

ily

R
AM

re

si
de

nt

O
ld

G

en
er

at
io

n
M

em
or

y
To

ns

of

m
eg

ab
yt

es
,

pr
im

ar
ily

on

di

sk

G
ar

bg
,

co
,,r

ct
ed

of
fli

ne

on
ly

FI
G

U
R

E

5.

P
at

te
rn

of

m

em
or

y
us

ag
e

an
d

its

re
la

tio
ns

hi
p

to

ch
ec

kp
oi

nt
in

g.

C
he

ck
po

in
t

sn
ap

sh
ot

sp

ac
e

co
st

s
ca

n
be

 b
ro

ke
n

do
w

n
in

to
 s

ev
er

al

co
m

po
ne

nt
s,

as

 s
ho

w
n

he
re

;
ne

w
 d

at
a

th
at

 s
ur

vi
ve

ga

rb
ag

e
co

lle
ct

io
n,

ag

in
g

da
ta

 t
ha

t
ha

ve
 r

ec
en

tly

be
en

 c
op

ie
d

in
to

 o
ld

er
 g

en
er

at
io

ns

(i.
e.

,
ab

ov
e

ho
riz

on
ta

l
do

tte
d

lin
es

),
an

d
ot

he
r

pa
ge

s
th

at

ha
ve

 b
ee

n
m

od
ifi

ed

si
nc

e
th

e
pr

ev
io

us

ch
ec

kp
oi

nt

(a
ll

ar
e

sh
ow

n
in

 b
la

ck
).

V
er

y
O

ld
 g

en
er

at
io

n
m

em
or

y
(n

ot
 s

ho
w

n)

m
ay

 b
e

ve
ry

la

rg
e,

an

d
is

 s
el

do
m

if

ev
er

 g
ar

ba
ge

co

lle
ct

ed
.

Cache space-time of superchapter (steps 700 to 600) :Tmbk of:
! Changd !

. f Pago. . I..........-. ’ ,I........... ’ I........... - ,,............. + ~.-........~‘...-.....~ fj 8 fl ‘I............ * I fl v,5

. I)

II El

I..............,..“........... i

E!

,. ; *
i 1 a

’ 20-23 i 1 ,............ *a I............. 6 .
El a / : ,........... “* d i k2,

t 710 -172s t7ao-t740 1760 1760 tno 17~mo

I

I

e---------o
:Tabk of I

Cache space-time for single chapter (steps 770 to 779)

/E
, n, I)..-.................... _. (......................... I)....... I..........

FIGURE 6a. A cache spacetlme at single-step resolution.

When it is necessary to access the process history at single-step resolution, a special kind of cache
spacetime is generated.

Only a single page-version is generated for each changed page. If a location only takes on one value during
the chapter, that value is stored directly in the appropriate location in the appropriate page. A second
store into a location causes the original value to be replaced by a special forwarding pointer to a history
stack for the location. This history stack will contain records of all changes to the location within the
chapter. Thus each location contains either its only value during the chapter, or a pointer to a stack that
can be searched for its value at any step. (See Figure 6b, below.)

FIGURE 6b. Detail of hi-res cache.

As before, the history stacks are actually the tree structures of Figure 1.

338

Fortunately, Shaw has recently published data that allow us
to make ballpark estimates [Shaw88]. Shawls statistics were
gathered for runs of four large compiled Common Lisp programs;
their execution times range from several seconds to several
minutes on a 4 MIPS processor. While this is a small number of
data points, the programs were carefully chosen to be varied and
realistic. At any rate, they are the best data available.

For our projections, we assume a processor that runs Lisp
four times as fast as Shaw’s. This needn’t actually be a 16-MIPS
machine, if the hardware is more amenable to fast Lisp execution.
We see this as reasonable performance for a high-end workstation
in the next few years.

The target configuration is one that is intended to provide
high-performance demonic memory for a monolingual software
development environment on a high-end workstation. Our goal is
to allow access to any previous state of the system within 6 or 7
minutes (even states that may have occurred months or years
previously). More recently-accessed states should be accessible
much more quickly. We assume that two half-hour stretches of
history are always available at higher resolution, so that any state
within them can be accessed within a minute or two. Four five-
minute stretches can be kept at still higher resolution, so that any
state within them can be reconstructed within about fifteen
seconds. Finally, a few half-second intervals can be retained at
single-step resolution, allowing instant access to any step within
them (approximately 8 million machine instructions each.)

