
Stride Prefetching by Dynamically Inspecting Objects

Tatsushi Inagaki Tamiya Onodera Hideaki Komatsu Toshio Nakatani

IBM Tokyo Research Laboratory
1623-14, Shimotsuruma, Yamato-shi, Kanagawa-ken 242-8502, Japan

{e29253,tonodera,komatsu,nakatani}@jp.ibm.com

ABSTRACT
Software prefetching is a promising technique to hide cache miss
latencies, but it remains challenging to effectively prefetch pointer-
based data structures because obtaining the memory address to be
prefetched requires pointer dereferences. The recently proposed
stride prefetching overcomes this problem, but it only exploitsinter-
iterationstride patterns and relies on an off-line profiling method.

We propose a new algorithm for stride prefetching which is in-
tended for use in a dynamic compiler. We exploit bothinter- and
intra-iteration stride patterns, which we discover using an ultra-
lightweight profiling technique, calledobject inspection. This is a
kind of partial interpretation that only a dynamic compiler can per-
form. During the compilation of a method, the dynamic compiler
gathers the profile information by partially interpreting the method
using the actual values of parameters and causing no side effects.

We evaluated an implementation of our prefetching algorithm
in a production-level Java just-in-time compiler. The results show
that the algorithm achieved up to an 18.9% and 25.1% speedup
in industry-standard benchmarks on the Pentium 4 and the Athlon
MP, respectively, while it increased the compilation time by less
than 3.0%.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors—code generation,
compilers, memory management, optimization

General Terms
Algorithm, Design, Experimentation, Performance

Keywords
Java just-in-time compiler, object inspection, stride prefetching

1. INTRODUCTION
The performance gap between the processor and memory con-

tinues to widen with no indication of yet reaching a limit. Cache
memories at several levels attempt to ameliorate the problem, ex-
ploiting temporal and spatial locality of program execution. They

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PLDI’03, June 9–11, 2003, San Diego, California, USA.
Copyright 2003 ACM 1-58113-662-5/03/0006 ...$5.00.

are quite effective in many programs for reducing memory access
latencies and thus improving performance.

However, cache memories do not help very much for programs
which access a large amount of data and suffer from a significant
number of cache misses. While classical instances of such pro-
grams are numerical applications accessing large data structures
such as vectors and matrices, modern object-oriented programming
also tends to result in such programs by creating a large number of
objects in the heap and chasing references among the objects. It is
not uncommon for Java [7] programs to create millions of objects
in a heap that might be hundreds of megabytes in size [5].

Software prefetchingis one of the promising techniques to ad-
dress the issue [3]. Assuming a special prefetch instruction exists
for moving data into a higher-level cache, it attempts to hide cache
miss latencies by issuing a prefetch instruction for the data well
before the data is accessed. However, improving performance with
software prefetching is not a trivial task. First, the timing of issuing
the prefetch instruction is tricky. It must not be issued too late, or
the prefetched data may still not have become available when the
processor executes the memory operations using that data. On the
other hand, it must not be issued too early, or the cache may no
longer contain the prefetched data when the processor executes the
operations. Second, the prefetch instruction must be issued only
when memory bandwidth is not being fully used, since executing a
prefetch instruction is not free. Finally, the overhead of computing
the address of the data to be prefetched should be small. In partic-
ular, the number of memory operations executed for obtaining the
address must be minimized.

While many algorithms have been successfully developed to prefetch
array-baseddata references in numerical applications [16], it is
more challenging to effectively prefetchpointer-baseddata refer-
ences because of the much larger overhead to obtain the target ad-
dress. Consider a loop that iterates over the elements of a list. If we
prefetch in thei-th iteration the element accessed in the (i +c)-th it-
eration, we must makec pointer dereferences to obtain the address
of the element for the prefetch instruction.

Recently, Wu [23] and Wu et al. [24] presented a new prefetch-
ing algorithm that can uniformly handle both array-based and pointer-
based references. It is based on the observation that important load
instructions could exhibit stride patterns even when they reference
pointer-based data structures. Consider again a loop traversing a
list. If the program constructs the list by allocating and append-
ing equal-sized elements without other intervening allocations, the
load instruction for retrieving the next element in the loop probably
has constant strides.

Wu developed an off-line profiling method to efficiently discover
load instructions with stride patterns, and used the obtained stride
profiles to guide compiler prefetching. Wu’s stride prefetching

269

yields a significant speedup because stride patterns allow prefetch-
ing without dereferences.

While Wu handles both in-loop and out-of-loop loads, his ex-
perimental results show that the performance gain from prefetch-
ing out-of-loop loads was insignificant. Moreover, Wu attempted
to discover only what we callinter-iterationstride patterns for in-
loop loads. That is, given a load instruction in a loop, Wu attempted
to determine whether or not the sequence of the addresses accessed
by the instruction over iterations exhibits a stride pattern.

We propose a new approach to stride prefetching which is in-
tended for use in a dynamic compiler. Focusing on in-loop loads,
we attempt to discover and exploit not only inter-iteration patterns
but alsointra-iterationpatterns. Given a pair of load instructions in
a loop, we define the stride between them as the difference between
the addresses accessed by the two instructions within one iteration,
and two load instructions are said to show an intra-iteration stride
pattern when the sequence of the strides shows a pattern between
iterations. As we show later, pairs of important loads without inter-
iteration stride patterns could exhibit intra-iteration stride patterns,
allowing our approach to yield more performance gains.

We discover inter-iteration and intra-iteration stride patterns with
an ultra-lightweight technique for dynamic profiling calledobject
inspection. This is a kind of partial interpretation that only a just-in-
time (JIT) compiler is able to perform. When invoked for a method
containing one or more loops, the JIT compiler partially interprets
the method with theactualvalues of the method’s parameters and
without generating any side effects, executing each loop a small
number of times to discover the stride patterns.

