
Rehearsal: A Configuration Verification Tool for Puppet

Rian Shambaugh Aaron Weiss Arjun Guha
University of Massachusetts Amherst, United States

{rian,aaronweiss,arjun}@cs.umass.edu

Abstract
Large-scale data centers and cloud computing have turned
system configuration into a challenging problem. Several
widely-publicized outages have been blamed not on soft-
ware bugs, but on configuration bugs. To cope, thousands of
organizations use system configuration languages to manage
their computing infrastructure. Of these, Puppet is the most
widely used with thousands of paying customers and many
more open-source users. The heart of Puppet is a domain-
specific language that describes the state of a system. Pup-
pet already performs some basic static checks, but they only
prevent a narrow range of errors. Furthermore, testing is in-
effective because many errors are only triggered under spe-
cific machine states that are difficult to predict and repro-
duce. With several examples, we show that a key problem
with Puppet is that configurations can be non-deterministic.

This paper presents Rehearsal, a verification tool for Pup-
pet configurations. Rehearsal implements a sound, complete,
and scalable determinacy analysis for Puppet. To develop it,
we (1) present a formal semantics for Puppet, (2) use sev-
eral analyses to shrink our models to a tractable size, and
(3) frame determinism-checking as decidable formulas for
an SMT solver. Rehearsal then leverages the determinacy
analysis to check other important properties, such as idem-
potency. Finally, we apply Rehearsal to several real-world
Puppet configurations.

Categories and Subject Descriptors F.3.1 [Logics and
Meanings of Programs]: Specifying and Verifying and Rea-
soning about Programs—Mechanical verification

Keywords Puppet, system configuration, domain-specific
languages, verification.

1. Introduction
Consider the role of a system administrator at any organi-
zation, from a large company to a small computer science
department. Their job is to maintain computing infrastruc-
ture for everyone else. When a new software system, such as
a Web service, needs to be deployed, it is their job to pro-
vision new servers, configure the firewall, and ensure that
data is automatically backed up. If the Web service receives
a sudden spike in traffic, they must quickly deploy additional
machines to handle the load. When a security vulnerability
is disclosed, they must patch and restart machines if neces-
sary. All these tasks require the administrator to write and
maintain system configurations.

Not too long ago, it was feasible to manage systems by
directly running installers, editing configuration files, etc.
A skilled administrator could even write shell scripts to
automate some of these tasks. However, the scale of modern
data centers and cloud computing environments has made
these old approaches brittle and ineffective.

System configuration languages. System configuration is
a problem that naturally lends itself to domain-specific lan-
guages (DSLs). In fact, the programming languages com-
munity has developed several DSLs for specifying sys-
tem configurations that are used in practice. For exam-
ple, NixOS [12] uses a lazy, functional language to de-
scribe packages and system configurations; Augeas [5] uses
lenses [7] to update configuration files; and Engage [13]
provides a declarative DSL that tackles issues such as inter-
machine dependencies.

In the past few years, several system configuration lan-
guages have also been developed in industry. Puppet, Chef,
and Ansible (recently acquired by Red Hat) are three promi-
nent examples. This paper focuses on Puppet, which is the
most popular of these languages, but these commercial lan-
guages have several features in common that set them apart
from prior research. First, they support a variety of oper-
ating systems, tools, and techniques that systems adminis-
trators already know. Unlike NixOS, they don’t posit new
package managers or new Linux distributions, but simply
use tools like apt and rpm under the hood. Second, these
languages provide abstractions for managing several kinds
of resources, such as packages, configuration files, user ac-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.

PLDI’16, June 13–17, 2016, Santa Barbara, CA, USA
ACM. 978-1-4503-4261-2/16/06...$15.00
http://dx.doi.org/10.1145/2908080.2908083

C
o

n
si

st

en
t *

 Complete * W
e
ll D

o
cu

m
ented * Easy to

 R

eu
se

 *

 *
 Evaluated *

 P
LD

I
 *

 A
rtifact * A

E
C

416

counts, and more. Therefore, they are broader in scope than
Augeas, which only edits configuration files. Finally, these
languages provide relatively low-level abstractions, com-
pared to earlier work like LCFG [1]. For example, Puppet
provides a simple and expressive DSLs that encourages av-
erage users to build their own abstractions.

Puppet. Puppet configurations (called manifests) are writ-
ten in a expressive, yet constrained DSL, which makes them
amenable to analysis. To a first approximation, a manifest
specifies a collection of resources, their desired state, and
their inter-dependencies. For example, the following Pup-
pet manifest states that the vim package should be installed,
that the user account carol should exist, and that she should
have a .vimrc file in her home directory containing the sin-
gle line syntax on:

package{’vim’: ensure => present }

file{’/home/carol/.vimrc’: content => ’syntax on’ }

user{’carol’: ensure => present; managehome => true }

It’s tedious to describe every individual resource in this man-
ner, so Puppet makes it easy to write parameterized modules.
The official module repository, Puppet Forge, has nearly four
thousand modules from over six hundred contributors.

Non-determinism and modularity. A key property of Pup-
pet is that manifests should be deterministic [25]. Determin-
ism is a critical property because it helps ensure that a man-
ifest has the same effect in testing and in production. Simi-
larly, if one manifest is applied to several machines, which is
common in large deployments, determinism helps to ensure
that they are replicas of each other.

Unfortunately, it is easy to write manifests that are not de-
terministic. Puppet can install resources in any order, unless
the manifest explicitly states inter-resource dependencies.1

Therefore, the example manifest above is non-deterministic:
there will be a runtime error if Puppet tries to create the file
/home/carol/.vimrc before Carol’s account. We can fix
this bug by making the dependency explicit:

User[’carol’] -> File[’/home/carol/.vimrc’]

The fundamental problem is that Puppet manifests spec-
ify a partial-order on resources, thus resources can be in-
stalled in several orders. However, when some dependencies
are missing, applying the manifest can go wrong: the system
may signal an error or may even fail silently by transitioning
to an unexpected state. These bugs are very hard to detect
with testing, since the number of valid permutations of re-
sources becomes intractable very quickly.

Surprisingly, a manifest can also have too many depen-
dencies and be over-constrained. Imagine two manifests A
and B that both install the resources R1 and R2. Suppose
thatR1 andR2 do not depend on each other, but the manifest
authors take a conservative approach and add a false depen-

1 Puppet calculates dependencies automatically only in some trivial cases,
e.g., files “auto-require” their parent directory.

dency to avoid non-determinism issues. IfA picksR1 ->R2

and B picks R2 -> R1 then A and B cannot be composed.
Therefore, manifests must be deterministic to be correct,

but must only have essential dependencies to be compos-
able. Without composability, manifests cannot be decom-
posed into reusable modules, which is one of the key fea-
tures of Puppet. However, when a manifest is only partially-
ordered, we may need to check an intractably large number
of orderings to verify determinism.

A further complication is that the Puppet has a diverse
collection of resource types, which makes it hard to deter-
mine how resources interact with each other. For example, a
file may overwrite another file created by a package, a user
account may need the /home directory to be present, a run-
ning service may need a package to be installed, and so on.
We could try to side-step this issue by building a dynamic
determinacy analysis [8, 24]. However, a purely dynamic
approach could only identify a problems when two replicas
diverge, whereas a static determinacy analysis helps ensure
that a manifest behaves correctly on any machine regardless
of its initial state.

Idempotency. Determinism is not a sufficient condition to
ensure that Puppet behaves predictably. In a typical deploy-
ment, the Puppet background process periodically reapplies
the manifest to ensure that the machine state is consistent
with it. For example, if a user modifies the machine (e.g.,
manually editing configurations), re-applying the manifest
will correct the discrepancy. Thus if the machine state has
not changed, reapplying the manifest should have no effect.
Like determinacy, this form of idempotence is also believed
to be a key property of Puppet [20]. However, it is also trivial
to construct manifests that are not idempotent.

Our approach. To the best of our knowledge, this is the
first paper to develop programming language techniques for
Puppet (or a related language such as Chef and Ansible). We
first present a core fragment of Puppet with several small
examples that illustrate its problems (section 2). We develop
a formal semantics of Puppet that models manifests as pro-
grams in a simple, non-deterministic imperative language of
filesystem operations called FS (section 3).

Our main technical result is a sound, complete, and scal-
able determinacy analysis (section 4). To scale to real-world
examples, we use three different analyses to shrink the size
of models. The first two analyses dramatically reduce the
number of paths that the determinism-checker needs to rea-
son about by eliminating resources that do not affect deter-
minism and eliminating other side-effects that are not ob-
served by the rest of the program. The third analysis is an
unusual commutativity check that accounts for the fact that
resources are mostly idempotent. Finally after leveraging the
aforementioned analyses, the determinacy checker encodes
the semantics as effectively-propositional formulas for an
SMT solver.

417

Types rtype ::= file | package | · · ·
Strings str ::= "· · ·$x· · ·$y· · ·"

Identifiers x ::= $x | $y | · · ·
Titles t ::= str | x

Values v ::= str String
| n Number
| [v1 · · · vn] Array
| x Variable

Attributes attr ::= str => v
Resources R ::= rtype{t: attr1 · · · attrn}
Manifests m ::= R Resource

| define rtype(x1 · · ·xn) {m } Type
| rtype1[t1] -> rtype2[t2] Dependency
| m1 m2 Composition

Figure 1: Syntax of Puppet fragment used in this paper.

define myuser($title) {

user {"$title":

ensure => present,

managehome => true

}

file {"/home/${title}/.vimrc":

content => "syntax on"

}

User["$title"] -> File["/home/${title}/.vimrc"]

}

myuser {"alice": }

myuser {"carol": }

Figure 2: A user-defined resource type and its instantiations.

