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Abstract
In this paper we study the complexity of the Linear Ranking prob-
lem: given a loop, described by linear constraints over a finite set
of integer variables, is there a linear ranking function for this loop?
While existence of such a function implies termination, this prob-
lem is not equivalent to termination. When the variables range over
the rationals or reals, the Linear Ranking problem is known to be
PTIME decidable. However, when they range over the integers,
whether for single-path or multipath loops, the complexity of the
Linear Ranking problem has not yet been determined. We show that
it is coNP-complete. However, we point out some special cases of
importance of PTIME complexity. We also present complete algo-
rithms for synthesizing linear ranking functions, both for the gen-
eral case and the special PTIME cases.

Categories and Subject Descriptors F.2.0 [Analysis of Algo-
rithms and Problem Complexity]: General; F.3.1 [Logics and
Meanings of Programs]: Specifying and Verifying and Reasoning
about Programs

General Terms Verification, Theory.

Keywords Ranking Functions, Termination, Linear Constraints.

1. Introduction
Termination analysis has received a considerable attention and
nowadays several powerful tools for the automatic termination
analysis of different programming languages and computational
models exist [1, 21, 27, 43]. Much of the recent development in
termination analysis has benefited from techniques that deal with
one loop at a time, where a loop is specified by a loop guard and a
(non-iterative) loop body.

Very often, these loops are abstracted so that the state of the
program during the loop is represented by a finite set of integer
variables, the loop guard is a conjunction of linear inequalities, and
the body modifies the variables in an affine linear way, as in the
following example:

while (x2 − x1 ≤ 0, x1 + x2 ≥ 1) do
x′2 = x2 − 2x1 + 1, x′1 = x1

(1)

where tagged variables represent the values at the completion of
an iteration. When the variables are modified so that they are not
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affine linear functions of the old ones, the effect is sometimes cap-
tured (or approximated) by means of linear constraints. E.g., the C
language loop “while (4*x>=y && y>=1) do x=(2*x+1)/5;”,
which involves integer division, can be represented by linear con-
straints as follows (since 2*x+1 is always positive)

while (4x1 ≥ x2, x2 ≥ 1) do
− 2x1 + 5x′1 ≤ 1, 2x1 − 5x′1 ≤ 3, x′2 = x2

(2)

Linear constraints might also be used to model changes to data
structures, the variables representing a size abstraction such as
length of lists, depth of trees, etc. [17, 34, 35, 43]. For a precise
definition of the loop representations we consider, see Sec. 2; they
also include multipath loops where alternative paths in the loop
body are represented.

A standard technique to prove the termination of a loop is to
find a ranking function. Such a function maps a program state (a
valuation of the variables) into an element of some well-founded
ordered set, such that the value descends (in the appropriate or-
der) whenever the loop completes an iteration. Since descent in a
well-founded set cannot be infinite, this proves that the loop must
terminate. This definition of “ranking function” is very general; in
practice, researchers have often limited themselves to a convenient
and tractable form of ranking function, so that an algorithm to find
the function—if there is one—might be found.

A frequently used class of ranking functions is based on affine
linear functions. In this case, we seek a function ρ(x1, . . . , xn) =
a1x1 + · · · + anxn + a0, with the rationals as a co-domain, such
that (i) ρ(x̄) ≥ 0 for any valuation x̄ that satisfies the loop guard;
and (ii) ρ(x̄) − ρ(x̄′) ≥ 1 for any transition that starts in x̄ and
continues in x̄′. This automatically induces the piecewise-linear
ranking function: f(x̄) = ρ(x̄) + 1 if x̄ satisfies the loop guard
and 0 otherwise, with the non-negative rationals as a co-domain
but ordered w.r.t. a � b iff a + 1 ≤ b (which is well-founded).
For simplicity, we call ρ itself a linear ranking function instead of
referring to f .

An algorithm to find a linear ranking function using linear pro-
gramming (LP ) was found by multiple researchers in different
places and times and in some alternative versions [3, 20, 25, 36,
38, 42]. Since LP has a polynomial time complexity, most of
these methods yield polynomial-time algorithms. Generally speak-
ing, they are based on the fact that LP can precisely decide whether
a given inequality is implied by a set of other inequalities, and can
even be used to generate any implied inequality. After all, condi-
tions (i) and (ii) above are inequalities that should be implied by
the constraints that define the loop guard and body. This approach
can, in a certain sense, be sound and complete

Soundness means that it produces a correct linear ranking func-
tion, if it succeeds; completeness means that if a linear ranking
function exists, it will succeed. In other words, there are no false
negatives. A completeness claim appears in some of the references,
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and we found it cited several times. In our opinion, it has cre-
ated a false impression that the Linear Ranking problem for linear-
constraint loops with integer variables was completely solved (and
happily classified as polynomial time).

The fly in the ointment is the fact that these solutions are only
complete when the variables range over the rationals, which means
that the linear ranking function has to fulfill its requirements for any
rational valuation of the variables that satisfies the loop guard. But
this may lead to a false negative if the variables are, in fact, integers.
The reader may turn to the two loops above and note that both of
them do not terminate over the rationals at all (for the first, consider
x1 = x2 = 1

2
; for the second, x1 = 1

4
and x2 = 1). But they have

linear ranking functions valid for all integer valuations, which we
derive in Sec. 3.4.

This observation has led us to investigate the Linear Rank-
ing problem for single-path and multipath linear constraint loops.
We present several fundamental new results on this problem. We
have confirmed that this problem is indeed harder in the integer
setting, proving it to be coNP-complete (as a decision problem),
even for loops that only manipulate integers in a finite range. On
a positive note, this shows that there is a complete solution, even
if exponential-time. We give such a solution both to the decision
problem and to the synthesis problem. The crux of the coNP-
completeness proof, and the corresponding synthesis algorithm, is
that we rely on the generator representation of the transition poly-
hedron defined by the loop constraints. We provide sufficient and
necessary conditions for the existence of a linear ranking function
that use the vertices and rays of this representation.

