
Programmable Syntax Macros

Daniel Weise

Roger Crew

Microsoft Research Laboratory

Abstract

Lisp has shown that a programmable syntax macro system

acts as an adjunct to the compiler that gives the programmer

important and powerful abstraction facilities not provided by

the language. Unlike simple token substitution macros, such

as are provided by CPP (the C preprocessor), syntax macros

operate on Abstract Syntax Trees (A STS). Programmable

syntax macro systems have not yet been developed for syn-

tactically rich languages such as C because rich concrete syn-

tax requires the manual construction of syntactically valid

program fragments, which is a tedious, difficult, and error

prone process. Also, using two languages, one for writing

the program, and one for writing macros, is another source

of complexity. This research solves these problems by having

the macro language be a minimal extension of the program-

ming language, by introducing explicit code template oper-

ators into the macro language, and by using a type system

to guarantee, at macro definkion time, that all macros and

macro functions only produce syntactically valid program

fragments. The code template operators make the language

context sensitive, which requires changes to the parser. The

parser must perform type analysis in order to parse macro

definitions, or to parse user code that invokes macros.

1 Introduction

Macros are a meta-programming construct that trans-

forms programs into programs. Macro languages are the

world’s “second oldest” programming language, having been

invented immediately after symbolic assembly language.

Macro languages provided abstraction facilities that assem-

bly language lacked, such as procedure call and return,

advanced control statements, and data-structuring facili-
ties. The additional programming abstraction provided by

a macro system has the advantage of incurring no runtime

penalty (although it does incur compile-time penalty).

Thirty to forty years later, macro languages retain the

same important use: providing abstraction facilities that a

given language lacks. For example, a powerful syntax macro

Permission to copy without fee all or part of this material is

granted provided that the copies are not made or distributed for

direct commercial advantage, tha ACM copyright notice and the

title of the publication and its date appear, and notice is given

that copying is by permission of the Association for Computing

Machinery. To copy otherwise, or to republish, raquires a fea

and/or specific permission.

ACM-S lGPLAN-PLDl-6/93 /Albuquerque, N.M.

a 1993 ACM 0-89791-598-4193/0006101 56...$1.50

facility for C can seamlessly extend C to provide exception

handling, a simple object system, ‘(atomic” resource alloca-

tion and deallocation, and new control statements.

Syntax Macros

S@az Macros operate during parsing. Their actual param-

eters, which are abstract syntax trees (ASTS), are discovered

by the parser. Macros produce ASTS that replace the code

of the macro invocation in downstream compiler operations.

Syntax macros declare the type of AST they return. This in-

formation is used by the parser to ensure macro invocations

only occur where their return type is expected. For example,

syntax macros that return statements can only occur where

statements are allowed by the grammar.

Syntax macros were independently introduced by

Cheatham [4] and Leavenworth [9] in the middle 60’s. They

proposed that the actual parameters to macro invocations be

found by a parser, and that the syntactic type of a macros

return result be part of a macro definition. Vidart’s PhD

thesis [14] cleaned up many problems with syntax macros

by makhg the leap to transformations on trees, rather than

on token streams. His macro system was substitution based,

that is, macro bodies are ASTS whose leaves are formal pa-

rameters that are replaced at invocation time with actual

parameters. Our use of the term “Syntax Macro” refers to

Vidart’s use of the term. W. R. Campbell [3] proposed a

paper extension to Vidart’s work that extended it towards

programmability, but in an ud hoc fashion. No implementa-

tion was reported for Campbell’s extension.

The major advantages of syntax macros are syrztactzc

safety, encapsulation, and syntactic abstraction. Syntactic

safety guarantees that a macro user will never see a syntax

error introduced by the use of a macro. Because transforma-

tions are specified in terms of syntactic constituents that the
parser isolates, and because the type system of the base lan-

guage can guarantee the construction of syntactically valid

program fragments, users will only see syntax errors in terms

of code they themselves write.

“Encapsulation” refers to non-interference of syntactic

constituents. In a token based macro system, a substitu-

tion can yield a syntactically valid program that produces

the wrong result because of unintended interference. For

example, consider a macro with two formal parameters, A

and B, whose body includes the expression A * B. If A and

B were bound to x + y and m + n, respectively, then, in a

token based macro system, the expansion contains the string
x + y * m + n, whose parse is x + (y * m) + n, which is

156

not the intended (x + y) * (rn + n). CPP macro writers

are encouraged to use parentheses liberally to avoid this well

known problem. In a syntactic framework, such interference

is impossible because substitution is performed at the tree

level. The macro writer does not need to be aware of unin-

tended conflict.

“Syntactic Abstraction” refers to the ability to add new
elements to existing syntactic domains, and to introduce new

concrete syntax for the new elements. A syntax macro sys-

tem literally adds to existing syntactic domains. (At least

one macro system [10] also allows the construction of mew

syntactic domains.)

Programmable Syntax Macros

Macro systems differ in the power of their transformaticmal

engine (Figure 1). The weakest macro system are template

based systems, the most powerful macro systems sport a

complete programming language. A programmable syntax

macro system allows the macro writer to act as a compiler

writer. It can be viewed aa a portable mechanism for ex-

tending the compiler itself. (This will become truer when

the syntax macro system is extended into a semantic macro

system, that is, one with access to a program’s static sem~an-

tic information.)

