Stride Prefetching by Dynamically Inspecting Objects

Tatsushi Inagaki Tamiya Onodera Hideaki Komatsu Toshio Nakatani

IBM Tokyo Research Laboratory
1623-14, Shimotsuruma, Yamato-shi, Kanagawa-ken 242-8502, Japan

{e29253,tonodera,komatsu,nakatani}@jp.ibm.com

ABSTRACT are quite fective in many programs for reducing memory access

Software prefetching is a promising technique to hide cache miss latencies and thus improving performance.
latencies, but it remains challenging tdeztively prefetch pointer- However, cache memories do not help very much .forlp.rograms
based data structures because obtaining the memory address to b‘é{h'Ch access a Iarg_e amount qf data a_nﬁes_drom a significant
prefetched requires pointer dereferences. The recently proposedwrnber of cache MISSEs. _Wh”e classwa! instances of such pro-
stride prefetching overcomes this problem, but it only expiotisr- grams are numerical applications accessing large data structures
iteration stride patterns and relies on afi-tine profiling method. such as vectors and_ matrices, modern object-c_)rlented programming
We propose a new algorithm for stride prefetching which is in- aIsp tends to result in such programs by creating a large nymber O.f
tended for use in a dynamic compiler. We exploit butter- and objects in the heap and chasing references amon_g_the obJect_s. Itis
intra-iteration stride patterns, which we discover using an ultra- _not uncommon fpr Java [7] programs to create _rnllll_ons of objects
lightweight profiling technique, calleobject inspectionThisisa " & heap that might be hundreds of megabytes in size [5].
kind of partial interpretation that only a dynamic compiler can per- Softwart_e prefetchings one of the promising technlques_ to ad_-
form. During the compilation of a method, the dynamic compiler dress the issue [3]. Assuming a special prefetch instruction exists

gathers the profile information by partially interpreting the method for moving data into a higher-level cache, it attempts to hide cache

using the actual values of parameters and causing no St miss latencies by issuing a prefetch instruction for the data well
We evaluated an implementation of our prefetching algorithm before the data is accessed. However, improving performance with

in a production-level Java just-in-time compiler. The results show software prefetching is not a trivial task. First, the timing of issuing
that the algorithm achieved up to an.9% and 25.% speedup the prefetch instruction is tricky. It must not be issued too late, or
in industry-standard benchmarks on the Pentium 4 and the Athlon the Prefetched data may still not have become available when the

MP, respectively, while it increased the compilation time by less Processor executes the femory operations using that data. On the
than 30%. other hand, it must not be issued too early, or the cache may no

longer contain the prefetched data when the processor executes the
operations. Second, the prefetch instruction must be issued only

Categones and SUbJeCt Descrlptors when memory bandwidth is not being fully used, since executing a

D.3.4 [Programming Language$: Processors-eode generation, prefetch instruction is not free. Finally, the overhead of computing
compilers, memory management, optimization the address of the data to be prefetched should be small. In partic-

ular, the number of memory operations executed for obtaining the
General Terms address must be minimized.

While many algorithms have been successfully developed to prefetch
array-baseddata references in numerical applications [16], it is
K d more challenging to féectively prefetchpointer-basedlata refer-
eywords ences because of the much larger overhead to obtain the target ad-
Java just-in-time compiler, object inspection, stride prefetching dress. Consider a loop that iterates over the elements of a list. If we
prefetch in the-th iteration the element accessed in the)-th it-
1. INTRODUCTION e][altqion,lwe mu?t mrz]ikepofintekr] dereferences to obtain the address
of the element for the prefetch instruction.
The performance gap between the processor and memory con-
tinues to widen with no indication of yet reaching a limit. Cache . Recen.tly, Wu [23] and. Wu etal. [24] presented a new prefet;h-
memories at several levels attempt to ameliorate the problem ex-"9 algorithm that can uniformly handle both ar_ray-basgd and pointer-
ploiting temporal and spatial locality of program execution. They based references. It is based on the observation that important load
’ instructions could exhibit stride patterns even when they reference
pointer-based data structures. Consider again a loop traversing a
list. If the program constructs the list by allocating and append-
Permission to make digital or hard copies of all or part of this work for ing equal-sized elements without other intervening allocations, the
personal or classroom use is granted without fee provided that copies areload instruction for retrieving the next element in the loop probably
not made or distributed for profit or commercial advantage and that copies has constant strides.
bear this notice and the full citation on the first page. To copy otherwise, to Wu developed anfé-line profiling method to iciently discover

republish, to post on servers or to redistribute to lists, requires prior specific - .
permission and/or a fee. load instructions with stride patterns, and used the obtained stride

PLDI'03, June 9—11, 2003, San Diego, California, USA. profiles to guide compiler prefetching. Wu’s stride prefetching
Copyright 2003 ACM 1-58113-662-5/03/0006 ...$5.00.

Algorithm, Design, Experimentation, Performance

269

yields a significant speedup because stride patterns allow prefetch-

ing without dereferences.

While Wu handles both in-loop and out-of-loop loads, his ex-
perimental results show that the performance gain from prefetch-
ing out-of-loop loads was insignificant. Moreover, Wu attempted
to discover only what we calhter-iteration stride patterns for in-
loop loads. That s, given a load instruction in a loop, Wu attempted

to determine whether or not the sequence of the addresses accesse

by the instruction over iterations exhibits a stride pattern.

We propose a new approach to stride prefetching which is in-
tended for use in a dynamic compiler. Focusing on in-loop loads,
we attempt to discover and exploit not only inter-iteration patterns
but alsaintra-iteration patterns. Given a pair of load instructions in
a loop, we define the stride between them as tfferince between

the addresses accessed by the two instructions within one iteration, }

and two load instructions are said to show an intra-iteration stride
pattern when the sequence of the strides shows a pattern betwee
iterations. As we show later, pairs of important loads without inter-
iteration stride patterns could exhibit intra-iteration stride patterns,
allowing our approach to yield more performance gains.