We build a dependence graph of load instructions to limit the
number of candidate pairs of load instructions that must be consid-
ered for intra-iteration stride patterns. Load instructions for chasing
references are likely to show intra-iteration stride patterns, since
constructors in object-oriented languages tend to allocate a bunch
of related objects. We build the dependence graph according to
reference-chasing sequences within a loop, resulting in candidate
pairs of load instructions being represented as adjacent nodes in
the graph.

We evaluated an implementation of our prefetching algorithm in
the JIT compiler [22] of IBM Developer Kit for Windows, Java
Technology Edition. We ran the SPECjvm98 benchmark [20] and
Section 3 of the JavaGrande v2.0 benchmark [12] on two machines
with different IA-32 architectures, an Intel Pentium 4 [9] and an
AMD Athlon MP [1]. The results show that our stride prefetching
achieved up to an 18.9% and 25.1% speedup on the Pentium 4 and
the Athlon MP, respectively.

Our contributions in this paper are as follows.

• Discovery and exploitation of intra-iteration stride patterns.
To the best of our knowledge, this is the first attempt to dis-
cover intra-iteration stride patterns and utilize them for soft-
ware prefetching. Given a pair of load instructions in a loop,
the two instructions are said to show an intra-iteration stride
pattern, if the sequence of the strides between them shows
a pattern over iterations. We first build a dependence graph
of load instructions to limit the number of candidate pairs
of load instructions, and attempt to discover intra-iteration
stride patterns using object inspection.

• Object inspection.This is an ultra-lightweight technique for
dynamic profiling which only a dynamic compiler is able
to use. When dynamically compiling a method, it gathers
an “execution profile” of the method by partially interpret-
ing the method at compile time, using theactual values of
the parameters and causing no side effects. To the best of

class TokenVector {
Token[] v;
int ptr;
void addElement (Token val) {...}
void removeElement (Token val) {...}
...

}

class Token {
ValueVector[] facts;
int size = 0;
Token (ValueVector firstFact) {

facts = new ValueVector[5];
facts[size++] = firstFact;

}
...

}

class Node2 {
Token findInMemory (TokenVector tv, Token t) {
TokenLoop:

for (int i = 0; i < tv.ptr; i++) {
Token tmp = tv.v[i];
for (int j = 0; j < t.size; j++)

if (!t.facts[j].equals (tmp.facts[j]))
continue TokenLoop;

return tmp;
}
return null;

}
...

}

Figure 1: Simplified code fragments from 202 jess.

our knowledge, this is the first application of such an ultra-
lightweight profiling technique for dynamic optimizations.
More concretely, we use the novel profiling technique for
discovering both inter-iteration and intra-iteration stride pat-
terns.

• Evaluation on a production Java JIT compiler.We imple-
mented our stride prefetching algorithm on a production Java
virtual machine and JIT compiler, and evaluated the effec-
tiveness on two different IA-32 machines using industry stan-
dard benchmarks.

The rest of this paper is organized as follows. Section 2 shows a
motivating example to discuss stride prefetching and give an overview
of our approach. Section 3 describes our stride prefetching algo-
rithm. Section 4 presents performance results, while Section 5 dis-
cusses the related work. Finally, Section 6 offers conclusions.

2. A MOTIVATING EXAMPLE
We discuss stride prefetching using the motivating example shown

in Figure 1. The code is taken from the202 jessbenchmark in
SPECjvm98. ThefindInMemory() method is one of the time-
consuming methods in202 jess, spending most of the time execut-
ing the doubly nested loop. Also, the execution profile shows that,
while the outer loop has a large trip count, the inner loop has a quite
small trip count. Figure 2 summarizes the data structures accessed
in the method, representing as solid arrows the pointer references
chased in the method.

In-loop loads are major targets of software prefetching. The dou-
bly nested loop contains the eleven load instructions listed in Ta-
ble 1. The load instructions for thelength fields of the arrays are

270

Table 1: Load instructions in the findInMemory() method.
Load instructions Memory addresses

L1 &tv.ptr
L2 &tv.v
L3 &tv.v.length
L4 &tv.v[i]
L5 &t.size
L6 &t.facts
L7 &t.facts.length
L8 &t.facts[j]
L9 &tmp.facts
L10 &tmp.facts.length
L11 &tmp.facts[j]

not explicit in the Java source program, but are generated for array
bound checks.

We now explain how Wu et al. [24] discover and exploit inter-
iteration stride patterns for in-loop loads. Their approach is based
on off-line profiling. They select candidate loads using the execu-
tion frequency profile and compiler’s static analysis, instrument the
code to collect stride profiles for the candidate loads, and generate
prefetch instructions based on the stride profiles obtained.

They select a load in a loop as a candidate for stride profiling
using the following criteria:

• The loop has a high trip count.

• The load is frequently executed.

• The memory address of the load is not a loop invariant.

A load in a loop with a high trip count is selected since the load
is likely to touch a large range of memory and to miss the cache.
When a nested loop does not have a high trip count but the parent
loop does, each load in the nested loop is considered as if it were in
the parent loop.

When applied to thefindInMemory() method, their algo-
rithm selectsL4, L9, L10, and L11 to collect stride profiles, and
the rest of the loads are all loop-invariants. However, the resulting
stride profiles show that onlyL4 has a stride pattern. This is because
the array ofToken objects referenced bytv.v is not constructed
in the initialization phase. TheToken objects are appended to
and removed from the array during the execution of the202 jess
benchmark. Furthermore, when theremoveElement() method
attempts to remove aToken object and finds it stored as the ar-
ray’s i-th element, it removes the object by moving to the indexi
the array’s last element. As a result, by only discovering a stride
pattern forL4, their algorithm generates a prefetch instruction as in
Figure 3, which is intended for prefetching datac iterations ahead,
whenL4 hasd bytes of an inter-iteration constant stride.

We extend their approach in two ways to capture more loads as
targets for prefetching. First, althoughL9 does not exhibit an inter-
iteration stride pattern, we could prefetch the data whichL9 is likely
to load afterc iterations, sinceL9 is data dependent uponL4 andL4

shows an inter-iteration stride pattern. That is, we couldspecula-
tively executeL4 using the memory address predicted based on the
stride pattern, and prefetch the data forL9 using the result. This re-
quires one pointer dereference, but the benefits may offset the cost.