The problem of constmcting a powerful and simple pro-

grammable syntax macro facility for syntactically rich lkm-
guages has remained open. The fundamental problems to be
solved in delivering a programmable syntax macro system for

a language such as C are: to have the macro language be an

extended version of the base language, to guarantee syntac-

tic correctness of macro produced code, and to provide the

convenience and simplicity of the substitution model where

needed. This research solves these problems by making the

macro language be an extension of the base language, by us-

ing the C type system to ensure syntactic correctness when

macros and macro functions are defined, and by introducing

code template operators to achieve the effect of subst itu-

tion where needed by the macro writer. The presence of

code template operators make the language context sensi-

tive, which requires changes to the parser. The parser mmst

perform type analysis to parse macro definitions, or to parse

user code that invokes macros. Also, the parser must be

fully re-entrant.

As an example of the type of code that must be written

when a programmable macro (or other meta-programming)

system lacks code templates or other code substitution fa~cil-

ities, consider a simple macro that abstracts away resource

allocation and deallocation. Suppose that some window

system required certain painting operations to be brack-

eted with BeginPaint and EndPaint statements that aUo-

cate then deallocate a “painting resource” (these examples

are based upon the Windows API). Without macros, an id-

iomatic code fragment is:

BeginPaint (hOC, &ps) ;
<Stint 1>;

. . .
<strntn>;

EndPaint (hOC, &ps) ;

We’d like to capture this idiom in a macro called Painting,

whose use would appear as:

Paint ing {
<stlllt 1> ;

. . .

<stmtn>; 1

In a straightforward meta-programming system, a func-

tion for producing the above code given the statement

{<strstl> . . . <stmttn> } might be (where @stint is a type

specifier for the AST statement type):

Qstmt paint.f unct ion (@trot s) {

return (

crest e-compound-stat ement (

create_ declaration_list () ,

create-statement-list (

create-function-call (

create_ id(’’BeginPaint”) ,

create-argument-list (

create_ id(’’hDC”) ,

create-address-of (create_ id(’’ps”)))) ,

s,

create-f unction-call (,

create- id(’’EudPaint”) ,

create-argnment.list (

create- id(’’hDC”) ,

create-address-of (create-id (’’ps”))))))) ; }

This style of code plagues meta-programming systems. For

example, the meta-programming system of [2] heavily uses

this style of coding.

We solved the problem of concisely generating syntacti-

cally valid program fragments in a programmable system

by adding explicit template operators to the macro lan-

guage that provide the convenience of substitution seman-

tics. These template operators automatically construct the

above style of code from a code template. For example, us-

ing the template operator backquote ((), the above function

is written

@stint paint-f unction (~stmt s) {

return (C{ BeginPaint(hDC, kps) ;

$s ;

EndPaint(hDC, kps) ;})}

where $s means to substitute the value of s. In general,

the prefix operator $ causes evaluation of the expression it

prefixes; it is not restricted to just the substitution of iden-

tifiers. (Our code template mechanism was modeled after

Lisp’s [12].)

We have designed, and have mostly implemented, a pro-

grammable macro system for C that has the following at-

tributes:

1.

2.

3.

4.

5.

6.

It is fully programmable, the macro language is Cplus

an extended type system plus additional primitive func-

tions.

Macros manipulate Abstract Syntax Trees.

Its rich pattern language specifies the concrete syntax

and the syntactic types of actual parameters for macro
invocations.

Macros declare the syntactic types they return.

Full type checking during macro processing guarantees

syntactically valid transformations.

Code templates are supported through the use of back-

quote forms.

157

Programmability/Macro Basis Character Token Syntax Semantic

Full Programming Language GPM [13] 360 Assembler MS2 Maddox

Lisp, Scheme [6]

Repetition & Conditional Bliss [15]

M5

Repetition Hygienic Macros [8]

Substitution Pre-ANSI CPP ANSI CPP Cheatham

Vidart

Figure 1: Two Dimensional Categorization of Macro Systems. Our macro system is MS2 (Meta Syntactic Macro

System). Chamcter Macros operate at the character level. They transform streams of characters into streams of

characters. We count pre-ANSI CPP as character based because many of them were. Token Macros operate on

the tokenized representation of a program. They operate after (or in conjunction with) the tokenizer. Token baaed

macro systems are simple to implement. Most assembler macro languages and the well known CPP [1] are token

based. Semantic Macros are an extension of syntax macros that have access to, and can make decisions based upon,

semantic information maintained by the static semantic analyzer. Semantic macros are the most powerful method

for extending a language.

7. Non-local transformations are possible, and are a pow-

erful tool.

This paper has 5 sections. The macro language is pre-
sent ed in Section 2. Section 3 discuss implementation issues

for the language. The fourth section presents many uses and

examples of programmable syntax macros. The last section

provides implementation status, related research, directions

for future research, and conclusions.

2 The Macro Language

The macro language is C extended with AST types and op-

erations on ASTS. We call the part of a program that defines

macros and macro variables the meta-program. The meta-

program is fully run during macroexpansion, None of it

exists at runtime (except possibly as part of debugging in-

formation). Meta-programming constructs and regular pro-

grams that invoke macros can either be located in separate

files, or mixed together into the same file, as is done now

with CPP.