We discover inter-iteration and intra-iteration stride patterns with
an ultra-lightweight technique for dynamic profiling calletdject
inspection This is a kind of partial interpretation that only a just-in-
time (JIT) compiler is able to perform. When invoked for a method
containing one or more loops, the JIT compiler partially interprets
the method with thectualvalues of the method’s parameters and
without generating any sideffects, executing each loop a small
number of times to discover the stride patterns.

We build a dependence graph of load instructions to limit the
number of candidate pairs of load instructions that must be consid-
ered for intra-iteration stride patterns. Load instructions for chasing
references are likely to show intra-iteration stride patterns, since
constructors in object-oriented languages tend to allocate a bunch
of related objects. We build the dependence graph according to
reference-chasing sequences within a loop, resulting in candidate

pairs of load instructions being represented as adjacent nodes in

the graph.

We evaluated an implementation of our prefetching algorithm in
the JIT compiler [22] of IBM Developer Kit for Windows, Java
Technology Edition. We ran the SPECjvm98 benchmark [20] and
Section 3 of the JavaGrande v2.0 benchmark [12] on two machines
with different 1A-32 architectures, an Intel Pentium 4 [9] and an
AMD Athlon MP [1]. The results show that our stride prefetching
achieved up to an 18% and 251% speedup on the Pentium 4 and
the Athlon MP, respectively.

Our contributions in this paper are as follows.

e Discovery and exploitation of intra-iteration stride patterns.
To the best of our knowledge, this is the first attempt to dis-
cover intra-iteration stride patterns and utilize them for soft-
ware prefetching. Given a pair of load instructions in a loop,
the two instructions are said to show an intra-iteration stride
pattern, if the sequence of the strides between them shows
a pattern over iterations. We first build a dependence graph
of load instructions to limit the number of candidate pairs
of load instructions, and attempt to discover intra-iteration
stride patterns using object inspection.

Obiject inspectionThis is an ultra-lightweight technique for
dynamic profiling which only a dynamic compiler is able
to use. When dynamically compiling a method, it gathers
an “execution profile” of the method by partially interpret-
ing the method at compile time, using thetual values of
the parameters and causing no sidie@s. To the best of

270

class TokenVector {

Token[] v;

int ptr;

void addElement (Token val) {...}
void removeElement (Token val) {...}

.

¢lass Token {
ValueVector[] facts;
int size = 0;
Token (ValueVector firstFact) {
facts = new ValueVector[5];
facts[size++] = firstFact;

class Node2 {
' Token findinMemory (TokenVector tv, Token t) {
TokenLoop:
for (int i = 0; i < tv.ptr; i++) {
Token tmp = tv.v[i];
for (int j = 0; j < t.size; j++)
if (It.facts[jl.equals (tmp.facts[j]))
continue TokenLoop;
return tmp;

return null;

}

Figure 1: Simplified code fragments from_202 jess.

our knowledge, this is the first application of such an ultra-
lightweight profiling technique for dynamic optimizations.
More concretely, we use the novel profiling technique for
discovering both inter-iteration and intra-iteration stride pat-
terns.

e Evaluation on a production Java JIT compileWe imple-
mented our stride prefetching algorithm on a production Java
virtual machine and JIT compiler, and evaluated tffee
tiveness on two dierent I1A-32 machines using industry stan-

dard benchmarks.

The rest of this paper is organized as follows. Section 2 shows a
motivating example to discuss stride prefetching and give an overview
of our approach. Section 3 describes our stride prefetching algo-
rithm. Section 4 presents performance results, while Section 5 dis-
cusses the related work. Finally, Sectionfiecs conclusions.

2. A MOTIVATING EXAMPLE

We discuss stride prefetching using the motivating example shown
in Figure 1. The code is taken from th202 jessbenchmark in
SPECjvm98. ThéindinMemory() method is one of the time-
consuming methods ir?02 jess spending most of the time execut-
ing the doubly nested loop. Also, the execution profile shows that,
while the outer loop has a large trip count, the inner loop has a quite
small trip count. Figure 2 summarizes the data structures accessed
in the method, representing as solid arrows the pointer references
chased in the method.

In-loop loads are major targets of software prefetching. The dou-
bly nested loop contains the eleven load instructions listed in Ta-
ble 1. The load instructions for thength fields of the arrays are

Table 1: Load instructions in the findinMemory() method.

Load instructions| Memory addresses
Ly &tv.ptr
L, &tv.v
L3 &tv.v.length
L, &tv.V[i]
Ls &t.size
Le &t.facts
(i &t.facts.length
Lg &t.factsyj]
Lo &tmp.facts
Lio &tmp.facts.length
L1 &tmp.facts[j]

not explicit in the Java source program, but are generated for array
bound checks.

We now explain how Wu et al. [24] discover and exploit inter-
iteration stride patterns for in-loop loads. Their approach is based
on of-line profiling. They select candidate loads using the execu-
tion frequency profile and compiler’s static analysis, instrument the
code to collect stride profiles for the candidate loads, and generate
prefetch instructions based on the stride profiles obtained.

They select a load in a loop as a candidate for stride profiling
using the following criteria:

e The loop has a high trip count.
e The load is frequently executed.
e The memory address of the load is not a loop invariant.

A load in a loop with a high trip count is selected since the load
is likely to touch a large range of memory and to miss the cache.
When a nested loop does not have a high trip count but the parent;
loop does, each load in the nested loop is considered as if it were in
the parent loop.

When applied to thdindinMemory() method, their algo-
rithm selectsLy, Lo, Lio, andL;; to collect stride profiles, and
the rest of the loads are all loop-invariants. However, the resulting
stride profiles show that only, has a stride pattern. This is because
the array ofToken objects referenced Ry.v is not constructed
in the initialization phase. Th&oken objects are appended to
and removed from the array during the execution of 2@2 jess
benchmark. Furthermore, when tteenoveElement() method
attempts to remove @oken object and finds it stored as the ar-
ray’si-th element, it removes the object by moving to the intdex
the array’s last element. As a result, by only discovering a stride
pattern forL,, their algorithm generates a prefetch instruction as in
Figure 3, which is intended for prefetching dataerations ahead,
whenL, hasd bytes of an inter-iteration constant stride.