Second, while none ofL9, L10, andL11 is likely to show an inter-
iteration stride pattern, (L9, L10) is likely to exhibit an intra-iteration
stride pattern. This is because the constructor for theToken class
allocates an array and stores a reference to the array into thefacts
field, not reassigning a new reference into the field after that. When

TokenVector

v
ptr

array

Token

facts
size

array

ValueVector
length

tv L4

L9

L10

L2

L11

length

Figure 2: Data structures accessed and pointer references
chased in thefindInMemory() method.

TokenLoop:
for (int i = 0; i < tv.ptr; i++) {

Token tmp = tv.v[i];
prefetch (&tv.v[i] + c*d);
for (int j = 0; j < t.size; j++)

if (!t.facts[j].equals (tmp.facts[j]))
continue TokenLoop;

return tmp;
}

Figure 3: Stride prefetching by Wu et al.’s approach.

the data loaded by the two instructions with an intra-iteration stride
are farther apart than the size of a cache line, the stride pattern is
exploitablefor software prefetching. Assuming that we have al-
ready obtained the memory address for prefetching the data loaded
by L9, we could prefetch the data loaded byL10 based on the same
memory address.

Figure 4 shows the resulting optimized code using our approach,
whereo denotes the offset of thefacts field in theToken object
ands denotes the stride betweenL9 andL10. We also assume that
the stride is longer than the cache line. We perform three types of
prefetching in the optimized code, inter-iteration stride prefetching,
dereference-based prefetching, and intra-iteration stride prefetch-
ing. Notice that we do not necessarily assume hardware support
for the speculative load, and we could obtain an equivalent effect
with a sequence of ordinary instructions.

TokenLoop:
for (int i = 0; i < tv.ptr; i++) {

Token tmp = tv.v[i];
tmp_pref = spec_load (&tv.v[i] + c*d);
prefetch (tmp_pref + o);
prefetch (tmp_pref + o + s);
for (int j = 0; j < t.size; j++)

if (!t.facts[j].equals (tmp.facts[j]))
continue TokenLoop;

return tmp;
}

Figure 4: Stride prefetching by our approach.

271

3. OUR PREFETCHING ALGORITHM
We describe our algorithm for stride prefetching intended for use

in a JIT compiler. The JIT compiler is invoked for a method when
the method is about to be executed. It may be compiling the method
for the first time, or recompiling the method with more aggressive
optimizations. Thus, actual values for the parameters are available
at compile time, and our algorithm fully exploits this information.

As one of the optimization phases, our algorithm transforms the
input code in the intermediate representation of a method into code
augmented with prefetch instructions. Given a method, it first at-
tempts to identify loops, constructing a loop nesting forest. The
algorithm then traverses the loops in each tree in a postorder traver-
sal, walking the trees in the program order.

For each loop, the algorithm performs the following three steps.
First, it constructs a dependence graph of the load instructions in
the loop. As explained below, the reference-chasing sequences
of load instructions are connected in the graph, limiting the num-
ber of pairs of load instructions we must check for intra-iteration
stride patterns. Second, the algorithm performs object inspection
to detect both inter-iteration and intra-iteration stride patterns. It
attempts to partially interpret the loop body a certain number of
times, annotating the dependence graph with the stride patterns dis-
covered. Finally, we generate prefetching code based on stride pat-
terns recorded in the dependence graph. We prefetch data for a
load instruction only when it is effective. The more instructions
there are which are data dependent upon a particular load instruc-
tion, the more effective prefetching is estimated to be for that load
instruction.

Before we describe each step in detail in the subsequent subsec-
tions, we note that a nested loop with a small trip count is handled
in a manner similar to [24]. When we process the parent loop, all
the load instructions in the nested loop are considered again as if
they were in the parent loop. Our algorithm detects that a loop has
a small trip count when it is performing object inspection. Alter-
natively, we could rely on execution profiles if the system supports
online profiling.

3.1 Construction of a Load Dependence Graph
We utilize a directed graph, called aload dependence graph,

to capture reference-chasing sequences of load instructions. Each
node of the graph is a load instruction using a reference as an
operand. A directed edge exists from nodeL1 to nodeL2 if and
only if L2 is directly data dependent uponL1. That is,L2 loads data
using the value loaded byL1, which must thus also be a reference.

When the Java bytecode is used as an intermediate representa-
tion, the instructions that can be a node of a load dependence graph
includegetfield , getstatic , aaload , iaload , daload ,
arraylength , and others. Only three instructions can be non-
leaf nodes in the graph:getfield andgetstatic instructions
yielding reference values, andaaload .

For a given loop, we construct a load dependence graph of the
load instructions in the loop. When it has a nested loop, the load
instructions in the nested loop are also considered only if it has
a small trip count. We can construct the graph, for instance, by
utilizing the use-def chains built for the method containing the loop,
but many other ways are possible.

Figure 5 shows a part of the load dependence graph constructed
for the doubly nested loop in thefindInMemory() method. The
load instructions in the nested loop also appear in the graph since it
has a small trip count.

3.2 Object Inspection
After constructing a load dependence graph for the target loop,

L2 L4 L9 L10

L11

Figure 5: A load dependence graph for the candidate load in-
structions in the findInMemory() method.

we perform object inspection to detect stride patterns. We attempt
to partially interpret the loop body a certain number of times (for
example, 20 times) using the actual values of the parameters, and
record the memory addresses used by the load instructions in the
graph. After this partial interpretation, we analyze the trace of the
memory addresses. While we check each of the load instructions
for inter-iteration patterns, we also check each of the adjacent pairs
in the graph for intra-iteration patterns. If the majority (for exam-
ple, over 75%) of the strides of a load or a pair of loads are the
same, we recognize that they have stride patterns, and annotate the
corresponding node or edge with the constant stride value.

Object inspection interprets the method’s instructions in the in-
termediate representation, starting from the method entry. Although
the actual values for the parameters are available, there will still
be some cases where the operand is not available, and when those
cases happen we use a special value,unknown , for the operand.
Any instruction that involves an unknown operand will have an un-
known result at interpretation.