To support such performance, we use a demonic memory
with five levels of resolution, ranging from single-step to
supetichapters. Garbage collection of new memory end chapter
bounding occur at half-second intervals. History is not initially
retained at this resolution, however; initial checkpoints occur at
2.5 second intervals, or superchapter resolution. The initial
snapshots are kept in RAM only; super%hapter snapshots are
saved to magnetic disk every 10 seconds. Most of these snapshots
are discarded, to reduce resolution to about a minute, or
super3chapters. At five-minute intervals. supeflchapter snapshots
are saved to WORM disk for permanent storage.

The copying and space costs of such a system fall into three
major categories: changed stack and symbol table values, new
data objects that have survived garbage collection, and data in
older generations that have been changed. [Shaw88] shows how
to compute very similar costs in predicting the performance of hi
garbage collector for Lisp. (Following Shaw, we assume that
symbol table organization is favorable to our scheme, being
organized as parallel vectors rather than an array of records.) Due
to space constraints, we will only summarize our results here;
detailed performance projections are available from the authors on
request [Wils88a].

Approximately four extra megabytes of RAM, eleven
megabytes of magnetic disk, and a write-once optical disk drive
will support the specified performance level; blank WORM disks
will be consumed about every six months at 40 hours per week of
compute-bound computation, or several years for the average
user. The time costs should be under 10 percent of normal
running time, including trap-handling time, etc. Another
reasonable configuration would use fifteen megabytes of RAM
and eliminate the use of magnetic disk entirely. This would
eliminate most disk access time and greatly reduce wear and tear
on moving parts.

Some caveats are in order here. These projections (like
Shaw’s) do not include a cost that we consider potentially
important - costs due to changed pages of data that have been
creating during the execution of a program, but which have
survived to be copied out of the newer generation(s). If locality is
poor in such data, the cost could be significant. It may be
necessary to use locality-increasing techniques to cluster written-
to objects onto a small number of pages. These techniques will
themselves incur additional costs.

Our garbage collector can easily support such a policy due to
peculiarities in its mechanism for recording intergenerational
pointers [WiMo89a]. This scheme will also allow some easy
optimizations to reduce storage costs. With these techniques, the
basic costs should not go beyond the costs stated above, unless
write locality is extremely bad.

This garbage collector design incurs a continual runtime
speed overhead of a few percent, however, when compared to
some other advanced designs (e.g., [Moon84], [Shaw88]). This
could raise the total time overhead for demonic memory to around
fourteen percent. Gn the other hand, our garbage collector’s
improved locality may pay for itself in reduced paging during
garbage collection, irrespective of demonic memory. If it pays for
its overhead simply by reducing backing store operations, the time
cost of demonic memory (over and above the cost of garbage
collection) should still be under 10 percent.

It should be borne in mind that these speed costs are relative
to the speed of Shaw’s compiled Common Lisp. (His system
performed only basic optimizations such as tail-recursion
elimination and inlining of the most frequent operations.) For
faster systems, the overhead will be proportionally higher, while it
may be considerably lower for slower systems such as existing
Smalltalks.

7. RELATED WORK AND APPLICATIONS

Our system shares important features with other systems,
both at the implementation level and at the language level.

7.1 Language constructs for recovery and tentative execution

Demonic memory would be an appropriate mechanism for
the probe, try, guard and undo recovery constructs advocated by
Heering and Klint [HeKl85] for integrating command,
programming, and debugging languages in a monolingual
programming environment. We plan to use demonic memory to
implement undo, allowing a Process to revert to any previous
state. (We may not use it for probe, try, or guard, however,
because we have devised another mechanism, alter~te universes,
that may be more suitable [Wils88a] in general. Alternate
universes are virtual copies of a program’s entire execution
environment, allowing multiple threads of computation to proceed
without being affected by each others’ side-effects. This allows a
fme-grained multiway generalization of side effect recovery
constructs, or side ej%2f isolation.)

Demonic memory can also be used to implement tentative
execution constructs for backtracking or lookahead, such as those
those available in Interlisp [Teit81] and T-Pascal [StCo87]. It is
considerably more efficient in the large, however, and more
comprehensive than the facilities in other languages such as Icon
[G&83]. Demonic memory could also support constructs for
software fault tolerance [Rand75].

