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Abstract

We describe an approach to implementing a wide-range of
concurrency paradigms in high-level (symbolic) program-

ming languages. The focus of our discussion is STING,
a dialect of Scheme, that supports lightweight threads of
control and virtual processors as first-class objects, Given
the significant degree to which the behavior of these ob-

jects may be customized, we can easily express a variety
of concurrency paradigms and linguistic structures within

a common framework without loss of efficiency.

Unlike parallel systems that rely on operating system ser-
vices for managing concurrency, STING implements con-
currency management entirely in terms of Scheme obje,cts

and procedures. It, therefore, permits users to optimize
the runtime behavior of their applications without requ~ir-
ing knowledge of the underlying runtime system.

This paper concentrates on (a) the implications of the

design for building asynchronous concurrency structures,
(b) organizing large-scale concurrent computations, and
(c) implementing robust programming environments for
symbolic computing.

1 Introduction

Thegrowing interest inparallel computing has led to the
creation of a number of parallel programming languages

that define explicit high-level program and data structures
for expressing concurrency, Parallel languages targeted

for non-numerical application domains typically support
(unvarying degrees of efficiency) concurrency structures
that realize dynamic lightweight process creation[13, 15]
high-level synchronization primitives[28, 29], distributed

datastructures[6], andspeculative concurrency [8,25]. In
effect, all these parallel languages may be viewed as con-

sisting of two sublanguages – a coordination language re-
sponsible for managing and synchronizing the activities

of a collection of processes, and a computation language
responsible for manipulating data objects local to a given
process.
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In this paper, we describe the implementation of a coor-
dination substrate that permits the expression of a wide

range of concurrency structures within the context of a
symbolic computation language. Our intention is to de-

fine a general-purpoae coordination model on top of which

a number of speciaHzed coordination languages can be ef-
ficiently implemented. We use Scheme[27] as our compu-
tation base, We emphasize, however, that the design of
the substrate could be incorporated into any high-level
symbolic programming language.

One obvious way of implementing a high-level parallel lan-
guage is to build a dedicated (user-level) virtual machine.

The virtual machine serves primarily as a substrate that
implements the high-level concurrency primitives found

in the coordination sublanguage. Given a coordination
language L supporting concurrency primitive P, the role
of L‘s virtual machine (Lp ) is to handle all implement a-
tion aspects related to P; this often requires that the ma-
chine manage process scheduling, storage management,
synchronization, etc. Becauae Lp is tailoredonly towards

efficient implementation of P, however, it is often unsuit-
able for implementing significantly different concurrency

primitives. Thus, to build a dialect of L with concur-
rency primitive P’ usually requires either building a new

virtual machine or expressing the semantics of P’ using
P, Both approaches have their obvious drawbacks: the

firat is costly to implement given the complexity of imple-

menting a new virtual machhte; the second is inefficient
given the high-level semantics of P and Lp’s restricted
functionrWy.

Rather than building a dedicated virtual machine for im-
plementing concurrency, a language implementation may
use low-level operating system services [5, 30], Process cre-
ation and scheduling ia implemented by creating a heavy-
or lightweight OS-managed thread of control; synchro-
nization is handled using low-level OS-managed struc-
tures. These implementations tend to be more portable

and extensible than systems built around a dedicated run-

time system, but they necessarily sacrifice efficiency [2]
since every (low-level) kernel call requires a context switch
between the application and the operating system. More-
over, generic OS faciHties perform little or no optimization
at either compile time or runtime since they are usually
insensitive to the semantica of the concurrency operators
of int crest,

The dialect of Scheme
includes a coordination

described here (called STING)
language (implemented via a



dedicated virtual machine) for expressing asynchronous

lightweight concurrency that combines the best of both

approaches, In contrast to other parallel Scheme

systems[12, 13, 19] and parallel dialects of similar lligh-

level languages[lO, 28], the basic concurrency objects in
STING (threads and virtual processors) are streamlined

data structures with no complex synchronization or value
transmission semantics, Unlike parallel systems that rely
on OS services for managing concurrency, STING imple-

ments all concurrency management issues in terms of
Scheme objects and procedures, permitting users to, op-
timize the runtime behavior of their applications without
requiring knowledge of underlying 0;S services. We ar-

gue that STING supports the features essential tocrea,ting
and managing various forms of asynchronous parallelism

within a conceptually unified, very general framework.

Our results show that it is possible to build an efficient

substrate upon which various parallel dialects of high-

level symbolic languages can be built. STING is not in-

tended merely to be a vehicle that implements stand-

alone short-lived programs, however. We envision this
system as providing a framework for building a rich ,pro-
gramming environment for parallel symbolic computing.

In this regard, the system provides support for thread
preemption, per-thread asynchronous garbage collection,

exception handling across thread boundaries, and appli-

cation dependent scheduling policies. In addition, it con-
tains the necessary functionality to han,dle persistent lcmg-

lived objects, multiple address spaces and other features

commonly associated with advanced programming envir-

onments.

This paper concentrates on the implications of the STING
design for building asynchronous concurrency structures,

organizing large-scale concurrent computations! and im-
plementing robust programming environments. A detailed
description of its implementation is given in [18]. The pa-
per is structured as follows. In the ne>ct section, we give

an overview of STING focusing primarily on the structure
of the coordination model. Section 3 describes the thread

and virtual processor abstractions. Section 4 describes

the dynamics of thread execution and synchronization
in the context of implementating of several well-known
concurrency paradigms (e.g., result-parallel (fine-grained)

parallelism[3], master-slave computations[l 1], speculative

concurrency, and barrier synchronization). We argue that
despite obvious syntactic and methodological differences,
these paradigms all impose common requirements on the

underlying runtime system: they require throttling of dy-
namically generated processes, cheap synchronization, ef-
ficient storage management, and the ability to treat pro-

cesses as bona fide data objects. Section 5 presents so]me
performance figures, and comparison to related work is

given in Section 6.