Object inspection must be free of side effects. In particular, we
must prevent the interpretation of store instructions from causing
any visible effects. To do this, we make a copy of the stack frame,
and interpret each store instruction into a local variable within the
copied stack frame. Also, we interpret each store instructions into
an object by recording the updated address and the value in a hash
table, and accordingly interpret a load instruction from an object
by first looking in the hash table. For a similar reason, we prepare
a private heap, and interpret object-creating instructions using the
private heap.

We may encounter one or more loops before reaching the entry
point of the target loop. We interpret the body of such a loop only
once. This is because the induction variable or the recurrent refer-
ence variable of a loop is often initialized without depending on the
results of the preceding loops. For instance, it is often the case that
the induction variable is initialized to zero, and that the recurrent
reference variable is initialized by chasing one of the parameters.
Also, since object inspection must be lightweight, we cannot afford
to interpret other loops until we really exit from them at any rate.

Finally, we interpret a method invocation by simply skipping it
and assuming that the return value, if any, isunknown . Alterna-
tively, we could step into the callee method for a non-virtual invoca-
tion or all the methods potentially invoked for a virtual invocation.
Making object inspection inter-procedural might improve the ac-
curacy of our analysis, but it would increase the compilation time,
requiring the trade-off to be carefully assessed.

3.3 Generation of Prefetching Code
After object inspection, we generate the prefetching code based

on the stride patterns recorded in the dependence graph. We first
explain the code sequences we generate to exploit stride patterns.
As shown below, the prefetching code for a load instruction varies
depending on the types of stride patterns of the instruction and
the adjacent nodes. We then explain a simple profitability anal-
ysis to remove ineffective and redundant prefetching codes. Fi-

272

nally, we discuss mapping of two prefetch instructions we assume,
prefetch andspec load , to hardware instructions.

Code Sequences
Consider a nodeLx with an inter-iteration strided. If Lx has no
adjacent node, or, if all of the adjacent nodes have inter-iteration
stride patterns, we generate the following code for prefetching data
accessed byLx in c iterations after the current iteration, where we
denote asA(L) the memory address of data loaded byL in the cur-
rent iteration.

prefetch (A(L x) + d*c) ;

Otherwise, there exists a node,Ly, which is adjacent toLx and
does not exhibit an inter-iteration stride pattern. We then generate
the following code for prefetching data accessed byLx andLy in c
iterations after the current iteration,

a = spec load (A(L x) + d*c) ;
prefetch (F[L x ,L y](a)) ;

whereF[Lx, Ly] denotes a function which maps the memory ad-
dress produced byLx to the memory address used byLy. Typi-
cally, the function simply adds a constant offset to the input address.
The code sequence performs both (inter-iteration) stride prefetch-
ing and dereference-based prefetching. Notice thatLx andLy can
never have an intra-iteration stride pattern. The existence of the
intra-iteration pattern between the two implies thatLy has an inter-
iteration pattern, which contradicts thatLy does not exhibit such a
stride pattern.

The case thatLy does not have an inter-iteration stride pattern
opens opportunities for exploiting intra-iteration stride patterns. For
each nodeLz which has an intra-iteration stride pattern withLy di-
rectly or transitively, we generate the following prefetching code,

prefetch (F[L x ,L y](a) + S[L y ,L z]) ;

whereS[Ly, Lz] denotes the stride betweenLy andLz.
The actual value for thescheduling distancec depends on the

processor’s cache parameters and the amount of computation and
number of memory accesses in the loop body. While we cannot
change the cache parameters, we can increase the amount of com-
putation by unrolling the loop.

Profitability Analysis
Since the prefetch instructions consume processor resources and
memory bandwidth, we must be selective in issuing them. Ideally,
we should generate prefetching codes for those load instructions
that frequently cause cache misses. However, it is quite difficult
to predict the frequency of cache misses by a load instruction at
compile-time, because it subtly depends on many factors, includ-
ing cache parameters and static and dynamic instruction streams
surrounding the load instruction.

Instead, we perform a simple but effective profitability analy-
sis. We generate the prefetching code for a load instructionL only
when it satisfies the following three conditions. First, one or more
instructions must be data dependent onL. Second, data accessed
by L must not apparently share the same cache line with data for
which the prefetch code is already issued. Finally, whenL has an
inter-iteration stride pattern, the stride must be larger than half of
the cache line. Prefetching for such a load instruction will not be
profitable, especially on processors with hardware prefetching [13].

Table 2: Parameters related to prefetching on the Pentium 4
and the Athlon MP.

L1 size L1 line L2 size L2 line #DTLB
Processor (KB) size (B) (KB) size (B) entries

Pentium 4 8 64 256 128 64
Athlon MP 64 64 256 64 256

Table 3: Description of the SPECjvm98 and the JavaGrande
v2.0 Section 3.

Compiled
Programs Description code (%)

mtrt Two threaded ray tracing 75.1
jess Java expert shell system 70.3
compress Modified Lempel-Ziv method 93.6
db Memory resident database 92.3
mpegaudio MPEG Layer-3 audio decompression 87.0
jack Java parser generator 36.2
javac Java compiler from JDK1.0.2 51.9
Euler Computational fluid dynamics 79.5
MolDyn Molecular dynamics simulation 85.4
MonteCarlo Monte Carlo simulation 48.0
RayTracer 3D ray tracer 79.8
Search Alpha-beta pruned search 73.4

Mapping to Hardware Instructions
We can realize each of theprefetch andspec load instruc-
tions in two ways, the hardware instruction and a load instruction
guarded by a software exception check. If the underlying processor
provides the hardware support, we should obviously use the hard-
ware instruction. It takes less processor resources, and imposes
less impact on bandwidth since the processor cancels the execution
of the instruction when a data translation lookaside buffer (DTLB)
miss will occur. Currently, the prefetch instructions are supported
by most of the modern commercial processors, while the specula-
tive load instruction only receives support in the Intel IA-64 [8] and
the SPARC-V9 [19] architectures.