339

Note that while most language-level recovery constructs are
variants of “undo,” ours is more precisely a “revert” command.
Conceptually, past states are never thrown away, even if we
“undo” to an earlier state. The current state may be transformed
into a past state by bringing the old versions of data up to the
present, without discarding the intervening information. (Our
recovery is much like Leeman’s phi operator [Leem86] or “undo
forward” [Leem85]. Where Leeman’s recovery applies to a
specified set of variables, ours applies by default to the whole
program state. Ours has a larger scope in time as well, allowing
reversions to long-past states rather than for some limited number
of steps.) A single control construct providing this facility can be
used to implement all of the recovery constructs we have
mentioned, as well as many others.

This construct, call-with-captured-state, is a very general
escape mechanism, much like Scheme’s call-with-current-
continuation. Call-with-current-continuation (or “call/cc”)
captures the current control context (continuation) when it is
executed, usually by saving the stack of activation records. This
control context is packaged up into an escape procedure. Later
execution of this escape procedure will restore the original control
context (e.g., activation stack); this effectively causes a jump
back to the control point at which call-with-current-continuation
was executed. Thus call/cc can be used to implement a variety of
control constructs, including backtracking [FrHK84].

In contrast, call-with-captured-state (or “call/es”) captures all
state at the time of its execution, not just the control information.
If the escape procedure is executed, the captured state is restored.
(This is achieved by restoring all pages to their versions at that
point. It generally entails reconstructing from the previous
checkpoint, replaying the relevant segment of the exception list.)

Both call/cc and call/es allow the escape procedure to be
executed any number of times. It is also a first-class object that
can be passed around like any other, with indefinite extent. Once
a computation has been escaped from, it is thus possible to escape
back into it and resume the computation. In the case of call/cc
this allows the implementation of control constructs such as
coroutines entirely within the Scheme language [HaFW84]. Our
call/es will similarly enable nonlinear version maintenance, such
as Vitter’s “undo, skip and redo” [Vitt84], which generates a tree
~pol%Y-

It should be noted that call/es has the potential to cause a
performance problem if usage patterns are malign. Regeneration
a previous state may itself cause re-execution of a previous
escape, in turn causing regeneration of another previous state.
Such “chained” recoveries could in the worst case be equivalent to
re-executing an entire process. This is not an issue for most
applications, which require only simple recovery; e.g., for
reversible debugging of conventional programs. We also expect a
caching scheme to avoid most chained rollbacks at moderate costs
when call/es is used freely as a language construct. For some
applications however, it may be preferable to actually truncate a
space time to restore a previous state, rather than retaining the
intervening history as in Leeman’s “undo backward”.

In addition to call/es, we will eventually incorporate a
construct that allows reverting to any previous state (rather than
particular “control points” created by call/es). This relatively
unstructured, low-level capability would allow the
implementation of features like stepping debuggers within the
language. It is unclear at this time what the details of this
construct should be, to allow the maximum clarity, flexibility and

efficiency; we expect to do considerable experimentation before
settling on a particular scheme.

7.2 Checkpoint and replay systems

Demonic memory uses full, not partial checkpointing (in the
sense of [Arc!%]), since the entire state of the system is saved at
each checkpoint. Most of the efficiency of partial checkpointing
is achieved instead through copy-on-write virtual copy techniques
[cf. MiBK86, Rash87. StYB88]. Looked at another way,
however, every non-checkpoint past state may be regarded as a
partial checkpoint - the exception list and history-generating
program form the “log” of changes required to transform a fully
checkpointed state (snapshot) into a partially checkpointed one.
Note that demonic memory keeps the intervening history fully
checkpointed at some resolution. When a chapter has been fully
fleshed-out at single-step resolution, for instance, every step
within it is fully checkpointed.

The particular checkpointing and reconstruction techniques
used in demonic memory are most similar to those used in some
recovery systems for distributed processing (e.g., [BoBG83,
PoPr83, StYe851). In these systems, states are checkpointed and
interprocess communication is recorded for later replay, much like
our virtual snapshots and exception lists. These systems retain
only a small amount of history, while demonic memory’s
hierarchical checkpointing retains long histories at some
resolution. Demonic memory allows random access to states, not
just (forward) replay. It thus also supports reverse execution
facilities [Balz69, TeRe81, Mohe88]. It is in several ways similar
to Feldman’s IGOR debugging system [FeBr88], though
coordination with garbage collection should yield much better
performance due to increased effective locality.