2 The Context

Four features of the STING design, when taken as a whole,
distinguish the system from many other symbolic parallel
languages:

1. The Concurrency Abstraction: concurrency is ex-
pressed in STING is via a lightweight thread of cc,n-

2.

3.

4.

trol. A thread is a non-strict first-class data struc-

ture that superficially resembles the object created

by a MultiLisp future[13], for example, We elabo-

rate upon the differences in the following section.

The Processor and Policy Abstractions: Threads ex-
ecute on a virtual processor (VP) that represents an

abstraction of a physical computing device. There
may be many more virtual processors than the ac-
tual physical processors available. Like threads, vir-

tual processors are also first-class objects. A VP
is closed over a policy manager that determines the
scheduling and migration regime for the threads that
it executes, Different VPS can be closed over differ-
ent policy managers without incurring any perfor-

mance penalty.

A collection of virtual processors can be combined to
form a virtual machine. A virtual machine is closed

over an address space managed by its virtual pro-
cessors, Multiple virtual machines can execute on a

single physical machine consisting of a set of physi-
cal processors, Virtual machines are also denotable
Scheme objects and may be manipulated as such.

Storage Model: A thread allocates data on a stack
and heap that it manages exclusively. Thus, threads

garbage collect their state independently of one an-

other; no global synchronization is necessary in or-
der for a thread to initiate a garbage collection.

Data may be referenced across threads. Inter-area

reference information maintained by areas is used to

garbage collect objects across thread boundaries[4,
26]. Storage is managed via a generational scaveng-

ing collector[21, 32]; long-lived or persistent data
allocated by a thread thread is accessible to other
threads in the same virtual machine.

The design is sensitive to storage locality concerns;

for example, storage for running threads are cached
on VPS and are recycled for immediate reuse when a

thread terminates. Moreover, multiple threads may
share the same dynamic context whenever data de-

pendencies warrant,

The Pvowarn Model: STING permits exceptions to be

handled-across threads, supports non-bl~cking 1/0,

permits the scheduling of virtual processors on phys-

ical processors to be customizable in the same way
that the scheduling of threads on a virtual processor

is customizable, and provides an infra-structure for
implementing multiple address spaces and long-lived
shared persistent objects.

3 Threads and Virtual Processors

The computation sublanguage of STING is Scheme[27], a
higher-order lexically scoped dialect of Lisp. The compiler
used is a modified version of 0rbit[20].

The main components in the coordination sublanguage of
STING are lightweight threads of control and virtual pro-
cessors. Threads are simple data structures that encapsu-
late local storage (e.g., registers, stack and heap organized
into areas), code, and relevant state information (e.g., sta-

tus, priorities, preemption bits, locks, etc.). They define
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a separate locus of control. The code associated with

a thread is executed for effect, not value; thus, threads

do not adhere to any particular synchronization protocol.

The system imposes no constraints on the code encapsu-
lated by a thread: any valid Scheme expression can be

treated as a distinct process.

Each virtual processor (VP) isclosed over a(l) a thread
controller that implements a state transition function on
threads, and (2) a policy manager that implements both
a thread scheduling and thread migration policy. A VP
is also closed over a set of registers and interrupt han-
dlers. Most of the dedicated registers found in the VP

are managed by Orbit; these include a register containing
the return address of the current procedure, registers to

hold thearguments to a procedure, and registers that re-

fer to the top-of-stack and top-of-heap, Another register
points to the currently executing thread. Besides vari-

ous handlers and a policy manager, a VP also retains the

identity of its virtual machine, and the physical processor
on which it is executing.

Virtual processors are multiplexed on physical processors
in the same way that threads are multiplexed on virtual
processors; associated with each physical processor is a
policy manager that dictates the scheduling of the virtual

processors which execute on it.

3.1 Threads

Threads are first-class objects in STING. Thus, they may

be passed as arguments to procedures, returned as results,

and stored in data structures. Threads can outlive the ob-
jects that create them. A thread is closed over a thunk,

anullary procedure, that is applied when the thread exe-
cutes. The value of the application is stored in the thread
on completion.

The static component of a thread also contains state in-

formation on the thread’s status. A thread can be either

delayed, scheduled, evaluating, stolen or determined, A

delayed thread will never be run unless the value of the

thread is explicitly demanded. A scheduled thread is a

thread scheduled to evaluate on some virtual processor
but which has not yet started executing. An evaluating

thread is a thread that has started running. A thread
remains in this state until the application of its thunk
yields a result, At this point, the thread’s state is set to
determined. Stolen threads are discussed in Section 4.1.

In addition to state information and the code to be eval-
uated, a thread also holds references to

1. other threads waiting for it to complete,

2. references to the thunk’s dynamic and exception en-

vironment, and

3. genealogy information indicating the thread’s parent,

siblings, and children.

Dynamic and exception environments are used to imple-
ment fluid bindings and inter-process exceptions. Geneal-
ogy information serves as a useful debugging and profiling
tool that allows applications to monitor the dynamic un-

folding of a process tree.

Evaluating threads are associated with a dynamic context

called a thread control block (TCB). Besides encapsulat-
ing thread storage (stacks and heaps), the TCB contains

information about the current state of the active thread

(e.g., is the thread currently running on some VP, is it

blocked, suspended, terminated, etc?), requested state

transitions on this thread made by other threads, the cur-
rent quantum for the thread, and the virtual processor on
which the thread is running. TCBS hold some other in-
formation for implementing speculative and barrier syn-

chronization that we discuss in Section 4.3.

The implementation of threads requires no alteration to
the implementation of other primitive operations in the
language. The synchronization semantics of a thread is

a more general (albeit lower-level) form of the synchro-
nization facility available via e.g., MultiLisp)s “touch”,

Linda’s tuple-space[7], or CML’S “sync” [28]. The ap-

plication completely control the condition under which
blocked threads may be resumed. However, there is ex-

plicit system support for dataflow (i. e., future-touch), non-

deterministic choice, and constraint-based or barrier syn-
chronization,

Users manipulate threads via a set of procedures (listed
below) defined by a thread controller (TC) that imple-

ments synchronous state transitions on thread state. The
TC is written entirely in Scheme with the exception of
a few primitive operations to save and restore registers.
The thread controller allocates no storage; thus, a TC

call never triggers garbage collection. Besides these oper-

ations, a thread can enter the controller because of pre-

emption.