However, a guarded load instruction is sometimes preferable even
in the presence of hardware support, since we can use the guarded
load instruction to fill a missing DTLB entry in advance (called
TLB priming in [9]). Thus, when the stride is larger than half of
the page size, the guarded load instruction might be better than
the hardware instruction. A more important case is to prefetch
the address obtained by a dereference. In the above example, it
is not surprising if the difference betweenA(Lx) andA(Ly) is often
larger than half of the page size. Thus, it might be better to use the
guarded instruction for prefetchingA(Ly).

4. EXPERIMENTAL RESULTS
We implemented our prefetching algorithm and evaluated the

following two algorithms:

INTER This option enables only inter-iteration stride prefetching.
Note that this configuration is a limited emulation of Wu’s
stride prefetching using our prefetching algorithm. The limi-
tations are that 1) we use object inspection instead of off-line
profiling, and 2) we apply prefetching only to in-loop loads.

INTER +INTRA This option enables both inter- and intra-iteration
stride prefetching as described in Section 3.

273

mt
rt jes
s

co
mp

res
s db

mp
ega

ud
io jac
k

jav
ac

Eu
ler

Mo
lD
yn

Mo
nte

Ca
rlo

Ra
yT
rac

er

Sea
rch

-10%
-5%
0%
5%

10%
15%
20%
25%

spe
ed
up
 ra
tio

INTER INTER+INTRA

Figure 6: Speedup ratios on the Pentium 4.

We investigated the first 20 iterations of a given loop to collect
the constant strides. We recognize that a constant stride is dom-
inant when it matches 75% of the all collected strides. We fixed
the scheduling distance as one iteration for both inter- and intra-
iteration stride prefetching because our primary concern was not to
optimally tune up both kinds of stride prefetching, but to examine
the effectiveness of intra-iteration stride prefetching.

We prototyped our prefetching algorithm as an extension to the
JIT compiler [11] of the IBM Developer Kit for Windows, Java
Technology Edition, Version 1.3.1. The JVM runs in a mixed-
mode, meaning it selectively compiles methods that are executed
frequently [22]. The garbage collector [6] of the JVM uses a tradi-
tional mark-and-sweep algorithm. Live objects are packed byslid-
ing compaction, which does not change their internal order on the
heap. Thus, the garbage collector usually preserves constant strides
among the live objects. We set the initial and the maximum heap
sizes to 128 MB.

The measurements were done on two workstations, one with a
2 GHz Intel Pentium 4 [9] processor and 1 GB of memory, and
the other with a 1.2 GHz AMD Athlon MP [1] processor and 512
MB of memory. Both of these processors provide out-of-order su-
perscalar execution, and software and hardware prefetching mech-
anisms. Table 2 shows the parameters of the Pentium 4 and the
Athlon MP related to prefetching [9, 1]. The major differences be-
tween the two processors that affect this research are that 1) the
Pentium 4 provides a smaller number of DTLB entries, and 2) the
target cache levels for software prefetching are the L2 cache on the
Pentium 4 and the L1 cache on the Athlon MP. We used a load in-
struction guarded by a software exception check for intra-iteration
stride prefetching on the Pentium 4 in order to fill a missing DTLB
entry. Otherwise, we used a prefetch instruction provided by the
processor. We used the Microsoft Windows 2000 Professional op-
erating system on both workstations.

We used two benchmark suites, the SPECjvm98 benchmark [20]
and the JavaGrande v2.0 [12] benchmark Section 3. To evaluate the
performance improvement, we report the best run times reported
by the benchmarks themselves. The scores of the SPECjvm98 are
usually measured by their best run times under automatic continu-
ous execution. This means it tends to exclude the JIT compilation
time because after several runs, the benchmark is in the steady state
where the JIT compilation rarely occurs. We iterated each bench-
mark ten times in its auto run mode. We set the problem size to 100.
For the JavaGrande benchmarks, we ran each benchmark once and
therefore that run includes the JIT compilation time in the best run
time. We set the problem size to “Size A”. To evaluate the overhead
of compilation time, we report the total execution time and the total

mt
rt jes
s

co
mp

res
s db

mp
ega

ud
io jac
k

jav
ac

Eu
ler

Mo
lD
yn

Mo
nte

Ca
rlo

Ra
yT
rac

er

Sea
rch

-10%
-5%
0%
5%

10%
15%
20%
25%
30%

spe
ed
up
 ra
tio

INTER INTER+INTRA

Figure 7: Speedup ratios on the Athlon MP.

JIT compilation time of each benchmark. Table 3 shows the de-
scription of the benchmarks in the SPECjvm98 and the JavaGrande
v2.0 Section 3. The last column shows the ratios of the execution
time of the compiled code against the total execution times on the
Pentium 4. The benchmarks are suitable for evaluating the opti-
mizations by a JIT compiler because the compiled code consumes
over 70% of the total execution time except forjack, javac, and
MonteCarlo.

4.1 Performance
Figure 6 and Figure 7 show the speedup ratios on the Pentium 4

and on the Athlon MP, respectively. The baseline is the execution
time without stride prefetching.

Overall, the combination of inter- and intra-iteration stride prefetch-
ing gives a performance improvement better than only using inter-
iteration stride prefetching. The algorithm INTER was effective
for Euler on both processors, and was effective forMolDyn on the
Athlon MP. The algorithm INTER+INTRA improved those pro-
grams, as well asjessanddbon both processors, and also improved
RayTraceron the Pentium 4.

In particular, INTER+INTRA achieved an 18.9% speedup ofdb
on the Pentium 4, and also achieved a 25.1% speedup on the Athlon
MP, while INTER was ineffective on both processors. This pro-
gram spends more than 85% of its execution time in a shell sort loop
that reorders a number of large records and frequently causes cache
misses and DTLB misses [18]. Each record contains a number of
Vector andString objects, and they only have intra-iteration
constant strides between the containing records in the sorting loop.