Another positive news for the practically-minded reader is that
some special cases of importance do have a PTIME solution, be-
cause they reduce (with no effort, or with a polynomial-time com-
putation) to the rational case. We present several such cases, which
include, among others, loops in which the body is a sequence of
linear affine updates with integer coefficients, as in loop (1) above;
and the condition is defined by either an extended form of differ-
ence constraints, a restricted form of Two Variables Per Inequality
constraints, or a cone (constraints where the free constant is zero).
Some cases in which the body involves linear constraints are also
presented. All the algorithms presented in this paper have been im-
plemented, and can be tried out online (see Sec. 5).

Our results should be of interest to all users of linear rank-
ing functions, and in fact their uses go beyond termination proofs.
For example, they have been used to provide an upper bound on
the number of iterations of a loop in program complexity analy-
sis [2, 3] and to automatically parallelize computations [24, 25].
We remark that in termination analysis, the distinction between in-
tegers and rationals has already been considered, both regarding
ranking-function generation [13, 22] and the very decidability of
the termination problem [9, 16, 45]. All these works left the inte-
ger case open. Interestingly, our results provide an insight on how
to make the solution proposed by Bradley et al. [13] complete (see
Sec. 6).

This paper is organized as follows. Sec. 2 gives definitions and
background information regarding linear constraint loops, linear
ranking functions and the mathematical notions involved. Sec. 3
proves that the decision problem, denoted LINRF(Z), is coNP-
complete, and also presents an exponential-time ranking-function
synthesis algorithm. Sec. 4 discusses PTIME-solvable cases. Sec. 5
describes a prototype implementation. Sec. 6 surveys related previ-
ous work. Sec. 7 concludes.

2. Preliminaries
In this section we recall some results on (integer) polyhedra on
which we will rely, define the kind of loops we are interested in,
and formally define the linear ranking function problem.

2.1 Integer polyhedra
We recall some useful definitions and properties which can all be
found in [41]. A rational convex polyhedron P ⊆ Qn (polyhedron
for short) is the set of solutions of a set of inequalities Ax ≤ b,
namely P = {x ∈ Qn | Ax ≤ b}, where A ∈ Qm×n is a rational
matrix of n columns andm rows, x ∈ Qn and b ∈ Qm are column
vectors of n and m rational values respectively. We say that P is
specified by Ax ≤ b.

The set of recession directions of a polyhedron P specified by
Ax ≤ b is the set RP = {y ∈ Qn | Ay ≤ 0}. For a given
polyhedron P ⊆ Qn we let I(P) be P ∩Zn, i.e., the set of integer
points of P . The integer hull of P , commonly denoted by PI , is
defined as the convex hull of I(P), i.e., every rational point of PI
is a convex combination of integer points. It is known that PI is
also a polyhedron. An integer polyhedron is a polyhedron P such
that P = PI . We also say that P is integral.

Polyhedra also have a generator representation in terms of
vertices and rays, written as

P = convhull{x1, . . . ,xm}+ cone{y1, . . . ,yt} .
This means that x ∈ P iff x =

∑m
i=1 ai·xi+

∑t
j=1 bj ·yj for some

rationals ai, bj ≥ 0, where
∑m
i=1 ai = 1. Note that y1, . . . ,yt are

the recession directions of P , i.e., y ∈ RP iff y =
∑t
j=1 bj · yj

for some rational bj ≥ 0. When P is integral, there is a generator
representation in which all xi and yj are integer.

Complexity of algorithms on polyhedra is measured in this
paper by running time, on a conventional computational model
(polynomially equivalent to a Turing machine), as a function of the
bit-size of the input. Following [41, Sec. 2.1], we define the bit-size
of an integer x as ‖x‖ = 1 + dlog(|x| + 1)e; the bit-size of an
n-dimensional vector a as ‖a‖ = n+

∑n
i=1 ‖ai‖; and the bit-size

of an inequality a · x ≤ c as 1 + ‖c‖+ ‖a‖.
For a polyhedron P ⊆ Qn defined by Ax ≤ b, we let ‖P‖b

be the bit-size of Ax ≤ b, which we can take as the sum of the
sizes of the inequalities. The facet size, denoted by ‖P‖f , is the
smallest number φ ≥ n such that P may be described by some
Ax ≤ b where each inequality in Ax ≤ b fits in φ bits. Clearly,
‖P‖f ≤ ‖P‖b. The vertex size, denoted by ‖P‖v , is the smallest
number ψ ≥ n such that P has a generator representation in which
each of xi and yj fits in ψ bits (the size of a vector is as above).
For integer polyhedra, we restrict the generators to be integer. The
following theorems may be found in [41, Th. 10.2, p. 121] and [41,
Cor. 17.1a,17.1b, p. 238] (citing [32]) respectively.

THEOREM 2.1. Let P be a rational polyhedron in Qn; then
‖P‖v ≤ 4n2‖P‖f and ‖P‖f ≤ 4n2‖P‖v .

THEOREM 2.2. Let P be a rational polyhedron in Qn; then
‖PI‖v ≤ 6n3‖P‖f and ‖PI‖f ≤ 24n5‖P‖f .