(fork-thread expr VP) creates a thread to -hate
expr, and schedules it to run on VP.

(create-thread exyw) creates a dela~edthread that
when demanded evaluates espr.

(thread-run thread vp) inserts a delayed, blocked
or suspended thread into the ready queue of the
policy manager for up.

(thread-wait thread) causes the thread executing

this operation to block until thread’s state be-
comes determined.

(thread-value thread) returns thevrdue of theap-
plication associated with thread.

(thread-block thread . blocker) requests thread

to block; b!ockeris the condition on which the
thread is blocking.

(thread-suspend thread . quantum)
requests thread to suspend execution. If the
quantum argument is provided, the thread is

resumed when the period specified has elapsed;
otherwise, the thread is suspended indefinitely
until it inexplicitly resumed using thread-run.

(thread-terminate thread . values)
requests thread to terminate with vaJues as its
result.1

lA~ in some other scheme dialects, expressions can yield ‘“l-

tiple values.
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Figure 1: Threads and Virtual Processors

(yield-processor) causes thecurrent thread tore-

finquish control of its VP. The thread is inserted
into a suitable ready queue.

(current-thread) returns thethread executing this
operation.

3.1,1 A Simple Example

To illustrate how users might program with threads, con-

sider the program shown in Fig. 2 that defines a Sieve of
Erasthosenes prime finder implementation.

Note that the definition makes noreference toany partic-
ular concurrency paradigm; such issues are abstracted by

its op argument.

This implementation relies on a user-defined synchroniz-
ing stream abstraction that provides a blocking operation
on stream access (hd) and an, atomic operation for ap
pending to the end of a stream ( attach).

We can define various implementations of a prime num-
ber finder that exhibit different degrees of asynchronous
behavior. For example,

(let ((filter-list (list)))
(sieve (lambda (thunk)

(set filter-list
(cons (create-thread (t.hunk))

filter-list)))

n))

(define (filteropn input)
(let loop ((x (hd input))

(output (make-stream))
(last? true))

(cond ((zero? (mod xn))

(loop (rest input)
output

last?))
(last?

(op (lambda ()

(filter OP n output)))
(loop (rest input)

(attachx output)
false))

(else (loop (rest input)
(attachx output)
last?)))))

(define (sieve opn)

(let ((input (make-integer-stream n)))
(op (lambda ()

(filterop 2 input)))))

Figure2: An abstraction ofa concurrent prime finder.
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defines an implementation in which filters are generated
lazily; once a demanded, a filter repeatedly removes ele-

mentsoff its input stream, and generates potential primes

onto its output stream. To initiate anew filter scheduled
on a VP using a round-robin thread placement discipline,
we might write:

(thread-run

(car filter-list)

(mod (1+ (vm. vp-vector (current-vp). vm))
n))

(Current-vp) returns the VP on which the expression
is evaluated; ((current-vp).vm defines the virtual mac-
hine of which the current VP is a part, A virtual ma-

chine’s public state includes avector containing its virtual
processors.

By slightly rewriting the above call to sieve, wecanex-
press amore lazy implementation:

(let ((filter-list (list)))
(sieve (lambda

(set

(map

n))

(thunk)

filter-list

(cons (create-thread
(block

(map thread-unblock
filter-list)

(thunk)))
filter-list))

thread-block filter-list))

In this definition, a filter that encounters a potential prime

p, creates a lazy thread object L and requests all other fil-

tersin the chain to block. When L’svalue is demanded,

it unblocks all the elements in the chain, and proceeds
to filter all multiples ofp on its input stream. This im-

plementation throttles the extension of the sieve and the
consumption ofinput based on demand.

We can also define an eager version of the sieve se follows:

(sieve
(lambda (thunk)

(fork-thread (thunk)))
n)

Evaluating this application schedules a new thread re-
sponsible for filtering all multiples of a prime.

This simple exercise highlights some interesting points

about the system. First, STING treats thread operations
as ordinary procedures, and manipulates the objects ref-
erenced by them just as any other Scheme object; if two

filters attached viaacommon stream are terminated, the

storage occupied by the stream maybe reclaimed. STING
imposes no a priori synchronization protocol on thread

access - application programs are expected to build ab-
stractions that regulate the coordination of threads.

The threads createdby filter maybe terminated inone
of two ways. The top-level call to sieve may be struc-

tured so that it has an explicit handle on these threads;
the filter-list data structure used to create a lazy
sieveis such an example. One can then evaluate:

(map thread-terminate filter-list)

to terminate all threads found in the sieve. STING also
provides thread groups as a means of gaining control over a

related collection of threads[19]. A thread group is closed
over debugging and thread operations that may be ap-

plied en masse to all of its members. Every thread has
a thread group identifier that associates it with a given
group. Thread groups provide operations analogous to
ordinary thread operations (e.g., termination, suspension,

etc.) aswell as operations for debugging and monitoring
(e.g., resetting, listing all threads in a given group, listing
all groups, profiling genealogy information, etc..) Thus,

when the thread T under which the call to sieve is ter-
minated, users can request all of T’s children (which are
defined to bepartof T’sgroup to be terminated) thus:

(kill-group (thread.group T))

Second, lazy threads are distinguished from scheduled

ones. A lazy thread defines a thread object closed over

a thunk and dynamic state (but which is unknown to
any virtual processor). A scheduled thread is also a

lightweight data structure, but is known to some VP
and will eventually be assigned aTCB. Applications can
choose the degree of laziness (or eagerness) desired. Only
the thread controller can initiate a thread transition to

evaluatirag -the interface does not permit applications to
insist that any specific thread immediately run on some

virtual processor, All default policy managers implement
afair scheduling policy, but STING imposes no constraints
on user-defined policy managersin this regard.