We extend their approach in two ways to capture more loads as
targets for prefetching. First, althouglh does not exhibit an inter-
iteration stride pattern, we could prefetch the data whigis likely
to load afterc iterations, sincé.g is data dependent updn andL,4
shows an inter-iteration stride pattern. That is, we cadcula-
tively executel 4 using the memory address predicted based on the
stride pattern, and prefetch the datalfgrusing the result. This re-
quires one pointer dereference, but the benefits nfi@gitthe cost.

Second, while none dfg, L3, andL; is likely to show an inter-
iteration stride patternl, L1o) is likely to exhibit an intra-iteration
stride pattern. This is because the constructor fofTiblkeen class
allocates an array and stores a reference to the array intadtse
field, not reassigning a new reference into the field after that. When

271

TokenVector

v — array Ly
Ly v f—flength] [[[[|
ptr
Token
Ly facts
< size
array Y &
=3
Ly °§.
Ly

ValueVector

Figure 2: Data structures accessed and pointer references

chased in thefindinMemory() method.

TokenLoop:
for (int i = 0; i < tv.ptr; i++) {
Token tmp = tv.v[i];
prefetch (&tv.v[i] + c*d);
for (int j = 0; j < tsize; j++)
if (It.facts[jl.equals (tmp.facts[j]))
continue TokenLoop;
return tmp;

}

Figure 3: Stride prefetching by Wu et al.'s approach.

the data loaded by the two instructions with an intra-iteration stride
are farther apart than the size of a cache line, the stride pattern is
exploitablefor software prefetching. Assuming that we have al-
ready obtained the memory address for prefetching the data loaded
by Ly, we could prefetch the data loaded lby based on the same

memory address.

Figure 4 shows the resulting optimized code using our approach,
field in theToken object
ands denotes the stride betweég andL,o. We also assume that
the stride is longer than the cache line. We perform three types of
prefetching in the optimized code, inter-iteration stride prefetching,
dereference-based prefetching, and intra-iteration stride prefetch-
ing. Notice that we do not necessarily assume hardware support
for the speculative load, and we could obtain an equivalete

whereo denotes thefiiset of thefacts

with a sequence of ordinary instructions.

TokenLoop:
for (int i = 0; i < tv.ptr; i++) {
Token tmp = tv.v[i];
tmp_pref = spec_load (&tv.v[i] + c*d);
prefetch (tmp_pref + 0);
prefetch (tmp_pref + o + s);
for (int j = 0; j < tsize; j++)
if (It.facts[j].equals (tmp.facts[j]))
continue TokenLoop;
return tmp;

}

Figure 4: Stride prefetching by our approach.

3. OUR PREFETCHING ALGORITHM @ @ @ @

We describe our algorithm for stride prefetching intended for use
in a JIT compiler. The JIT compiler is invoked for a method when
the method is about to be executed. It may be compiling the method @
for the first time, or recompiling the method with more aggressive
optimizations. Thus, actual values for the parameters are available
at compile time, and our algorithm fully exploits this information.

As one of the optimization phases, our algorithm transforms the
input code in the intermediate representation of a method into code
augmented with prefetch instructions. Given a method, it first at-

tempts to identify loops, constructing a loop nesting forest. The \ye perform object inspection to detect stride patterns. We attempt
algorithm then traverses the loops in each tree in a postorder traverg partially interpret the loop body a certain number of times (for
sal, walking the trees in the program order. example, 20 times) using the actual values of the parameters, and

For each loop, the algorithm performs the following three steps. record the memory addresses used by the load instructions in the
First, it constructs a dependence graph of the load instructions in graph. After this partial interpretation, we analyze the trace of the
the loop. As explained below, the reference-chasing sequencesmemory addresses. While we check each of the load instructions
of load instructions are connected in the graph, limiting the num- oy inter-iteration patterns, we also check each of the adjacent pairs
ber of pairs of load instructions we must check for intra-iteration jn the graph for intra-iteration patterns. If the majority (for exam-
stride patterns. Second, the algorithm performs object inspection pje over 75%) of the strides of a load or a pair of loads are the
to detect both inter-iteration and intra-iteration stride patterns. It same, we recognize that they have stride patterns, and annotate the
attempts to partially interpret the loop body a certain number of corresponding node or edge with the constant stride value.
times, annotating the dependence graph with the stride patterns dis- opject inspection interprets the method’s instructions in the in-
covered. Finally, we generate prefetching code based on stride pattermediate representation, starting from the method entry. Although
terns recorded in the dependence graph. We prefetch data for ane actual values for the parameters are available, there will still
load instruction only when it isfeective. The more instructions e some cases where the operand is not available, and when those
there are which are data dependent upon a particular load instruc-cages happen we use a special valtrnown , for the operand.
tion, the more Fective prefetching is estimated to be for that load = Any instruction that involves an unknown operand will have an un-
Instruction. known result at interpretation.