2.2 Multipath linear-constraint loops
A single-path linear-constraint loop (SLC for short) over n vari-
ables x1, . . . , xn has the form

while (Bx ≤ b) do A

(
x
x′

)
≤ c (3)

where x = (x1, . . . , xn)T and x′ = (x′1, . . . , x
′
n)T are column

vectors, and for some p, q > 0, B ∈ Qp×n, A ∈ Qq×2n, b ∈ Qp,
c ∈ Qq . The constraint Bx ≤ b is called the loop condition (a.k.a.
the loop guard) and the other constraint is called the update. The
update is called deterministic if, for a given x (satisfying the loop
condition) there is at most one x′ satisfying the update constraint.
The update is called linear if it can be rewritten as x′ = A′x + c′

for a matrix A′ and vector c′ of appropriate dimensions. We say
that the loop is a rational loop if x and x′ range over Qn, and that
it is an integer loop if they range over Zn.
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We say that there is a transition from a state x ∈ Qn to a state
x′ ∈ Qn, if x satisfies the condition and x and x′ satisfy the update.
A transition can be seen as a point

( x
x′
)
∈ Q2n, where its first n

components correspond to x and its last n components to x′. For
ease of notation, we denote such points by x′′ =

( x
x′
)
. The set

of all transitions x′′ ∈ Q2n will be denoted, as a rule, by Q. The
transition polyhedronQ is specified by A′′x′′ ≤ c′′ where

A′′ =

(
B 0
A

)
c′′ =

(
b
c

)
Note that we may assume that Q does not include the origin, for if
it includes it, the loop is clearly non-terminating (this condition is
easy to check). Hence, Q is not a cone (i.e., m ≥ 1 in the gener-
ator representation). The polyhedron defined by the loop condition
Bx ≤ b will be denoted by C (the condition polyhedron).

A multipath linear-constraint loop (MLC for short) differs by
having alternative loop conditions and updates, which are, in prin-
ciple, chosen non-deterministically (though the constraints may en-
force a deterministic choice):

loop :
∨k
i=1Bix ≤ bi ⇒ Ai

(
x
x′

)
≤ ci

This means that the i-th update can be applied if the i-th condi-
tion is satisfied. Following the notation of SLC loops, the tran-
sitions of an MLC loop are specified by the transition polyhedra
Q1, . . . ,Qk, where eachQi is specified byA′′i x

′′ ≤ c′′i . The poly-
hedron defined by the condition Bix ≤ bi is denoted by Ci.

For simplifying the presentation, often we write loops with ex-
plicit equalities and inequalities instead of the matrix representa-
tion. We also might refer to loops by their corresponding transition
polyhedra, or the sets of inequalities that define these polyhedra.

2.3 Linear ranking functions

A linear function ρ : Qn → Q is of the form ρ(x) = ~λ · x + λ0

where ~λ ∈ Qn is a row vector and λ0 ∈ Q. For ease of notation we
sometimes refer to a linear function using the row vector (λ0,~λ) ∈
Qn+1. Next we define when a linear function is a linear ranking
function (LRF for short) for a given rational or integer MLC loop.

DEFINITION 2.3. Given an MLC loop with Q1, . . . ,Qk as
transition polyhedra, and a linear function ρ(x) = ~λ · x + λ0.
We say that ρ is a LRF for Q1, . . . ,Qk iff the following hold for
any rational point

( x
x′
)
∈ Qi
~λ · x + λ0 ≥ 0 (4)
~λ · (x− x′) ≥ 1 (5)

and we say that it is a LRF for I(Q1), . . ., I(Qk) iff (4,5) hold for
any integer point

( x
x′
)
∈ I(Qi).

Intuitively, (4) and (5) requires that ρ(x) ≥ 0 and ρ(x)−ρ(x′) ≥ 1
respectively. For rational loops this must hold for all rational tran-
sitions, and for integer loops it must hold for all integer transitions.
Clearly, the existence of a LRF implies termination of the loop.

Note that in Def. 2.3 we require ρ to decrease at least by 1,
where in the literature [38] this 1 is sometimes replaced by δ > 0.
It is easy to verify that these definitions are equivalent.

DEFINITION 2.4. The decision problem Existence of a LRF is
defined by

Instance: an MLC loop.
Question: does there exist a LRF for this loop?

The decision problem is denoted by LINRF(Q) and LINRF(Z) for
rational and integer loops respectively.

It is known that LINRF(Q) is PTIME-decidable [36, 38]. In this
paper, we focus on LINRF(Z).

3. The general case is coNP-complete
In this section we show that the LINRF(Z) problem is coNP-
complete; it is coNP-hard already for SLC loops. We also show
that LRFs can be synthesized in deterministic exponential time.

This section is organized as follows: in Sec. 3.1 we show that
LINRF(Z) is coNP-hard; in Sec. 3.2 we show that it is in coNP for
SLC loops, and in Sec. 3.3 for MLC loops; finally, in Sec. 3.4, we
describe an algorithm for synthesizing LRFs .

3.1 coNP-hardness
We prove coNP-hardness in a strong form. A number problem (a
problem whose instance is a matrix of integers) Prob is strongly
hard for a complexity class, if there are polynomial reductions
from all problems in that class to Prob such that the values of all
numbers created by the reduction are polynomially bounded by the
input bit-size. Assuming NP6=P, strongly NP-hard (or coNP-hard)
problems cannot even have pseudo-polynomial algorithms [26].

THEOREM 3.1. The LINRF(Z) problem is strongly coNP-hard,
even for deterministic SLC loops.

Proof. The problem of deciding whether a polyhedron given by
Bx ≤ b contains no integer point is a well-known coNP-hard
problem (an easy reduction from SAT may be found in [31]). We
reduce this problem to LINRF(Z). GivenB ∈ Zm×n and b ∈ Zm,
we construct the following integer SLC loop

while

(
B −I
0 −I

)(
x
z

)
≤
(
b
0

)
do

(
x′

z′

)
=

(
x
0

)
where x = (x1, . . . , xn)T, z = (z1, . . . , zm)T are integer vari-
ables, and I is an identity matrix of size m×m.