We argue that our determinacy analysis enables several
other higher-level properties to be checked (section 5), and
show this is the case by developing a simple idempotence
checker that leverages determinism in a fundamental way.

We implement our algorithms in a tool called Rehearsal,
which we evaluate on several real-world examples (sec-
tion 6). Finally, we discuss related work (section 7), sum-
marize the limitations of our approach (section 8), and con-
clude (section 9). The Rehearsal source code, benchmarking
scripts, and a technical appendix are available online [15].

2. Introduction to Puppet
This section introduces the fragment of Puppet that we

use in the exposition of this paper. We also illustrate the
kinds of problems that Rehearsal solves.

2.1 A Core Fragment of Puppet
The Puppet DSL is quite sophisticated. It has typical fea-
tures such as functions, loops, and conditionals, and sev-
eral domain-specific features that make it easy to specify
resources and their relationships. Rehearsal can parse and
process a significant subset of Puppet, but, for clarity, we
constrain our examples to the fragment of Puppet shown
in figure 1. A manifest, m, is composed of resources, re-
source type declarations, and inter-resource dependencies.
A resource, R, has a type, a title, and a map of attributes.

The resource type determines how the attribute-map is inter-
preted. For example, a file resource must have an attribute
called path, a user resource must have an attribute called
name, and so on. The resource title can be any descriptive
string, but is often used as the default value for an essen-
tial attribute. For example, if a file resource does not have
the required path attribute, the title is used as the path.
A manifest can declare several resources by juxtaposition,
but the order in which resources appear is not significant.
Instead, manifests must specify dependencies explicitly. To
state that the resource t2 depends on the resource t1, we
write rtype1[t1] -> rtype2[t2].2 In addition to a few dozen
built-in resource types, Puppet allows manifests to define
their own types. A type definition is essentially a function
that consumes named attributes as arguments and produces
a manifest as a result. For example, if all users in an orga-
nization use the same default environment, we can create a
new type called myuser and instantiate it for several users,
as shown in figure 2.

2.2 Common Puppet Problems
There are a number of problems that can easily occur in
Puppet manifests.

Non-deterministic errors. A common Puppet idiom is to
first install a package and then overwrite its default config-
uration. For example, the apache2 package installs a web
server and several configuration files. To host a website, at
least the default site configuration file, 000-default.conf,
has to be replaced (figure 3a). If the dependency between the
package and the file is accidentally omitted, Puppet may try
to create the configuration file first which would signal an
error because the file is in a directory that the package has
yet to create.

Over-constrained dependencies. Consider a strawman so-
lution to the non-determinism problem: we could add false
dependencies so that all resources are totally ordered. Unfor-
tunately, this approach makes it difficult to write indepen-
dent modules which is one of the main features of Puppet.
For example, figure 3b shows two simple types that config-
ure C++ and OCaml development environments.3 Both mod-
ules install make and m4 because they are commonly used by
C++ and OCaml projects. To force determinism, both mod-
ules in the figure have false dependencies between make and
m4. However, each has picked a different order which can
easily occur when the modules have different authors. There-
fore, if we try to instantiate both modules simultaneously,
Puppet will fail and report a dependency cycle. 4 This heavy-
handed approach to determinism sacrifices composability.

2 The first letter of a type name is capitalized in resource references.
3 Idiomatic Puppet would use the class keyword.
4 Readers familiar with Puppet may know that shared resources have to
be guarded with defined. Some people consider defined to be an anti-
pattern, but a simple search shows that it is used in over 1/3rd of the
packages on Puppet Forge to enable the kind of modularity that we discuss.

418

file {"/etc/apache2/sites-available/000-default.conf":

content => ...,

}

package{"apache2": ensure => present }

(a) Signals an error nondeterministically.

define cpp() {

package{’m4’: ensure => present }

package{’make’: ensure => present }

package{’gcc’: ensure => present }

Package[’m4’] -> Package[’make’]

Package[’make’] -> Package[’gcc’]

}

define ocaml() {

package{’make’: ensure => present }

package{’m4’: ensure => present }

package{’ocaml’: ensure => present }

Package[’make’] -> Package[’m4’]

Package[’m4’] -> Package[’ocaml’]

}

(b) Cannot be composed due to false dependencies.

package{’golang-go’: ensure => present }

package{’perl’: ensure => absent }

(c) Leads to two different success states.

file{"/dst": source => "/src" }

file{"/src": ensure => absent }

File["/dst"] -> File["/src"]

(d) Not idempotent.

Figure 3: Several problematic manifests.

Silent failure. In addition to non-deterministic errors, it is
also possible to write a manifest that nondeterministically
leads to two distinct states without Puppet reporting an er-
ror. For example, the manifest in figure 3c states that Perl
should be removed and the Go compiler should be installed.
Surprisingly, on Ubuntu 14.04, the Go compiler depends on
Perl[30], so this state is not realizable. Puppet cannot de-
tect this problem, but simply dispatches to the native pack-
age manager (e.g., apt or yum) to actually install and re-
move packages. For this manifest, Puppet issues two low-
level commands to remove Perl and install Go. Since there
are no dependencies, they may execute in either order. If Perl
is first removed, the command to install Go installs Perl too,
but if Perl is removed after Go is installed, that command
will remove Go too. This kind of error is more insidious than
a nondeterministic error, since there isn’t an obvious fix.

Non-idempotence. Another key property of Puppet mani-
fests is that they should be idempotent: applying a manifest
twice should be the same as applying it once. However, Pup-
pet does not enforce this property, which makes it easy to
produce manifests that are not idempotent. For example, we

Vertices V ::= v1 | · · · | vk
Edges E ⊆ V × V
Vertex Labels L ∈ V → R
Resource Graphs G ∈ V × E × L

Figure 4: Resource graphs.

can make the non-deterministic manifest in figure 3c deter-
ministic by removing Perl before Go is installed:
Package[’perl’] -> Package[’golang-go’]

However, this manifest is not idempotent. Puppet checks
which packages are installed before it issues any commands
to install or remove packages. In this example, if both pack-
ages are already installed, Puppet will remove Perl and take
no further action, even though removing Perl removes Go. If
we apply the manifest again (i.e., when neither package is in-
stalled), Puppet installs Go and takes no further action, even
though Perl is implicitly installed. The real issue is that this
manifest is fundamentally inconsistent and cannot be fixed
by adding dependencies. A system cannot have Perl removed
and Go installed, so the manifest should be rejected.

An even simpler example of non-idempotence is the man-
ifest in figure 3d, which copies src to dst and then deletes
src. The second run of this manifest will always fail, be-
cause the first run removes src. This example shows that
even though primitive resources are designed to be idempo-
tent, they can be composed in ways that break idempotence.

Summary. We’ve introduced a small fragment of Puppet
and used it to illustrate several kinds of bugs that can occur
in Puppet manifests. We’ve argued that the root cause of
these bugs is that Puppet does not ensure that manifests
are deterministic and idempotent. Before we describe how
Rehearsal checks these properties, we present the semantics
of Puppet that Rehearsal uses.

3. Semantics of Puppet
This section presents a semantics for Puppet, which we
develop in two stages. (1) We compile manifests to a di-
rected acyclic graph of primitive resources, which we call
a resource graph. The compilation process involves sev-
eral passes to eliminate features that inject dependencies,
change attributes, and so on. We also substitute instantia-
tions of user-defined types with their constituent resources
until only primitive resources remain. (2) Next, we model
the semantics of individual resources as programs in a small
imperative language of file system operations called FS. We
carefully design FS so that it is expressive enough to de-
scribe the semantics of resources, yet restrictive enough to
enable the static analyses we present in subsequent sections.

3.1 From Puppet to Resource Graphs
A resource graph G is a directed acyclic graph with vertices
labeled by primitive resources. An edge exists from V1 to V2
if V2 depends on V1. At a high-level, we compile manifests

419

into resource graphs by converting primitive resources to
nodes and dependencies to edges. To do this, we employ a
number of passes to simplify manifests.

Puppet has several abstractions that allow manifests to
succinctly describe dependencies. For example, user-defined
types can be used to abstract over a collection of other re-
sources and dependencies. We reduce user-defined abstrac-
tions to their constituent resources by repeatedly substituting
their definitions until only primitive resources remain. In or-
der to preserve ordering, this pass must introduce new edges
between resources within instances of abstractions. In ad-
dition, resources can also be assigned to a stage, and stages
are ordered independently of resources. To deal with this, we
implement a stage elimination pass that adds edges between
the constituent resources of each stage.

Certain Puppet features have non-local side effects. For
example, the following expression uses a resource collector
to update all file-resources owned by carol to be unreadable
by others, regardless of where they are defined:
File<| owner == ’carol’ |> { mode => "go-rwx" }

Unfortunately, resource collectors are not modular and make
separate compilation impossible. In general, it is not possi-
ble to know the attributes of a resource until all user-defined
types (which may define collectors) are eliminated as de-
scribed above. The passes that tackle these kinds of expres-
sions are necessarily global transformations.