Checkpointing and message replay mechanisms have been
used for recovery [StYe85, StYB88]. and to allow concurrent
processes to be replayed independently for debugging (e.g.,
[CuWi82, PaLi88]). A distributed version of demonic memory
could provide such a facility, while allowing jumping or stepping
forward or backward to arbitrary steps of the process, and
efficiently supporting dynamic data structures in a garbage-
collected heap.

Demonic memory’s hierarchical checkpointing and
reconstruction bears an interesting similarity to Miller and Choi’s
incremental tracing [MiCh88]; both allow regeneration of
program history at multiple levels of resolution. Their system
uses sophisticated static analysis to determine which variables
may be changed during the execution of each block of code,
however, while ours relies on dynamic detection of changes to
parts of memory. Miller and Choi’s system exploits its analysis of
code in performing flowback analysis [Balz69] and in
guaranteeing deterministic re-execution of parallel programs
operating on shared memory. Their system does not currently
support heap data, however. (It may be difficult to extend such
techniques to pointer data while preserving efficiency, especially
for dynamically-typed languages and those with first-class or
higher-order procedures.)

7.3 Optimistic systems

Optimistic techniques involve the “premature” computation
of results that may or may not turn out to be useful (e.g.,
[KuRodl], [JeffgS]). Rather than blocking while waiting for the
result of an interprocess interaction, a process guesses what the
outcome will be and proceeds on that assumption. If it guesses

340

wrong, it may have to “roll back” to the error and re-execute when
the true outcome is known. If the guess is right, it has increased
the effective parallelism of the computation. Thus, processors
that would otherwise be idle can perform potentially useful
computation.

Optimistic techniques work we11 for asynchronous processes
where interactions usually fail to occnr (as in distributed
simulation). and other relatively predictable situations. Like
demonic memory, optimistic systems require the ability to return
to a previous state, and employ checkpointing and “replay”
mechanisms. Demonic memory’s efficiency in handling heap data
should make it attractive for such applications; current optimistic
systems generally restrict the use of dynamically allocated data or
disallow it completely [e.g., StYe85, Jeff87].

Optimistic systems for executing Lisp programs have
previously been proposed by Knight [Knig86] and Katz [Katz86].
These designs are intended to execute overtly serial programs
optimistically in parallel. We envision a different sort of
optimistic system, in which the parallelism is explicit, using
demonic memory and alternate universes to implement parallel
control structures. Thii would favor an optimistic computational
style, much in the spirit of Halstead’s speculative computation
[Hals86]. Unlike speculative computation, however, optimistic
computation would still be completely deterministic, with all of
the corresponding advantages that determinism yields for
debugging and verification.

Smith and Maguire’s multiple worlds facility supports
optimistic and speculative computation using pagewise copy-on
write virtual copying for side-e&t isolation [SmMa89]. Our
own alternate universes design performs a similar function,
though it is finer grained and coordinated with garbage collection.
These systems support a tree topology of states; recovery is fast
and efficient, but limited to branch points rather than arbitrary
process steps.

7.4 Production systems and inference systems

production systems and inference systems are frequently
used in artificial intelligence and cognitive modeling, but they
tend to be difftcult to use and debug. Many systems provide only
rudimentary trace functions giving dependencies among the rule
firings (or resolutions) and their effects. We would often Iike to
examine some prior state of the system’s working memory, not
only to find out what caused a rule to fire, but also to understand
why other rules did not. (Roughly, we may want to know what
information was missing such that some inference was not
made.) This “negative” information is lost in current systems, but
could be made available through demonic memory.

8. CURRENT STATUS

We are currently buikdiig a prototype of demonic memory,
with a subset of the features we have described. This prototype
does not actually use any special virtual memory techniques, but
does allow simulating them for gathering statistics. As in IGOR
[FeBr88], checkpointing is accomplished by flushing dirty pages
at checkpoints, rather than by copy-on-write. (This requires some
redundant memory so that information is not lost when a page is
written to, but allows simulating various page sizes.) The
prototype also uses copying of data rather than page remapping,
which slows some operations but is acceptable for a prototype
dealing with small-to-medium-sized address spaces.