Third, threads can request state changes to other threads;

thechange itself takes place only when the target thread
next makes a TC call (either synchronously or because

of preemption). Requested state changes to a thread T

made by another T’ are recorded as part of T’s next state

in its TCB, State changes are recorded only if they do
not violate the state transition semantics (e.g., eva(uat-

ing threads cannot be subsequently sclwdule~ terminated
threads cannot become subsequently Mocked, etc.), and

therequesting thread has appropriate authority.

Only threads can actually effect a change to their own

state. This invariant implies that a TCB can perform a

state transition without acquiring locks.

3.2 Virtual Processors

Virtual processors (and by extension, virtual machines)

are first-class objects in STING. According first-class sta-
tus to VPS has several important implications that distin-
guish STING from other high-level thread systems[9, 10] or
other asynchronous parallel languages. First, one can or-

ganize parallel computations by explicitly mapping pro-
cesses onto specific virtual processors. For example, a

process P known to communicate closely with Q should
execute on a VP topologicrdly near V. Such considera-

tions can be expressed in STING since VPS can be directly
enumerated. Systolic style programs for example can be
expressed by using self-relative addressing off the current
VP (e.g., left-W, right-VP, up-Vp, etc.). Thesystem
provides a number of default addressing modes for many
common topologies (e.g., hypercubes, meshes, systolic ar-
rays, etc.). Furthermore, since VPS can be mapped onto
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specific physical processors, the ability to manipulate vir-

tual processors as first-class data values gives STING pro-
grammers a great deal of flexibility in expressing different

parallel algorithms that are defined in terms of specific
processor topologies[16].

More significantly, since VPscan be closed over different
virtual policy managers, different groups of threads cre-
atedby an application maybe subject todifferent schedul-
ing regimes. Virtual machines or VPs can be tailored to

handle different scheduling protocols or policies. Wedis-

cuss the implications of customizable schedulers in the

following section.

3.3 The Policy Manager

The STING thread controller defines a thread state transi-

tion procedure, but does not define a priori scheduling or
migration policies. These policies can be application de-

pendent. Although several default policies are provided

as part of the overall STING runtime environment, users
are free to write their own. In fact, each virtual proces-
sor is closed over its own policy manager; thus, different

VPS in a given virtual machine may implement differ-
ent policies, The PM handles t bread scheduling, proces-

sor/thread mapping, and thread migration.

The ability to partition an application into distinct

scheduling groups is important for long-lived parallel (or
interactive) programs. Threads executing 1/0 bound pro-
cedures have different scheduling requirements than those
executing compute bound routines; applications with real-

time constraints should be implemented using different
scheduling protocols than those that require only a sim-
ple FIFO scheduling policy.

Tree-structured parallel programs may realize best run-

time performance using a LIFO-based scheduler; appli-
cations running master/slave or worker farm algorithms
may do better using a round-robin preemptive scheduler

for fairness. Since all of these applications may be compo-

nents of a larger program structure or environment, the
flexibility afforded by having them evaluate with different
policy managers is significant. Distinct applications can
exist as independent executing threads evaluating on the

same virtual machine. Moreover, each distinct sch~eduler
is realized by a policy manager with different performance
characteristics and implementation concerns.

Our design seeks to provide a flexible framework able

to incorporate and experiment with different scheduling
regimes transparently without requiring modification to
the thread controller itself. To this end, all PMs provide
the same interface although no constraints are imposed on
the implementations themselves. The interface shown be-
low provides operations for choosing a new thread to run,

enqueuing an evaluating t bread, setting t bread priorities,
and migrating threads. These procedures are expected

to be used exclusively by the TC; in general, user appli-
cations need not be aware of the policy/thread manager

interface.

(pm-get-next-thread VP) returns the next ready

TCB or thread to run on VP. If aTCBis re-
turned, its associated thread is eoaluatinsif a

thread is returned, its state is not evaluating,

and anew TCB must be allocated for it.

(pm-enqueue-thread obj VP state)

enqueues obj which may be either a thread or
aTCB into the ready queue of the policy man-
ager associated with up. The state argument
indicates the state in which the the call to the
procedure is made: delayed, kernel-block, user-
block, or suspended.

(pm-priority priority) and (pm-quantum quantum)
use their priority and quantum arguments as

hints to establish anew priority and quantum

for the currently executing thread.

(pm-allocate-vp) returns a new virtual processor
on the current virtual machine,

(pnr-vp-idle VP) is called by the thread manager
if there are no evaluating threads on up. This
procedure can migrate a thread from another
virtual processor, do bookkeeping information,
or call the physical processor to have the pro-

cessor switch itself to another VP.

Besides determining a scheduling order for evaluating

threads, the PM implements two basic load-balancing de-
cisions: (1) it may choose a VP on which a newly cre-
ated thread should be run, and (2) it determines which

threads onits VPcan be migrated, and which threadsit

will choose for migration from other VPS.

The first decision point is important to handle initial load-
balancing; the second is important to support dynamic

load-balancing protocols. Determining the initial place-
ment of a newly evaluating thread is often based on pri-
orities different from those used to determine the migra-

tion of currently evaluating threads, The PM interface
preserves this distinction.

Scheduling policies can declassified along several impor-
tant dimensions:

Locality: Isthere a single global queue ofthreadsin
this system, or does each PM maintain its own
local queues?

Granularity Are threads distinguished based on their
current state orareall threads viewed as equals
by the PM? For example, an application might
choose an implementation in which all threads
occupy a single queue regardless of their current
state, Alternatively, it might choose to classify
threads into different queues based on whether
they are evaluating, scheduled, previously sus-
pended etc.

Structure: Are the queues implemented as FIFO’s,

LIFO’s, round-robin, priority, or realtime struc-

tures (among others)?