Suppose Bx ≤ b has an integer solution x. Then, the loop
does not terminate when starting from this x and z set to 0, since
the guard is satisfied and the update does not change the values.
Thus, it does not have any ranking function, let along a LRF .

Next, supposeBx ≤ b does not have an integer solution. Then,
for any initial state for which the loop guard is enabled it must hold
that z1 + · · · + zm > 0, for otherwise z1, . . . , zm must be 0 in
which case the constraint Bx − Iz ≤ b has no integer solution.
Since the updated vector z′ is deterministically set to 0, the guard
will not be enabled in the next state, hence the loop terminates after
one iteration. Clearly z1 + · · ·+ zm > z′1 + · · ·+ z′m = 0, so we
conclude that z1 + · · ·+ zm is a LRF .

Note that in the above reduction we rely on the hardness of
whether a given polyhedron is empty. This problem is coNP-hard
even for bounded polyhedra (due to the reduction from SAT in
which variables are bounded by 0 and 1). This means that even
for loops that only manipulate integers in a rather small range,
the problem is coNP-hard. The parameter “responsible” for the
exponential behavior in this case is the number of variables.

3.2 Inclusion in coNP for SLC loops
To prove that LINRF(Z) is in coNP, we show that the complement
of LINRF(Z), the problem of nonexistence of a LRF , is in NP,
that is, has a polynomially-checkable witness. In what follows
we assume as input an SLC loop with a transition polyhedron
Q ⊆ Q2n. The input is given as the set of linear inequalities
A′′x′′ ≤ c′′ that defineQ. The proof follows the following lines:

1. We show that there is no LRF for I(Q) iff there is a witness
that consists of two sets of integer points X ⊆ I(Q) and
Y ⊆ I(RQ), such that a certain set of inequalities ΨWS (X,Y )
has no solution over the rationals; and

2. We show that if there is a witness then there is one with bit-size
polynomial in the input bit-size.
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To make sense of the following definitions, think of a vector
(λ0,~λ) ∈ Qn+1 as a “candidate LRF ” that we may want to ver-
ify (or, in our case, to eliminate).

DEFINITION 3.2. We say that x′′ =
( x
x′
)
∈ I(Q) is a witness

against (λ0,~λ) ∈ Qn+1 if it fails to satisfy at least one of con-
ditions (4) and (5). The set of (λ0,~λ) witnessed against by x′′ is
denoted by W (x′′).

DEFINITION 3.3. We say that y′′ =
( y

y′
)
∈ I(RQ) is a

homogeneous component of a witness (h-witness) against (λ0,~λ) ∈
Qn+1 if it fails to satisfy at least one of

~λ · y ≥ 0 (6)
~λ · (y − y′) ≥ 0 (7)

The set of (λ0,~λ) h-witnessed against by y′′ is denoted byWH(y′′).

The meaning of the witness of Def. 3.2 is quite straightforward.
Let us intuitively explain the meaning of an h-witness. Suppose that
x′′ is a point in QI , and y′′ is a ray of QI . Then a LRF ρ has to
satisfy (4) for any integer point of the form x′′+a ·y′′ with a > 0;
letting a grow to infinity, we see that (4) implies the homogeneous
inequality (6). Similarly, (5) implies (7).

DEFINITION 3.4. The set of (λ0,~λ) ∈ Qn+1 witnessed and h-
witnessed against respectively by X ⊆ I(Q) and Y ⊆ I(RQ) is
defined as

WS(X,Y ) =
⋃

x′′∈X

W (x′′) ∪
⋃

y′′∈Y

WH(y′′) . (8)

LEMMA 3.5. Let X ⊆ I(Q) and Y ⊆ I(RQ). If WS(X,Y ) =
Qn+1, then there is no LRF for I(Q).

Proof. Let WS(X,Y ) = Qn+1. For any (λ0,~λ) ∈ Qn+1, we
prove that ρ(x) = ~λ ·x+λ0 is not a LRF . If (λ0,~λ) ∈W (x′′) for
some x′′ ∈ X , then the conclusion is clear since conditions (4,5) do
not hold. Otherwise, suppose that (λ0,~λ) ∈ WH(y′′) for y′′ ∈ Y .
Thus, y′′ fails to satisfy one of conditions (6,7). Next we show that,
in such case, there must exists z′′ ∈ I(Q) that fails either (4) or (5).

Case 1: Suppose (6) is not satisfied. That is, ~λ · y < 0.
Choose an arbitrary x′′ =

( x
x′
)
∈ I(Q), and assume that

ρ(x) ≥ 0, since otherwise ρ fails (4) and is not a LRF . Note that
for any integer a ≥ 0, the integer point z′′ = x′′ + a · y′′ is a
transition in I(Q), and z′′ =

( z
z′
)

=
(
x +a·y
x′+a·y′

)
. We choose a as

an integer sufficiently large so that a · (~λ ·y) ≤ −(1+ρ(x)). Now,

ρ(z) = ~λ · (x + a · y) + λ0

= ρ(x) + a · (~λ · y) ≤ ρ(x)− (1 + ρ(x)) = −1

So ρ fails (4) on z′′ ∈ I(Q), and thus cannot be a LRF .

Case 2: Suppose (7) is not satisfied. That is, ~λ · (y − y′) < 0.
Choose an arbitrary x′′ =

( x
x′
)
∈ I(Q), and assume that

ρ(x) − ρ(x′) ≥ 1, since otherwise ρ fails (5) and is not a LRF .
Define z′′ as above, but now choosing a sufficiently large to make
a · (~λ · (y − y′)) ≤ −(1 + ρ(x)− ρ(x′)). Now,

ρ(z)− ρ(z′) = ~λ · ((x + a · y)− (x′ + a · y′))
= ρ(x)− ρ(x′) + a · (~λ · (y − y′))

≤ ρ(x)− ρ(x′)− (1 + ρ(x)− ρ(x′)) = −1

So ρ fails (5) on z′′ ∈ I(Q), and thus cannot be a LRF .