Our compiler tackles the details described above and
some other features of Puppet that we don’t belabor here.

3.2 From Resources to FS Programs
Puppet has dozens of different primitive resource types that
can interact with each other in subtle ways. Moreover, some
resources have flags that dramatically change their behavior.
To deal with this diversity, we model resources as small pro-
grams in a low-level language called FS that captures their
essential effects and possible interactions. The advantage of
using FS is that we can quickly add support for additional
resource types and new versions of Puppet without rebuild-
ing the rest of our analysis toolchain. In this paper, FS is an
imperative language with simple operations that affect the
filesystem. However, it also would be straightforward to en-
rich the language in several ways.

Syntax and semantics of FS. The FS language, defined
in figure 5 is a simple imperative language of programs that
manipulate the filesystem. We model filesystems (σ) as maps
from paths (p) to file contents. A file may be a regular file
with some content (File(str)) or the value Dir that repre-
sents a directory. Expressions in FS denote functions that
consume filesystems and produce either a new filesystem
or error (err). FS has primitive expressions to create direc-
tories (mkdir(p)), create files (creat(p, str)), remove files
and empty directories (rm(p)), and copy files (cp(p1, p2)).
Sequencing (e1; e2) and conditionals (if (a) e1 else e2) be-
have in the usual way. Predicates include the usual boolean

connectives and primitive tests to check if a path is a
file (file?(p)), a directory (dir?(p)), an empty directory
(emptydir?(p)), or contains nothing (none?(p)).

Since FS has no loops, its programs always terminate.
This is a reasonable restriction since applying Puppet re-
sources must terminate too. FS does not have procedures
or variables, but their omission doesn’t affect programmers,
since FS code is generated from a host language (in our
case, Scala). A more important restriction is that FS pro-
grams work with a finite set of paths and file contents, so
FS programs are finite state. At first glance, it appears that a
program would not be affected by the state of paths that do
not appear in the program text. However, the semantics of
rm(p) and emptydir?(p) are affected by subpaths of p, even
if they don’t appear in the program. Finally, FS programs
only work with a finite set of file contents. In fact, there are
no operations that allow programs to read the contents of
files, but this is not an essential property.

FS can easily be extended in several ways to produce
higher-fidelity models of Puppet resources. e.g., it is easy
to imagine adding timestamps, file-permissions, and so on.
Notably, these extensions would not affect the finiteness of
FS programs, so we believe our analysis approach would
work with these higher-fidelity models too.

Notation. We write e1 ≡ e2 when both expressions pro-
duce the same output (or error) for all input filesystems. For
brevity, we use if (e1) e2 as shorthand for if (e1) e2 else id.

3.3 Modeling Resources as FS Programs
Now that we have a language of filesystem operations, we
define a compilation function C : R→ e that maps resources
to FS expressions. The actual definition has several hundred
lines of code and is quite involved, but the high-level idea is
to model each resource as an FS program. Even for simple
resources, C needs to validate attributes, fill-in values for
optional attributes, and produce programs that check several
preconditions before applying the desired action. We now
illustrate how C models several key resource-types.

Files and directories. Individual files and directories are
the simplest resource in Puppet. The file resource type
manages both and has several attributes that determine (1)
whether it is a file or directory, (2) if it should be created
or deleted, (3) if parent directories should be created, (4)
the contents of a file, or (5) a source file that is copied
over. Moreover, all combinations of these attributes are not
meaningful, and most are optional. The C function addresses
these details in full.

SSH keys. Some Puppet resources edit the contents of con-
figuration files. For example, the ssh_authorized_key

resource manages a user’s public keys, where each re-
source is an individual line of a single file. Rather than
increase the complexity of FS by including detailed file-
editing commands, we model the logical structure of these

420

Syntax
Paths p ::= / Root directory

| p/str Sub-path
File Contents v ::= Dir Directory

| File(str) File
File Systems σ ::= 〈p1 =v1 · · · pk=vk〉

Predicates a ::= none?(p) Does not exist
| file?(p) Is a file
| dir?(p) Is a directory
| emptydir?(p) Is an empty dir.
| true True
| false False
| a1 ∨ a2 Disjunction
| a1 ∧ a2 Conjunction
| ¬a Negation

Expressions e ::= id No op
| err Halt with error
| mkdir(p) Create directory
| creat(p, str) Create file
| rm(p) Remove file/empty dir.
| cp(p1, p2) Copy file
| e1; e2 Sequencing
| if (a) e1 else e2 Conditional

Semantics
JaK ∈ σ → bool

Jfile?(p)Kσ , ∃str.σ(p) = File(str)
Jdir?(p)Kσ , σ(p) = Dir

Jnone?(p)Kσ , p 6∈ dom(σ)

Jemptydir?(p)Kσ , σ(p) = Dir and ¬∃str .p/str ∈ dom(σ)
· · ·
JeK ∈ σ → σ + err

JidKσ , σ

JerrKσ , err

Jmkdir(p/str)Kσ ,

{
σ[p/str : = Dir] Jdir?(p) ∧ none?(p/str)Kσ
err otherwise

Jcreat(p/str , str′)Kσ ,

{
σ[p/str : = File(str′)] Jdir?(p) ∧ none?(p/str)Kσ
err otherwise

Jrm(p)Kσ ,

{
σ − p Jfile?(p) ∨ emptydir?(p)Kσ
err otherwise

Jcp(p1, p2/str)Kσ ,

σ[p2/str : = File(str ′)] Jnone?(p2/str) ∧ dir?(p2)Kσ
and σ(p1) = File(str ′)

err otherwise

Je1; e2Kσ ,

{
Je2Kσ′ Je1Kσ = σ′

err Je1Kσ = err

Jif (a) e1 else e2Kσ ,

{
Je1Kσ JaKσ
Je2Kσ otherwise

Figure 5: FS syntax and semantics.

resources in a portion of the filesystem disjoint from other
files. However, this alone disguises a certain kind of de-
terminacy bug. Consider a manifest with two resources: an
ssh_authorized_key and a file that overwrites the key-
file. Clearly, these resources do not commute, but by plac-
ing ssh keys in their own disjoint directory, the compiled
program would be deterministic. To address this issue, our
model for ssh_authorized_key also creates a key-file and
sets its content to a unique value, enabling us to catch this
kind of determinacy bug.

Packages. A package resource creates (or removes) a large
number of files and directories, so we need this file list to
model packages. Fortunately, there are simple command-
line tools that do exactly this: e.g., apt-file for Debian-
based systems, repoquery for Red Hat-based systems, and
pkgutil for Mac OS X.5 The C function invokes the afore-
mentioned tool and builds a (potentially very large) program
that first creates the directory tree and then issues a sequence
of creat(p, str) commands to create the files. In our model,
we simply give every file p in a package a unique content str .
This model is sound but conservative: some equivalences can
be lost. For example, suppose a manifest has two resources:
a package that creates a file p and a file resource that over-
writes p with exactly the same contents as the package. This
manifest would be deterministic without any dependencies,
but our tool would report it as nondeterministic, due to our
conservative package model. However, this situation is un-
likely to arise in practice, but if it does it may indicate an-
other mistake: it’s more likely that the author meant to over-
write p with some other contents.

5 We’ve tested with apt-file and repoquery.

JGK ∈ σ → 2σ+err

JGKσ , {JC(L(v1)); · · · ; C(L(vn))Kσ | 〈v1 · · · vn〉 ∈ perms(G)}
where G = (V,E, L)

Figure 6: Semantics of resource graphs.

Other resource types. We model several other resource
types, including cron jobs, users, groups, services, and host-
file entries. Puppet has several resources types that are only
applicable to Mac OS X or Windows systems that we have
not modeled. However, if we wished to analyze a manifest
for these platforms, it should be easy to extend the resource
compiler to support these resources. Notably, the rest of our
toolchain would be unchanged as it is agnostic to the actual
set of resources since it operates over FS programs.

3.4 Semantics of Resource Graphs
Now that we have a compiler from resources to FS, it is
straightforward to give a semantics to resource graphs. Infor-
mally, a resource graph denotes a function from filesystems
to a set of filesystems and the error state. To define this func-
tion, we take all sequences of resources that respect the order
imposed by the edges, compile each resource-sequence to a
sequence of FS programs, apply each program to the input
state, and take the union of the results (figure 6).

A pleasant feature of this definition is that the resource
graph and resource compiler abstract away the peculiarities
of Puppet. We can extend C to support new resource types
or the Puppet compiler to support even more Puppet features
without changing the methods that will be discussed in the
rest of this paper.

421

4. Determinacy Analysis
This section presents our main technical result which is a
sound, complete, and scalable approach to check that re-
source graphs (produced from manifests) are deterministic.

Definition 1 (Determinism). A resource graph G is deter-
ministic, if for all filesystems σ, |JGKσ| = 1.

This property does not preclude a manifest from always
producing an error on some or even all inputs. Any non-
trivial manifest makes assumptions about the initial state
(e.g., the operating system in use) and thus will raise an error
if it is applied to a machine that is not in the right initial state.
Determinism simply guarantees that successes and failures
will be predictable.

Our approach has three major steps:

1. The first step is to reduce the number of paths that we
need to reason about. Even a small manifest may ma-
nipulate several hundred paths and tracking their state
over hundreds of intermediate states can be intractable.
We observe that resources often modify paths p that are
not accessed by any other resource, thus operations on
these paths can be safely eliminated without affecting the
result of the determinism-check.