Serialization: What kind of Iockkg structure does an
application impose on various policy manager
queues?
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Choosing different alternatives in this classification scheme

leads to different performance characteristics. For examn-

ple, if we adopt a granularity structure that distinguishes

evaluating threads (i. e., threads with TCBS) from sched-
uled ones, and we impose the constraint that only sched-

uled threads can be migrated, then no locks are required
to access the evaluating thread queue; this queue is local

to the VP on which it was created. Queues holding sche~d-
uled and suspended threads however must be locked be-
cause they are targets for migration by PMs on other VP’S.
This kind of scheduling regimen is useful if dynamic load-
balancing is not an issue, Thus, when there exist many
long-lived non-blocking threads (of roughly equal dura-

tion), most VPS will be busy most of the time executing
threads on their own local ready queue, Eliminating locks

on this queue in such applications is therefore beneficial.

On the other hand, applications that generate threads of

varying duration may exhibit better performance when
used with a policy manager that permits migration of

both scheduled and evaluating threads even if there is
an added cost associated with locklng the runnable ready

queue.

Global queues imply contention among policy managers

whenever they need to execute a new thread, but such
an implementation is useful in implementing many kinds
of parallel algorithms. For example, in maater/slave (or
worker-farm) programs, the master initially creates a pool

of threads; these threads are long-lived structures that do
not spawn any new threads themselves. Once running

on a VP, they rarely block. Thus, a PM executing such a
thread has no need to support the overhead of maintaining

a local thread queue. Local queues are useful, however, in
implementing result-parallel programs in which the pro-

cess structure takes the form of a tree or graph; these
queues can be used in such applications to load balance
threads fairly among a set of virtual processors.

4 The Dynamics of Thread Execution and Synchroniza-
tion

Obvious differences exist in program methodology, syn-

tax, etc. among the numerous proposals for incorporat-
ing concurrency structures into high-level symbolic pr-
ogramming languages. STING supports the functionality

required by the semantics of many of these proposals: (a)
threads may be dynamically instantiated and require rum-
time scheduling, (a) communication among threads takes
place via concurrent data structures that may be shared
by many readers and writers, (c) communicating threads
execute within a single address space, and (d) threads syn-

chronize either by waiting for values generated by other

processes, or by waiting at explicit barrier points.

4.1 Support for Result (Fine-Grained) Parallelism

In a result parallel program, each concurrently executing

process contributes to the value of a complex data struc-
ture (e.g., an array or list). Process communication is via
this result structure. Expressions that attempt to access
a component of the result whose contributing process is
still evaluating block until the process completes.

(define (primes limit)
(let loop ((i 3)

(primes (future (list 2)) ))
(cond (O i limit)

(touch primes))
(else

(loop
(+ i 2)
(future

(filter i primes)))))))

(define (filter nprimes)
(let loop ((j 3))

(cond (O (* j j) n)
(consn (touch primes)))

((zero? (modn j)) primes)
(else (loop (+ j 2))))))

Figure 3: An implementation ofprimes using futures. A

future must be explicitly touched to access its value in
this implementation.

Fbtw-es[13] area good example of an operation well-suited

for implementing result parallel algorithms. The object
created by the MultiLisp or Mu1-T expression, (future

E), creates a thread responsible for computing E; the

object returned is known as a future. When E finishes,

yielding v as its result, the future is said to be determined.
An expression that touches a future either blocks if Eis
still being computed or yields uifthefuture is determined.
Threads are a natural representation for futures.

To motivate the implementation of result parallelism in

STING, Figure 3 is an implementation of a parallel prime

number finder using futures.

In this program, a future is created for each odd element
between 2 and limit. Anumber isadded onto a current

prime list if filter determinesit to bea prime number.
Ina naive implementation, each instantiation ofafuture

will entail the creation of anew thread; thus, the number
of threads allocated in executing this program (under this

implementation) is proportional to limit. This behavior
is undesirable because a future computing the primality
of ihas an implicit dependence with the future created to
compute theprimality of i-2 and soon. Poor processor
and storage utilization will results given the data depen-
dencies found in this program. This is because many of

the lightweight processes that arecreated will either:

1.

2.

need to block when they request the value of other

yet-unevaluated futures or,

in the case of processes computing small primes, do
a small amount of computation relative to the cost
incurred in creating them.

Because the dynamic state of a thread consists of large
objects (e.g., stacks and heaps), cache and page locality
is compromised if process blocking occurs frequently or if
process granularity is too small.
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The semantics of touch and future dictate that a future
F which touches another future G must block on G if
G is not yet determined. Assume TF and TQ are the
thread representation of F and G, respectively. The run-
time dynamics of the touch operation on G can entail
accessing TG either when TG is (a) delayed or scheduled,
(b) evaluating, or (c) determined. In the latter caae, no

synchronization between these threads is necessary. Case
(b) requires TF to block until TG completes. STING per-

forms an important optimization for case (a), however,
which we discuss below.

4.1.1 Thread Stealing

TF can evaluate the closure encapsulated within TQ (call

it E) using its own stack and heap, rather than blocking
a forcing a context switch if TG is delayed or scheduled.

In effect, this implementation treats E as an ordinary
procedure, and the touch of G as a simple procedure call;
we say that TF steals TG in this case. The correctness
of this optimization lies in the observation that that TF
would necessarily block otherwise; by applying E using

TF’S dynamic context, the VP on which TF executes does

not incur the overhead of executing a context switch. In
addition, no TCB need be allocated for TQ since TF’s
TCB is used instead.

The optimization may only lead to observably different

results if used in instances where the calling thread need
not necessarily block. For example, suppose TG was an
element of a speculative call by TF. Furthermore, assume
TG diverges, but another speculative thread (call it TH)
does not. In the absence of stealing, both To and T~
would spawn separate thread contexts. T~returns a value
to TF, In the presence of stealing, however, TF will also
loop because TG does. Users can parametrize thread

state to inform the TCif a thread can steal or not; STING

provides interface procedures for this purpose.

Like load-based inlining[33] or lazy task creation[24], steal-
ing throttles process creation. Unlike these other tech-
niques, however, stealing also improves locality. Locality
is increased because a stolen thread is run using the TCB
of a currently evaluating thread; consequently, the stack
and heap of this TCB remains in the virtual machine’s
working set.