Note that the condition WS(X,Y ) = Qn+1 is equivalent to
saying that the conjunction of inequalities (4,5), for all x′′ ∈ X ,

and inequalities (6,7), for all y′′ ∈ Y , has no (rational) solution.
We denote this set of inequalities by ΨWS (X,Y ). Note that the
variables in ΨWS (X,Y ) are λ0, . . . , λn, which range over Q, and
thus, the test that it has no solution can be done in polynomial time
since it is an LP problem over the rationals.

EXAMPLE 3.6. Consider the following integer SLC loop:

while (x1 ≥ 0) do x′1 = x1 + x2, x
′
2 = x2 − 1

Let x′′1=(0, 2, 2, 1)T ∈ I(Q) and y′′1=(1,−2,−1,−2)T ∈ I(RQ).
Then, ΨWS ({x′′1},{y′′1}) is a conjunction of the inequalities

{2λ2 +λ0 ≥ 0, −2λ1 +λ2 ≥ 1, λ1−2λ2 ≥ 0, 2λ1 ≥ 0} (9)

The first two inequalities correspond to applying (4,5) to x′′1 , and
the other ones to applying (6,7) to y′′1 . It is easy to verify that (9) is
not satisfiable, thus, WS({x′′1},{y′′1}) = Q3 and the loop does not
have a LRF . This is a classical loop for which there is no LRF .

Lemma 3.5 provides a sufficient condition for the nonexistence
of LRF , the next lemma shows that this condition is necessary.
In particular, it shows that if there is no LRF for I(Q), then the
vertices and rays ofQI serve as X and Y of Lemma 3.5.

LEMMA 3.7. Let the integer hull of the transition polyhedron Q
beQI=convhull{x′′1 , . . . ,x′′m}+cone{y′′1 , . . . ,y′′t }. If there is no
LRF for I(Q), then WS({x′′1 , . . . ,x′′m},{y′′1 , . . . ,y′′t })=Qn+1.

Proof. We prove the contra-positive. Suppose that

WS({x′′1 , . . . ,x′′m},{y′′1 , . . . ,y′′t }) 6= Qn+1 .

Then, there is (λ0,~λ) ∈ Qn+1 that fulfills (4,5) for all x′′i and (6,7)
for all y′′j . We claim that ρ(x) = ~λ · x + λ0 is a LRF for I(Q).

To see this, let x′′ =
( x
x′
)

be an arbitrary point of I(Q). Then
x′′ =

∑m
i=1 ai · x

′′
i +

∑t
j=1 bj · y

′′
j for some ai, bj ≥ 0 where∑m

i=1 ai = 1. Now, we show that x′′ and ρ satisfy (4,5) which
means that ρ is a LRF for I(Q):

~λ · x + λ0 =λ0 +

m∑
i=1

ai · (~λ · xi) +

t∑
j=1

bj · (~λ · yj)

=

m∑
i=1

ai · (~λ · xi + λ0) +

t∑
j=1

bj · (~λ · yj)

≥0 + 0 = 0

~λ · (x− x′) =

m∑
i=1

ai · (~λ · (xi − x′i)) +

t∑
j=1

bj · (~λ · (yj − y′j))

≥1 + 0 = 1

Note that the solutions of ΨWS ({x′′1 , . . . ,x′′m},{y′′1 , . . . ,y′′t })
in Lemma 3.7 define the set of all LRFs for I(Q) (see Sec. 3.4).

EXAMPLE 3.8. Consider again the loop of Ex. 3.6, and recall that
it does not have a LRF . The generator representation ofQI is

QI = convhull{x′′1}+ cone{y′′1 ,y′′2 ,y′′3}
where x′′1=(0, 1, 1, 0)T, y′′1=(0,−1,−1,−1)T, y′′2=(0, 1, 1, 1)T

and y′′3=(1,−1, 0,−1)T. Then, ΨWS ({x′′1},{y′′1 ,y′′2 ,y′′3}) is a
conjunction of the following inequalities

λ2 + λ0 ≥ 0 −λ2 ≥ 0 λ2 ≥ 0 λ1 − λ2 ≥ 0
−λ1 + λ2 ≥ 1 λ1 ≥ 0 −λ1 ≥ 0 λ1 ≥ 0

(10)

The inequalities in the leftmost column correspond to applying
(4,5) to x′′1 , and those in the other columns to applying (6,7) to
y′′1 , y′′2 , and y′′3 respectively. It is easy to verify that (10) is not
satisfiable. Thus, WS({x′′1},{y′′1 ,y′′2 ,y′′3}) = Q3.
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COROLLARY 3.9. There is no LRF for I(Q), iff there are two
sets X ⊆ I(Q) and Y ⊆ I(RP) such that WS(X,Y ) = Qn+1.

The next lemma concerns the bit-size of the witness.

LEMMA 3.10. If there exists a witness for the nonexistence of
LRF for I(Q), there exists one with X ⊆ I(Q) and Y ⊆ I(RQ)
such that |X∪Y | ≤ n+1; and the bit-size ofX∪Y is polynomial
in the bit-size of the input.