The macro language adds two new top-/eueL declarations

to the grammar of C: meta-declarations and macro-

definitions. These top-level declarations, which are pref-

aced by the keywords rQet adecl and syntax, respectively,

declare elements of the meta-progam that define macro

transformations. Our syntactic descriptions follow the con-

ventions of [5]. Non-terminals of the original C language

appear in italic type. Non-terminals in our extensions to C

appear in boldface type. All concrete tokens appear in
typewriter type. Alternatives in a production are listed

on separate lines, The only meta notation within an alter-

native is for repetition, which is represented as three dots

(.. .), and which indicate that the previous item may appear

one or more times. The macro languages add the following

seven meta-tokens to C: (1, {1, l}, $$, $, ::, and Q. The

syntactic clauses we present are meant to augment the syn-

tax rules given in [5]. That is, the reader should assume that

the syntax clauses of [5] are part of our syntactic definition

of the macro language. Our rules either replace, or add to,

this base set of rules.

top-level-declaration:

declaration

function-definition

meta-declaration

macro-definition

meta-declaration:

metadecl declaration

macro-definition:

syntax macro-header compound-statement

macro-header:

ast-specifier declaratory { I pattern I }

Macro definitions have two parts, a header and a body

(compound statement). The header specifies the syntactic

type of the AST returned by invocations of the macro, the

name of the macro, and the macro pattern used for invoca-

tion. Pointer and function declaratory are not meaningful in

this context. The macro pattern specifies concrete syntax

and the required AST types of the actual parameters. The

macro pattern guides the parser when it discovers the invo-

cation of a macro. The compound statement is the macro

body, the value it returns is the result of the macro invoca-

tion.

pattern:
pattern-element . . .

pattern-element:
token

$$ pspec :: identifier

pspec:
ast-specifier
+ pspec list of 1 or more

+ \ token pspec list of 1 or more + separator
* pspec list of O or more

* \ token pspec list of O or more + separator

? pspec optional element

? token pspec optional preamble + element

pattern tuple

158

The pattern parser used to parse macro invocations re-

quires that detecting the end of a repetition or the presence

of an optional element require only one token lookaheacl. It

will report an error in the specification of a pattern if the

end of a repetition cannot be uniquely determined by one

token lookahead. If the ? token pspec clause is used in
the pattern, then the token indicates whether the opti,~nal

pspec is present, if the token is present in the invocation,

then the pspec must be present. The optional elements are

for constructing statements such as loops that accept, for

example, optional step or uhile clauses.

Example macro headera will be presented after we provide

the syntax for ast-specifier.

The AST Type Language

The type language for ASTS haa as primitives id, stint, decl,

exp, num, and type-apec.

type-specifier:

Q ast-specifier

ast-specifier:

decl

stint

id

exp

num

t ype.spec

The combining types on asts are tuples and lists. We

overload C syntax for declaring tuples and lists: strut ture

declarations define tuples, and array declarations define lists.

For example, the declaration @id id-list [] defines id-l. ist

to be a list of identifiers. Every macro pattern has an assoc-

iated type: the repetition patterns produce lists and ~pat-

terns produce tuples. The C operators on arrays and structs

are overloaded to operate on lists and tuples. For exam-

ple, *id-list is the equivalent of the Lisp instruction (car

id.1 ist), and id_l ist + 1 corresponds to cdr. It is ill{egal

to take the address of either a scalar or structured ast value,

Additional Primitive Functions

The macro language includes primitive functions on ASTS,

such as length. There are also functions for creating new

identifiers, such as gensym () and concat-ids (idl, id2).

The additional functions add no conceptual novelty to the

macro system.

We also have predefied member names for extracting

components of ASTS such as stint 1->declarat ions and

declarat ion3->type-apec. We were not willing to add

pattern-matching binding mechanisms, such as ML or mod-

ern functional languages have. While pattern matching
would add to the clarity of the macro language, we cur-

rently believe that such extra syntactic mechanism should

be provided by macros, and not by us. The macro language

should be C, with as few syntactic extensions as possible.

The only excursion from this principle is the presence

of anonymous functions. As an experiment, the mi~cro

language includes anonymous functions that may only be

passed downwards. Anonymous functions are written as

(I declaration-lid eqwession). These functions return the
value computed by the express~o n without needing a return

statement. Because macros perform many list manipula-

tions, anonymous functions are very useful. Future research

will indicate whether anonymous functions must remain a

special element in the macro language.

Example Macro Headers

As an example, consider the macro that implements the

Paint ing abstraction shown in an earlier example. The syn-

tax specifier says that the actual ~arameter of the macro is

expected to be a statement. There are no

The macro definition is:

syntax stint painting { I $$stmt: :body

{return (‘ {BeginPaint (hDC, .kps) ;

$body ;
EndPaint (hDC, kps) ;}) ; }

“buzz tokens.”

}

As another example of a macro-header, consider a macro

that mimics enum, but also automatically provides functions

for reading and writing elements of the enumerated type.

An invocation of the macro might be

new_enum color {red, blue, green};

The header for such a macro is:

syntax decl new.enum [1

{1 $$id::name { $$+\, id::ids 1; 1}

The macro neu.enum returns a list of declarations. The

macro-pattern +\, id matches 1 or more repetitions of iden-

tifiers separated by commas. If the macro parser cannot find

such a repetition, an informative error message is returned

to the user. The pattern contains concrete syntax (e.g., the

comma separator) which does not appear in the AST (a

list of identifiers) returned by the parser and then bound to

ids. Also, the trailing semicolon is part of the syntax of

the macro, which makes the syntax for new-enum consistent

with the syntax for other top level declarations in C. The

macro returns a list of top level declarations, rather than a

single declaration. It returns a list of declarations because it

needs to return a enum declaration, along with two function

declarations, one for reading elements of the new type, and

one for writing elements of the new type.