2. The next step is to reduce the number of permutations
of the resource graph, which can grow exponentially
with the number of resources. The natural approach is
to use partial-order reduction with a fast, commutativity
check. However, the obvious approach, based on calcu-
lating read- and write-sets is not effective because many
resources may create overlapping directories (e.g., /usr
and /etc). We observe that this is a form of false shar-
ing and develop a commutativity check that accounts for
idempotent directory creation.

3. The final step is to encode the semantics of the manifest
as a decidable formula for an SMT solver that is satisfi-
able if and only if the program is non-deterministic. Our
encoding relies on the fact that programs manipulate a fi-
nite set of paths that are statically known. However, the
result of some operations may be affected by the state of
paths that do not appear in the program itself. We care-
fully bound the domain of paths to ensure our approach
is complete.

We first present our encoding of manifests as formulas.

4.1 From Resource Graphs to Formulas
The function Φ(e) produces a collection of formulas that en-
code the semantics of the expression e (figure 7). In these
formulas, two boolean variables determine whether the ini-
tial and final states are non-error states and every path is
modeled by two variables that describe their initial and fi-
nal state. These path-state variables are only meaningful in
a non-error state. More concretely, a logical state (Σ) is a
record of two components: (1) Σ.ok is a formula that is true

if the current state is not the error state and (2) Σ.fs maps
paths to formulas that describe their state. We could employ
McCarthy’s theory of arrays [21] to encode this map, but
it’s more efficient to encode it directly with one formula per
path. To encode resource graphs G as formulas, we use the
function ΦG(G), defined in the same figure, which maps the
input logical state to a set of output logical states by evalu-
ating each expression on the fringe with Φ(e) and recurring
on the subgraph that has e removed.

To prove this encoding sound and complete, we need
to relate concrete states returned by the evaluator to logi-
cal states. This is mostly routine, but the domain of logi-
cal filesystems has to be large enough: if a program reads
or writes to a path p, then there must be a formula p ∈
dom(Σ.fs). For example, note that mkdir(/a/b) reads /a

and writes /a/b.

Lemma 1 (Soundness and completeness). For all σ and G:

1. σ′ ∈ JGKσ iff there exists Σ ∈ ΦG(〈ok = true, fs =σ〉, e) such
that Σ ` 〈ok = true, fs =σ′〉.

2. err ∈ JGKσ iff there exists Σ ∈ ΦG(〈ok = true, fs =σ〉, e) such
that Σ.ok ` false.

4.2 Checking Determinism
With resource graphs encoded as formulas, it should be
straightforward to use a theorem prover to check determin-
ism (though we have yet to address scalability issues). Since
ΦG(G) maps an input logical state to a set of output logical
states, the resource graph should be deterministic, if and and
only if there does not exist an input logical state that pro-
duces two different logical states. i.e., the following formula
should be unsatisfiable:
∃Σ1,Σ2,Σ3.Σ2 ∈ ΦG(G)Σ1 ∧Σ3 ∈ ΦG(G)Σ1 ∧Σ2 6= Σ3

The subtlety here is that the domain of ΦG(G) to be
large enough to find a counterexample when G is a non-
deterministic resource graph.

To understand the issue, consider the simpler problem of
checking whether two expressions are inequivalent, e1 6≡ e2,
which is the essence of checking non-determinism. At first
glance, it appears that expressions only read and write to the
paths that appear in it and the result of an expression is not
affected by the state of any other paths. That is, if we have
a state σ such that Je1Kσ 6≡ Je2Kσ then for paths p that do
not appear in either e1 or e2, (Je1Kσ)(p) = (Je2Kσ)(p). But,
this equation is wrong.

The emptydir?(p) predicate poses a problem, since it de-
pends on the state of the immediate children of p, includ-
ing those that may not appear in the program. Consider the
following inequality, where the only difference between the
programs is that one checks if the directory is empty and the
other only checks that it is a directory:

if (emptydir?(/a)) id else err
6≡ if (dir?(/a)) id else err

Any input filesystem that demonstrates the inequality must
have a file (or directory) within /a. However, if we construct

422

Logical Formulas φ ::= · · ·
Logical Filesystems σ̂ ::= 〈p1 =φ1 · · · pk =φk〉

Logical States Σ ::= 〈ok =φ, fs = σ̂〉

encPred(σ̂, b)∈ φ

ok(e)∈ σ̂ → bool

ok(id)σ̂, true

ok(err)σ̂, false

ok(mkdir(p/str))σ̂, σ̂(p) = dir ∧ σ̂(p/str) = dne

ok(creat(p/str , str ′))σ̂, σ̂(p/str) , dne ∧ σ̂(p) = dir

ok(rm(p))σ̂,∃c.σ̂(p) = file(c)∧
∀str .p/str ∈ dom(σ̂)⇒ σ̂(p/str) = dne

ok(cp(p1, p2/str))σ̂,∃str ′.σ̂(p1) = File(str ′)∧
σ̂(p2) = Dir ∧ σ̂(p2/str) = none?

ok(e1; e2)σ̂, ok(e1)σ̂ ∧ ok(e2)(f(e1)σ̂)

ok(if (b) e1 else e2)σ̂, if (encPred(σ̂, b)) ok(e1)σ̂ else ok(e2)σ̂

f(e)∈ σ̂ → σ̂

f(id)σ̂, σ̂
f(err)σ̂, σ̂

f(mkdir(p/str))σ̂, σ̂[p/str : = Dir]

f(creat(p/str , str ′))σ̂, σ̂[p/str : = file(str ′)]
f(rm(p))σ̂, σ̂[p : = none?]

f(cp(p1, p2/str))σ̂, σ̂[p2/str : = σ̂(p1)]

f(e1; e2)σ̂, f(e2)(f(e1)σ̂)

f(if (b) e1 else e2)σ̂, if (encPred(σ̂, b)) f(e1)σ̂ else f(e2)σ̂

Φ(e)∈Σ→ Σ

Φ(e)〈ok = b, fs = σ̂〉, 〈ok = b ∧ ok(e)σ̂, fs = f(e)σ̂〉

ΦG(G)∈Σ→ 2Σ

ΦG((∅, E))Σ, {Σ}
ΦG(G)Σ,

⋃
ΦG(G− e)(Φ(e)Σ)

where inDegree(e) = 0

Figure 7: Encoding FS as logical formulas.

dom(a) ∈ 2p

dom(file?(p)) , {p}
dom(emptydir?(p)) , {p, p/str} str is fresh

· · ·
dom(e) ∈ 2p

dom(mkdir(p/str)) = {p, p/str}
dom(creat(p/str , str ′)) = {p/str , p}

dom(rm(p)) = {p/str} str is fresh
dom(cp(p1, p2/str)) = {p1, p2, p2/str}

dom(e1; e2) = dom(e1) ∪ dom(e2)
dom(if (a) e1 else e2) = dom(a) ∪ dom(e1) ∪ dom(e2)

Figure 8: Bounding the domain of FS programs.

a logical filesystem using only the paths that appear in the
program text, we will not find this counterexample. A similar
problem affects rm(p). The function in figure 8 addresses
this problem by adding fresh files in directories that are
removed or tested for emptiness to avoid this bug. We can
now prove that equivalence-checking is complete.

Lemma 2 (Completeness—equivalence). If:

• Je1Kσ 6= Je2Kσ and
• dom(σ̂′) = dom(e1) ∪ dom(e2)

then Φ(〈ok = true, fs = σ̂′〉, e1) 6= Φ(〈ok = true, fs = σ̂′〉, e2).

Soundness is straightforward. A model for the formula
can be easily transformed into a counterexample filesystem.

Lemma 3 (Soundness—equivalence). If:

• Φ(〈ok = true, fs = σ̂〉, e1) 6= Φ(〈ok = true, fs = σ̂〉, e2) and
• σ̂ ` σ

then Je1Kσ 6= Je2Kσ.

We use these lemmas to prove that that determinism
checking is sound and complete. In the theorem below,
dom(e) is lifted to dom(G) in the obvious way.

Theorem 1. (Determinism) G is deterministic, if and only if
there exists Σ1, Σ2, and Σ3 such that Σ2 ∈ ΦG(G)Σ1∧Σ3 ∈

ΦG(G)Σ1 ∧ Σ2 6= Σ3 is unsatisfiable, where dom(Σ1) =
dom(Σ2) = dom(Σ3) = dom(G).

4.3 Commutativity and Directory Creation
Modeling all valid permutations of resources can produce
formulas that are intractably large. For example, suppose a
resource graph G has exactly two nodes a and b that do not
have any ancestors. The naive approach considers evaluat-
ing either node first and then recurs on the two subgraphs
G − a and G − b. When the sub-graphs also have several
nodes without any ancestors, the size of the generated for-
mula grows intractably large. A significantly better approach
is to use a fast, syntactic commutativity check to rule out per-
mutations that don’t need to be explored, similar to partial-
order reduction. Note that it is not sufficient to check that
a and b commute. For example, b; a; c and b; c; a are valid
permutations in the following graph:

a b c

We can only conclude that they are equivalent if we know
that a commutes with both b and c. Therefore, to avoid
recurring on both G− a and G− b, we need to prove that a
(or b) commute with all nodes that are not ancestors of a, as
shown in figure 9a.

