
TAILORING TESTING TO A SPECIFIC
C O M P I L E R - EXPERIENCES

Harlan K. Seyfer

~I"~r'~Y~rLUNIVAC
Major Systems Software Development Center

P.O. Box 43942
St. Paul, MN:55164

ABSTRACT

The testing of the Univac UCS-Pescal compiler is described. Tests were acquired from
various sources, converted from existing tests, an~ developed in house. Test development and
execution using the Univac Test Controller System is illustrated with examples. The
experiences gained from this and other compiler testing efforts are described.

1. INTRODUCTION

Since early 1981, the Product Test
Development group at the Sperry Univac
Major Systems Software Development Center
has been involved in test development for a
Pascal compiler. This compiler is being
written under Univac's Universal Compiling
System (UCS), described in [Gyllstrom-79].
To test this compiler, we began with a
mixture of test acquisition and development
methods based on three ordered goals.

1) Acquire tests wherever possible.
Exhaustive testing of a compiler is out of the
question, both in terms of complexity and
resources. Thus the problem is how to get
the most out of the resources available for
testing. An obvious solution is to acquire
pre-existing tests. Not only does this avoid
reinventing those tests, it brings to bear
differing perceptions on how to go about
testing the software.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

2) Convert tests from other languages,
which exercise similar, perhaps vendor
unique, features. Over the years we have
built a store of such tests in several
languages. Because of language similarities,
most conversions were from preexisting
Fortran tests.

Also, there is available [NESC-80] a set of
elementary math function tests written in
Fortran but readily convertible to other
languages.

3) Develop tests to overcome the
limitations of acquired and converted tests.
There are restrictions on the capabilities of
acquired tests. By their nature they must be
general enough to run with compilers of
differing origin and on a variety of systems
[Oliver-75]. Also, assumptions are often
made about the "typical" compiler and
system [Oliver-79], which are not necessary
when tailoring tests to a single compiler.

© 1982 ACM 0-89791-074-5/82/006/0140 $00.75

140

Home-grown tests bring to bear experiences
with previous qualifications of the vendor's
compilers and allow concentration on known
or suspected weaknesses.

The Univac Series 1100 Test Controller
System (TCS) [TCS-80] has helped relieve
much of the tedium of test analysis and
record keeping. This paper will present a
walk through the execution of a sample test
and describe the output and reports
automatically generated.

Several practical experiences have been
gained and observations made during this
and other compiler testing efforts. Some of
these involved issues that either had to be
resolved or their effects minimized. This
included such problems as testing "odd
corners" of a language, revealing tests in
advance, internal or external auditing,
assumptions made during testing, the
difference between conformance and
performance testing, test sizes, and the
effects of optimization.

2. THE TESTS

2.1. S O U R C E S OF A C Q U I R E D
TESTS

After a literature search [Seyfer-82], two
Pascal compiler test suites were identified
and obtained, the Pascal Validation Test
Suite [Freak-82]and a set of syntax error
analysis and recovery tests [Ripley-81a].
They differ substantially in their objectives.

2.1.1. The Pascal Validation Suite

The Pascal Validation Suite
[Wichmann-80]was developed at the
University of Tasmania, Australia, and at the
National Physical Laboratory, Teddington,
England. Version 2.2 consists of 318 tests
designed to support the ISO draft Standard.
A part of the documentation of each test is a
reference to the relevant Standard section.
The tests are grouped into six classes
according to what is being tested for:
conformance to the Standard, deviance from
the Standard, implementation definition,

error handling, quality, and extensions. More
on this classification scheme is given below.

2.1.2. Syntax Error Analysis and
Recovery

Ripley and Druseikis [Ripley-78] analyzed
errors in Pascal programs written by students
in two graduate computer science classes at
the University of Arizona. The object was to
determine the most common types of error
and the efficiency of various error recovery
algorithms. The Pascal syntax error tests
resulted from the accumulation of distinct
errors appearing in those programs. Data
supplied with each test includes
documentation as to the location and type of
error and the numeric error code of the
corresponding error message from Appendix
E of Jensen and Wirth [Jensen-74]. Ripley
and Druseikis employed a simple method for
classifying errors: single missing token,
single extra token, single wrong token, and
non-single token errors. They also devised a
grading system for a compiler's accuracy of
diagnosis: diagnosed accurately, diagnosed
incorrectly, and diagnosed poorly, in addition
to diagnosed late. Since their 127 tests were
a distillation of nearly 3000 errors, a
weighting factor was assigned each error
according to its original frequency
[Ripley-81 b].

In addition, over 300 assorted Pascal
programs, not written to be used as tests,
were obtained. They can be considered a
random selection. This approach can
produce situations beyond the imagination of
a test programmer. At the least, this
technique produces a sampling of how a
subset of users envision Pascal usage. The
routines range from 10 lines up to a 4,OOO
line utility. There are several statistical and
math programs and a metacompiler. Several
programs were donated by programmers
who have finally realized a valid use for
those old Pascal programs (e.g. games) they
have been saving. Most programs obtained
in this manner need some adaptation to be
useful as tests; for example, canned input is
commonly needed to insure consistent
behavior from execution to execution.