Before we describe each step in detail in the subsequent subsec- Qpject inspection must be free of sidfeets. In particular, we
tions, we note that a nested loop with a small trip count is handled myst prevent the interpretation of store instructions from causing
in a manner similar to [24]. When we process the parent loop, all any visible dfects. To do this, we make a copy of the stack frame,
the load instructions in the nested loop are considered again as ifand interpret each store instruction into a local variable within the
they were in the parent loop. Our algorithm detects that a loop has copijed stack frame. Also, we interpret each store instructions into
a small trip count when it is performing object inspection. Alter- an object by recording the updated address and the value in a hash
natively, we could rely on execution profiles if the system supports taple, and accordingly interpret a load instruction from an object
online profiling. by first looking in the hash table. For a similar reason, we prepare
31 Constructionofaload Dependence Graph Srip\)/g\t/:tﬁer;epap, and interpret object-creating instructions using the

We utilize a directed graph, calledlaad dependence graph We may encounter one or more loops before reaching the entry
to capture reference-chasing sequences of load instructions. Eactpoint of the target loop. We interpret the body of such a loop only
node of the graph is a load instruction using a reference as anonce. This is because the induction variable or the recurrent refer-
operand. A directed edge exists from nddeto nodelL. if and ence variable of a loop is often initialized without depending on the
only if L, is directly data dependent upbq. Thatis,L, loads data results of the preceding loops. For instance, it is often the case that
using the value loaded Hy;, which must thus also be a reference. the induction variable is initialized to zero, and that the recurrent

When the Java bytecode is used as an intermediate representareference variable is initialized by chasing one of the parameters.
tion, the instructions that can be a node of a load dependence graphlso, since object inspection must be lightweight, we canfiord

Figure 5: A load dependence graph for the candidate load in-
structions in the findinMemory() method.

includegetfield , getstatic , aaload , iaload , daload , to interpret other loops until we really exit from them at any rate.
arraylength , and others. Only three instructions can be non- Finally, we interpret a method invocation by simply skipping it
leaf nodes in the graplgetfield andgetstatic instructions and assuming that the return value, if anyuigknown . Alterna-
yielding reference values, armdload . tively, we could step into the callee method for a non-virtual invoca-

For a given loop, we construct a load dependence graph of thetion or all the methods potentially invoked for a virtual invocation.
load instructions in the loop. When it has a nested loop, the load Making object inspection inter-procedural might improve the ac-
instructions in the nested loop are also considered only if it has curacy of our analysis, but it would increase the compilation time,
a small trip count. We can construct the graph, for instance, by requiring the trade4bto be carefully assessed.
utilizing the use-def chains built for the method containing the loop, . .
but many other ways are possible. 3.3 Generation of Prefetching Code

Figure 5 shows a part of the load dependence graph constructed After object inspection, we generate the prefetching code based
for the doubly nested loop in tifieadinMemory() ~ method. The on the stride patterns recorded in the dependence graph. We first
load instructions in the nested loop also appear in the graph since itexplain the code sequences we generate to exploit stride patterns.

has a small trip count. As shown below, the prefetching code for a load instruction varies
. . depending on the types of stride patterns of the instruction and
3.2 ObJeCt |n5peCt|0n the adjacent nodes. We then explain a simple profitability anal-

After constructing a load dependence graph for the target loop, ysis to remove inective and redundant prefetching codes. Fi-

272

nally, we discuss mapping of two prefetch instructions we assume,

prefetch andspec load , to hardware instructions. Table 2: Parameters related to prefetching on the Pentium 4

and the Athlon MP.

Code Sequences [Isize Lllne L2size L2lne #DTLB

Consider a nodé, with an inter-iteration stridel. If Ly has no Processor | (KB) size (B) (KB) size (B) entries
adjacent node, or, if all of the adjacent nodes have inter-iteration ~ Pentium4 | 8 64 256 128 64
stride patterns, we generate the following code for prefetching data Athion MP 64 64 256 64 256
accessed bl in c iterations after the current iteration, where we

denote a®\(L) the memory address of data loadedlbin the cur-

rent iteration.

Table 3: Description of the SPECjvm98 and the JavaGrande
v2.0 Section 3.

’ prefetch (A(L x) + d*c)

Compiled

Otherwise, there exists a nods,, which is adjacent td., and Programs Description code (%)
does not exhibit an inter-iteration stride pattern. We then generate ~ mtrt Two threaded ray tracing 75.1
the following code for prefetching data accessed-pyndL, in ¢ jess r;'ﬂavngXgeLﬁ She'|| ;}’Stemth § gg-g

H : H i compress oaire empel-Zlv metno .

iterations after the current iteration, b Memory resident database 92.3
mpegaudio | MPEG Layer-3 audio decompressian 87.0
a = spec Joad (A(L x) + d*c) ; jack Java parser generator 36.2
prefetch (FIL x.Lyl@) javac Java compiler from JDK1.0.2 51.9
Euler Computational fluid dynamics 79.5
whereF[Ly, L,] denotes a function which maps the memory ad- mcleyg | mOletcu(I:ar ?ynam||<:st_5|mulat|on 4812'3
dress produced by, to the memory address used hy. Typi- R;);T?acagro 3[??;; trz::grs'm”a'on 798
cally, the function simply adds a constafiiset to the input address. Search Alpha-beta pruned search 73.4

The code sequence performs both (inter-iteration) stride prefetch-
ing and dereference-based prefetching. Notice ithatndL, can
never have an intra-iteration stride pattern. The existence of the

intra-iteration pattern between the two implies thahas an inter- Mapping to Hardware Instructions

iteration pattern, which contradicts thiat does not exhibit such a])
stride pattern. We can realize each of thgrefetch andspec _load instruc-

The case thal, does not have an inter-iteration stride pattern tions in two ways, the hardware instruction and a load instruction
opens opportunities for exploiting intra-iteration stride patterns. For 9uarded by a software exception check. If the underlying processor
each nodd., which has an intra-iteration stride pattern withdi- provides the hardware support, we should obviously use the hard-

rectly or transitively, we generate the following prefetching code, Ware instruction. It takes less processor resources, and imposes
less impact on bandwidth since the processor cancels the execution

of the instruction when a data translation lookasidffdauDTLB)

miss will occur. Currently, the prefetch instructions are supported

i by most of the modern commercial processors, while the specula-

whereS|[Ly, L] denotes the stride betweep andL,. tive load instruction only receives support in the Intel IA-64 [8] and

The actual value for thecheduling distance depends on t_he the SPARC-V9 [19] architectures.