And also, INTER+INTRA achieved a 2.0% speedup forjesson
the Pentium 4, and achieved a 2.9% speedup on the Athlon MP,
while INTER had very small or negative speedups. The improve-
ments of thejessbenchmark by INTER+INTRA were rather small
for two reasons. First, the methodfindInMemory() is hot, but
not dominant. The hottest method, which thefindInMemory()
method is inlined into, uses only about 25% of the compiled code
execution time, while the compiled code takes about 70% of the to-
tal execution time. Second, the cache line size is sufficiently large
to contain both theToken object and the array object pointed to by
thefacts field. The speedup on the Athlon MP was slightly larger
than the Pentium 4 because the Athlon MP has a larger number of
DTLB entries.

Since the benchmarkEuler has inter-iteration constant strides in
its main data structures, large two-dimensional arrays of vectors,
both algorithms achieved similar speedups on the Pentium 4 and
the Athlon MP. The algorithm INTER+INTRA achieved a 15.4%
speedup on the Pentium 4, and 14.0% speedup on the Athlon MP.

274

mt
rt jes
s

co
mp

res
s db

mp
ega

ud
io jac
k

jav
ac

Eu
ler

Mo
lD
yn

Mo
nte

Ca
rlo

Ra
yT
rac

er

Sea
rch

0%

2%

4%

6%

8%

10%

mi
sse

s p
er

ins
tru

cti
on

BASELINE INTER+INTRA

Figure 8: L1 cache load MPIs on the Pentium 4.

While theMolDyn benchmark also has inter-iteration constant
strides, neither algorithm improved it on the Pentium 4. This is
because the main data structure ofMolDyn is a one-dimensional
array of molecule objects that fits in the L2 cache given the prob-
lem size in this experiment. In contrast, both algorithms achieved
small speedups on the Athlon MP, since the molecule objects are
prefetched into the L1 cache.

TheRayTracerbenchmark showed an anomaly in that the algo-
rithm INTER+INTRA improves the performance on the Pentium 4
and degrades it on the Athlon MP. One of the target loops ofRay-
Tracercontains an invocation of a recursive method. On the Pen-
tium 4, stride prefetching in that target loop also reduces the cache
misses in the other methods where prefetches are not inserted. We
need further investigation of stride prefetching for this method in-
vocation.

Both algorithms slightly degraded thempegaudiobenchmark on
the Pentium 4. This is because the cache miss ratios and the DTLB
miss ratio were quite small, as we will see in Section 4.2. The
benchmarkscompress, javac, andSearchdo not contain code frag-
ments where either intra- or inter-iteration stride prefetching are
applicable.

4.2 Cache Misses and DTLB Misses
In this section, we investigate the effect on cache misses and

DTLB misses, comparing the execution without stride prefetch-
ing (labeled as “BASELINE”) and using our prefetching algorithm,
INTER+INTRA. We measured these results on the Pentium 4 us-
ing the Intel VTune Performance Analyzer [10] Version 5.0. We
use a metric,misses per instruction(MPI), which is the number of
dynamic miss events divided by the number of retired instructions.
Note that in the out-of-order superscalar execution, cache misses or
DTLB misses are observed by all of the concurrently executed load
instructions that access the same cache line or the same TLB entry.
Thus, prefetching and TLB priming do not reduce the number of
fills, but can reduce the number of miss events.

Inserting prefetch instructions increases the number of retired
instructions, but they are relatively few compared to the reduction
of the number of miss events. Our prefetching algorithm increases
the number of retired instructions fordbby 9.7%, forRayTracerby
6.9%, for jessby 2.2%, and for the other benchmarks by less than
2%.

Figure 8 shows the L1 cache load MPIs. Our prefetching algo-
rithm greatly decreased the L1 cache load MPI ofdb, and slightly
decreased the L1 cache load MPIs ofjessandRayTracer. This is
because intra-iteration constant stride prefetching is applicable to
these benchmarks, and an additional load instruction for prefetch-

mt
rt jes
s

co
mp

res
s db

mp
ega

ud
io jac
k

jav
ac

Eu
ler

Mo
lD
yn

Mo
nte

Ca
rlo

Ra
yT
rac

er

Sea
rch

0%

1%

2%

3%

4%

5%

mi
sse

s p
er

ins
tru

cti
on

BASELINE INTER+INTRA

Figure 9: L2 cache load MPIs on the Pentium 4.

ing brings the target cache line into the L1 cache. The L1 cache
MPIs ofmpegaudioandMonteCarloare quite small, and thus prefetch-
ing is not profitable for these benchmarks.

Figure 9 shows the L2 cache load MPIs. Our prefetching algo-
rithm greatly decreased the L2 cache load MPI ofRayTracer, but
this benefit was not fully predicted at compile-time, because it was
caused by the effects across multiple methods, as described above.
Our prefetching algorithm also decreased the L2 cache load MPIs
of db, Euler, andmtrt. Since inter-iteration stride prefetching is ap-
plicable to theEuler benchmark, we can reduce its L2 cache load
MPI more by a longer scheduling distance.

Figure 10 shows the DTLB load MPIs. Our algorithm greatly
decreased the DTLB load MPIs ofRayTraceranddb, and slightly
decreased the DTLB load MPI ofjess. The reduction of the L2
cache misses formtrt is slightly better than that forjess, but the
speedup ratio ofjesswas better than that ofmtrt. It suggests the
importance of reducing the DTLB misses on the Pentium 4.

4.3 Compilation Time
The left-hand bars in Figure 11 show additional compilation time

for our prefetching algorithm (INTER+INTRA) normalized by the
total JIT compilation time (indexed by the left axis). The baseline
is compilation time without stride prefetching. The additional com-
pilation time for our prefetching algorithm were less than 3.0% of
the total JIT compilation time, and exceeded 2.0% for mpegaudio,
Euler, andMolDyn, since these benchmarks contain a number of
loops that refer to arrays of objects. For the other benchmarks, the
overheads were smaller than 1.5%.