141

After the initial qualification, this
accumulation may be pared down to a set of
regression tests that found errors and a set
of tests exercising somewhat obscure
corners of the compiler. The latter can
usually be identified before the qualification
simply by inspection. Admittedly, obscurity is
a somewhat subjective determination. An
obscure feature is one that, in the test
analyst's opinion, is infrequently used. The
set of tests detecting errors obviously does
not become apparent until the qualification
nears completion. The reduction in the
number of tests of this type is necessary to
reduce maintenance and execution efforts.
Since these tests are a random sampling
from the input domain of the compiler, this
reduction does serve to limit their
randomness by targeting specific problem
areas.

2.2. CONVERTED TESTS

In addition to tests written for Pascal, we
have in our tgst library a large body of
Fortran compiler tests with features similar to
those in the Pascal compiler, e.g. the
IF-THEN-ELSE clause. Consideration was
given to converting these via the powerful
Macro processor [Greenwood-7e and
MACRO-81]. However, it was determined
that manual conversion would be simpler
and less costly for such a one-time
endeavor.

2.2.1. Service Subroutines

A set of vendor-unique service
subroutines may be provided in Univac
Pascal for the programmer's convenience
and information, e.g. time and date. In
addition, there may be a set of calls
referencing operating system functions, e.g.
messages to the system log file. Again, these
are implemented in Fortran where there
already exist sets of tests for these features.

2.2.2. ELEFUNT Routines

ELEFUNT is a Fortran test package for
elementary math functions. It was developed
by William J. Cody, Jr., at the Argonne

National Laboratory [Cody-80 and NESC-80].
Each ELEFUNT program is a test of one or
more of the elementary function subroutines
generally supplied with the support library
accompanying a compiler. Functions tested
are ALOG/ALOG 10, ASIN/ACOS, ATAN, EXP,
POWER, SIN/COS, SINH/COSH, SQRT,
TAN/COTAN, and TANH. These tests are
easily adapted to other languages; and so, it
was a simple manner to rewrite them in
Pascal.

2.3. DEVELOPED TESTS

2.3 .1 . To Cover Weaknesses in
Acquired Tests

An examination of the acquired tests
revealed several aspects of the compiler
insufficiently exercised by them. For example,
Version 2.2 of the Pascal Validation Suite
contains no tests exercising external
procedures, functions, or files. Also, a need
for more extensive implementation-defined
and dependent checks was perceived. These
are discussed in more detail below.

In addition to the errors encompassed by
the Ripley and Druseikis tests, it was
necessary to create tests for each diagnostic
which can be generated by the compiler at
both compile and run times. Although these
cannot assure that a diagnostic will be called
up in all cases for which it should, these do
allow a level of confidence that, in at least
one instance, the diagnostic can be invoked
correctly. [Eggert-81] and [Fischer-80]
provided helpful guidance in developing
some runtime error tests.

2 .3 .2 . To Cover Weaknesses in t h e
Language

The language Pascal has been widely
discussed and debated [Moffat-81]. In
particular the paper "Ambiguities and
Insecurities in Pascal" [Welsh-77] has proven
very helpful in checking such problem areas
as: type equivalencing, scope rules, set
constructors, variant records, functions and

142

procedures as formal parameters, and range
violations. Using the paper as a starting
point, tests were created to probe the
language weaknesses described. Here test
development preceded compiler
development such that as the compiler
became available the tests were executed
not to give a pass/fail indication, but to
determine how the compiler would behave
when presented with difficult to diagnose
problems. Once this behavior is determined,
appropriate steps can be taken to either
document the behavior or alter the compiler.
The test itself then remains as a regression
test, if it compiled and executed correctly;
otherwise, it becomes a test of the diagnostic
and error recovery system. Care was taken to
minimize redundancy between these tests
and the implementation-definition section of
the Validation Suite. These are good tests of
compiler robustness.

Example -~-1 is an sample of the source
for one of these tests. It is based on a
comment in [Welsh-77]. (The examples can
be found in the appendix.)

3. TEST EXECUTION

3.1. PHYSICAL
ORGANIZATION OF THE
TESTS

Tests at the Major Systems Software
Development Center are organized into test
packages. There is a package control
element holding information applicable to
every test in the package, e.g. the files the
compiler and libraries are located in. Each
test has a JCL element, one or more source
elements, and a base element. The base
element holds the correct (we hope) results
of a successful execution of the test. This is
dynamically compared to current output on
future runs of the test.

3.2. THE TEST CONTROLLER
SYSTEM

Our test execution vehicle is the Univac
Series 1100 Test Controller System (TCS)

[TCS-80]. TCS is a set of routines that
provides the capability for administering a
test or group of tests in either a dedicated or
production environment.

The TCS Controller routine, interactively
with the user, selects the test or tests to be
executed, determines which files contain the
processors and/or libraries to be tested, and
chooses the desired processor options. The
runstream generated by the Controller
assigns the necessary files, logs the test in a
status file, compiles and executes the test,
compares the test output with a
predetermined test result, and updates the
status file as to whether the test passed or
failed. The Controller can be instructed to
ignore expected differences.

The TCS Status routine examines the test
comparison results to determine whether
differences occurred in compilation, linkage,
or execution. Currently active tests are timed
so that loops or unexpected terminations can
be identified. All of this information, along
with processor level information and the
amount of time to execute the test, is
recorded in the status file. The Status routine
generates summary reports based on this
data.