processor's cache parameters and the amount of computation and 5 yever, a guarded load instruction is sometimes preferable even

number of memory accesses in the loop body. While we cannot j, the presence of hardware support, since we can use the guarded

change the cache parameters, we can increase the amount of COM a4 instruction to fill a missing DTLB entry in advance (called

putation by unrolling the loop. TLB primingin [9]). Thus, when the stride is larger than half of
T . the page size, the guarded load instruction might be better than

Profitability Analysis the hardware instruction. A more important case is to prefetch

Since the prefetch instructions consume processor resources andhe address obtained by a dereference. In the above example, it

memory bandwidth, we must be selective in issuing them. Ideally, is not surprising if the dierence betweeA(L,) andA(L,) is often

we should generate prefetching codes for those load instructionslarger than half of the page size. Thus, it might be better to use the

that frequently cause cache misses. However, it is quiteculit guarded instruction for prefetching(L,).

to predict the frequency of cache misses by a load instruction at

compile-time, because it subtly depends on many factors, includ- 4, EXPERIMENTAL RESULTS
ing cache parameters and static and dynamic instruction streams We implemented our prefetching algorithm and evaluated the
surrounding the load instruction. . ;)

following two algorithms:

Instead, we perform a simple buffective profitability analy-

’ prefetch (FIL x.Lyl@ + SIL y.Lz]) ; ‘

sis. We generate the prefetching code for a load instrudtionly INTER This option enables only inter-iteration stride prefetching.
when it satisfies the following three conditions. First, one or more Note that this configuration is a limited emulation of Wu’s
instructions must be data dependentlonSecond, Qata a.ccessed stride prefetching using our prefetching algorithm. The limi-
by L must not apparently share the same cache line with data for tations are that 1) we use object inspection insteadfeffree
which the prefetch code is already issued. Finally, wheras an profiling, and 2) we apply prefetching only to in-loop loads.

inter-iteration stride pattern, the stride must be larger than half of
the cache line. Prefetching for such a load instruction will not be INTER +INTRA This option enables both inter- and intra-iteration
profitable, especially on processors with hardware prefetching [13]. stride prefetching as described in Section 3.

273

B INTER [J INTER+INTRA B NTER [INTER+INTRA|

25% 30%
20% — 25%
£ 15% 3 20?,
o ¥
3 5% N 2
g | g S%
o 0% | —— - o 0% _’_‘ |
5% o [
-10% Ne) o (%) c o < -10% e} o) (8} c o . <
PR ~ C o PR < o
I A - - - - 885 s 2 8 2 5 £ o8
£ & DI - £ & D -
g g e » g g -
£ 0 £ 0
p p
Figure 6: Speedup ratios on the Pentium 4. Figure 7: Speedup ratios on the Athlon MP.

We investigated the first 20 iterations of a given loop to collect JIT compilation time of each benchmark. Table 3 shows the de-
the constant strides. We recognize that a constant stride is dom-scription of the benchmarks in the SPECjvm98 and the JavaGrande
inant when it matches 75% of the all collected strides. We fixed v2.0 Section 3. The last column shows the ratios of the execution
the scheduling distance as one iteration for both inter- and intra- time of the compiled code against the total execution times on the
iteration stride prefetching because our primary concern was not to Pentium 4. The benchmarks are suitable for evaluating the opti-
optimally tune up both kinds of stride prefetching, but to examine mizations by a JIT compiler because the compiled code consumes
the dfectiveness of intra-iteration stride prefetching. over 70% of the total execution time except fack, javac and

We prototyped our prefetching algorithm as an extension to the MonteCarla
JIT compiler [11] of the IBM Developer Kit for Windows, Java
Technology Edition, Version 1.3.1. The JVM runs in a mixed- 4.1 Performance
mode, meaning it selectively compiles methods that are executed Figure 6 and Figure 7 show the speedup ratios on the Pentium 4
frequently [22]. The garbage collector [6] of the JVM uses a tradi- and on the Athlon MP, respectively. The baseline is the execution
tional mark-and-sweep algorithm. Live objects are packeslioy time without stride prefetching.
ing compaction, which does not change their internal order on the Overall, the combination of inter- and intra-iteration stride prefetch-
heap. Thus, the garbage collector usually preserves constant stridegg gives a performance improvement better than only using inter-
among the live objects. We set the initial and the maximum heap iteration stride prefetching. The algorithm INTER wa$eetive
sizes to 128 MB. for Euler on both processors, and waegtive forMolDyn on the

The measurements were done on two workstations, one with a Athlon MP. The algorithm INTERINTRA improved those pro-
2 GHz Intel Pentium 4 [9] processor and 1 GB of memory, and grams, as well agssanddbon both processors, and also improved
the other with a 1.2 GHz AMD Athlon MP [1] processor and 512 RayTracemn the Pentium 4.
MB of memory. Both of these processors provide out-of-order su- In particular, INTER-INTRA achieved an 18% speedup odlb
perscalar execution, and software and hardware prefetching mech-on the Pentium 4, and also achieved @%b speedup on the Athlon
anisms. Table 2 shows the parameters of the Pentium 4 and theMP, while INTER was infective on both processors. This pro-
Athlon MP related to prefetching [9, 1]. The majofférences be- gram spends more than 85% of its execution time in a shell sort loop
tween the two processors thdfext this research are that 1) the thatreorders a number of large records and frequently causes cache
Pentium 4 provides a smaller number of DTLB entries, and 2) the misses and DTLB misses [18]. Each record contains a number of
target cache levels for software prefetching are the L2 cache on theVector andString objects, and they only have intra-iteration
Pentium 4 and the L1 cache on the Athlon MP. We used a load in- constant strides between the containing records in the sorting loop.
struction guarded by a software exception check for intra-iteration ~ And also, INTER-INTRA achieved a 2% speedup fojesson
stride prefetching on the Pentium 4 in order to fill a missing DTLB the Pentium 4, and achieved €% speedup on the Athlon MP,
entry. Otherwise, we used a prefetch instruction provided by the while INTER had very small or negative speedups. The improve-
processor. We used the Microsoft Windows 2000 Professional op- ments of thgessbenchmark by INTERINTRA were rather small
erating system on both workstations. for two reasons. First, the methdiddinMemory() is hot, but