Next, we need a fast, syntactic commutativity check,
which should be straightforward to do for FS. Surprisingly,
the natural approach does not work. A typical commutativity
check works as follows: to check if e1 and e2 commute, cal-
culate the set of locations that each reads and writes. If the
expressions don’t have any overlapping writes and e1 does
not read any locations that e2 writes (and vice versa), then
they do commute. If not, they may or may not commute and
we need to semantically check both orderings.

This approach is not effective for Puppet, due to the se-
mantics of packages. Typical packages install files to shared
directories (e.g. /usr/bin, /etc, and so on) and will cre-
ate these directories if necessary. Therefore, the conventional

423

ΦG(G)∈Σ→ 2Σ

ΦG((∅, E))Σ, {Σ}
ΦG(G)Σ,ΦG(G− e)(Φ(e)Σ)

where inDegree(e) = 0
∀e′ ∈ G.¬ancestor(e′, e)⇒ e′; e ≡ e; e′

ΦG(G)Σ,
⋃

ΦG(G− e)(Φ(e)Σ)
where inDegree(e) = 0

(a) Incorporating the commutativity-check.

Abstract Values ṽ ::= ⊥ | R |W | D
Abstract State σ̃ ::= 〈p1 = v̂1 · · · pk= v̂k〉
⊥ @ R,D @W

[e]C ∈ σ̃ → σ̃

[if (¬dir?(p/str)) mkdir(p/str)]C σ̃ ,

σ̃[p/str : =D] σ̂(p/str) v D
and σ̃(p) = D

σ̃[p/str : =W] otherwise
[mkdir(p)]C σ̂ , σ̃[p : =W]

[creat(p, str)]C σ̂ , σ̃[p : =W]

[e1; e2]C σ̃ , [e2]C([e1]C σ̃)
· · ·

(b) Checking commutativity.

Figure 9: Commutativity checks eliminate the number of permutations that need to be generated.

approach cannot prove that packages commute. Manifests
that installs several packages typically do not specify any
dependencies between them, so this issue arises frequently.

To address this issue, we use an abstract interpretation
that maps each path p to the abstract values⊥, R, W , and D
(figure 9b). These values indicate that the expression either
does not affect p (⊥), reads from p (R), writes to p (W), or
ensures that p is a directory (D). A mkdir(p) expression that
doesn’t first check if p already exists is simply a write (W).
Only a guarded mkdir(p) can ensure p is a directory, such as
these expressions:

if (¬dir?(p)) mkdir(p)
≡ if (none?(p)) mkdir(p) else if (file?(p)) err else id

In addition, the analysis ensures that expressions create di-
rectory trees in a reasonable order. For example, an expres-
sion that creates /a before /a/b is not equivalent to an ex-
pression that tries to create /a/b before /a. However, two
expressions that create sibling directories do commute. To
ensure that these properties hold, we map p/str to D, only
if p is already mapped to D.

We can use the result of this analysis to check that ex-
pressions commute, even if they create overlapping directory
trees.

Lemma 4. For all e1 and e2, if:

1. {p | [e1]C⊥(p) = R} ∩ {p | [e2]C⊥(p) = W} = ∅,

2. {p | [e1]C⊥(p) = W} ∩ {p | [e2]C⊥(p) = R} = ∅,

3. {p | [e1]C⊥(p) = D}∩ {p | [e2]C⊥(p) ∈ {R,W}} = ∅, and

4. {p | [e1]C⊥(p) ∈ {R,W}} ∩ {p | [e2]C⊥(p) = D} = ∅

then e1; e2 ≡ e2; e1.

4.4 Pruning Files from Resources
The syntactic commutativity check mentioned above elimi-
nates the need to explore different permutations of resources
that are obviously equivalent to each other. However, even a
single permutation that installs several large resources can
make formulas needlessly large. For example, suppose a
manifest installs a large package (e.g., git, which has over
500 files) and then doesn’t read or write to any of the files

that the package creates. Intuitively, we should be able to
completely eliminate resources that are not observed by the
rest of the manifest.

However, there are situations where resources must inter-
fere. It is quite common for a manifest to update a default
configuration file created by a package. For example, the
manifest in figure 3a installs the Apache web server and sup-
plies a site-specific configuration file that should overwrite
the default configuration. Even in this situation, the manifest
does not update most of the other 200+ files that the Apache
package creates. Intuitively, we should be able to shrink re-
sources so that we don’t have to track the state of files that
cannot affect the outcome of the determinism-check.

In this section, we formalize these two observations using
two simple analyses.

Eliminating Resources. Notice that a determinism-check
is essentially a conjunction of equivalence-checks between
all valid permutations of resources. For example, the follow-
ing resource graph has eight valid permutations of the four
resources shown:

a c b d

A naive determinism-check would generate all permutations
and verify that they are equivalent:

a; b; c; d≡ a; b; d; c≡ a; d; b; c≡ b; a; c; d
≡ b; a; d; c≡ b; d; a; c≡ d; a; b; c≡ d; b; a; c

However, suppose we use our commutativity check to de-
termine that c and d commute. We could then rewrite all
the permutations that end with c; d to instead end with d; c,
which gives us a series of permutations that all end in c. In
general, e1; e ≡ e2; e, if and only if e1 ≡ e2. Therefore, we
can completely eliminate cwithout changing the result of the
equivalence check.

In general, if a resource commutes with all other re-
sources that may be evaluated after it in the resource graph,
then that resource can be eliminated without affecting the
result of the determinism-check. Moreover, eliminating one
resource often allows their parents to be eliminated. For ex-
ample, suppose that b commutes with a and d. Eliminating

424

c, as discussed above, allows us to then eliminate b by the
same argument. However, trying to eliminate b first would
fail, since it does not commute with c, which may-succeed
b. In practice, a true dependency a→ b indicates that b truly
depends on the effects of a and thus the two resources do
not commute. In our experience, we’ve found it most effec-
tive to eliminate resources by starting with resources at the
fringe of the dependency graph that are not required by any
other resources.

Shrinking Resources. There are several cases where large
resources cannot be completely eliminated. However, they
can be shrunk as follows. In general, if a resource writes to
a path p such that (1) other resources in the manifest do not
observe the state of p and (2) other resources in the manifest
do not affect the state of p then we can eliminate writes to
p without changing whether the manifest is deterministic or
not. Moreover, the encoding of FS programs as formulas can
then exploit the fact that p is read-only and use a single
variable to represent the state of p, instead of using new
variables for each state. This can dramatically reduce the
number of variables needed to encode the program.

Consider the problem of shrinking two expressions e1 and
e2 to e′1 and e′2, such that e1 ≡ e2 if and only if e′1 ≡ e′2. If
both expressions leave a path p in the same state, it should
be possible to shrink both expressions by removing their
writes to p. However, to implement idempotent operations,
resources tend to have a complex series of reads and writes
(section 3.3). Nevertheless, a resource that writes to p typi-
cally ensures that p is either placed in a definite state or sig-
nals an error if it cannot do so. We say that these resources
make definitive writes to p. Therefore, if both expressions
make the same definitive write to p, then we can eliminate
writes to p.

We detect definitive writes using the abstract interpreta-
tion sketched in figure 10b, which produces an abstract heap,
σ̂ that maps paths p to abstract values that characterize the
effect of an expression on p over all input states:

• If σ̂(p) = dir, the expression ensures that p is a directory
(or signals an error).

• If σ̂(p) = file(str), the expression ensures that p is a file
with contents str (or signals an error).

• If σ̂(p) = dne, the expression ensures that p does not
exist (or signals an error).

• If σ̂(p) = ⊥, the expression does not read or write p.
• If σ̂(p) = >, the expression has an indeterminate effect

on p.

Lemma 5. If (ĴeK⊥)(p) @ > then for all states σ1 and σ2,
(JeK (σ1))(p) = (JeK (σ2))(p).

If the abstract interpretation determines that e1 and e2 set
a path p to the same definite value, we should be able to
prune writes to p from both expressions. However, consider

the two equivalent expressions below:
mkdir(p/str); if (dir?(p/str)) id else err ≡ mkdir(p/str)

The expressions on either side ensure that p/str is a direc-
tory. However, if we naively replace mkdir(p/str) with id,
we get the following wrong result:

id; if (dir?(p/str)) id else err 6= id
To correctly eliminate writes to p, we need to also transform
expressions that read from p to account for the effect that the
write would have had. In our example, the test dir?(p/str)
will always be true, since it follows mkdir(p/str). The in-
sight is that when writes to p are eliminated, we need to
transform all expressions that subsequently read or write to
p. In our example, we need to transform dir?(p/str) to true.

The pruning function, prune(p, e), eliminates writes to p
by preserving reads in this manner (figure 10a). The function
correctly handles programs where a write to p is followed by
other reads and writes to p by partial evaluation.

The following lemma states that the same definitive write
from e1 and e2 doesn’t change their (in-)equivalence.

Lemma 6. If (Ĵe1K⊥)(p) = (Ĵe2K⊥)(p) = v̂ and v̂ @ >
then e1 ≡ e2 if and only if prune(p, e1) ≡ prune(p, e2).