Template Operators

A key innovation of this research is the incorporation of

Lisp’s backquote operator for explicitly declaring code tem-

plates in a syntactically rich language. In a CPP style macro,

the body of the macro is the template, and substitution hap-

pens to an~ token that matches either a formal parameter or

a #clef ined keyword. In this research, the body of a macro is

a C compound statement. An explicit code template mecha-

nism, along with an explicit %nquoting” (substitution) op-

erator are used to achieve substitution macro semantics. We

use the backquote character, ‘, to introduce code templates,

and use dollar sign, $, for the unquoting operator. The back-

quote operator is a prefix operator, much as the token “!”

is, and is therefore in the class of t~nary-e.rpre.ssz on.s.

159

unary-expression:
postjix-expression

predecrement-express ion

backquote-exp-expression

backquote-stmt-expression

backquote-decl-expression

backquote-pattern-expression

The backquote operator returns an AST. This AST may

have placehokiers embedded in it. The first token after the

backquote determines the syntactic type of the AST that
backquote will return. The open brace, “{”, signifies that

a statement follows, the open parenthesis, “(”, signifies an

expression, and an open bracket, “[”, signifies a top-level
declaration. There is a also a general form of backquote

that accepts a pattern that determines the AST(S) to parse.

backquote-exp-expression:

‘ (expression)

backquote-stmt-expression:

‘ { statement}

backquote-decl-expression:

‘ [top-level-declaration 1

backquote-pattern-expression:

‘ {1 pspec :: template-specajied-sy ntax I)

The first three backquote forms are convenient shorthand

notation for expressions, ~tatements, and declarations that

could have been specified by the general backquote form

(e.g., ‘{l exp :: expression I }).
Dollar sign, “$”, introduces a ,new syntactic domain:

placeholder. Dollar sign precedes either an identifier or a par-

enthised expression. Placeholders may only appear within

backquote expressions. A placeholder signifies that its argu-

ment is to be evaluated, and the results to be placed within

the code (AST) being constructed by the backquote opera-

tor.

placeholder:

$ identifier

$ (expression)

Many primitive syntactic classes are extended to include

placeholders as valid alternatives. For example, placeholders

can stand in for statements, expressions, declarations, and

identifiers.

When backquote expressions are evaluated during macro
expansion, placeholders must expand to AST of the expected

type. For example, placeholders that stand in for statements

must expand to statement ASTS. That they will do so is

ensured by the static type checker when the backquote is

parsed. (However, nested backquote causes special prob-

lems. Some of the code it creates cannot be analysed until

the first level of expansion occurs, so not all checking can

occur when nested backquote expressions are parsed.)

Macros and macro functions produce ASTS. Most impor-

tantly, code templates also produce ASTS, and placeholders

return ASTS. Therefore, our macro system differs from most

others because the macro writer may ignore issues of con-

crete syntax when specifying the code a macro is to produce.

This distinction arises when manipulating lists of items that

contain concrete separators that irrelevant to the abstract

syntax. For example, the separator character for the init-
deciarators of a deciaratzon is the comma character. Suppose

that the macro writer has a list of identifiers, say, (red blue
green), bound to meta-variable ids, and wishes to produce
the top level declaration

emun color red, blue, green;

The concrete syntax for this declaration includes the sepa-

rator commas. The macro writer need not be aware of this

concrete syntax, and can simply write the template

‘ [enum color $ids;]

Some macro systems that allow for repetition and list han-

dling (e. g., the Bliss macro system) have a set of special case

rules for ensuring that the correct separators appear in the

produced code. Because our syntax macro system explicitly

constructs ASTS, and not concrete code, these extraneous

concerns vanish. However, the macro writer does need to be

aware of the C abstract syntax used by the macro system.

We think that making the macro writer be aware of abstract

syntax is a fair price to pay for simplifying the transforma-

tional language.

3 The Parser

Macros and template operators make the grammar context

sensitive. The presence of placeholders in templates force
the parser to employ semantic analysis (t. e., type analysis

and checking) that determines the type of AST returned by

a placeholder when it is evaluated. This AST type infor-

mation guides the parsing of templates. The presence of

macro invocations also require parse-time semantic analysis

for correct parsing of code that contains macro invocations

and for checking that macros of a given type only appear

where they are allowed. Our parser is a hand-written recur-

sive descent parser at the declaration and statement levels,

but a bottom-up precedence parser at the expression level.

Parsing Macro Headers

When a macro keyword is encountered, the parser interprets

the macro’s pattern to guide the parse of the invocation.

The specifier indicates where and which tokens are to be

found, as well as the required syntactic constituents of the

macro invocation. This process is a relatively small part of

compiling a program. However, even this process could be

accelerated by a routine that compiled a parse routine for

each macro’s pattern. This specialized routine would be
associated with the macro keyword ancl called when needed

Parsing Code Templates (Backquot e)

The AST denoted by a code template must be uniquely de-

termined by information available at macro definition time.
It cannot depend on information available only when the

macro is invoked. This restriction allows macro expansion

to be implemented very efficiently.

The presence of placeholders in templates force the parser

to employ semantic analysis of the metacode containing the

backquot e and the placeholder expression. At any given

160

point during a parse, the parser may be faced with optional

constructs and several alternative constructs. Normally, the

parser uses concrete tokens such as identifiers and punctu-
ation to thread through the maze of possible parses. These

tokens are not in the templates because they won’t be /sup-

plied until a macro is invoked.

For example, consider the source code temp,late

‘ Cint $y; I in a context where a declaration is expected.
There are several possible parses depending on the AST type

that y wilt be bound to, as shown in Figure 2.

As another example of parses being dependent upon

the AST type returned by placeholder expressions, con-

sider the difficult ies of parsing compound statements,

which have no explicit markers that separate declara-

tions from statements. For example, the code template

‘ {int x; $phl $ph2 return(x) ; } has four different possi-
bles parses depending upon the types of phl and ph2 (Fig-

ure 3).