Because of stealing, STING reduces the overhead of context
switching, and increases process granularity for programs
in which processes (a) exhibit strong data dependencies

among one another, and (b) block only when they require
data from other processes. Of course, for the operation

to be most effective, appropriate scheduling policies must
be adopted. For example, a preemptible FIFO scheduler
in the prime number code would not take full advantage
of stealing since processes computing small primes would
be run before processes that compute large ones. Stealing

operations will be minimal in this case: processes exhibit
few data dependencies with processes instantiated earlier,
and threads computing small primes must necessarily be

determined before threads computing large primes can
proceed. On the other hand, a LIFO scheduling policy will
cause processes computing large primes (i, e., primes close

to limit) to be run first. Stealing will occur much more
frequently here since processes will demand the results of
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Figure 4: Dynamics of thread stealing, Dashed lines indi-
cate dataflow constraints, solid lines specify thread tran-

sitions.

other processes computing smaller primes which have not
yet run; the process call graph will, therefore, unfold more
effectively,

4.2 Master-Slave Programs: Blocking and Synchroniza-
tion

The master-slave paradigm is a popular parallel program
structuring technique. In this approach, the collection of
processes generated is bounded a priori a master pro-
cess generates a number of worker processes and collates
their results. Process communication typically occurs via

shared concurrent data structures or variables. Ma.ster-
slave programs often are more efficient than result paral-

lel ones on stock multiprocessor platforms because work-
ers rarely need to communicate with one another except

to publish their results, and process granularity can be
better tailored for performance.

We have used STING to build an optimizing implementa-
tion of first-class tuple-spaces in Scheme. A tuple-space is
an object that serves aa an abstraction of a synchronizing
content-addressable memory[6]; tuple-spaces are a natu-
ral implement ation choice for many maater/slave-bssed
algorithms.

The semantics of tuple-spaces in our system differ sig-
nificantly from their definition in C. Linda, for example.
Besides the added modularity brought about by deno-
table tuple-space objects, our system also treats tuples as
objects, and tuple operations as binding expressions, not
statements. We have built a customized type inference
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procedure to specialize the representation of tuple-spaces

whenever possible[l 7]. In our current implementation,
tuple-spaces can be specialized as synchronized vectors,

queues, sets, shared variables, semaphores, or bags; the
operations permitted on tuple-spaces remains invariant
over their representation. In addition, applications can

specify an inheritance hierarchy among tuple-spaces if so

desired.

Processes can read, remove or deposit new tuples into
a tuple-space. The tuple argument in a read or remove
operation is called a tempiate and may contain variables

prefixed with a “?”. Such variables are referred to as joir-
mals and acquire a binding-value as a consequence of th~e

match operation. The bindings acquired by these formals
are used in the evaluation of a subordinate expression:

thus, we can write:

(get TS [?xI
(put TS [(+X 1)1))

toremoveatomicrdly asingIeton tuple from TS, increment

it by one, and deposit it back into TS.

Our implementation, in the general case, uses two hash-

tables (call them .H~and HP) astherepresentation struc-

tures for a fully associative tuple-space. Processes that

attempt to read or remove atuple first hash on their non-
formal tupleelementsin~p, Ifatleast one match exists,

theproper bindings fortheformals preestablished, there-

trieved tupleis marked as deletedin the case of a remove

operation, and the executing process proceeds. When a
match does not exist, theprocess hashes onitsnon-formd

tuple elements in HR, deposits a structure that indicates
its identity. and blocks.

A depositing process is defined symmetrically -any pro-
cesseswaiting foritstuple in HB are unblocked andresched-

uled. Otherwise, the tuple is deposited into HP using its
fields as hash keys. The implementation minimizes syn-

chronization overhead by associating a mutex with every
hash bin rather than having a global mutex on the entire
hash table. This permits multiple producers and cons-

umers of a tuple-space to concurrently access its hash
tables.

The implementation also takes advantage of stealing to
permit the construction of fine-grained parallel progranns

that synchronize ontuple-spaces. We use threads as bona
jide elements in atuple. Consider a process Pthat exe-
cutes the following expression:

(rd TS C Xl X2 1 J?3)

where x I and x2 are non-formals. Assume furthermore

that a tuple in TS is deposited as a consequence of t!he
operation:

(spawn TS [ & Ez 1)

This operation schedules two threads (call them TE, and
TE, ) responsible for computing El and E2. If both !f’zr,

and TE2 complete, the resulting (passive) tuPle cont~ns
two determined threads; the matching procedure applies
thread-value when it encounters athreadinatuple; this
operation retrieve the thread’s value.

If TE1 is still scheduled at the time P executes, however, P
is free tested it, and then determine ifits result matchles
xl. If a match does not exist, P may proceed to search

for another tuple, leaving TE2 still in a scheduled state.
Another process may subsequently examine this same tu-

ple and steal TE2 if warranted. Similarly, if TE1’s result

matches xl, Pis then free tosterd T&. If either TEL or
TE2 are already evaluating, Pmaychoose to either block
on one (or both) thread(s), or examine other potentially
matching tuples in TS. The semantics of tuple-spaces im-
pose no constraints on the implementation in this regard.

STING’S combination of first-class threads and stealing rd-
10WS us to write quasi-demand driven fine-grained (result)
parallel programs using shared data structures. In this

sense, the thread system attempts to minimizes any sig-
nificant distinction between structure-based (e.g., tuple-

space) and dat aflow style (e. g., future/touch) synchro-
nization.

4.2.1 Mutexes

Operations on tuple-spaces or similar high-level syn-
chronization structures make use of mutex operations,

mutex-acquire and mutex-release.