We used two benchmark suites, the SPECjvm98 benchmark [20] not dominant. The hottest method, which fhmlinMemory()
and the JavaGrande v2.0 [12] benchmark Section 3. To evaluate themethod is inlined into, uses only about 25% of the compiled code
performance improvement, we report the best run times reported execution time, while the compiled code takes about 70% of the to-
by the benchmarks themselves. The scores of the SPECjvm98 ardal execution time. Second, the cache line size ficantly large
usually measured by their best run times under automatic continu- to contain both th&oken object and the array object pointed to by
ous execution. This means it tends to exclude the JIT compilation thefacts field. The speedup on the Athlon MP was slightly larger
time because after several runs, the benchmark is in the steady statéhan the Pentium 4 because the Athlon MP has a larger number of
where the JIT compilation rarely occurs. We iterated each bench- DTLB entries.
mark ten times in its auto run mode. We set the problem size to 100. Since the benchmairkuler has inter-iteration constant strides in
For the JavaGrande benchmarks, we ran each benchmark once anils main data structures, large two-dimensional arrays of vectors,
therefore that run includes the JIT compilation time in the best run both algorithms achieved similar speedups on the Pentium 4 and
time. We set the problem size to “Size A’. To evaluate the overhead the Athlon MP. The algorithm INTERINTRA achieved a 18%
of compilation time, we report the total execution time and the total speedup on the Pentium 4, andd% speedup on the Athlon MP.

274

M BASELINE [INTER+INTRA M BASELINE [INTER+INTRA

10% 5%
c c
9 S
g 8 g 4%
g g
2 6% 23%
g 4% 8 2%
g o g 1%
e { I
0% = 7]] o o ~ %) [c o) . = 0% © A A Ne) [e] =~ (%) = c [e] P <
£ E‘U Zo Q = a4 £ go § [} = a
S = £ 3 S g g 2
£ 60 £ o <
b b
Figure 8: L1 cache load MPIs on the Pentium 4. Figure 9: L2 cache load MPIs on the Pentium 4.

While the MolDyn benchmark also has inter-iteration constant ing brings the target cache line into the L1 cache. The L1 cache
strides, neither algorithm improved it on the Pentium 4. This is MPIs ofmpegaudi@ndMonteCarloare quite small, and thus prefetch-
because the main data structureMlDyn is a one-dimensional ing is not profitable for these benchmarks.
array of molecule objects that fits in the L2 cache given the prob- Figure 9 shows the L2 cache load MPIs. Our prefetching algo-
lem size in this experiment. In contrast, both algorithms achieved rithm greatly decreased the L2 cache load MPRafy Tracer but
small speedups on the Athlon MP, since the molecule objects arethis benefit was not fully predicted at compile-time, because it was
prefetched into the L1 cache. caused by thefects across multiple methods, as described above.

The RayTracetbenchmark showed an anomaly in that the algo- Our prefetching algorithm also decreased the L2 cache load MPIs
rithm INTER+INTRA improves the performance on the Pentium 4 of db, Euler, andmtrt. Since inter-iteration stride prefetching is ap-
and degrades it on the Athlon MP. One of the target loopRayf- plicable to theEuler benchmark, we can reduce its L2 cache load
Tracer contains an invocation of a recursive method. On the Pen- MPI more by a longer scheduling distance.
tium 4, stride prefetching in that target loop also reduces the cache Figure 10 shows the DTLB load MPIs. Our algorithm greatly
misses in the other methods where prefetches are not inserted. Welecreased the DTLB load MPIs BayTraceranddb, and slightly
need further investigation of stride prefetching for this method in- decreased the DTLB load MPI ¢éss The reduction of the L2
vocation. cache misses fomtrt is slightly better than that fojess but the

Both algorithms slightly degraded thepegaudidenchmark on speedup ratio ofesswas better than that ahtrt. It suggests the
the Pentium 4. This is because the cache miss ratios and the DTLBimportance of reducing the DTLB misses on the Pentium 4.
miss ratio were quite small, as we will see in Section 4.2. The
benchmarksompressjavag andSearchdo not contain code frag- 4.3 Compilation Time

ments where either intra- or inter-iteration stride prefetching are The |eft-hand bars in Figure 11 show additional compilation time
applicable. for our prefetching algorithm (INTERINTRA) normalized by the
. . total JIT compilation time (indexed by the left axis). The baseline

4.2 Cache Misses and DTLB Misses is compilation time without stride prefetching. The additional com-

In this section, we investigate thefect on cache misses and pilation time for our prefetching algorithm were less thaB8 of
DTLB misses, comparing the execution without stride prefetch- the total JIT compilation time, and exceede® for mpegaudio
ing (labeled as “BASELINE”) and using our prefetching algorithm, Euler, andMolDyn, since these benchmarks contain a number of
INTER+INTRA. We measured these results on the Pentium 4 us- |oops that refer to arrays of objects. For the other benchmarks, the
ing the Intel VTune Performance Analyzer [10] Version 5.0. We overheads were smaller tharb%.
use a metricmisses per instructio(MPI), which is the number of The right-hand bars in Figure 11 show total JIT compilation time
dynamic miss events divided by the number of retired instructions. normalized by the total execution time of each benchmark (indexed
Note that in the out-of-order superscalar execution, cache misses 0thy the right axis). The total JIT compilation time was less than 13%
DTLB misses are observed by all of the Concurrently executed load of the total execution time. Thus, by mu|t|p|y|ng these numbers, we
instructions that access the same cache line or the same TLB entryobserved that the additional JIT compilation time required for our
Thus, prefetching and TLB priming do not reduce the number of prefetching algorithm, in other words the runtime overhead, was
fills, but can reduce the number of miss events. less than Q1% of the total execution time.