We help the parser disambiguate potential parses by care-

ful design of the token stream that the parser reads from. We

introduce a new type of token that we call a placeholder to-

ken. Upon discovering a $ token, the “tokenizer” co-routines

with the parser to parse the placeholder expression in the

semantic context at entry to the containing backquote ex-

pression; performs AST type analysis on the expression to

determine the type of AST it will return when run; and

then wraps the expression and its type into a placeholder

token. The different routines of the parser perform looka-

head on the token stream to see if the AST they are to parse

is represented by the next token. For example, if the routine

parse-statement finds a placeholder token on the head of

token stream that has type stint, then the routine returns

the placeholder token aa the result of its parse. If it doesn’t

find such a token, it operates normally.

The AST type analysis performed by semantic anal:yser

is germane. It knows the declared types of meta-variables

(both globals and parameters of macros and rneta-functions)

and the types returned by primitive operations on ASTS. It

uses this information to determine the type returned by a

placeholder expression.

Parsing Macro Invocations

When the parser encounters a macro keyword, it parses the

invocation according the macro’s pattern, packages up the

macro with its actual parameters for later expansion, then

uses the declared type of the macro to decide how to continue

the parse. In principle, macro invocations should be allowed

to appear wherever placeholders are allowed. Our system,

however, currently only allows macro invocations where ei-

ther declarations, statements, or expressions are expected.

statement:

expression-statement

null-statement

placeholder

macro-invocation

primary-expression:

name

literal

parenthised-expression

placeholder

macro-invocation

declaration:
declaration-specifiers initialized- declurcitor-[ist ;

placeholder

macro-invocation

macro-invocation:

macro-keyword syntax-specified-by- macro-t rrnpiate

Dealing with Context Sensitivity

C is not a context free language. Due to t ypedef, the parse

of a program fragment depends upon the context that the

fragment appears in, For example, the fragment f oo *i;
should be parsed as a declaration if f 00 has been made

type specifier via t ypedef, otherwise the fragment should be

parsed as an expression statement. The existence of syntac-

tic macro delcarations introduces further context sensitivity.

Our parser is forced to parse program fragments indepen-

dently of the context those fragments will appear in. (We

aren’t completely happy wit h this approach, and are exam-

ining alt ematives.) Such fragments appear within backquote

expressions insi,~ of macro bodies, and in the actual param-

eters to macro revocations.

This design choice limits the expressiveness of macros, and

leads to some non-intuitive results. Macros that produce

typedefs, use macro-defined typedefs, or are parameterized

over t ypedef ‘ed names must be used carefully. Otherwise, a

name will be parsed as if it were a normal identifier, insteacl

of as a type-9pecifier.

Thk design choice also prevents a macro from setting

up context in which its actual arguments are to be parsed

within. For example, consider a looping macro that wants

the special keyword exit to have meaning only within its

actual arguments. The clean solution is to have the looping

macro set up a special exit macro that only has effect dur-

ing the parsing of its actuals. However, the looping macro’s

arguments are parsed with no knowledge of the invoking

macro, other than its template. Therefore the exit macro

must be global, and invocations of it can’t know whether

they occur within the arguments to the looping macro. To

get around thk problem, we must add linguistic constructs

to the macro language that would allow an invoked macro

to set up a parsing context for its arguments.

Macro Expansion

Because the macro language is C extended with AST

datatypes and a few new primitive functions, macro expan-

sion is simply a matter of running a C program on the parsed

arguments of a macro invocation. The ease of debugging

macros depends upon the quality of the clebugger provided
by the C programming environment being used.

The present implementation uses an embedded interpreter

for a subset of the C language to execute meta-code. We
chose this solution for simplicity. Macros perform fairly sim-

ple and routine actions where speed is not of tremendous

import ante, so an interpretive approach suffices. The alter-

native approach, using fully compiled C routines, would re-

quire that the parser be able to dynamically link in compiled

C functions. This is certainly possible, but taking the speed-

iest approach for executing macros was beyond the scope of

161

AST type of y Parse

init-declarat or O (declaration (int) y

init-declarator (declaration (int) (y!)

declaratory (declaration (int) init-declarator y)

identifier (declaration (int) ((init-decf~ator (direct-decl~~~c!r y) ()))) -

Figure 2: The different parse trees for the source code template ‘ [int $y; 1 depending upon the AST type of the

metavariable y. A node of the tree and its children is written (node-name child I . . . chlldn). List, elements in

the tree are written within parentheses.

phl ph2 Parse

decl decl (c-s (decl-list ((decl ‘Lint x“) phl ph2)) (shut-list ((r-s (exp (id x))))))

decl stint (c-s (decl-list ((decl “int x“) phi)) (stint-list (ph2 (r-s (exp (id x))))))

stint stint (c-s (decl-list ((decl “int x“))) stint-list (phi ph2 (r-s (exp id x))
stint decl Syntactically Illegal Program

Figure 3: Parses of the code template ‘ { int x; $phl $ph2 return(x) ;}. For conciseness, we have abbreviated

compound-statement as c-s, return-statement as r-s, statement as stint, identzjler as ad, expression as ezp, and decla-

ration as decl.

this research. A production system might well opt for a fully

compiled approach, rat her than an interpreted approach.

4 Uses of Macros

A programmable syntax macro system offers many advan-

tages. First, it provides a framework upon which special

purpose preprocessors can be built. Many software projects,

especially in the database field, extend a language to incor-

porate domain specific data types and statements. The first

task of these projects is to write a preprocessor, a task that

would be trivial if a suitable macro facility were available.