A detailed walk through a test execution
and the resulting reports is presented in the
appendix.

4. EXPERIENCES
GAINED AND
OBSERVATIONS MADE

4.1. TESTING IN ODD
CORNERS OF A LANGUAGE

A limitation is imposed by the effort to
exercise "odd corners" of a language
[Goodenough-8Ob, Grune-79, and
Wichmann-76]. Two comments on this
follow. First, there are more such "corners"
then can be seen by test developers. These
tend to be "odd" only in a relative sense. In
other words, what is tested is affected by
the, perhaps unique, test developers's style

143

of programming and their perceptions of
what should be tested. Small test
development groups with homogeneous
backgrounds tend to amplify this problem.

Secondly, as a user community changes,
so does its usage of a programming
language. As new needs evolve,
programmers are motivated to exploit
features of a language in ways perhaps not
foreseen by test developers (or compiler
writers for that matter). The inevitability is
that error reports will come in from the field.
Most test authors recognize this and attempt
to maintain their tests in tune with current
requirements.

In general a solution to both problem.~ is
to cull a variety of programs from an existing
user community. A good cross section of
tests should prove invaluable as it represents
how a subgroup of users envisions using the
language. In lieu of a preexisting user
community a test development group of
heterogeneous backgrounds is helpful. It is
the mixing of diverse perspectives which is
necessary.

4.2. REVEALING TESTS IN
ADVANCE

Because of their public nature, published
test sets are known beforehand. Does their
disclosure in advance have a negative effect?
Grune [Grune-79], in discussing the
Mathematics Center Algol-68 test set, states,
"In my opinion, if a compiler processes the
test set well and works well on the daily
stream of average programs, it is a very good
compiler. Through its unusual coml~lexity,
the test set will uncover most incorrect
short-cuts, and the constant use of simple
features will prevent the compiler from being
too much tuned to the test set." Wichmann
and Jones [Wichmann-76]somewhat
ambiguously come to the conclusion that
tests should not be revealed. Although, they
suggest that "to disclose any tests which are
only a small sample of all the possibilities
would merely provide a useful tool to
compiler writers."

At an early stage in UCS-Pascal testing,
the development group was relying almost
exclusively on the Validation Suite. This was
necessary since it was immediately available
while the other tests were still in
development. After a small subset of the
other tests became available, the compiler
was achieving a 90.7% success rate (206
passes out of 227 tests, excluding tests for
features unimplemented at the time) with the
conformance and deviance tests of the Suite
and a 45.9% success rate (45 passes out of
98) with similar tests in the other group.
Judging from the nature of the tests and the
types of problems detected, this was not a
matter of a few bugs causing many tests to
fail. This is strong evidence that at that point
the compiler had become tuned to a
particular set of tests.

Similar statistics for other test sets are
not available. Nonetheless, that such tuning
can exists with such a highly regarded set of
test as the Pascal Validation Suite is highly
illustrative of the problem. Obviously, the
compiler upon its release was completely
tuned to our tests. Furthermore, it may be
interesting to observe that, viewing the user
community as the ultimate set of tests, the
compiler will become tuned to that group.
Problems reported by new users differ from
those reported by old users.

4.3. TEST SIZES

Our experience, and that of others
[Goodenough-80b and Wichmann-76],
indicate that the purposes of testing are in
general better served by many short tests
rather than a few large tests. Short tests tend
to pinpoint errors more exactly. They also
avoid the problem of error masking, which
occurs when more than one error can be
detected by a test, but, because of a severe
error occurring first, succeeding errors are
not detected until the first is fixed and the
testing cycle begun again.

Short tests do have drawbacks. They
restrict testing for undesirable interactions
among language features, do not place a
strain on the capacity of the compiler, and
tend to make the job of examining test

144

output laborious. The last problem can be
minimized by an appropriate test audit tool
on successive runs of the same tests. The
first two drawbacks can be avoided by
employing test routines, lengthy when
necessary, directed specifically at those
relatively well defined problems. Our
experience is that only one to five percent of
tests need be large, i.e. more than say 50
lines.

In addition, while describing the
Mathematics Center Algol 68 tests, Grune
[Grune-79] mentions an interesting
circumstance of testing: "At least one quarter
of the errors uncovered by the test set ...
were accidental discoveries." A test can
uncover an error other than the one it was
intended to detect. This unplanned but
desirable effect occurs more frequently with
large tests than with short.

4.4. OPTIMIZATION

Tests mathematical in nature may behave
differently when compiled with optimization
than when compiled without. This, clearly, is
due to the rearrangement of machine
instructions producing two dist inct
computat ional sequences. It should also be
obvious that the amount of difference, if it
exists, will be dependent upon the nature of
the function processed, the arguments fed it,
and whether it is the math library or main
routine which is optimized. This can cause
problems if one is trying to maintain a record
of correct results. Because of this, we keep
tests exhibit ing such behavior separate, with
as many records of valid output as
necessary.