The right-hand bars in Figure 11 show total JIT compilation time
normalized by the total execution time of each benchmark (indexed
by the right axis). The total JIT compilation time was less than 13%
of the total execution time. Thus, by multiplying these numbers, we
observed that the additional JIT compilation time required for our
prefetching algorithm, in other words the runtime overhead, was
less than 0.4% of the total execution time.

5. RELATED WORK
Luk and Mowry [14, 15] studied software prefetching for recur-

sive data structures (RDSs) such as linked lists, trees, and graphs.
At a given RDS nodeni , they wish to prefetch the nodeni+d that will
be visitedd nodes afterni , and they propose three schemes for com-
puting the address ofni+d, Ai+d, at nodeni . While greedy prefetch-
ingapproximatesAi+d as one of the pointers fromni , history-pointer
prefetchingadds ajump-pointerat ni for this purpose that contains
the observed value ofAi+d during a recent traversal.Data lineariza-

275

mt
rt jes
s

co
mp

res
s db

mp
ega

ud
io jac
k

jav
ac

Eu
ler

Mo
lD
yn

Mo
nte

Ca
rlo

Ra
yT
rac

er

Sea
rch

0%

2%

4%

6%

8%

10%

mi
sse

s p
er

ins
tru

cti
on

BASELINE INTER+INTRA

Figure 10: DTLB load MPIs on the Pentium 4.

tion attempts to map the nodes of a RDS onto an array, so that
one can easily predictAi+d without any pointer dereference. Data
linearization exploits the same stride pattern information as (inter-
iteration) stride prefetching. In contrast to the attempts of stride
prefetching todiscoverpatterns, data linearization attempts tocre-
atethem, which is almost impossible for a compiler to do automati-
cally. Indeed, they only simulate data linearization by hand for two
benchmarks, where the RDSs already exhibit stride patterns, thus
requiring no mapping for linearization.

Stoutchinin et al. [21] proposed an automatic approach for prefetch-
ing data for RDSs, which relies solely on compiler analysis. They
first identify pointer-chasing recurrences in loops with a low com-
plexity algorithm. They then perform a profitability analysis to in-
vestigate whether there are enough processor resources and avail-
able memory bandwidth for profitable prefetching. Only if there
are, they issue prefetch instructions for the data accessed through
induction pointers, which are the addresses used by the loads in-
volved in the pointer-chasing recurrences. In other words, they as-
sume that the loads exhibit constant stride patterns, and rely on
the profitability analysis to avoid performance degradation when
the assumption does not hold. However, their experimental results
show that performance is actually degraded in six of the eleven pro-
grams they tested.

Wu [23] and Wu et al. [24] attempted to discover and exploit the
inter-iteration stride patterns of load instructions through efficient
off-line profiling. They exploit three stride patterns, strong single
stride, phased multiple-stride, and weak single stride, by issuing
different prefetching code sequences. As expected, the majority of
loads prefetched have strong single stride patterns. Also, they han-
dle both in-loop and out-of-loop loads, but the performance gain
from prefetching out-of-loop loads was insignificant. We extend
their approach in two significant ways. First, we attempt to dis-
cover and exploit intra-iteration patterns as well as inter-iteration
patterns. Second, we provide stride prefetching in a dynamic com-
piler. Since the overhead of off-line stride profiling is still too
high for such a dynamic environment, we have invented an ultra-
lightweight profiling technique called object inspection. Mainly
because we must use such a lightweight profiler, we focus on dis-
covering single stride patterns in in-loop loads, but we believe that
we are capturing most of the opportunities for performance gain
that stride prefetching can provide.

Chilimbi and Hirzel [4] developed a dynamic prefetching scheme
for general-purpose programs that involve extensive pointer deref-
erencing. They gather a temporal data reference profile and extract
the hot data streams, which are data reference sequences that are
frequently repeated in the same order. The system then dynamically

mt
rt jes
s

co
mp

res
s db

mp
ega

ud
io jac
k

jav
ac

Eu
ler

Mo
lD
yn

Mo
nte

Ca
rlo

Ra
yT
rac

er
Sea

rch

0.0%
0.5%
1.0%
1.5%
2.0%
2.5%
3.0%

%
in
tot

al J
IT
co
mp

ilat
ion

0%
2%
4%
6%
8%
10%
12%
14%

%
in
tot

al e
xe
cut

ion

INTER+INTRA JIT

Figure 11: Compilation time for prefetching and total JIT com-
pilation time.

injects code at appropriate program points to detect and prefetch
these hot data streams. Prefetching hot data streams does not re-
sult in stride prefetching. In other words, loads with stride patterns
are not captured as hot data streams. Thus, the two approaches can
work effectively together.

Cahoon and McKinley [2] proposed an effective data flow anal-
ysis technique for identifying RDS traversals in Java. The analysis
contains intra- and inter-procedural components and finds recurrent
pointer variables that occur both in loops and in recursive func-
tion calls. They use the analysis to drive greedy prefetching and
history-pointer prefetching. They do not include stride prefetching,
although it is possible as in Stoutchinin et al. [21]. Their approach
is based on whole-program analysis, and thus cannot be used for a
dynamic compilation system.

6. CONCLUDING REMARKS
We have proposed a new algorithm for stride prefetching which

is intended for use in a dynamic compiler. Our algorithm attempts
to discover and exploit both inter- and intra-iteration stride pat-
terns. Intra-iteration patterns often result since the constructors
in an object-oriented language tend to allocate a bunch of related
objects and store references to them into the objects being con-
structed.

We discover stride patterns using object inspection, an ultra-
lightweight technique for dynamic profiling which only a dynamic
compiler is able to use. During the compilation of a method, the
dynamic compiler gathers an execution profile of the method by
partially interpreting the method using the actual values of param-
eters and while causing no side effects. Also, in order to dis-
cover intra-iteration patterns efficiently, we build a load depen-
dence graph which represents as adjacent nodes the load instruc-
tions which chase references and thus limits the number of pairs
we must check for intra-iteration patterns.