Although pruning eliminates writes to p, it does not elim-
inate reads from p. However, eliminating writes ensures that
p is a read-only path. When we encode the expression as
a logical formula, the encoding can optimize for read-only
paths by using a single variable to represent the initial state
of the path, which then remains unchanged.

Pruning for determinism checking. Since a determinism
check encodes equalities between all permutations of re-
sources, we could also apply the abstract interpretation to
all permutations, but this would be intractable. Instead, we
apply the abstract interpretation to each resource in isola-
tion to find paths that are definitively written by exactly one
resource and only prune these paths. This conservative ap-
proach works well in practice.

4.5 Summary
These are the three major techniques that Rehearsal uses
to make determinism-checking scale. We’ve also outlined
how each step preserves (in-)equivalences, so the approach
is sound and complete.

Other approaches. We have tried two other techniques
for checking determinism that are less effective than the
methodology discussed in this section.

1. We developed a dynamic analysis that simply installed
resources in different valid permutations within indepen-
dent Docker containers. The Docker API makes it easy to
see how a container has updated its filesystem. However,
installing resources takes time and it took our prototype
several hours to verify small manifests with less than ten
resources. (We fully utilized a four-core machine with 16
GB RAM.) In contrast, our static analysis checks deter-
minism in seconds.

425

PJ·K ∈ e× p× σ → e× σ
PJidK p σ= (id, σ)

PJerrK p σ= (err, σ)
PJmkdir(p)K p σ= (err, σ) if σ(p) = Dir or σ(p) = File(str)

PJmkdir(p/str)K p/str σ= (if (none?(p/str) ∧ dir?(p)) id else err, σ[p/str : = Dir])
PJmkdir(p′)K p σ= (mkdir(p′), σ) if p 6= p′

PJcreat(p, str)K p σ= (err, σ) if σ(p) = Dir or σ(p) = File(str ′)
PJcreat(p/str , str ′)K p/str σ= (if (none?(p/str) ∧ dir?(p)) id else err, σ[p/str : = File(str ′)])

PJcreat(p′, str)K p σ= (creat(p′, str), σ) if p 6= p′

PJrm(p)K p σ= (err, σ) if p 6∈ dom(σ) or ∃str .p/str ∈ dom(σ)
PJrm(p)K p σ= (if (file?(p) ∨ emptydir?(p)) id else err, σ − p)

PJrm(p′)K p σ= (rm(p′), σ) if p 6= p′

· · ·
PJif (a) e1 else e2K p σ= (e1, σ) if JaKσ = true

· · ·
prune ∈ p× e→ e

prune(p, e) = p′ where (p′, σ) = PJeK p ·

(a) Pruning definitive writes.

Abs. Values v̂ ::= ⊥ | > | dir | file(str) | dne

Abs. State σ̂ ::= 〈p1 = v̂1 · · · pk= v̂k〉

⊥ @ dir, file(str), dne @ >

ĴeK ∈ σ̂ → σ̂

ĴidKσ̂ = σ̂

ĴerrKσ̂ = σ̂
̂Jmkdir(p)Kσ̂ = σ̂[p : = dir]

̂Jcreat(p, str)Kσ̂ = σ̂[p : = file(str)]
̂Jrm(p)Kσ̂ = σ̂[p : = dne]

̂Jif (a) e1 else e2Kσ̂ = Ĵe1Kσ̂ u Ĵe2Kσ̂
̂Je1; e2Kσ̂ = Ĵe2K(Ĵe1Kσ̂)

(b) Detecting definitive writes.

Figure 10: Shrinking resources.

2. Instead of using an SMT solver, we tried to encode FS
programs as binary-decision diagrams (BDDs) by ex-
ploiting the natural hierarchy of paths to pick a good vari-
able order. (e.g., a < a/b.) In our experience, the SMT
solver was faster and significantly easier to use. For ex-
ample, properties such as “all paths must be distinct” are
very easy to express using distinct constraints in an
SMT solver.

5. Beyond Determinism
After we’ve checked that a manifest is deterministic, we
can treat it as an expression rather than a resource graph:
we can pick any valid ordering of the resources (determin-
ism ensures that they are all equivalent) and sequence them
to form a single expression e. We emphasize that while re-
source graphs denote relations, FS expressions denote func-
tions. This lets Rehearsal check several properties quickly
and easily.

Invariants. We’ve seen that Puppet is actually very imper-
ative. A manifest that declares a file resource may over-
write it using some other resource, which is typically unde-
sirable. Rehearsal checks for this issue using the following
formula, which is unsatisfiable if e ensures that p is always
a file with content str :

∃σ̂.ok(e)σ̂ ∧ f(e)σ̂(p) 6= file(str)

It is easy to imagine checks for several other invariants.

Idempotence. We discussed in section 2 that idempotence
is a critical property of Puppet manifests. To test if a manifest
is idempotent, we simply check if e ≡ e; e holds.

We emphasize that these checks are efficient because
they do not have to consider all permutations of resources.
Moreover, these simple checks would be unsound if applied
to non-deterministic manifests.

6. Evaluation
Rehearsal is implemented in Scala and uses the Z3 Theorem
Prover [11] as its SMT solver. The majority of the codebase
is the frontend that turns manifests into FS expressions. To
model packages, Rehearsal needs to query an OS package
manager. For portability, we’ve built a web service for Re-
hearsal that can query the package manager for several op-
erating systems. The service returns the package listing in
a standardized format and stores the result in a database to
speedup subsequent queries. Our current deployed service
has Ubuntu and CentOS running in containers and it is easy
to add support for other operating systems.

Note that the times reported in this section do not in-
clude the time required to fetch package listings. The pack-
age querying tools (apt-cache and repoquery) can take
several seconds to run, which is why our web service caches
their results.

Third-party benchmarks. We benchmark the determinism
checker on a suite of 13 Puppet configurations gleaned from
GitHub and Puppet Forge. We specifically chose bench-
marks that did not use exec resources as detailed further
in section 8. We manually verified that six of them have
determinism bugs and that seven do not. For each non-
deterministic program, we developed a fix and verified that
Rehearsal reports that it is deterministic and idempotent. We
repeat all timing experiments ten times and report the av-
erage. We perform all experiments on a quad-core 3.5 GHz
Intel Core i5 with 8GB RAM.

Figure 11 shows the effect of pruning on Rehearsal’s de-
terminacy analysis. In the figure, the non-deterministic man-
ifests are marked -nondet. Without commutativity checking,
four benchmarks do not complete in over ten minutes and
one takes over two minutes to run (figure 11c). Even with
commutativity-checking, two benchmarks timeout after ten
minutes. However, when commutativity-checking is coupled

426

0

500

1000

1500

am
av

is
bi

nd
cla

m
av

dn
s−

no
nd

et
ho

sti
ng

irc
−no

nd
et

jp
a

log
sta

sh
−no

nd
et

m
on

it
ng

in
x

nt
p−

no
nd

et

rsy
slo

g−
no

nd
et

xi
ne

td
−no

nd
et

Benchmark

P
at

hs
Pruned

No

Yes

(a) Paths per state.

0

0.5

1

1.5

Timeout

am
av

is
bi

nd
cla

m
av

dn
s−

no
nd

et
ho

sti
ng

irc
−no

nd
et

jp
a

log
sta

sh
−no

nd
et

m
on

it
ng

in
x

nt
p−

no
nd

et

rsy
slo

g−
no

nd
et

xi
ne

td
−no

nd
et

Benchmark

T
im

e
(s

)

Pruning

No

Yes

(b) Shrinking and eliminating resources.

0

30

60

90

120

150

Timeout

am
av

is
bi

nd
cla

m
av

dn
s−

no
nd

et
ho

sti
ng

irc
−no

nd
et

jp
a

log
sta

sh
−no

nd
et

m
on

it
ng

in
x

nt
p−

no
nd

et

rsy
slo

g−
no

nd
et

xi
ne

td
−no

nd
et

Benchmark

T
im

e
(s

)

Commutativity

No

Yes

(c) Checking commutativity.

Figure 11: Benchmarking determinacy analysis.

0.0

0.2

0.4

0.6

am
av

is
bi

nd
cla

m
av

dn
s

ho
sti

ng
irc jp

a
log

sta
sh

m
on

it
ng

in
x

nt
p

rsy
slo

g
xi

ne
td

Benchmark

T
im

e
(s

)

Figure 12: Benchmarking idempotence checking.

1

10

100

2 4 6
Number of conflicting resources

T
im

e
(s

)

Figure 13: Scalability with n interfering resources.

with file pruning (section 4.4), all benchmarks complete in
less than two seconds (figure 11b). Figure 11a shows the
number of files in each manifest, with and without prun-
ing. (Note that commutativity-checking does not affect the
number of files.) As expected, the runtime of benchmarks
corresponds to the number of files that need to be modeled.

Figure 12 reports the time required by the idempotence
check is less than one second on all benchmarks. In practice,
the idempotence check would be preceded by a determinism
check, which typically takes more time to complete.

Synthetic benchmarks. The benchmarks above suggest
that commutativity checking and pruning are effective in
practice. However, it is quite straightforward to construct
an artificial scenario where the commutativity check is in-
effective. The natural way to construct this benchmark is to
have n unordered file-resources that write to the same path.

This renders the commutativity-check useless, so Rehearsal
is forced to explore all n! paths through the resource graph.
Moreover, the file cannot be pruned either. Figure 13 shows
the running time grows non-linearly with n. In fact, even
with n = 6, the running time exceeded two minutes.