Proof. Recall that by Lemma 3.7, if I(Q) has no LRF , then
WS({x′′1 , . . . ,x′′m},{y′′1 , . . . ,y′′t }) = Qn+1

or, equivalently, ΨWS ({x′′1 , . . . ,x′′m},{y′′1 , . . . ,y′′t }) has no so-
lution. A corollary of Farkas’ Lemma [41, p. 94] states that: if
a set of inequalities over Qn has no solution, there is a subset
of at most n inequalities that has no solution. Since the set of
inequalities ΨWS ({x′′1 , . . . ,x′′m},{y′′1 , . . . ,y′′t }) is over Qn+1,
there is a subset of at most n + 1 inequalities that has no so-
lution. This subset involves at most n + 1 integer points out of
{x′′1 , . . . ,x′′m} and {y′′1 , . . . ,y′′t }, because every inequality in
ΨWS ({x′′1 , . . . ,x′′m},{y′′1 , . . . ,y′′t }) is defined by either one x′′i or
y′′i (see eqs. (4–7)). Let these points beX∪Y , then |X∪Y | ≤ n+1
and ΨWS (X,Y ) has no solution, i.e., WS(X,Y ) = Qn+1.

Now we show that X ∪ Y may be chosen to have bit-size
polynomial in the size of the input. Recall that the input is the
set of inequalities A′′x′′ ≤ b that define Q, and its bit-size
is ‖Q‖b. Recall that the points of X ∪ Y in Lemma 3.7 come
from the generator representation, and that there is a generator
representation in which each vertex/ray can fit in ‖QI‖v bits. Thus,
the bit-size of X ∪ Y may be bounded by (n + 1) · ‖QI‖v . By
Th. 2.2, since the dimension ofQ is 2n,
(n+ 1) · ‖QI‖v ≤ (n+ 1) · (6 · (2n)3 · ‖Q‖f ) ≤ 96n4 · ‖Q‖b
which is polynomial in the bit-size of the input.

EXAMPLE 3.11. Consider ΨWS ({x′′1},{y′′1 ,y′′2 ,y′′3}) of Ex. 3.8.
It is easy to see that the inequalities −λ2 ≥ 0, λ1 ≥ 0 and
−λ1 + λ2 ≥ 1 are enough for unsatisfiability (n + 1 inequalities,
since n = 2). These inequalities correspond to x′′1 and y′′1 , and
thus, they form a witness for the nonexistence of LRF .

THEOREM 3.12. LINRF(Z) ∈ coNP for SLC loops.

Proof. We show that the complement of LINRF(Z) has a polyno-
mially checkable witness. The witness is a listing of sets X and Y
of at most n + 1 elements and has a polynomial bit-size (specif-
ically, a bit-size bounded as in Lemma 3.10). Verifying a witness
consists of the following steps:
Step 1: Verify that each x′′ ∈ X is in I(Q), which can be done by
verifying A′′x′′ ≤ c′′; and that each y′′ ∈ Y is in I(RQ), which
can be done by verifying A′′y′′ ≤ 0. This is done in polynomial-
time. Note that according to Lemma 3.5 it is not necessary to check
that X and Y come from a particular generator representation.
Step 2: Verify that WS(X,Y ) = Qn+1. This can be done by
checking that ΨWS (X,Y ) has no solutions, which can be done in
polynomial-time since it is an LP problem over Qn+1.

3.3 Inclusion in coNP for MLC loops
In this section we consider the inclusion in coNP for MLC loops.
For this, we assume an input MLC loop with transition polyhedra
Q1, . . . ,Qk where eachQi is specified by A′′i x

′′ ≤ c′′i .
The proof follows the structure of the SLC case. The main

difference is that points of the witness X ∪ Y may come from
different transition polyhedra. Namely, X = X1 ∪ · · · ∪ Xk and
Y = Y1∪· · ·∪Yk where eachXi ⊆ I(Qi) and Yi ⊆ I(RQi). We
rewrite Lemmas 3.5, 3.7, and 3.10, Cor. 3.9, and Th. 3.12 in terms
of such witnesses (the proofs are the same unless stated otherwise).

LEMMA 3.13. Let X = X1 ∪ · · · ∪Xk and Y = Y1 ∪ · · · ∪ Yk,
where Xi ⊆ I(Qi) and Yi ⊆ I(RQi). If WS(X,Y ) = Qn+1,
then there is no LRF for I(Q1), . . . , I(Qk).

LEMMA 3.14. For 1 ≤ i ≤ k, let QiI = convhull{Xi} +
cone{Yi} be the integer hull ofQi, and defineX = X1∪· · ·∪Xk
and Y = Y1 ∪ · · · ∪Yk. If there is no LRF for I(Q1), . . . , I(Qk),
then WS(X,Y ) = Qn+1.

Proof. The proof follows that of Lemma 3.7. We pick (λ0,~λ) ∈
Qn+1 \WS(X,Y ) and show that ρ(x) = ~λ · x + λ0 is a LRF
for each I(Qi). This is accomplished by performing the same
calculation, however referring to Xi and Yi when proving that ρ
is a LRF for I(Qi).

COROLLARY 3.15. There is no LRF for I(Q1), . . . , I(Qk), iff
there are two setsX = X1∪· · ·∪Xk and Y = Y1∪· · ·∪Yk, where
Xi ⊆ I(Qi) and Yi ⊆ I(RQi), such that WS(X,Y ) = Qn+1.

LEMMA 3.16. If there exists a witness for the nonexistence of
LRF for I(Q1), . . . , I(Qk), then there exists one, with X =
X1 ∪ · · · ∪ Xk and Y = Y1 ∪ · · · ∪ Yk, where Xi ⊆ I(Qi)
and Yi ⊆ I(RQi), such that |X ∪ Y | ≤ n+ 1; and the bit-size of
X ∪ Y is polynomial in the bit-size of the input.

THEOREM 3.17. LINRF(Z) ∈ coNP.

Proof. The difference from that of Th. 3.12 is that the witness is
given asX=X1∪· · ·∪Xk and Y=Y1∪· · ·∪Yk. Thus, the verifier
should use the appropriate set of inequalities to check that each
x′′ ∈ Xi is in I(Qi), and that each y′′ ∈ Yi is in I(RQi).