We evaluated an implementation of our prefetching algorithm in
a production-level Java JIT compiler. We measured the SPECjvm98
benchmark and Section 3 of the JavaGrande v2.0 benchmark on
two different IA-32 processors, an Intel Pentium 4 and an AMD
Athlon MP. The results show that our prefetching algorithm achieved
up to an 18.9% and 25.1% speedup on the Pentium 4 and the Athlon
MP, respectively, while it increased the compilation time by less
than 3.0%.

One of the future goals is to extend the scope of load instructions
for prefetching in our algorithm. In particular, handling out-of-loop
loads in recursive methods is important and expected to be as re-

276

warding as in-loop loads, but discovering exploitable stride patterns
for out-of-loop loads still remains as an open problem. Also, it
might be interesting to combine stride prefetching with other types
of prefetching, such as history-pointer prefetching and prefetching
hot data streams.

Acknowledgments
We thank the members of the Network Computing Platform group
of Tokyo Research Laboratory for their support and valuable com-
ments. We also thank the anonymous reviewers for their helpful
comments and suggestions.

7. REFERENCES
[1] Advanced Micro Devices, Inc.AMD Athlon Processor x86

Code Optimization Guide, Aug. 2001. Document Number
22007J.

[2] B. Cahoon and K. S. McKinley. Data Flow Analysis for
Software Prefetching Linked Data Structures in Java. In
Proc. of the International Conference on Parallel
Architectures and Compiler Techniques, Sept. 2001.

[3] D. Callahan, K. Kennedy, and A. Porterfield. Software
Prefetching. InProc. of the Fourth International Conference
on Architectural Support for Programming Languages and
Operating Systems, pages 40–52, Apr. 1991.

[4] T. M. Chilimbi and M. Hirzel. Dynamic Hot Data Stream
Prefetching for General-Purpose Programs. In PLDI ’02
[17], pages 199–209.

[5] S. Dieckmann and U. Ḧolzle. A Study of the Allocation
Behavior of the SPECjvm98 Java Benchmarks. InProc. of
the 13th European Conference of Object Oriented
Programming, pages 92–115, 1999. LNCS 1628.

[6] R. Dimpsey, R. Arora, and K. Kuiper. Java Server
Performance: A Case Study of Building Efficient, Scalable
JVMs. IBM Systems Journal, 39(1):151–174, 2000.

[7] J. Gosling, B. Joy, and G. Steele.The Java Language
Specification. Addison-Wesley Publishing Co., Reading,
MA, 1996.

[8] Intel Corporation.Intel Itanium Architecture Software
Developer’s Manual Volume 3: Instruction Set Reference,
2001. Revision 2.0, Document Number 245319-003.

[9] Intel Corporation.Intel Pentium 4 Processor Optimization
Reference Manual, 2001. Document Number 248966.

[10] Intel Corporation. VTune Performance Analyzer.
http://www.intel.com/software/products/vtune, 2002.

[11] K. Ishizaki, M. Kawahito, T. Yasue, M. Takeuchi,
T. Ogasawara, T. Suganuma, T. Onodera, H. Komatsu, and
T. Nakatani. Design, Implementation, and Evaluation of
Optimizations in a Just-In-Time Compiler. InProc. of the
ACM JavaGrande Conference, pages 119–128, June 1999.

[12] Java Grande Benchmarking Project. Java Grande Forum
Benchmark Suite, Version 2.0.
http://www.epcc.ed.ac.uk/javagrande, 1999.

[13] N. P. Jouppi. Improving Direct-Mapped Cache Performance
by the Addition of a Small Fully-Associative Cache and
Prefetch Buffers. InProc. of the 17th Annual International
Symposium on Computer Architecture, pages 364–373, 1990.

[14] C.-K. Luk and T. C. Mowry. Compiler-Based Prefetching for
Recursive Data Structures. InProc. of the 7th International
Conference on Architectural Support for Programming
Languages and Operating Systems, pages 222–233, Oct.
1996.

[15] C.-K. Luk and T. C. Mowry. Automatic Compiler-Inserted
Prefetching for Pointer-Based Applications.IEEE
Transactions on Computers, 48(2), 1999.

[16] T. C. Mowry, M. S. Lam, and A. Gupta. Design and
Evaluation of a Compiler Algorithm for Prefetching. InProc.
of the Fifth International Conference on Architectural
Support for Programming Languages and Operating
Systems, pages 62–73, Oct. 1992.

[17] Proc. of the ACM SIGPLAN Conference on Programming
Language Design and Implementation, June 2002.

[18] Y. Shuf, M. J. Serrano, M. Gupta, and J. P. Singh.
Characterizing the Memory Behavior of Java Workloads: A
Structured View and Opportunities for Optimizations. In
Proc. of the ACM SIGMETRICS International Conference on
Measurement and Modeling of Computer Systems, pages
194–205, June 2001.

[19] SPARC International, Inc.The SPARC Architecture Manual
Version 9, 2000. Document Number SAV09R1459912.

[20] Standard Performance Evaluation Corporation (SPEC). JVM
Client98 (SPECjvm98). http://www.spec.org/osg/jvm98,
1998.

[21] A. Stoutchinin, J. N. Amaral, G. R. Gao, J. Dehnert, S. Jain,
and A. Douillet. Speculative Prefetching of Induction
Pointers. InProc. of the 10th International Conference on
Compiler Construction, pages 289–303, Apr. 2001. LNCS
2027.

[22] T. Suganuma, T. Ogasawara, M. Takeuchi, T. Yasue,
M. Kawahito, K. Ishizaki, H. Komatsu, and T. Nakatani.
Overview of the IBM Java Just-In-Time Compiler.IBM
Systems Journal, 39(1):175–193, Feb. 2000.

[23] Y. Wu. Efficient Discovery of Regular Stride Patterns in
Irregular Programs and Its Use in Compiler Prefetching. In
PLDI ’02 [17], pages 210–221.

[24] Y. Wu, M. Serrano, R. Krishnaiyer, W. Li, and J. Fang.
Value-Profile Guided Stride Prefetching for Irregular Code.
In Proc. of the 11th International Conference on Compiler
Construction, pages 307–324, Apr. 2002. LNCS 2304.

277