We are currently using the Scheme-48 language processor, a
bytecoded implementation of Scheme [StSu75,ReC186]
developed by Jonathan Rees (MIT), Richard Kelsey (Yale), and
Bob Brown (MIT). We have implemented and instrumented onr
own generational garbage collector, with several innovations for
high efficiency /Wils88b, Wils89a, WiMo89a, WiMo89b].

We intend to port this garbage collector to other language
processors to gather statistics on more and larger programs than
will run in our prototype. We will evaluate demonic memory’s
efficiency using a combination of statistics from the running
prototype and relevant data from other systems. By scaling
appropriately for our system’s deficiencies, we should get a fairly
accurate view of the true costs of demonic memory for high-
performance systems.

9. FUTURE WORK

After gaining experience with our prototype, we must
address several important issues that arise in a real high-
performance systems. These include efficient support for the
forwarding pointers used during single-step regeneration, and the
maintentance of the notion of a “step” when no interpretive
instruction counter is available. We also wish to address issues
that arise in parallel systems.

Single-step regeneration (to record timestamps) is difficult
with compiled code, because the code must check for forwarding
pointers when fetching and storing values, such checks should not
slow the system down in normal nmning, however. If parallel
hardware support and/or microcoding is available (as on Lisp
machines), the situation is greatly simplified. If not, several other
strategies are possible.

One solution is to replace the compiled fetch and store
instructions with subroutine jumps, much like breakpoint insertion
in a debugger; subroutines can then do the checking and tree-
accessing operations. This entails fmding all of the relevant code
and modifying it before it is re-executed, however. This can be
accomplished fairly easily in some systems (e.g., those with a
small cache of throwaway-compiled code). In other systems it is
more complex; it may involve access-protecting pages containmg
machine code so that traps can insert subroutine jumps into each
page that is actually accessed by the nnming program.

The stepping problem is similarly simplified if hardware
support is available; e.g., a special counter registers for
debugging purposes, as has been advocated and/or implemented
by others. Failing that, several software approaches are available.
The crudest is to make the same distinction as is conventionally
made in Lisp systems - interpreted code is steppable, but
compiled code executes atomically. Alternatively, we might
actually compile in operations on a counter, most of which could
be optimized out again. Or we could use the heap allocation
pointer as an kind of crude counter between scavenges, making it
do double duty. (This would allow halting the program at an
arbitrary “high-water mark” allocation operation during
regeneration, by setting the allocation limit pointer at that height.)

For the present, we assume that truly asynchronous hardware
interrupts are handled by low-level code, insulating the program-
level notion of “states” from changes that occur ‘between” steps.
Higher-level interrupts are assumed to be handled only at step
boundaries. This seems appropriate for a high-level programming

341

environment, but we are exploring alternative strategies for a
comprehensive monolingual system.

Eventually, we hope to parallelize demonic memory, in two
senses. First, we would like to make a demonic memory that
implements a single space-time across several processors.
Second, we would like to generalize demonic memory’s linear
sequence of states to an efficient tree topology like that of
multiple worlds or alternate universes. This would result in a
branching space-time manifold, allowing access to any past state
along any path.

10. CONCLUSIONS

Demonic memory supports a comprehensive recovery
facility allowing fast access to past states of a computational
process. It supports a space-time abstraction in which memory is
viewed as a two-dimensional virtual array, or space-time. A
reconstructive memory technique allows long histories to be
stored sparsely, regenerating detailed information on demand. A
copy-on-write virtual copying scheme is used for checkpointing,
with sophisticated indexing and caching allowing fast access to
stored states without undue space costs. Hierarchical
checkpointing allows fast reconstruction at several levels of time
resolution. Most importantly, coordination with garbage
collection allows checkpointing of heap data at a moderate cost.

ACKNOWLEDGMENTS

We would like to thank the many people who have
influenced this work. In particular, our understanding of garbage
collection issues was advanced by informative discussions with
Henry Lieberman, David Ungar, Patrick Caudill, David Moon,
and Patrick Sobalvano; special thanks to Bob Shaw, whose data
and analyses have been invaluable. We also thank the program
committee for their careful reading and detailed suggestions.

REFERENCES

Arcs84 Archer, J.E.. Conway, R., and Schneider, F.B. User
recovery and reversal in interactive systems. ACM Trans. Prog.
Lung. Syst, 6, 1 (January 1984). pp. 1-19.