EXAMPLE 3.18. Consider the following integer MLC loop

loop : x1 ≥ 0, x2 ≥ 0 ⇒ x′1 = x1 − 1
∨ x1 ≥ 0, x2 ≥ 0 ⇒ x′2 = x2 − 1, x′1 = x1

It is a classical MLC loop for which there is no LRF . The integer
hull of the corresponding transition polyhedra are

Q1I = convhull{x′′1}+ cone{y′′1 ,y′′2 ,y′′3 ,y′′4}
Q2I = convhull{x′′2}+ cone{y′′5 ,y′′6}

where x′′1=(0, 0,−1, 0)T, x′′2=(0, 0, 0,−1)T, y′′1=(0, 0, 0,−1)T,
y′′2 = (0, 0, 0, 1)T, y′′3 = (0, 1, 0, 0)T, y′′4 = (1, 0, 1, 0)T, y′′5 =
(0, 1, 0, 1)T and y′′6 = (1, 0, 1, 0)T. Let us first consider each path
separately. We get

ΨWS ({x′′1},{y′′1 ,y′′2 ,y′′3}) =

{
λ0 ≥ 0, λ1 ≥ 1,
λ2 ≥ 0,−λ2 ≥ 0

}
(11)

ΨWS ({x′′2},{y′′4 ,y′′5 ,y′′6}) ={λ0 ≥ 0, λ2 ≥ 1} (12)

Both (11) and (12) are satisfiable. In fact, their solutions define the
corresponding LRFs for each path when considered separately.
For the MLC loop, we have that ΨWS ({x′′1 ,x′′2},{y′′1 , . . . ,y′′6})
is the conjunction of the inequalities in (11) and (12), which is not
satisfiable. Thus, while each path has a LRF , the MLC loop does
not. Note that the inequalities λ2 ≥ 1 and −λ2 ≥ 0 are enough
to get unsatisfiability of (11,12), thus, X={x′′2} and Y={y′′2} is a
witness, and consists of less than n+ 1 points (n = 2 in this case).

3.4 Synthesizing a linear ranking function
Although the existence of a LRF suffices for proving termination,
generating a complete representation of the LRF is important in
some contexts, for instance complexity analysis where a LRF
provides an upper bound on the number of iterations that a loop can
perform. In this section we give a complete algorithm that generates
LRFs for MLC loops given by transition polyhedra Q1, . . . ,Qk.
The following lemma is directly implied by lemmas 3.13 and 3.14.
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LEMMA 3.19. For 1 ≤ i ≤ k, let the integer hull of Qi be
QiI = convhull{Xi}+cone{Yi}, and defineX = X1∪· · ·∪Xk
and Y = Y1 ∪ · · · ∪ Yk. Then, ρ(x) = ~λ · x + λ0 is a LRF for
I(Q1), . . . , I(Qk), iff (λ0,~λ) is a solution for ΨWS (X,Y ).

The following algorithm is clearly implied: (1) Compute the
generator representation for each QiI ; (2) Construct ΨWS (X,Y );
and (3) Use LP to find a solution (λ0,~λ) for ΨWS (X,Y ).

EXAMPLE 3.20. Consider again Loop (1) from Sec. 1. The inte-
ger hull of the transition polyhedron is

QI = convhull{x′′1 ,x′′2}+ cone{y′′1 ,y′′2}
where x′′1 = (1, 1, 1, 0)T, x′′2 = (1, 0, 1,−1)T, y′′1=(1, 1, 1,−1)T,
and y′′2 = (1,−1, 1,−3)T. Then, ΨWS ({x′′1 ,x′′2},{y′′1 ,y′′2}) is
the conjunction of the following inequalities (we eliminated clearly
redundant inequalities){

λ1 + λ2 + λ0 ≥ 0, λ1 + λ0 ≥ 0,
λ1 + λ2 ≥ 0, λ1 − λ2 ≥ 0, λ2 ≥ 1

}
(13)

which is satisfiable for λ1 = λ2 = 1 and λ0 = −1, and therefore,
f(x1, x2) = x1 + x2 − 1 is a LRF . Recall that this loop does not
terminate when the variables range over Q, e.g., for x1 = 1

2
and

x2 = 1
2

(see Fig. 1(A)).
Let us consider now Loop (2) from Sec. 1. The integer hull of

the transition polyhedron is

QI = convhull{x′′1 ,x′′2 ,x′′3 ,x′′4 ,x′′5 ,x′′6}+ cone{y′′1 ,y′′2}
where x′′1 = (4, 16, 1, 16)T, x′′2 = (1, 4, 0, 4)T, x′′3 = (2, 8, 1, 8)T,
x′′4 = (1, 1, 0, 1)T, x′′5 = (4, 1, 1, 1)T, x′′6 = (2, 1, 1, 1)T, y′′1 =
(5, 0, 2, 0)T and y2 = (5, 20, 2, 20)T. Then, the set of inequalities
ΨWS ({x′′1 , . . . ,x′′6},{y′′1 ,y′′2}) is the conjunction of the following
inequalities (we eliminated clearly redundant inequalities)λ1 ≥ 1, 4λ1+λ2+λ0 ≥ 0, 4λ1+16λ2+λ0 ≥ 0,

2λ1+λ2+λ0 ≥ 0, λ1+4λ2+λ0 ≥ 0,
2λ1+8λ2+λ0 ≥ 0, 5λ1+20λ2 ≥ 0, λ1+λ2+λ0 ≥ 0

 (14)

which is satisfiable for λ1 = 1, λ2 = 0 and λ0 = −1, and
therefore, f(x1, x2) = x1 − 1 is a LRF . Recall that this loop,
too, does not terminate when the variables range over Q, e.g., for
x1 = 1

4
and x2 = 1 (see Fig. 1(C)).