4.5. INTERNAL AUDITING
VERSUS EXTERNAL
AUDITING

Should a test be internally or externally
audited? In the former case, the test itself
evaluates the results and gives a pass/fail
indication. This is usually accomplished with
the algorithm:

IF <test resul t> = <expected resul t>
THEN WRITE 'PASS'

ELSE WRITE 'FAIL'
An externally audited test outputs < tes t
resul t> to a file. This is manually or
semi-manual ly verified once, then verified
using a file comparator on successive test
executions. This brings into play two
assumptions: that the first examination is
correct and that the file comparator works
correctly. The present Univac file
comparator has been around since the early
sixties and is in a language, assembler, other
than the one being tested, so the latter
assumption appears valid. The manual
examination may appear to present
problems. However, it has valuable
advantages if the test is wri t ten by one
person and the output examined by another.
So, the former assumption too is workable,
consti tut ing a form of code review. The result
is that external audit ing helps minimize the
problem of a test wrongly passing. A set of
tests intended for portabil i ty among vendors,
such as those available for checking the
language conformance of a compiler, can not
assume that a compiler, other than the one
being checked, is present. Because the
comparator would have to be wri t ten in the
language tested, the tests themselves might
as well be sel f-checking to simplify effort
and avoid potential problems.

4.6. TESTING FOR
CONFORMANCE OR
PERFORMANCE

A dist inction can be drawn between
testing for conformance to a standard and
testing for overall performance quality.
Testing for conformance is a legitimate goal,
but should not be confused with testing for
quality, which requires a more rigorous
approach. The primary visible quality
indicators are eff iciency and numeric
accuracy.

Efficiency can be measured in terms of
space and time requirements. Accuracy also
is quantif iable, but standards rarely define it.
R.S. Scowen and Z.J. Ciechanowicz in their
survey of compiler testing
[Scowen-80]d iscuss the vagueness of
standards in dealing with accuracy. John V.
Cugini [Cugin i -81] covers the numerical

145

accuracy problem in depth. The ELEFUNT
tests [Cody-80] are an excellent example of
accuracy tests where they are most needed.

4.7. BASIC ASSUMPTIONS
FOR TESTING

A set of assumptions is always made
about features that are required to work
before testing can proceed. Refer, for
example, to [Cugini-80] and [FCVS-78].
There are three approaches to this issue: 1)
set up a hierarchy of features based upon
those required to function properly before
succeeding features can be tested, 2) set up
one test checking the basic assumptions and
required to be executed before the others,
and 3) ignore any basic assumptions. With
the last approach, several tests may fail
because an implied assumption was not
satisfied. Unfortunately, the cause for failure
may not be easily apparent from an
examination of one or a few test outputs. The
first solution seems to involve more work on
the part of test developers than is necessary.
A hierarchy can be overly elaborate to the
point where the assumptions become the
feature details tested. In addition, "a large
number of detailed assumptions may be
unnecessary. The second approach provides
a reasonable compromise and a vehicle for
quick-look testing.

5. ACKNOWLEDGE-
MENTS

Any tester soon comes to realize that his
job is made much easier and productive if he
has the sincere cooperation of the develop-
ment programmers whose product he is test-
ing. I have been most fortunate in this re-
gard. Thanks go to Scott Costello, who
gathered many of the routines to be used as
tests. I am obliged to my colleagues in test-
ing, Max Feuer, Tekla Kridle and Ken Sogge
for their valuable comments on this paper
and their enlightening conversations. Finally,
I thank Pete Klausler for his assistance in
producing imaginative tests.

6. REFERENCES
[CCVS-80] COBOL COMPILER VALIDATION
SYSTEM (CCVS), VERSION 4.0, USER'S
GUIDE (IMPLEMENTATION
DOCUMENTATION), Federal Compiler Testing
Center, August 1980, available from National
Technical Information Service as publication
PB80-219900.

[Cody-80] W.J. Cody and William Waite,
SOFTWARE MANUAL FOR THE ELEMENTARY
FUNCTIONS (Englewood Cliffs: Prentice-Hall,
1980).

[Cugini-80] John V. Cugini, Joan S. Bowden,
and Mark W. Skall, NBS MINIMAL BASIC
TEST P R O G R A M S - VERSION 2, USER'S
MANUAL, VOLUME 1 - - DOCUMENTATION,
NBS Special Publication 500-70/1 (Novem-
ber 1980), pp. 15-16.

[Cugini-81] John V. Cugini, SPECIFICATIONS
AND TEST METHODS FOR NUMERIC AC-
CURACY IN PROGRAMMING LANGUAGE
STANDARDS, NBS Special Publication
500-77, June 1981.

[Eggert-81] Paul R. Eggert,"Runtime Check-
ing for ISO Standard Pascal", IEEE TRAN-
SACTIONS ON SOFTWARE ENGINEERING,
Vol. 7, No. 4 (July 1981), pp. 447-448.

[FCVS-78] FORTRAN COMPILER VALIDATION
SYSTEM (FCVS78), VERSION 1.0, DETAILED
TEST SPECIFICATIONS, Federal Compiler
Testing Center, November 1978, available
from National Technical Information Service
as publication AD-A062-038.

[Fischer-80] Charles N. Fischer and Richard
J. LeBlanc, "The Implementation of Run-Time
Diagnostics in Pascal", IEEE TRANSACTIONS
ON SOFTWARE ENGINEERING, Vol. 6, No. 4
(July 1980), pp. 313-319.