Inserting prefetch instructions increases the number of retired
instructions, but they are relatively few compared to the reduction
of the number of miss events. Our prefetching algorithm increases 5. RELATED WORK

the number of retired instructions fdb by 9.7%, forRayTraceby Luk and Mowry [14, 15] studied software prefetching for recur-
6.9%, forjessby 2.2%, and for the other benchmarks by less than sive data structures (RDSs) such as linked lists, trees, and graphs.
2%. Atagiven RDS node;, they wish to prefetch the noahg 4 that will

Figure 8 shows the L1 cache load MPIs. Our prefetching algo- be visitedd nodes aften;, and they propose three schemes for com-
rithm greatly decreased the L1 cache load MPtbfand slightly puting the address of. 4, A4, at noden;. While greedy prefetch-
decreased the L1 cache load MPIessandRayTracer This is ing approximateg\,4 as one of the pointers from, history-pointer
because intra-iteration constant stride prefetching is applicable to prefetchingadds gump-pointerat n; for this purpose that contains
these benchmarks, and an additional load instruction for prefetch- the observed value &4 during a recent traverselata lineariza-

275

B BASELINE [] INTER+INTRA |I INTER+INTRA [JIT|

10% c 14%
< 9
s B 12% &
© 8% a =}
g £ 10% §
2 &% S 8% ¥
g. 4% Eﬁ- 6% g
g 8 4% =
a2 2% < I 2% o2
E e o
0% ® s a8 6 = o s o i< O
E 3 0§08 2% ¢ o8 528t £ 5858 $3% 85852t
E © & = 5 =2 38 8 ¢ £ 3 SR 5 - = d 3 ¢ £ 8
£ & Zo 1] = v £ g s ¢ K @
S 8 s 3 S g s S
£ £ o< >
Figure 10: DTLB load MPIs on the Pentium 4. Figure 11: Compilation time for prefetching and total JIT com-
pilation time.

tion attempts to map the nodes of a RDS onto an array, so that

one can easily predidk.,y without any pointer dereference. Data injects code at appropriate program points to detect and prefetch

linearization exploits the same stride pattern information as (inter- these hot data streams. Prefetching hot data streams does not re-

iteration) stride prefetching. In contrast to the attempts of stride sult in stride prefetching. In other words, loads with stride patterns

prefetching tadiscoverpatterns, data linearization attemptste- are not captured as hot data streams. Thus, the two approaches can

atethem, which is almost impossible for a compiler to do automati- work effectively together.

cally. Indeed, they only simulate data linearization by hand fortwo Cahoon and McKinley [2] proposed affective data flow anal-

benchmarks, where the RDSs already exhibit stride patterns, thusysis technique for identifying RDS traversals in Java. The analysis

requiring no mapping for linearization. contains intra- and inter-procedural components and finds recurrent
Stoutchinin et al. [21] proposed an automatic approach for prefetcheinter variables that occur both in loops and in recursive func-

ing data for RDSs, which relies solely on compiler analysis. They tion calls. They use the analysis to drive greedy prefetching and

first identify pointer-chasing recurrences in loops with a low com- history-pointer prefetching. They do not include stride prefetching,

plexity algorithm. They then perform a profitability analysis to in- although it is possible as in Stoutchinin et al. [21]. Their approach

vestigate whether there are enough processor resources and avaiis based on whole-program analysis, and thus cannot be used for a

able memory bandwidth for profitable prefetching. Only if there dynamic compilation system.

are, they issue prefetch instructions for the data accessed through

induction pointerswhich are the addresses used by the loads in-

volved in tFr)le pointer-chasing recurrences. In other zvords, they as- 6. CONCLUDING REMARKS

sume that the loads exhibit constant stride patterns, and rely on We have proposed a new algorithm for stride prefetching which

the profitability analysis to avoid performance degradation when is intended for use in a dynamic compiler. Our algorithm attempts

the assumption does not hold. However, their experimental resultsto discover and exploit both inter- and intra-iteration stride pat-

show that performance is actually degraded in six of the eleven pro- terns. Intra-iteration patterns often result since the constructors

grams they tested. in an object-oriented language tend to allocate a bunch of related
Wu [23] and Wu et al. [24] attempted to discover and exploit the objects and store references to them into the objects being con-
inter-iteration stride patterns of load instructions throu@icient structed.

off-line profiling. They exploit three stride patterns, strong single We discover stride patterns using object inspection, an ultra-
stride, phased multiple-stride, and weak single stride, by issuing lightweight technique for dynamic profiling which only a dynamic
different prefetching code sequences. As expected, the majority ofcompiler is able to use. During the compilation of a method, the
loads prefetched have strong single stride patterns. Also, they han-dynamic compiler gathers an execution profile of the method by
dle both in-loop and out-of-loop loads, but the performance gain partially interpreting the method using the actual values of param-
from prefetching out-of-loop loads was insignificant. We extend eters and while causing no sidffeets. Also, in order to dis-
their approach in two significant ways. First, we attempt to dis- cover intra-iteration patternsfieciently, we build a load depen-
cover and exploit intra-iteration patterns as well as inter-iteration dence graph which represents as adjacent nodes the load instruc-
patterns. Second, we provide stride prefetching in a dynamic com- tions which chase references and thus limits the number of pairs
piler. Since the overhead offfdine stride profiling is still too we must check for intra-iteration patterns.
high for such a dynamic environment, we have invented an ultra- We evaluated an implementation of our prefetching algorithm in
lightweight profiling technique called object inspection. Mainly aproduction-level Java JIT compiler. We measured the SPECjvm98
because we must use such a lightweight profiler, we focus on dis- benchmark and Section 3 of the JavaGrande v2.0 benchmark on
covering single stride patterns in in-loop loads, but we believe that two different 1A-32 processors, an Intel Pentium 4 and an AMD
we are capturing most of the opportunities for performance gain Athlon MP. The results show that our prefetching algorithm achieved
that stride prefetching can provide. up to an 18% and 251% speedup on the Pentium 4 and the Athlon
Chilimbi and Hirzel [4] developed a dynamic prefetching scheme MP, respectively, while it increased the compilation time by less
for general-purpose programs that involve extensive pointer deref- than 30%.
erencing. They gather a temporal data reference profile and extract One of the future goals is to extend the scope of load instructions
the hot data streamswhich are data reference sequences that are for prefetching in our algorithm. In particular, handling out-of-loop
frequently repeated in the same order. The system then dynamicallyloads in recursive methods is important and expected to be as re-

276

warding as in-loop loads, but discovering exploitable stride patterns [12] Java Grande Benchmarking Project. Java Grande Forum
for out-of-loop loads still remains as an open problem. Also, it Benchmark Suite, Version 2.0.
might be interesting to combine stride prefetching with other types httpy/www.epcc.ed.ac.yjavagrande, 1999.

of prefetching, such as history-pointer prefetching and prefetching [13]
hot data streams.