Balz69 Balzer, R.M. EXDAMS - Extendable debugging
and monitoring system. In AFIPS Proceedings Spring Joint
Computer Conference (Boston, Mass., May 14-16), 34, AFIPS
Press, Arlington, Va. 1969, pp. 567-580.

BoBGS3 Borg, A., Baumbach, J.. and Glazer, S. A message
system supporting fault tolerance. Proc. Ninth ACM Symp. on
Operating Systems Principles, October 10-13, 1983, pp.lOO-109.

ClGt-77 Clark, D. and Green, C. An empirical study of list
structure in Lisp. Comm. ACM 20,2 (February 1977).

CuWi82 Curtis, R. and Wittie. L. BugNet: a debugging
system for parallel environments. Proc. 3rd Int’l. Conf. on
Distributed Computing Systems (October 1982).

FeBr88 Feldman, S. and Brown, C. IGOR: A System for
Program Debugging via Reversible Execution. Proc. ACM
SIGPLANJSIGOPS Workshop on Parallel and Distributed
Debugging (May 1988), pp. 112-123.

FrIIK84 Friedman, D.P., Haynes, CT., and Kohibecker, E.
Programming with continuations. In P. Pepper, ed., Program
tran$ormation and programming environments, pp. 263-274.
Springer-Verlag, 1984.

Gab&S Gabriel, R. Performance and evaluation of Lisp
systems. MIT Press, Cambridge, Mass., 1985.

Gri.43 Griswold, R.E. and Griswold, M.T. The Icon
programming language. Prentice-Hall, Inc., Englewood Cliffs,
NJ, 1983.

Hal.46 Halstead, R. Parallel symbolic computing.
Computer 19,8 (August 1986), pp.3543.

HaFW84 Haynes. C.T.. Friedman, D.P., and Wand, M.
Continuations and coroutines. Proc. 1984 ACM Symposium on
Lisp and Functional Programming. August 6-8.1984. pp. 293-
298.

HeKiSS Heering, J.. and Klint, P. Towards monolingual
programming environments. ACM Trans. Prog. Lang. Syst., 7,2
(April 1985), pp. 183-213.

Jeff85 Jefferson, D.R. Virtual Time. ACM Trans. Prog.
Lang. Syst., 7.3 (July 1985). pp. 404-425.

Jet?%7 Jefferson, D.R.. et al. Distributed simulation and the
Time Warp Operating System. Proc. llth ACM Symposium on
Operating Systems Principles (November 1987).

Kak86 Katz, M.J. ParaTran: A transparent, transaction
based runtime mechanism for parallel execution of Scheme.
Masters thesis, Massachusetts Institute of Technology, June 1986.

K&96 Knight, T. An architecture for nearly functional
programming. Proc. 1986 Conf. on Lisp and Functional
Programming.

KuRo81 Kung, H.T., and Robinson. J.T. On optimistic
methods for concurrency control. ACM Trans. on Database
System 6,2 (June 198 1).

Leem85 Leeman, G.B. Building undo/redo operations into
the C langauge. Proc. 15th Annual Int’l. Symp. on Fault-Tolerant
Computing. IEEE Computer Society Press, 1985. pp. 410415.

Leem86 Leeman, G.B. A Formal Approach to Undo
Operations in Programming Languages. ACM Trans. on
Programming Languages and Systems 8, No. 1, January 1986. pp.
50-87

LiHe83 Lieberman, H., and Hewitt, C. A real-time garbage
collector based on the lifetimes of objects. Comm. ACM 26, 6
(June 1983), pp. 419429.

MlBK86 Mittal, S.. Bobrow. D. and Kahn,K. Virtual Copies:
at the boundary between classes and instances. Proc. OOPSLA
‘86. (September 1986). pp. 159-166.

MiCh88 Miller, B.P. and Choi, J.D. A Mechanism for
Efficient Debugging of Parallel Programs. Proc. ACN SIGPLAN
Co@ on Prog. Lang. Design and Implementation (June 1988),
pp.135-144.

Mob&S Moher. T.G. PROVIDE: A process visualization
and debugging environment. IEEE Trans. Software Engineering
Z4,6 (June 1988). pp. 849-857.

342

Moon8 Moon, D. Garbage collection in a large Lisp
system. ACM Symposium on Lisp and Functional Programming,
Austin, Texas, 1984. pp. 235246.