Second, macros form the basis of an extremely low over-

head virtual machine. The literature from the 1960’s and

1970’s is rife with papers that propose the use of powerful

macro languages to solve the software portability y problem.

Although we now have a common system programming lan-

guage (C) to solve portability problems at the hardware ar-

chitectwe level, in the 90’s the divergence of OS API’s (Unix

SVR4, BSD, SUNOS, MAC/OS, DOS, W/NT) 1 present new

and difficult portability problems. There are two solutions

to this problem: implement a common virtual machine as an

interpreter, which incurs a large performance penalty, or im-

plement a common virtual machine as a series of macros in

a programmable macro language, which has other problems,
but at least can be very low overhead.

New control constructs, such as specialized looping con-

structs, and domain dependent control constructs are eas-

ily implemented in a programmable syntax macro system,

Specialized control constructs raise the abstract program-

ming level. For example, resource allocation/deallocation is

a common idiom of the form: Grab a resource, use the re-

source, release the resource. The Paint ing macro displayed

earlier had this structure. A simple macro can capture the

allocate/use/deallocate idiom.

1Some of these names are trademarks of their respective

owners.

We now present examples of macros we have written. Be-

cause of space restrictions, we focus on what can be done

with macros, rather than the actual mechanisms (i. e., macro

definitions). The simpler macros can be implemented with

CPP, though not as cleanly, abstractly, or safely as with

syntax macros.

Dynamic Binding

Dynamic binding is very important in many applications.

One of the most important applications of dynamic bind-

ing is the declaration and use of exception handlers, which

are, ipso fact o, dynamically bound entities. Macros offer a

simple and clean mechanism for declaring dynamic binding.

For example, the following macro defines a new statement

type that modifies an integer variable, executes code, then

unmodified the variable.

syntax stint dynzurdc. bind { I

{$$type_spec: :type $$id: :name = $$exp: : init}

$@stmt: :body I }

{Oid newname = gensymo ;
return (‘ {$type $newname = name;

$name = $init;
$body ;

$name = $newname; }) }

An invocation of this macro might appear as

dynamic-bind {int printlength = 10}

{print .class-structure (gym-class) ; }

(In a semantic macro system, which has full access to the

static semantic analyzer of the base language, the type of

name would be available to the macro system. In this case,

the macro user wouldn’t need to declare the type of name.)

Exception Handling

We now implement an exception handling system using syn-

tax macros. This is a simple system, where the catch tags

162

are identifiers. The exception system could be made more

complex by writing more complex macros, but the exam-

ple is about using macros, not about a powerful exception

system. An exception system needs three items:

1. A method for establishing a handler.

2. A method for invoking a handler,

3. A method for carefully unwinding the stack .

We have invented three new statements, throw, catch, and

LULWind.prot ect:

syntax stntt throw {1 $$exp::value ; 1}

{if (simple-expression(value))

return (

‘{if (exception-ptr== NULL)

error(”No handler for Xd”, $value);

else longjmp(exception-ptr,$value) ;});

else

return(

‘<int the-value = $value;

if (exception.ptr == NULL)
error(”No handler for Xd”, the-value) ;

else longjmp(exception-ptr, the_value) ;});}

syntax stntt catch

{1 $$exp::tag { $$stmt::handler } { $$stmt::body }

II

{return(

‘{int *old_exception-ptr = exception-ptr;
int jmp-buf[2];

int result;

result = setjump(jmp-buf);

if (result == O)

{exception-ptr= jmp-buf; $bodyl
else {exception-ptr = old-excepti.on-ptr

if (result == $tag)

$handler else throu result;}})

sYntaX stint unwind-protect
{1 { $$stmt::body } { $$stmt::cleanup } 1}

{return(

‘{int *old-exception-ptr= exception-ptr;
int jmp-buf[2];

int result = setjump(jmp.buf) ;

if (result = O)

{exception-ptr= jmp-buf; $body}

exception-ptr = old-except ion-ptr;

$cleanup;

if (result != O) throw result;});}

}

(Note, these examples ignore the problem of variable cap-

ture caused by the introduction of new names that might

match names in substituted code. This problem is solved by

having afunction gensymto create names that cannot ap-

pear inusercode, but theextra work would have needlessly
complicated the examples. We briefly discuss inadvertent

name capture in the last section.)

The catch statement establishes a handler called name
during the execution of its body. If, during execution, a

throw statement is executed that throws name, then the

execution of body exits, and handler is run in its place.

That is, the exception system has “termination” semantics.

Unwind-protect is a statement that ensures cleen-up isex-

ecuted even when a throw statement throws out of the exe-

cutionofits body. Ifnothrow occurs during the executionof

body then clesn.up is executed. If athrow does occur, the

execution of body is terminated, cleanup is run, then the

throw continues unwinding the stack until itreaches thename

it matches. The macro unwind-protect is a very important,

part of an exception handling system when writing interac-

tive programs where the user may asynchronously abort +

computation. We now show these macros ill action.

myenum error-types

{division-by-zero, fi.le.closed, using_unixl;

int foo(a,b,c)

int a, b;

int *c;

{int z, *y;
z =a+b;

catch division_by_zero

{printf(’’k”, “You lose, divisionby zero.’’);)
{*c = frob(z, a);}

unwind_protect @.tart_faucet_rmmingo; }

@top-running_faucet ();3
return(z) ;1

The macro unwind-protect is especially important for

maintaining the allocate/deallocate invariant, cliscussecl ear-

lier. Consider again the Painting macro. It shoulcl LLSe

unwind-protect to ensure the deallocation of the painting

structure:

syntax stint Painting {1 $$stmt::body 1}

{return (’{BeginPaint(hDC, %Ps);
Unwind_protect

$body

{EndPaint(hDc, %PS) ;}});}

The user of the Painting macro need not Iw aware of this

behavior, it’s just part of the abstraction.