[Freak-82] R.A. Freak and A.H.J. Sale, PAS-
CAL VALIDATION SUITE - - VERSION 3.0,
Department of Information Science, Universi-
ty of Tasmania, GPO Box 252C, Hobart, Tas-
mania 7001, Australia. It can be obtained in
North America from: Richard J. Cichelli, c/o
ANPA Research Institute, Box 598, Easton,

146

PA 18042. Phone (215) 253-6155. It can be
obtained in Europe from: DR. B. Wichmann,
National Physical Laboratory, Teddington,
TWl 1 OLW, Middlesex, England. Phone
1-977 3222 EXT 3976.

[Goodenough-8Oa] John B. Goodenough,
"The Ada Compiler Validation Capability",
SIGPLAN NOTICES, Vol. 15, No. 11 (Novem-
ber 1980), pp 1-8.

[Goodenough-8Ob] John B. Goodenough,
ADA COMPILER VALIDATION
IMPLEMENTERS' GUIDE (Waltham, Mass.:
SofTech, Inc., 1980), available from National
Technical Information Service as publication
AD-A091-760 (October, 1980).

[Greenwood-79] Stephen R. Greenwood,
"Macro: A Programming Language", SIGPLAN
NOTICES, Vol. 4, No. 12 (December 1979),
pp. 80-91.

[Grune-79] Dick Grune (ed.), THE REVISED
MC ALGOL 68 TEST SET,
IW- 122/79-November (Amsterdam, The
Netherlands: Mathematisch Centrum {Kruisl-
aan 4 t3, 1098 SJ Amsterdam, The
Netherlandsl, 1979).

[Gyllstrom-79] H.C. Gyllstrom, R.C. Knippel,
L.C. Ragland, and K.E. Spackman, "The Uni-
versal Compiling System", SIGPLAN NO-
TICES, V14 N12 (December 1979), pp64-70.

[Jensen-74] Kathleen Jensen and Niklaus
Wirth, PASCAL USER MANUAL AND REPORT,
SECOND EDITION (New York: Springer-
Verlag, 1974).

[MACRO-81] UNIVAC SERIES 1100 MACRO
PROGRAMMER REFERENCE MANUAL, UP-
8336.1, Sperry Univac, St. Paul, Minnesota
(1981).

[Moffat-81] David V. Moffat, "Index to the
Periodical Literature w 1981 Pascal Bibliog-
raphy (June, 1981)", SIGPLAN NOTICES, Vol.
16, No. 11 (November 1981), pp. 7-21.

[NESC-80] ELEFUNT (FORTRAN ELEMEN-
TARY FUNCTION TESTS), NESC Abstract 881
(Argonne, Illir~o,s: National Energy Software

Center, Argonne National Laboratory, 9700
South Cass Avenue w 1980).

[Oliver-75] Paul Oliver, TRANSFERABILITY
OF FORTRAN BENCHMARKS, available from
National Technical Information Service as
publication AD-AO39-741 (January 1975).

[Oliver-79] Pau l Oliver, "Experiences in
Building and Using Compiler Validation
Systems", PROCEEDINGS OF NATIONAL
COMPUTER CONFERENCE, AFIPS (1979), pp.
1051-1057.

[Ripley-78] G. David Ripley and Frederick C.
Druseikis, "A Statistical Analysis of Syntax
Errors", COMPUTER LANGUAGES, Vol. 3
(1978), pp. 227-240.

[Ripley-81a] G. David Ripley, ERRONEOUS
PASCAL CODE, David Sarnoff Research Cen-
ter, Princeton, NJ 08540 (1981). This is a set
of Pascal syntax error analysis and recovery
tests.

[Ripley-81b] G. David Ripley, PASCAL SYN-
TAX ERROR DATA, report accompanying test
programs (1981).

[Scowen-80] R.S. Scowen and Z.J. Ciecha-
nowicz, COMPILER VALIDATION - - A SUR-
VEY, NPL CSU Technical Report No 8/81,
National Physical Laboratory, Teddington,
Middlesex TWl 1 OLW, United Kingdom
(December 1980).

[Seyfer-82] Harlan K. Seyfer, "Compiler Test
Sets", to appear in SIGPLAN NOTICES
(1982).

[STP-80] SERIES 1100 SYSTEM TEST
PACKAGE (STP) LEVEL 2R1, SRA-365. Sper-
ry Univac Marketing, 3001 Metro Drive, Suite

,300, Minneapolis, Minnesota 55420 (1980).

[TCS-80] USER GUIDE, SPERRY UNIVAC
SERIES 1100 TEST CONTROLLER SYSTEM
(TCS), LEVEL 2R1, RRD-A446.2, Sperry Uni-
vac Marketing, 3001 Metro Drive, Suite 300,
Minneapolis, Minnesota 55420 (1980).

[Welsh-77] J. Welsh, W.J. Sneeringer and
C.A.R. Hoare, "Ambiguities and Insecurities in

147

Pascal", SOFTWARE - - PRACTICE AND EX-
PERIENCE, Vol. 7 (1977), pp. 685-696.

[Wichmann-76] B.A. Wichmann and B.
Jones, "Testing Algol 60 Compilers", SOFT-
WARE PRACTICE AND EXPERIENCE, Vol. 6,
No. 2 (April-June 1976), pp. 261-270.