PaLigg Pan, Douglas 2.. and Linton, Mark A. Supporting
reverse execution of parallel programs. Proc. ACM
SIGPLANISIGOPS Workshop on Parallel and Distributed
Debugging (May 1988), pp. 112-123.

PoPr83 Powell, M.L., and Presotto, D.L. Publishing: a
reliable broadcast communication mechanism. Proc. Ninth ACM
Symp. on Operating Systems Principles, October 10-13, 1983,
pp.lOO-109.

Rand7S Rsndell, B. System Structure for software fault
tolerance, IEEE Transactions on Soflware Engineering vol. SE- 1,
no. 2, pp. 220-232 (June 1975).

Rash87 Rashid, R., Tevanian, A., Young, M., Golub, D.,
Baron, R.. Black, D.. Bolosky. W.. and Chew, J. Machine-
independent virtual memory management for paged uniprocessor
and multiprocessor architectures. Proc. Second Int’l. Con$ on
Architectural Support for Programming Languages and
Operating Systems. October 4-8.1987. pp. 3 l-39.

ReCl86 Rees, J., and Clinger, W. The revised3 report on the
algorithmic language Scheme. MIT AI Memo 8484 September,
1986..

Shaw88 Shaw, R. Empirical analysis of a Lisp system.
Stanford University Ph.D. thesis, CSL-TR-88-351, February
1988.

SmMa89 Smith, J.M., and Gerald Q. Maguire, Jr, Transparent
concurrent exectution of mutually exclusive alternatives. Ninth
Int’l. Cof. on Distributed Computer systems, Newport Beach,
California, June 1989. Also available as Columbia University
tech. report CUCS-387-88.

stco87 Strothotte. T.W., and Cormack, G.V. Structured
program lookahead. Cornput. LMg. 12,2 (1987). pp. 95-108.

stSu75 Steele. G. L.. and Sussman, 0. J. Scheme: an
interpreter for the extended lambda calculus. Memo 349, MIT
Artificial Intelligence Laboratory, 1975.

StYe8S Strom, R.E., and Yemini. S. Optimistic recovery in
distributed systems. ACM Trans. Camp. Syst. 3, 3 (August
1985).

SiYB88 Strom, R.E. Yemini, S. and Bacon, D. A
recoverable object store. Technical report, IBM T.J. Watson
Research Center. Submitted for publication.

TeRettl Teitelbaum, T., and Reps, T. The Cornell Program
Synthesizer: a syntax directed programming environment.
Comm. ACM4.9 (September 1981). pp. 563-573.

Teitt31 Teitelman, W. Automated programmering: The
Programmer’s Assistant. In Barstow, Shrobe, and Sandewall
(eds.) Interactive programming environments. New York:
McGraw-Hill, 1981. pp. 232-239.

Unga84 Ungar, D. Generation Scavenging: A non-disruptive
high performance storage reclamation algorithm. Proc ACM
SIGSOFTISIGPLAN Software Engineering Symposium on
Practical Software Development Environments, April 23-25,
1984. pp. 157-165.

UM Ungar, D. Design and evaluation of a high-
performance Smalltalk system. MIT Press, Cambridge Mass.,
1986.

Vitt84 Vitter, J.S. US&R: a new framework for redoing.
Proc. ACM SIGSOFTISIGPLAN Software engineering
symposium on practical software development environments
(Pittsburgh, PA, April 23-25). ACM Publications, New York,
1984, pp. 168-176.

Wlls88a Wilson, P. R. Two comprehensive virtual copy
mechanisms. Masters’ thesis, University of Illinois at Chicago
EECS department, 1988.

Wils88b Wilson, P.R. Opportunistic garbage collection.
Forthcoming in SIGPLAN Notices.

WilS89a Wilson, P.R. A simple bucket-brigade advancement
mechanism for generation-based garbage collection. Forthcoming
in SIGPLAN Notices.

WiMo89a Wilson, P.R. and Moher. T.G. A “card-marking”
scheme for controlling intergenerational references in generation-
based garbage collection on stock hardware. Forthcoming in
SIGPLAN Notices.

WiMo89b Wilson, P.R. and Moher, T.G. Design of an Efficient
Generational Garbage Collector. Submitted to OOPSLA ‘89.

343