Readers and Writers for EnunlerntedTypes

C does not provide routines for reading or writing elements of

user defined types. Syntax macros can automatically provide

such routines. In this example we consider a reader and a

writer for enumerated types. A macro such as myenum could
be defined to have the same effect as enum, ancl also write

extra code. as shown below. p

myenum fruit {apple, banana, kiwi};

expands into

emus fruit {apple,banana,kiwi} ;

2We have not yet addressed the issue of rlleta-le\,el llarllespaces.

The artifice of using the name myenum rather thall the more logical

enum is to avoid name clashes. A better method would make
explicit the notion that a macm package exte]lrls laagaage N into

language N + 1, and allow code templates t{., declare whether the

identifiers they employ refer to language N or t,, language N+ 1.

We could then name the macro enum, and have its use of enum

refer to the language being extended, rather than to the language
being defined, This problem is independent {,f standard name
capture problems addressed by hygienic a]ar)() >ystems.

163

void print.fruit(int arg)

{switch (arg)

{case apple: printf(’’k”, “apple”);
case banana: printf(’’%(’, “banana”) ;

case kiwi: printf(’’~s”, “kiwi”) ;}}

int read-fruito

{char sIIOO];
getline(s, 100);

if (!strcmp(s, “apple”)) return(apple);

if (!strcmp(s, “banana”)) return(benana);

if (!strcmp(s, “kiui”)) return(kivi);}

Themacro itself is (where thefunction mapappliesafunc-

tion parameter to each element of its second parameter to

return anew list):

syntax decl rnyenum[]

{1 $$id::name{ $$+id, ::ids}; II

~return(list(

‘[enum $name $ids;],

‘[$(symbolconc(’’print_” ,name))(arg)

{switch (arg)
$(map((l

@id id;

‘{case $id:
printf(’’ik”, $(pstring(id))) ;}),

ids))}],

‘[$(symbolconc(’’read-” ,name))()

{char s[1OOI;
getline(s,100) ;

$(map((l
Qid id;

‘{if (!strcmp(s,$(pstring(id))))
return($id) ;}) ,

ids)) }1

));}

Generalizations of this example are quite useful. Persis-

tence code, RPC code, dialog boxes, etc., canbe automat-

ically created when data is declared. The problem of auto-

matically constructing such routine code hmbeen addressed

before in the meta-programming literature. For example,

[2] presents a meta-program for automatically constructing

reading and writing functions for Pascal enumerated types.

Because that system didn’t have code templates, the code

for doing so is rather bulky and unwieldy. By using code

templates, we achieve a similar effect with far less code that
is far more readable.

Code Rearrangement

Frequently code must appear in one place in a program

when it would be conceptually simpler to distribute the code

throughout the program. For example, in programs that are

not object oriented, large dispatch routines are still com-

mon. Such code is more perspicuous when each datatype

says how it relates to the dispatch, rather than have the in-

formation only intheone large dispatch routine. Conversely,

frequently codeis spread througha program that wouldbe

better placedin oneor two routines. Many GUI’s force the

programmer sprinlderesponses to different events for a given

state of the system throughout her code. It would be more

perspicuous to write the code in one place, and have it aw

somatically dktributed throughout the code.

The example we are about to show modularizes the con-

struction of a dispatch table in a non-object oriented lan-

guage. Thedispatch procedure will reside inoneplace in the

final code, but we will write the code in a distributed fashion.

We will achieve this effect by writing macros that accumulate

the code fragments together, and then use a macro to glue

them together andemit afull blown window procedure. The

concrete dispatch procedure we’ll discusses the main window

processing loop in a Windows based application.
We’ll use three macros for writing distributed code that

is collected into one large dispatch routine (we present just,
the macro-headers):

syntax decl new_window_proc {1 $$id: :proc.name

default $$id::default_proc_name; 1}

syntax stint vindoii-proc-dispatch

{1 ($$id::proc-name, $$id::message_name)
$stmt::body 1}

syntax stint emit_window_proc

{1 $$id::proc_name ; 1}

The macro new-window-proc establishes a new window

procedure with name procname. The default procedure to

be called when this procedure doesn’t handle a message is

default-procname. This procedure will collect code frag-

ments created by repeated calls to window-proc-dispatch.

The macro window-proc-dispatch takes the name ofawin-

dow procedure, the name of a message, and a statement.