[Wichmann-80] B.A. Wichmann and A.H.J.
Sale, A PASCAL PROCESSOR VALIDATION
SUITE, Report CSU 7/80, (Teddington, Eng-
land: National Physical Laboratory, 1980).

7. APPENDIX
TEST EXECUTION EX-
AMPLES

Perhaps the best way to demonstrate the
mechanics of Sperry Univac's method of
testing a compiler is to step through a sam-
ple test execution. The sample will be for
the test using the source shown in Example
#1.

Example -~2 illustrates how a demand
user might interact with the Test Controller.
In lines 1 and 2 the user calls the Controller
specifying the test package (PCRT) contain-
ing the tests.

At lines 4 and 5 the user states that he
wishes to have the test run in demand mode.
If he had intended to execute several tests,
he could have specified that the tests be run
in batch.

In lines 6 through 29 the Controller
queries the user for options and system fea-
tures. An element exists in the test package
file containing the queries and the default
values.

Line 31 warns that this is a test package
still urldergoing development.

At lines 32 and 33 the user specifies the
test to be executed. Line 34 confirms that
the test selection has proceeded successful-
ly. The Controller could have returned with a
message saying the selected test can not be
run, because certain environmental condi-

tions are not met. For example, the test could
be restricted to running on certain types of
machine.

At lines 35 and 36, if the default files are
not desired or if he would like to see what
they are, the user would type "no". The Con-
troller would display the default files and ask
which are to be changed.

At line 37 the Controller assigns the user
a reference number to be used in obtaining
test status reports, an example of this report
will be given later.

Lines 38 through 44 inform the user of
the stages of test execution as they are
initiated. At lines 38 and 39 test execution
begins. Lines 40 and 41 state that the
statusfile for test package PCRT is being up-
dated with an entry for the test executing.
This update is for the start time of the tests.
This information is valuable for tests causing
the software being tested to enter an infinite
loop or to hang.

Lines 43 and 44 report that the test has
been executed and that the comparison with
the base is proceeding. The results of the
comparison are given at lines 45 and 46. In
this sample there were differences in compi-
lation, but none in execution.

In lines 47 through 51 the Controller
queries the user for what information he
wants on the individual test report. Line 47
asks if a report is desired. If the reply is "no",
obviously no report is generated. If the an-
swer is "yes", as here, a report is created and
lines 1 through 46 in Example # 3 are added
to the report. When the reply to the query at
line 49 (Example # 2) i s "yes", a second query
follows, asking for the form of the compila-
tion listing. After the reply at line 52 (Exam-
ple #2), lines 47 and 48 (Example ~3) are
appended to the report. A hardcopy of this
report is then usually obtained for further
analysis of the test session.

Example -~3, as stated, is the test result
for a single test. Lines 1 through 20 contain
the outcome of the comparison between this
test execution' and a previous test execution.
This example shows that during the previous

148

execution the compiler did not diagnose the
discrepancy in type declarations. When the
second execution occurred, the compiler did
diagnose it correctly. Lines 13 through 16
indicate with a < T > the lines occurring dur-
ing the second execution, but not during the
first. Lines 11 and 12 are the Sign-on line of
the compiler. Since such information as the
time and date will always be different, the
Controller was instructed to ignore these
lines. For the user's information, the Con-
troller instruction accomplishing this is re-
produced at line 5.

There are two comparisons indicated by
a divider of double quotes and bracketed
number at lines 7 and 17. The f i lecompara-
tor was instructed, at line 3, to compare only
the results UPAS processor operation and, at
line 4, the XQT processor. These instruc-
tions also state that for reporting differences
UPAS is the compiler and XQT is the execu-
tion. Two facts which are immediately obvi-
ous to the reader, but not to the Test Con-
troller.

Line 33 contains the processor (DRED)
call, which inserts the features selected by
the user in lines 6 through 30 in Example

.~2. Since a minimal compilation was re-
quested, only diagnostic material is produced
by the compiler at lines 35 through 38 in Ex-
ample -~3. (To shorten the example, the
sign-on and sign-off lines have not been
included.)

Because the user had asked for a long
compilation of the source code at lines 51
and 53 in Example -~2, a long compilation
listing is appended following line 46 of the
report.

Example -~4 is a sample of a status re-
port for an entire package. The report, for the
most part, is straight forward. The status of
the test used in the preceding example is
given at lines 19 through 21. The test was
executed at 10:25:00 a.m. on 10 June 1982.
The test base was created using UPAS level
OR1T1 and the test was executed with level
OR1T2. The test required 000:22 SUPS
(Standard Units of Processing) or about 22
seconds of CPU and I/O time.

7.1 . E X A M P L E - - S A M P L E T E S T S O U R C E

1 .