Mutexes arecreated bythemutex operation, (make-mutex
active passive). Mutex-acquire attempts to acquire a

mutex. If the mutex is locked, the executing thread ac-

tively spins forthe period specified by active; active spin-

ning causes the thread to retain control of its virtual pro-
cessor during the period that it is blocked waiting for the

mutex to be released. When the active spin count be-
comes zero, the thread relinquishes control of its VP, and

inserts itself into an appropriate ready queue. When next
run, it attempts to re-acquire the mutex, yielding its pro-
cessor if unsuccessful. This operation is repeated passive
number of times. If the passive spin count is exhausted,
and the mutex has not yet been acquired, the executing
thread blocks on the mutex. When the mutexis ulti-

mately released, (via mutex-release) all threads blocked
on this mutex are restored onto some ready queue.

Using mutex primitives, macros, and Scheme’s support for
exception handling, onecan easily build a“safe” version of

a mutex acquire operation, (rrith-mutex mutex bodv).
This operation ensures that mutez is released if bodg raises

an exception during its evaluation that causes control to
exit the current dynamic environment.

4.2.2 Preemption and Interrupts

A preemptive round-robin or FIFO scheduling policy is
best suited for master-slave applications in which the mas-

ter performs relatively little processing after the initial

set of spawned workers complete. A round-robin pol-

icy allocates a specified quantum for each worker in the
worker pool. Support for preemption is important be-

cause workers rarely block; in its absence, long-running
workers might occupy all available VPS at the expense of
other enqueued ready threads.

Preemption is sometimes best disabled in master/slave
programs that make significant use of barrier synchro-

nization. In these applications, the master generates a
new set of worker processes after all previously created
workers complete. If the time to execute a particular
set of workers is small relative to the total time needed
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to complete the application, enabling preemption may

degrade performance[31]. Threads can disable an ini-
tial preemption by setting a flag in their TCB; if pre-
emption takes place when this quantum flag is false, an-
other bit in the TCB state is set indicating that a sub-

sequent preemption should not be ignored, Users can
encapsulated time critical code using the the syntactic

form, (without-preemption body) that evaluates body

with preemption disabled. The without-preemption form

is in fact a specialized version ofamore general construct,
without-interrupts, that disables all interrupts during

the evaluation ofits body,

4.3 Speculative Parallelismand Barrier Synchronization

Speculative parallelism is an important programming tech-

nique that often cannot be effectively utilized because of

runtime overheads incurred in its implementation. The

two features most often associated with systems that sup-
port a speculative programming model are the ability to
favor certain (more promising) tasks over others, and the
means to abort, reclaim (and possibly undo) unnecessary
computation,

STING permits programmers to write speculative applica-
tions by:

1. allowing users to explicitly program thread priorities,
2. permitting a thread to wait on the completion of

other threads, and
3. allowing threads to terminate other threads,

Promising tasks can execute before unlikely one because
priorities are programmable, A task a that completes first

in a set of tasks can awaken any thread blocked on its
complet etion; this functionalist y permits STING to support

a simple form of OR-parallelism[8]. a can terminate all
other tasks in its task set once it has been determined that

their results are unnecessary. Speculative computation
using STING, however, will not be able to undo non-local
side-effects induced by useless tasks; the system does not
provide a primitive backtracking mechanism2.

Consider the implementation of a wait-f or-one construct,
This operator evaluates its list of arguments concurrently,
returning the value yielded by the first of its arguments
to complete, Thus, if a; yields v in the expression:

(wait-for-one al az . . . a; . . . an)

the expression returns v, and, if desired by the program-
mer, terminates the evaluation of all the remaining U3,

j#i.

The specification of a wait-for-all construct that im-
plements an AND-parallel operation is similar; it also
evaluates its arguments concurrently, but returns true

only when all its arguments complete, Thus, the expres-
sion:

(wait-for-all al az . . . a; . . . an)

acts as a barrier synchronization point since the thread

executing this expression is blocked until all the a, com-

plete. The implementation of this operation is very simi-
lar to the implementation of the speculative wait-for-one

operation.

z sting does not support first-class continuations across thread

boundaries.

(define (block-on-group count group)
(let loop ((i count)

(threads group))
(cond

((zero? i))

((null? group)
(set-TCB.wait-count (current-TCB) i)
(thread-block (current-thread)))

(else

(let ((thread (car threads)))
(mutex-acquire thread.mutex)
(cond

((determined? thread)

(mutex-release thread.mutex)
(1OOP (1- i) (cdr threads)))

(else

(let ((tb (make-tb)))

(set-tb.tcbtb
(current-tcb))

(set-tb.threadtb thread)
(set-tb.next tb

(thread,waiters thread) )
(set-thread,waiters thread tb))

(mutex-release mutex) )
(loop (1- i)

(cdr threads))))))))

Figure5: Definition of block-on-group,

The TC implements these operations using a common

procedure, block-on-group. Threads and TCBsare de-
fined to support this functionality, For example, associ-

ated with a TCB structure is information on the number
of threads in the group that must complete before the

TCB’s associated thread can resume.

Block-on-group takes alistof threads and acount. These
threads correspond tothe arguments of the wait-for-one
and wait-for-all operations shown above; the count ar-

gument represents the number of threads that must com-
pletebefore the current thread (Le., thethreadexecuting
this procedure) is allowed to resume. If thecount is one,
we get an implementation of wait-for-one; if the count

is equal ton, weget an implementation of wait-for-all,

The relationship between a thread Tg in the group and the
current thread (Tw) thatis to wait onTis maintained in a
data structure (called a thread barrier (TB)) that contains
references to:

1. TW’STCB.
2. the TB of another waiter blocked on Tg (if one ex-

ists).
3. Tg -this is used only for debugging purposes.

We give a definition for block-on-group in Fig,5,

The call:

(block-on-groupm T1 T2 . . . T.)

causes the current thread (call it T) to block on the com-
pletion of m of the Ti, m < n, Each of these Ti have
a reference to T in their chain of waiters, The proce-
dure checks if a thread in the thread group has already
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been determined; in the case, the wait-count is decre-
mented, but no thread barrier is constructed. Other-
wise, a TB is constructed as well. When all threads in

group have been examined, the procedure sets the cur-
rent thread’s wait-count field to the extant count, and
issues a thread-block operation,

Applications use Block-on-group in conjunction with
a wakeup-waiters procedure that is invoked by the (z;
when they complete. Wakeup-waiters examines the list

of waiters chained from the waiters slot in its threaLd

argument. A waiter whose wait-count becomes zero is

enqueued on the ready queue of some VP, The TC iln-
vokes wakeup-waiters whenever a thread T completes

(i.e., whenever it terminates or abnormally exits). All
threads waiting on T’s completion are thus rescheduled.