It associates themessage name and the statement with the

window procedure. The macro emit_window_proc causes to

appearinitsplace in theprogram the window procedure that

was accumulated via window-proc-dispatches that named

the window procedure. As a simple example, the program

new_window_proc wproc default DefWindowProc;

window_proc_dispatch(wproc, W-DESTROY)

{KillTimer(hHnd, idTimer);
PostQuitt4essage(0)}

window_proc_dispatch(wproc, WH_CREATE)

{idTimer= SetTirner(hWnd, 77, 5000,

(TIFIERPROC) NULL);}

emit_window_proc vproc;

produces the program

int wproc(HUND hWnd, UNIT message,

WPARAM WParam, LPARAtl lParam)

{switch (message) {
default: {

return(DefWindowProc(hWnd, message,

wParam, lParam));

break; }

case WH_CREATE: {

idTimer = SetTimer(hWnd, 77, 5000,

break; }

case lW_DESTROY:

Ki.llTimer(hWnd,

(T1rnEfLpROC) FJuLL);

{
idTimer) ;

164

PostQuit14essage (0);

break; }}

return(NULL); }

The three macros use a global meta-variable to commu-

nicate. Beside the three macro definitions, there is also
metacode for declaring this metavariable, which holds the

methods for the different window procedures defined by the

macros.

metadecl struct w.proc

{Qid name; method-table *mtp; u-procs *next;};
metadecl struct u-proc *proc-list = NULL;

Space prevents us from presenting the full macro defini-

tions. The macro nev.windou.proc adds an empty method

table toproc.list, the macro vindow_proc_dispatch adds

a method to a method table, in proc.list, and the macro

emit_window-proc produces a C function based on the con-

tents of the method table of the window procedure to be

produced.

5 Related and Future Research

The system is currently undergoing revision. Except for the

last macroexample, allmacrosshown inthispaperworked in

the previous implementation. Once the re-implementation
is complete, we will conduct large scale experiments with the

macro system.

Besides the systems already mentioned [14, 3, 4, 9], there’s
current work on new macro systems for syntactically rich

languages. Todd Jonker [7] is working on hygienic macro

technology for syntactically rich languages. William Mad-

dox at Berkeley is investigating extensions of his Master’s

thesis [10] that give macros semantic abilities. Dain Sam-

ples has recently announced M5 [11], another token-based

macro system. It is a very general macro processor that

can be programmed to understand the lexical conventions of

different languages (e.g., C, C++, Ada, and Tex).

In the Lisp community, “Hygienic Macros” [8] and “syn-

tactic abstractions” have been proposed for making macros

easier and cleaner to write. Such macro systems automat-

ically avoid unanticipated capture of free variables. Early

hygienic macro system were substitution based and had sup-

port for repetition. More recent research [6] has given hy-

gienic macro systems complete programming power. We

feel that hygienic macro systems are very important, and

are considering methods for making our system be hygienic

and referentially transparent. In a sense, this research has

brought C up to 1970’s Lisp macro technology. More re-

search is required to take it into the 90 ‘s.

Another goal is the implementation of semantic macros,
which are an extension of syntax macros where the macro

processor does static semantic analysis (e.g,, type checking).

Semantic macros will have two new important powers. First,

they conditionalize their operation based on runtime types

returned by the expressions they manipulate. This will al-

low, among other things, a form of object oriented dispatch

at compile time. It will also simplify the invention of new

binding forms, which need access to the runtime type of val-

ues they will be manipulating. Second, the macro writer will

do all relevant type checking in the macro itself, and not wait

for type errors to be found by downstream type checking.

This would make macros be completely self contained, and

ensure that programmers wouldn’t end up having to track

down type errors in code they didn’t write, as is the case for

syntax macros.

We have shown that a programmable macro system can

be very simple and very powerful. The major contribution of

this paper is the introduction of explicit code template oper-

ators and AST datatypes into an existing language to could a

powerful macro system for that language. Such an approach

can be used for any language as long as the parser can be

modified to perform type checking during the parse. An

important advantage of this approach is that a new macro

language with its own special syntax, operators, statements,

and functions does not have to be invented, as has been

historically done.

Acknowledgements The authors would like to thank

Bjarne Steensgaard, who read and commented on drafts of

this paper, and the anonymous referees.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

ANSI Standard on C, X3.159-1989, ANSI, NY, 1990.

Cameron, R. D., “Software reuse with metaprogram-

ming systems,” Proceedings of the Fifth Annual Pacific

Northwest Software Quality Conference, OR, pp. 223-

32, 1987

Campbell, W. R., “A compiler definition facility based

on the Syntactic Macro,” Computer Journal 21(1), pp.

35-41, 1975

Cheatham, T. E., “The introduction of definitional fa-

cilities into higher level programming languages,” pp.

623-637, Proc. AFIPS (Fall Joint Computer Confer-

ence, 29), 1966

Harbison, S., and Steele, G., C, A Reference Manual,

Third Edition, Prentice Hall, 1991

Hieb, R., Dybvig, R. K., Bruggeman, C., “Syntactic ab-

straction in Scheme,” University of Indiana Computer

Science Technical Report 355, 18 pages, June 1992 (Re-

vised July 1992).

Jonker, Todd, Personal Communication, 1992

Kohlbecker, Eugene, Friedman, Daniel P., Felleisen,

Matthlas, Duba, Bruce, “Hygienic macro expansion,”

Proceedings of the 1986 ACM Conference on Lisp and

Functional Programming, pp. 151-161, ACM Press,

NY, 1986

Leavenworth, B. M., “Syntax Macros and Extended

Translation,” CACM 9(11), pp. 790-793, 1966

Maddox, William, Semantical/y-Sensitzue Macropro-

cessing Report No. UCB/CSD 89/545, (Master’s The-

sis), 82 pages, University of California, Berkeley, 1989.

Samples, Dain, M5, Electronic Announcement on

comp.compilers newsgroup, 1992

Steele, G., Common Lisp, The Language, Digital Press,

1984.

Strachey, C., “A general purpose macrogenerator,”
Computer Journal, 8(3), pp. 225-241, 1965

Vidart, J., Extensions syntaxiques clans une contexte

LL(I), University of Grenoble, Th’ese pour obtenir le

grade de Docteur de troisi’eme cycle, 1974

Bliss-n Programmer’s Manual, CMU Department of

Computer Science, 1974.

165