Acknowledgments

We thank the members of the Network Computing Platform group
of Tokyo Research Laboratory for their support and valuable com-
ments. We also thank the anonymous reviewers for their helpful

comments and suggestions.

[15] C.-K. Luk and T. C. Mowry. Automatic Compiler-Inserted
7. REFERENCES Prefetching for Pointer-Based ApplicatiohEEE

[1] Advanced Micro Devices, INAAMD Athlon Processor x86 Transactions on Computerd8(2), 1999.

Code Optimization Guidedug. 2001. Document Number [16] T.C. Mowry, M. S. Lam, and A. Gupta. Design and
22007J. Evaluation of a Compiler Algorithm for Prefetching. Rvoc.

[2] B. Cahoon and K. S. McKinley. Data Flow Analysis for of the Fifth International Conference on Architectural
Software Prefetching Linked Data Structures in Java. In Support for Programming Languages and Operating
Proc. of the International Conference on Parallel Systemgpages 62—73, Oct. 1992.

Architectures and Compiler Techniqu&ept. 2001. [17] Proc. of the ACM SIGPLAN Conference on Programming

[3] D. Callahan, K. Kennedy, and A. Porterfield. Software Language Design and Implementatjdaine 2002.
Prefetching. IrProc. of the Fourth International Conference [18] Y. Shuf, M. J. Serrano, M. Gupta, and J. P. Singh.
on Architectural Support for Programming Languages and Characterizing the Memory Behavior of Java Workloads: A
Operating Systemgages 40-52, Apr. 1991. Structured View and Opportunities for Optimizations. In

[4] T. M. Chilimbi and M. Hirzel. Dynamic Hot Data Stream Proc. of the ACM SIGMETRICS International Conference on
Prefetching for General-Purpose Programs. In PLDI '02 Measurement and Modeling of Computer Systerages
[17], pages 199-209. 194-205, June 2001.

[5] S. Dieckmann and U. Blzle. A Study of the Allocation [19] SPARC International, IncThe SPARC Architecture Manual
Behavior of the SPECjvm98 Java BenchmarksPtac. of Version 9 2000. Document Number SAVO9R1459912.
the 13th European Conference of Object Oriented [20] Standard Performance Evaluation Corporation (SPEC). JVM
Programming pages 92-115, 1999. LNCS 1628. Client98 (SPECjvm98). httywww.spec.orgpsgjvm9s,

[6] R. Dimpsey, R. Arora, and K. Kuiper. Java Server 1998.

Performance: A Case Study of Buildingi€ient, Scalable [21] A. Stoutchinin, J. N. Amaral, G. R. Gao, J. Dehnert, S. Jain,
JVMs. IBM Systems JournaB9(1):151-174, 2000. and A. Douillet. Speculative Prefetching of Induction

[7] J. Gosling, B. Joy, and G. Steelthe Java Language Pointers. InProc. of the 10th International Conference on
SpecificationAddison-Wesley Publishing Co., Reading, Compiler Constructionpages 289-303, Apr. 2001. LNCS
MA, 1996. 2027.

[8] Intel Corporationlntel Itanium Architecture Software [22] T. Suganuma, T. Ogasawara, M. Takeuchi, T. Yasue,
Developer’'s Manual Volume 3: Instruction Set Reference M. Kawabhito, K. Ishizaki, H. Komatsu, and T. Nakatani.
2001. Revision 2.0, Document Number 245319-003. Overview of the IBM Java Just-In-Time CompiléBM

[9] Intel Corporationintel Pentium 4 Processor Optimization Systems JournaB9(1):175-193, Feb. 2000.

Reference ManuaR001. Document Number 248966. [23] Y. Wu. Efficient Discovery of Regular Stride Patterns in
[10] Intel Corporation. VTune Performance Analyzer. Irregular Programs and Its Use in Compiler Prefetching. In
httpy/www.intel.comisoftwargproductgvtune, 2002. PLDI 02 [17], pages 210-221.
[11] K. Ishizaki, M. Kawahito, T. Yasue, M. Takeuchi, [24] Y. Wu, M. Serrano, R. Krishnaiyer, W. Li, and J. Fang.

T. Ogasawara, T. Suganuma, T. Onodera, H. Komatsu, and
T. Nakatani. Design, Implementation, and Evaluation of
Optimizations in a Just-In-Time Compiler. Rroc. of the

ACM JavaGrande Conferencpages 119-128, June 1999.

277

[14]

N. P. Jouppi. Improving Direct-Mapped Cache Performance
by the Addition of a Small Fully-Associative Cache and
Prefetch Bifers. InProc. of the 17th Annual International
Symposium on Computer Architectupages 364-373, 1990.
C.-K. Luk and T. C. Mowry. Compiler-Based Prefetching for
Recursive Data Structures. Rroc. of the 7th International
Conference on Architectural Support for Programming
Languages and Operating Systemages 222—-233, Oct.
1996.

Value-Profile Guided Stride Prefetching for Irregular Code.
In Proc. of the 11th International Conference on Compiler
Construction pages 307-324, Apr. 2002. LNCS 2304.