Given these two procedures wait-f or-one can redefined
simply:

(define (wait-for-one block-group)
(block-on-group 1 block-group)
(map thread-terrhate block-group)

If Texecutes wait-f or-one, it blocks onall the threads

in its block-group argument. When Tis resumed, it is
placed on a queue of ready threads in the policy manager

of some available virtual processor. The map procedure
executed upon T’s resumption terminates all threads in

its group.

STING’S wait-for-all procedure can omit this operation

since all threads in its block-group are guaranteed to
have completed before the thread executing this operation
is resumed.

5 Performance

STING is currently implemented onan 8 processor Silicon

Graphics MIPS R3000 shared-memory (cache-coherent)

multiprocessor. The physical machine configuration maps
physical processors tolightweight Unix threads; each node

in the machine runs one such thread. We ran the bench-
marks shown below using a virtual machine in which each
physical processor implements a single virtual processor.

Fig. 6 gives baseline figures for various thread operations;

these timings were derived using asingle LIFO queue.

The “Thread Creation” timing is the cost to create a

thread not placed in the genealogy tree, and which has

no dynamic state. “Thread Fork and Value” measures

the cost to create a thread that evaluates the null pr-
ocedure and returns. “Scheduling a Thread” is the cc)st

of inserting a thread into the ready queue of the cur-
rent VP. A ‘[Synchronous Context Switch” is the cc)st
to make a yield-processor call in which the calling
thread is resumed immediately. The cost for “Stealin,g”
does not include the time to schedule the thread being
stolen. “Thread Block and Resume” is the cost to block
and resume a null thread. “Tuple Space” is the cost to
create a tuple-space, insert and then remove a singleton

tuple. The speculative synchronization timings reflects

the cost to compute two null threads speculatively; the
barrier synchronization is the cost to build a barrier syn-
chronization point on two threads both computing the
null procedure. We present detailed benchmarks of sev-

eral application programs in a companion paper[18].

Case Timirags(irt pseconds)

Thread Creation 8,9

Thread Fork and Value 44.9
Scheduling a Thread 18.9
Synchronous Context Switch 3.77
Stealing 7.7

Thread Block and Resume 27.9

Triple-Space 170
Speculative Fork (2 threads) 68.9

Barrier Synchronization (2 threads) 144.8

Figure 6: Baseline timings,

6 Related Work and Conclusions

Insofar as STING is a programming system that permits

the creation and management of lightweight threads of
control, it shares several common traits with thread pack-

age systems developed for other high-level languages[9,
10, 23]. These systems also view threads as a manifest
datatype, support preemption in varying degrees, andin
certain restricted cases, permit programmers to specify a

specialized schedtding regimen. The thread abstraction
defines the coordination sublanguage in these systems.

There are some important differences however that clearly
distinguish STING from these other systems. First, the

scheduling andmigration protocol STING uses iscomp~etery

customizable; different applications can run different sched-

ulers without modifying the thread manager or the virtual

processor abstraction; such customization can reapplied

to the organization of thevirtual machine itself, Second,

STING’S support for data loczdity, storage optimization,
and process throttling via stealing is absent in other sys-
tems. Moreover, all thread operations are implemented

directly within thesT~G virtual machine: there isnocon-
text switch to a lower level kernel that must be performed

in order to execute a thread operation. STING is built
on abstract machine intended to support long-lived appli-
cations, persistent objects, and multiple address spaces.

Thread packages provide none of this functionality since
(by definition) they do not define a complete program en-
vironment.

STING also differs from programming languages that pro-
vide high-level abstractions (e.g,, continuations[34, 14] to
model concurrency. Because we designed STING as asys-
tems programming language, it provides low-level con-
currency abstractions - application libraries can directly
create thread objects, andcandefine their own scheduling
and thread migration strategies. High-level concurrency
constructs are realizable using threads, but the system
does not prohibit users from directly using thread oper-

ations in the ways described above if efficiency consider-
ations warrant. In particular, the same application may
define concurrency abstractions with different semantics
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and efficiency concerns within the same runtime environ-
ment,

In certain respects, STING resembles other advanced multi-
threaded operating system environments[l, 22]: for exam-

pie, itsupports non-blocklng I/Ocalls with call-back, user
control over interrupts, and local address space manage-
ment as user-level operations. It cleanly separates user-

level and kernel-level concerns: physical processors han-
dle (privileged) system operations and operations across
virtual machines; virtual processors implement all user-

level thread and local address-space functionality. How-
ever, because STING is an extended dialect of Scheme, it
provides the functionality and expressivity ofa high-level

programming language (e.g., first-class procedures, gen-
eral exception handling, and rich data abstractions) that

typical operating system environments do not offer.

STING is a platform for building asynchronous program-

ming primitives and experimenting with new parallel pro-
gramming paradigms, In addition, the design also allows

different concurrency models to be evaluated competi-
tively. Scheme offers an especially rich environment in

which to undertake such experiments because of its well-

defined semantics, its overall simplicity, and its efficiency.
However, the STING design itself is language independent;
we believe it could be incorporated fairly easily into any

high-level programming language.

STING does not merely provide hooks for each concur-

rency paradigm and primitive we considered interesting,
We focussed instead on basic structures and functional-

ity common to a broad range of parallel programming
structures; thus, the implementation of blocking is easily

used to support speculative computation, the “stealing”
optimization used to throttle the execution of threads is
well-suited for implementing futures and tuple-space syn-
chronizat ion, and, finally, cust omiz able policy managers
make it possible to build fair and efficient schedulers for
a variety of other paradigms.
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