2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

The l a n g u a g e i m p o s e s an o r d e r i n g on t h e d i f f e r e n t c l a s s e s
o f d e c l a r a t i o n w i t h i n a b l o c k . H o w e v e r , t h e r e i s n o t h i n g
f o r b i d d i n g d e c l a r a t i o n a f t e r use w i t h i n t h e t y p e
d e f i n i t i o n . T h i s s h o u l d be no p r o b l e m t o a t w o - p a s s
c o m p i l e r . A o n e - p a s s comp l e r s h o u l d d i a g n o s e c o r r e c t l y
R e f e r t o W e l s h , S n e e r i n g e r and H o a r e , p688

PROGRAM m a i n (o u t p u t) ;
t y p e

m a t r i x = a r r a y [1 . . 1 0 , 1 . 1 0] o f c o m p l e x
c o m p l e x = r e c o r d

r e a l p a r t , i m a g p a r t : r e a l
end ;

v a r
M : m a t r i x
i i , r r : i n t e g e r ;

b e g i n ;
w r i t e l n (' F o r .a s n g ~ e ~ p a s s c o m p i l e r , an e r r o r s h o u l d h a v e

o c c u r r e d in t h e TYPE s e c t i o n d u r i n g c o m p i l a t i o n .) ;
end'

149

7.2. E X A M P L E - - S A M P L E OF TEST E X E C U T I O N IN DE-
M A N D

1 .

2.
3.
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

<< u s e r t y p e s " @ t c s $. c o n t r o l l e r p c r t "
p c r t i s name o f t e s t p a c k a g e >>

FTC 3 R 1 . 8 5 0 6 / 1 0 / 8 2 1 5 : 3 7 : 0 8 CREATED 0 1 / 2 2 / 8 2 0 9 : 2 7 : 2 0
MODE?
<< u s e r t y p e s " d e m a n d " (f o r t h i s e x a m p l e) >>

SPECIAL EDIT ING CONSIDERATIONS FOR PCRT
PASCAL COMPILER CALL OPTIONS MAY BE SPECIF IED
COMMA MUST PRECEDE O P T I O N (S) ; E . G . , S"

(BLANK IN SINGLE QUOTES) ==> NO OPTIONS
ENTER PAS O P T I O N (S) :

. DEFAULT IS >
<< u s e r p r e s s e s XMIT key f o r d e f a u l t >>

MAP OPTION MAY BE S P E C I F I E D .
(BLANK IN SINGLE QUOTES) ==> NO OPTIONS

ENTER MAP O P T I O N (S) :
. DEFAULT IS S >
<< u s e r p r e s s e s XMIT key f o r d e f a u l t >>

TYPE OF LIBRARY MAPPED MUST BE SPECIF ED:
FOR I ENTER

. {

NON-REENTRANT LIBRARY I NR
CONFIGURED COMMON BANK LIBRARY I CC
NON-CONFIGURED COMMON BANK LIBRARY I NC

ENTER TYPE OF LIBRARY MAPPED
. DEFAULT IS NC >
<< u s e r p r e s s e s XMIT key f o r d e f a u l t >>

OPTION KEYWORDS MAY BE SELECTED.
ENTER OPTION KEYWORDS:

. DEFAULT IS NOOPTIONS >
<< u s e r p r e s s e s XMIT key f o r d e f a u l t >>
PCRT: DEVELOPMENT
TEST NAME?
<< u s e r t y p e s " a i - s c o p - l " >>
A I - S C O P - 1 WILL BE RUN.
DEFAULT F ILES OK?
<< u s e r t y p e s " y e s " >>
YOUR DEMAND USER NUMBER IS: 05
@MSG,N COMPILE, MAP, AND XQT OF A I - S C O P - 1 FOLLOW (I N BRKPT)
@BRKPT PRINT$/TESTRESULTS
@ESTAT:SYSTEM$.STATUS,L PCRT
FTS 3 R 1 . 8 6 0 6 / 1 0 / 8 2 1 5 : 5 5 : 3 0 CREATED 0 2 / 0 3 / 8 2 1 4 : 1 1 : 4 7

~ A I - S C O P - 1 F R O M PCRT ~
SDFCOMP 3 R 1 . 3 4 0 6 / 1 0 / 8 2 1 5 : 5 5 : 3 1 CREATED 0 2 / 0 3 / 8 2 1 4 : 1 1 :
~ END SDFCOMP ~
THERE WERE DIFFERENCES IN COMPILATION.
THERE WERE NO DIFFERENCES IN EXECUTION.
KEEP L IST INGS?
<< Use r t y p e s " y e s " >>
COMPILATION L IST INGS?
<< U s e r t y p e s " y e s " >>
DEFAULT OPTIONS ARE L. WHAT OPTIONS?
<< Use r p r e s s e s XMIT key f o r d e f a u l t >>

150

7.3. EXAMPLE # 3 - - S A M P L E INDIVIDUAL TEST REPORT

1 .

2
3
4
5
6
7
8
9

0
1
2
3
4
5
6
7
8
9

20
21
22
23
24
25
26
27
28
29
3O
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

SDFCOMP 3 R 1 . 3 4 O 6 / 1 0 / 8 2 1 1 : 2 0 : 5 8
SDFCOMP R E S U L T S . A I - S C O P - 1 / B A S E , T E S T R E S U L T S , , P T C F I L E

COMPILER UPAS
EXECUTION XQT
IGNORE UPAS 1 , 9 BEGIN UCS

~ SDF COMPARE I N I T I A T E D ~ - BY SDFCOMP -

SDF COMPARE FOR PROCESSOR UPAS
@PAS$.UPAS S O U R C E $. A I - S C O P - 1 , R B $. R E L , , , N O O P T I O N S
@PAS$.UPAS S O U R C E $. A I - S C O P - 1 , R B $. R E L , , , N O O P T I O N S

<BI BEGIN UCS PASCAL OR1T1 O 2 / 1 0 / 8 2 1 5 : 5 2 : 4 9
<TI BEGIN UCS PASCAL OR1T2 O 6 / 1 t / 8 2 1 1 : 2 0 : 4 7
<T> ~ERROR(MAJOR) 10 E r r o r in t y p e v
<T> ~ R E M A R K (C L A R I F I C A T I O N) 10 S c a n n i n g r e s u m e s h e r e

a f t e r l a s t e r r o r w i t h t h i s number v
<T> 3 m a t r i x = a r r a y [1 . . 1 0 , 1 . . 1 0] o f c o m p l e x ;
. < 2 > .