Although the simple benchmark described above can be
constructed using FS, it is not a valid Puppet manifest, since
Puppet does not allow multiple file-resources to affect the
same path. A working alternative is to find n conflicting
packages that all create the same file p and try to install all
of them simultaneously. Even in this scenario, Rehearsal can
determine that the manifest is non-deterministic relatively
quickly (i.e., that the formula is satisfiable). However, we
can force the manifest to be deterministic by using a single
file resource that updates the contents of p after all the
packages are installed:

All packages create a file /a

package{’A-1’: before => File[’/a’] }

package{’A-2’: before => File[’/a’] }

package{’A-3’: before => File[’/a’] }

...

file{’/a’: content => ’x’ }

The final file-resource makes the manifest deterministic,
which forces the solver to construct a proof of unsatisfiabil-
ity instead of terminating early with a satisfying assignment.
We believe that this kind of scenario is very unlikely to arise
in practice.

Bugs found. Rehearsal found determinism bugs in six
benchmarks (including a previously undiscovered bug). The
bugs are of the kind we described in section 2. Specifically,
several benchmarks omitted a necessary dependency be-
tween a package and a configuration file. In addition, one
benchmark omitted a dependency between a user account
and SSH keys for the user. Broadly speaking, resource-types
such as files and packages have a well-understood semantics,
but users may not understand their interactions.

7. Related Work
Other system configuration languages. Several system
configuration languages have been developed over decades

427

of research, many of which are surveyed by Delaet and
Joosen [10]. To the best of our knowledge, the kind of ver-
ification tools we have developed for Puppet have not been
developed for these languages. Instead, we highlight how
several languages differ from Puppet and consider what it
would take to adapt our approach for them.

Hagemark and Zadeck’s Site tool [16] has a DSL that is
closely related to Puppet. A Sitefile describes bits of config-
urations in “classes” that can be composed in several ways.
Site traverses these classes in topological order and can also
suffer missing dependencies, which our techniques detect.

LCFG [1] provides built-in components for configuring
common applications. However, while new LCFG compo-
nents have to be authored in Perl, Puppet encourages aver-
age users to build their own abstractions using the Puppet
DSL. An inter-component dependency in LCFG requires co-
ordination between the configuration file and Perl code (us-
ing “context variables”). Rehearsal leverages Puppet’s high-
level DSL which makes all dependencies manifest. Building
similar tools for LCFG would be difficult due to Perl.

Anderson and Herry [2] develop a denotational seman-
tics for the SmartFrog configuration language that faithfully
models its non-deterministic semantics. They show that their
model helps resolve several implementation issues, though
ordering issues remain. They argue that system configura-
tion languages need formal models and warn that popular
languages gain features faster than formal models can be de-
veloped. Our work shows that it is possible to model and
analyze a significant fraction of a large system configuration
language, but we don’t disagree with their conclusions.

Engage [13] is a system for deploying and configuring
distributed applications that can specify complex, inter-
machine dependencies, where values computed by one re-
source at runtime can be used as inputs to another resource
on a different machine. Puppet is more limited and does
not support orchestration. To manage the life-cycle of a re-
source, Engage users have to write drivers in Python. Al-
though the Engage type-checker ensures that resources are
composed correctly, it assumes that these Python drivers are
error-free. In contrast, the Puppet DSL performs operations
similar to Engage drivers and our tools can check this code.

NixOS [12] takes a radically different approach to pack-
age and configuration management than a typical Linux dis-
tribution. NixOS places every package and configuration in
a unique location (determined during configuration) and en-
sures that they are immutable. This design forces NixOS
policies to make all dependencies explicit. Puppet bring
some of the advantages of NixOS to traditional operating
systems and Linux distributions, but our paper shows that it
doesn’t provide the same guarantees of NixOS. Instead of
proposing a radical, new architecture, we show that program
verification techniques can be employed to provide strong
guarantees for Puppet configurations.

Tucker and Krishnamurthi [29] argue that Racket’s unit
system could be adapted to build a better package manager.
The benefits of their design are similar to the benefits of
NixOS (discussed above).

Testing and verification of configurations. CLOUDMAKE
is a cloud-based build system in use at Microsoft that has
important features such as artifact caching, parallel builds,
etc. CLOUDMAKE commands make all inputs and outputs
explicit. Christakis, et al. [9] have a mechanized proof that
CLOUDMAKE scripts are race-free, which justifies parallel
builds. Our paper shows that it’s not possible to prove such
a theorem for all Puppet configurations. Instead, Rehearsal
verifies that individual manifests are deterministic.

Hummer et al. [18] systematically test Chef configura-
tions and find that several configurations are not idempotent.
Their test-based approach cannot ensure complete coverage
and can take several days. By contrast, we use static analy-
sis to prove determinacy and idempotency, which would be
more difficult to do for Chef as it is a Ruby-embedded DSL.

Although Puppet uses native package managers to imple-
ment package resources, Puppet doesn’t leverage the rich
information that packages provide, such as their direct de-
pendencies and conflicts, which leads to the kind of errors
described in section 2. It should be possible to leverage
package metadata to build more useful verification tools,
perhaps using the SAT-based encoding of Opium [28]. Un-
like apt-get, Opium’s algorithm for calculating installa-
tion/uninstallation is complete for a given distribution. The
analogous problem for Puppet would be to calculate the
installation profile for a resource, given a universe of re-
sources, such as modules on Puppet Forge. To do so, one
would need to calculate and verify dependencies. Rehearsal
does the latter and could be augmented to do the former.

Rehearsal uses a straightforward model of the filesystem,
partly because Puppet’s model hides many platform-specific
filesystem details for portability (e.g., Puppet doesn’t sup-
port hard links). Others have developed filesystem models
that are much richer than ours (e.g., [4, 22, 23]). The program
logic of Gardner et al. [14] is particularly interesting because
it enables modular reasoning about filesystem-manipulating
programs. In contrast, the verification techniques in our pa-
per are not modular because we support Puppet features that
have global effects on the resource graph. If these features
were ignored, a modular analysis would be attractive.

Cloud services such as Microsoft Azure contain large
configurations with many components in various represen-
tations (e.g.YAML, XML, INI, etc.). ConfValley [17] uni-
fies these configurations into a single representation and val-
idates them with respect to user-written predicates about the
configuration. The predicates may describe desirable prop-
erties for a particular cloud service configuration such as en-
suring that a particular variable has the correct type or a cer-
tain file has the appropriate permissions. Rehearsal verifies
two specific properties about the effects of a Puppet config-

428

uration on a machine, rather than properties of the config-
uration itself. We consider every possible input and execu-
tion path in order to prove or disprove idempotence and de-
terminism. A ConfValley-style verification of Puppet would
involve writing predicates about the structure of the resource
graph, which should be straightforward to do with our tools.

Determinacy checkers. In the past few years, several tools
have been developed that use static [6, 19, 31] and dy-
namic [8, 24] techniques to check that multi-threaded pro-
grams are deterministic. Rehearsal is a static determinacy
checker for Puppet and leverages an SMT solver, thus is
most closely related to Liquid Effects [19]. Liquid Effects
establishes determinism by showing that concurrent effects
are disjoint, but there are common examples of deterministic
Puppet programs that do not have disjoint effects. Instead,
Rehearsal has a commutativity check that accounts a pat-
tern of false sharing that is common to Puppet (section 4.3).
Rehearsal and Liquid Effects address determinism in two
very different domains. Liquid Effects proves determinism
for multi-threaded C programs with pointers, aliasing, and
functions that are tackled in a modular way with types. In
contrast, Puppet manifests have no aliasing, loops, or proce-
dures. Since our problem is simpler, we are able to build a
scalable, sound, and complete determinacy checker that re-
quires no annotations by the programmer.

When Rehearsal reports that a Puppet manifest is deter-
ministic, the manifest may still yield different outputs for
different inputs. i.e., Rehearsal only verifies that a manifest
maps each input state to a single output state. In contrast,
Andreasen and Møller [3], have developed techniques to in-
fer that program expressions determinate, i.e., that an ex-
pression produces the same value in all executions. They
exploit determinate expressions to improve the precision of
their JavaScript Type Analyzer. In contrast, Puppet expres-
sions are always determinate, but Puppet manifests can be
non-deterministic.

Alternate uses of configuration management. Finally, we
note that configuration management is an overloaded term
in the literature. This paper addresses an issue that arises in
software configuration and deployment. However, the term
configuration management is also used to refer to version-
control systems (e.g., CVS and Git) and to application con-
figuration [26, 27], which is not the subject of this work.

8. Limitations
The primary limitation of this work is that Puppet manifests
support embedded shell scripts (using the exec resource
type). Shell scripts are often an anti-pattern, but they are
indispensable for certain tasks. For example, they are often
used to setup software that has not made its way into sanc-
tioned software repositories. The main challenge with shell
scripts is that they can have arbitrary effects on the filesys-
tem, unlike the other resource-types that have a clearer se-
mantics and lend themselves to formal models.

Another limitation of our work is that our analyses rely
on models of system resources, which can be inaccurate.
For example, to model packages, we need to know the files
that a package creates. At present, we assume that pack-
ages only create the files returned by apt-file (on Debian)
and repoquery (on Red Hat). However, many packages use
“post-install scripts” to create additional files, which our ap-
proach will miss. Therefore, although our algorithms are
sound and complete with respect to our model of system re-
sources, our models have known limitations. A more precise
alternative would be to actually install packages in a sand-
boxed environment and check what files get written to disk.