SDF COMPARE FOR PROCESSOR XQT
@XQT RB$.ABS
@XQT RB$.ABS

@HDG ~ TEST OUTPUT FOR PCRT TEST ~ A I - S C O P - 1
FTS 3 R 1 . 8 6 0 6 / 1 1 / 8 2 1 1 : 2 0 : 4 2 CREATED 0 2 / 0 3 / 8 2 1 4 : 1 1 : 4 7
@ADD,LP F E S T P A S ~ P C R T J C L . A I - S C O P - 1 / J C L
:DOCUMENTATION

<< d o c u m e n t a t i o n a p p e a r i n g in t h e t e s t ' s JCL >>
@ASG,T R B $. , F / I O / / 5 0 0
READY
@ERS RB$.
FURPUR 28R2T2 $ 7 4 T l l 0 6 / 1 1 / 8 2 1 1 : 2 0 : 4 5
END ERS.
@SYSTEM$.DRED
DRED 3 R 1 . 4 7 O 6 / 1 1 / 8 2 1 1 : 2 0 : 4 6 CREATED O 7 / 1 6 / 8 1 O 9 : 0 1 : 5 1
@ADD,LP DRED$.
@PAS$.UPAS SOURCE$.AI-SCOP-1,RB$,REL,,,NOOPTIONS
~ERROR(MAJOR) 10 E r r o r in t y p e v
~ R E M A R K (C L A R I F I C A T I O N) 10 S c a n n i n g r e s u m e s h e r e

a f t e r l a s t e r r o r w i t h t h i s number v
3 m a t r i x = a r r a y [1 . . 1 0 , 1 . . 1 0] o f c o m p l e x ;
@MAP$.MAP,F SOURCE$.MAPNC,RB$.ABS
END MAP. ERRORS: O TIME: 7 . 0 8 1
@XQT RB$.ABS

<< The e x e c u t i o n o f t h e t e s t i s p e r f o r m e d as a c h e c k >>
<< on r u n t i m e e r r o r r e c o v e r y and d i a g n o s t i c s . >>

@FREE RB$.
READY
@BRKPT PRINTS
@HDG ~ L I S T I N G (S) FOR PCRT TEST ~ A I - S C O P - 1

<< A l o n g l i s t i n g o f t h e s o u r c e e l e m e n t a p p e a r s h e r e >>

151

7.4. E X A M P L E - - S A M P L E T E S T P A C K A G E S T A T U S R E -
P O R T

1. TEST CONTROLLER SYSTEM STATUS PRINTED AT 1 3 : 4 0 : O 6 ON 6 - 1 0 - 8 2
2. ~ ON THE FLY STATUS - - DEMAND MODE ~
3. ~ USER NUMBER 62 - RUNNING PASCAL CRIT IQUES
4. (PCRT: DEVELOPMENT) ROUTINES ~
5. 1 TEST(S) PASSED.
6. 2 TEST(S) FA ILED.
7. 73 TEST(S) WERE NOT RUN.
8. 3 TOTAL TESTS RUN.
9. ~ TESTS THAT HAVE FAILED ~
10. A I -RCRD-EQ18 A I - S C O P - 1
11. NO TESTS ACTIVE.
12. # FOLLOWING TESTS WERE RUN ON AN 1 1 0 0 / 6 0 UNDER EXEC 38R2 #
13.
14.
15
16
17
18
19
20
21
22
23

A I -NAME-EQN3 PASSED. 1 0 : 2 4 : 1 5
ON 6 - 1 0 - 8 2 ~ BASE UPAS OR1T1 ; TEST UPAS OR1T2
ELAPSED SUPS = 0 0 0 : 2 1

> A I - R C R D - E Q 1 8 VARIED IN COMPILATION-EXECUTION< 1 0 : 2 4 : 3 0
ON 6 - 1 0 - 8 2 ~ BASE UPAS OR1T1 ; TEST UPAS OR1T2
ELAPSED SUPS = 0 0 0 : 2 5

> A I - S C O P - 1 VARIED IN COMPILATION 1 0 : 2 5 : 0 0
ON 6 - 1 0 - 8 2 ~ BASE UPAS OR1T1 ; TEST UPAS OR1T2
ELAPSED SUPS = 0 0 0 : 2 2

TESTS WERE STARTED BETWEEN 1 0 : 2 4 : 1 5 ON 6 - 1 0 - 8 2
AND 1 0 : 2 5 : O 0 ON 6 - 1 0 - 8 2 .

152