Finally, as suggested above, our analysis is platform-
dependent. In fact, the choice of operating system deter-
mines how packages are modeled. Although Puppet has sev-
eral platform-neutral features, it also exposes the platform
name and version as program variables that a manifest can
use to specialize for a particular platform. Rehearsal takes
the platform name as a command-line flag and so a manifest
can be re-verified for several platforms. However, it would
be more useful to check that a manifest has similar effects
on different platforms.

9. Conclusion
This paper presents Rehearsal, the first verification tool for
Puppet, a popular system configuration language. Specifi-
cally, Rehearsal checks that exec-free Puppet manifests are
deterministic and idempotent, which are both fundamental
properties of correct Puppet manifests. To build Rehearsal,
we developed a simple semantics for Puppet that we hope
will be useful to other researchers. We believe that our ap-
proach to modeling Puppet will enable several other tools,
e.g., manifest repair and synthesis, and security auditing.

Acknowledgments
We thank the PLDI’16 reviewers, our shepherd Manu Srid-
haran, Daniel Barowy, Emery Berger, Shriram Krishna-
murthi, Robert Powers, John Vilk, and Jean Yang for their
thoughtful feedback and suggestions. We thank Joseph Col-
lard and Nimish Gupta for their work on a preliminary ver-
sion of Rehearsal. This work is supported by the U.S. Na-
tional Science Foundation under grants CNS-1413985 and
CCF-1408745 and by a Google Research Award.

References
[1] Paul Anderson. Towards a High-Level Machine Configuration

System. USENIX Large Installation System Administration
Conference (LISA), 1994.

[2] Paul Anderson and Herry Herry. A Formal Semantics for the
SmartFrog Configuration Language. Journal of Network and
Systems Management, 24(2):309–345, 2016.

[3] Esben Andreasen and Anders Møller. Determinacy in Static
Analysis for jQuery. ACM SIGPLAN Conference on Ob-

429

ject Oriented Programming, Systems, Languages and Appli-
cations (OOPSLA), 2014.

[4] Konstantine Arkoudas, Karen Zee, Viktor Kuncak, and Martin
Rinard. Verifying a file system implementation. International
Conference on Formal Engineering Methods (ICFEM), 2004.

[5] Augeas. Retrieved Apr 15 2016 from http://augeas.net.

[6] Robert L. Bocchino, Jr., Vikram S. Adve, Danny Dig, Sarita V.
Adve, Stephen Heumann, Rakesh Komuravelli, Jeffrey Over-
bey, Patrick Simmons, and Hyojin Sung. A Type and Ef-
fect System for Deterministic Parallel Java. ACM SIGPLAN
Conference on Object Oriented Programming, Systems, Lan-
guages and Applications (OOPSLA), 2009.

[7] Aaron Bohannon, J. Nathan Foster, Benjamin C. Pierce,
Alexandre Pilkiewicz, and Alan Schmitt. Boomerang:
Resourceful Lenses for String Data. ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Lan-
guages (POPL), 2008.

[8] Jacob Burnim and Koushik Sen. Asserting and Checking De-
terminism for Multithreaded Programs. Joint Meeting of the
European Software Engineering Conference (ESEC) and the
ACM SIGSOFT Symposium on the Foundations of Software
Engineering (FSE), 2009.

[9] Maria Christakis, K. Rustan M. Leino, and Wolfram Schulte.
Formalizing and Verifying a Modern Build Language. Inter-
national Symposium on Formal Methods (FM), 2014.

[10] Thomas Delaet, Wouter Joosen, and Bart Vanbrabant. A sur-
vey of system configuration tools. USENIX Large Installation
System Administration Conference (LISA), 2010.

[11] Leonardo De Moura and Nikolaj Bjørner. Z3: An Efficient
SMT Solver. Tools and Algorithms for the Construction and
Analysis of Systems (TACAS), 2008.

[12] Eelco Dolstra, Andreas Löh, and Nicholas Pierron. NixOS: A
Purely Functional Linux Distribution. Journal of Functional
Programming, 20(5–6):577–615, 2010.

[13] Jeffery Fischer, Rupak Majumdar, and Shahram Es-
maeilsabzali. Engage: A Deployment Management System.
ACM SIGPLAN Conference on Programming Language De-
sign and Implementation (PLDI), 2012.

[14] Philippa Gardner, Gian Ntzik, and Adam Wright. Local Rea-
soning about POSIX File Systems. European Symposium on
Programming (ESOP), 2014.

[15] Arjun Guha, Rian Shambaugh, and Aaron Weiss. Rehearsal.
Retrieved Apr 15, 2016 from http://plasma.cs.umass.

edu/rehearsal.

[16] Bent Hagemark and Kenneth Zadeck. Site: A Language and
System for Configuring Many Computers as One Computing
Site. USENIX Large Installation System Administration Con-
ference (LISA), 1989.

[17] Peng Huang, William J. Bolosky, and Abhishek Singh
Yuanyuan Zhou. ConfValley: A Systematic Configuation Val-
idation Framework for Cloud Services. European Conference
on Computer Systems (EuroSys), 2015.

[18] Waldemar Hummer, Florian Rosenberg, Fábio Oliveira, and
Tamar Eilam. Testing Idempotence and Convergence for In-
frastructure as Code. ACM/IFIP/USENIX International Mid-
dleware Conference, 2013.

[19] Ming Kawaguchi, Patrick Rondon, Alexander Bakst, and Ran-
jit Jhala. Deterministic Parallelism via Liquid Effects. ACM
SIGPLAN Conference on Programming Language Design and
Implementation (PLDI), 2012.

[20] Puppet Labs. Puppet Features: Idempotency. Retrieved Apr
15, 2016 from http://docs.puppetlabs.com/guides/

introduction.html#idempotency.

[21] John McCarthy. Towards a Mathematical Science of Compu-
tation. IFIP Congress, 1962.

[22] Carroll Morgan and Bernard Sufrin. Specification of the
UNIX Filing System. IEEE Transactions on Software Engi-
neering (TSE), 10(2):128–142, 1984.

[23] Tom Ridge, David Sheets, Thomas Tuerk, Anil Mad-
havapeddy, Andrea Giugliano, and Peter Sewell. SibylFS:
formal specification and oracle-based testing for POSIX and
real-world file systems. ACM Symposium on Operating Sys-
tems Principles (SOSP), 2015.

[24] Caitlin Sadowski, Stephen N. Freund, and Cormac Flana-
gan. SingleTrack: A dynamic determinism checker for mul-
tithreaded programs. European Symposium on Programming
(ESOP), 2009.

[25] Eric Shamow. Inside Puppet: About Determinism. Re-
trieved Apr 15, 2016 from http://puppetlabs.com/blog/

inside-puppet-about-determinism.

[26] Alex Sherman, Philip A. Lisiecki, Andy Berkheimer, and Joel
Wein. ACMS: The Akamai Configuration Management Sys-
tem. USENIX Symposium on Networked System Design and
Implementation (NSDI), 2005.

[27] Chunqiang Tang, Thawan Kooburat, Pradeep Venkatacha-
lam, Akshay Chandler, Zhe Wen, Aravind Narayanan, Patrick
Dowell, and Robert Karl. Holistic Configuration Management
at Facebook. ACM Symposium on Operating Systems Princi-
ples (SOSP), 2015.

[28] Chris Tucker, David Shuffleton, Ranjit Jhala, and Sorin
Lerner. OPIUM: Optimal Package Install/Uninstall Manager.
International Conference on Software Engineering (ICSE),
2007.

[29] David B. Tucker and Shriram Krishnamurthi. Programming
Languages for Software Configuration. International Work-
shop on Software Configuration Management (SCM), 2001.

[30] Ubuntu. Details of package golang-go in trusty. Re-
trieved Apr 15, 2016 from http://packages.ubuntu.com/

trusty/devel/golang-go.

[31] Martin Vechev, Eran Yahav, Raghavan Raman, and Vivek
Sarkar. Automatic Verification of Determinism for Structured
Parallel Programs. International Static Analysis Symposium
(SAS), 2010.

430

http://augeas.net.
http://plasma.cs.umass.edu/rehearsal.
http://plasma.cs.umass.edu/rehearsal.
http://docs.puppetlabs.com/guides/introduction.html#idempotency.
http://docs.puppetlabs.com/guides/introduction.html#idempotency.
http://puppetlabs.com/blog/inside-puppet-about-determinism.
http://puppetlabs.com/blog/inside-puppet-about-determinism.
http://packages.ubuntu.com/trusty/devel/golang-go.
http://packages.ubuntu.com/trusty/devel/golang-go.

	Introduction
	Introduction to Puppet
	A Core Fragment of Puppet
	Common Puppet Problems

	Semantics of Puppet
	From Puppet to Resource Graphs
	From Resources to FS Programs
	Modeling Resources as FS Programs
	Semantics of Resource Graphs

	Determinacy Analysis
	From Resource Graphs to Formulas
	Checking Determinism
	Commutativity and Directory Creation
	Pruning Files from Resources
	Summary

	Beyond Determinism
	Evaluation
	Related Work
	Limitations
	Conclusion