If we consider both loops (1) and (2) as two paths in an MLC
loop, then to synthesize LRFs we use the conjunction of the in-
equalities in (13) and (14). In this case, λ1 = λ2 = 1 and λ0 = −1,
is a solution, but λ1 = 1, λ2 = 0 and λ0 = −1 is not. Therefore,
f(x1, x2) = x1 +x2− 1 is a LRF for both paths, and thus for the
MLC loop, but not f(x1, x2) = x1 − 1.

Given our hardness results, one cannot expect a polynomial-
time algorithm. Indeed, constructing the generator representation
of the integer hull of a polyhedron from the corresponding set of
inequalities A′′i x ≤ c′′i may require exponential time—the number
of generators itself may be exponential. Their bit-size, on the other
hand, is polynomial by Th. 2.2. This is interesting, since it yields:

COROLLARY 3.21. Given an MLC loop with transition poly-
hedra Q1, . . . ,Qk, where each Qi is specified by A′′i x ≤ c′′i . If
there is a LRF for I(Q1), . . . , I(Qk), there is one whose bit-size
is polynomial in the bit-size of A′′i x ≤ c′′i , namely in maxi ‖Qi‖b.

Proof. As in the last section, we bound the bit-size of each of the
generators of QiI by ‖QiI‖v ≤ 6(2n)3 · ‖Qi‖f ≤ 48n3 · ‖Qi‖b
for an appropriate i. This means that the bit-size of each equation
in ΨWS (X,Y ), having one of the forms (4), (5), (6), or (7) is at
most 5 + 48n3 · (maxi ‖Qi‖b). Let P be the polyhedron defined
by ΨWS (X,Y ), then ‖P‖f ≤ 5 + 48n3 · (maxi ‖Qi‖b). If
ΨWS (X,Y ) has a solution, then any vertex of P is such a solution,

and yields a LRF . Using Th. 2.1, together with the above bound
for ‖P‖f and the fact that the dimension ofP is n+1, we conclude
that there is a generator representation for P in which the bit-size
‖P‖v of the vertices is bounded as follows:

‖P‖v ≤ 4·(n+1)2 ·‖P‖f ≤ 4·(n+1)2 ·(5+48n3 ·(max
i
‖Qi‖b))

This also bounds the bit-size of the corresponding LRF .

We conclude this section by noting that the algorithm induced
by Lemma 3.19 works also for LINRF(Q), if we consider Qi
instead of QiI . This can be easily proven by reworking the proofs
of Lemmas 3.13 and 3.14 for the case of Qi instead of QiI .
We did not develop this line since the main use of these lemmas
is proving the coNP-completeness for LINRF(Z). This, however,
has an interesting consequence: LINRF(Q) is still PTIME even
if the input loop is given in the generator representations form
instead of the constraints form. Practically, implementations of
polyhedra that use of the double description method, such as the
Parma Polyhedra Library [5], in which both the generators and
constraint representations are kept at the same time, can use the
algorithm of Lemma 3.19 judiciously when it seems better than
algorithms that use the constraints representation [36, 38].

4. Special cases in PTIME
In this section we discuss cases in which the LINRF(Z) problem
is PTIME-decidable. We start by a basic observation: when the
transition polyhedron of an SLC loop is integral, the LINRF(Z)
and LINRF(Q) problems are equivalent (a very similar statement
appears in [22, Lemma 3]).

LEMMA 4.1. Let Q be a transition polyhedron of a given SLC
loop, and let ρ be a linear function. If Q is integral, then ρ is a
LRF forQ iff ρ is a LRF for I(Q).

Proof. LetQ be integral. (⇒) Suppose that ρ is a LRF forQ, then
it is also a LRF for I(Q) since I(Q) ⊆ Q. (⇐) Suppose that ρ is
a LRF for I(Q), it thus satisfies (4,5) of Def. 2.3 for any integer
point in Q. However, by definition of an integer polyhedron, every
rational point in Q is a convex combination of integer points from
I(Q), this proves that ρ satisfies conditions (4,5) for any rational
point as well. To see this, choose an arbitrary rational point x′′ =( x
x′
)
∈ Q. It can be written as x′′ =

∑
ai · x′′i where ai ≥ 0,∑

ai = 1 and x′′i ∈ I(Q). Thus, x′′ =
( x
x′
)

=
(∑

ai·xi∑
ai·x′i

)
, and

ρ(x) =(~λ ·
∑

ai · xi) + λ0

=
∑

ai · (~λ · xi + λ0) ≥ 0

ρ(x)− ρ(x′) =(~λ ·
∑

ai · xi)− (~λ ·
∑

ai · x′i)

=
∑

ai · ~λ · (xi − x′i) ≥ 1

The above lemma provides an alternative complete procedure
for LINRF(Z), namely, compute a constraint representation of its
integer hull QI and solve LINRF(Q). Note that computing the
integer hull might require exponential time, and might also result
in a polyhedron with an exponentially big description. This means
that the above procedure is exponential in general; but this concern
is circumvented if the transition polyhedron is integral to begin
with; and in special cases where it is known that computing the
integer hull is easy. Formally, we call a class of polyhedra easy if
computing its integer hull can be done in polynomial time.
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Figure 1. The polyhedra associated with three of our examples,
projected to two dimensions. Dashed lines are added when comput-
ing the integer hull; dotted areas represent the integer hull; gray ar-
eas are rational points eliminated when computing the integer hull.

EXAMPLE 4.2. Consider again Loop (2) of Sec. 1. The transition
polyhedron is not integral, computing its integer hull adds the
inequalities −x1 + x′1 ≤ −1 and 1

3
x1 − x′1 ≤ 1

3
(see Fig. 1(C)).

Applying LINRF(Q) on this loop does not find a LRF since it does
not terminate when the variables range over Q, however, applying
it on the integer hull finds the LRF f(x1, x2) = x1 − 1.

COROLLARY 4.3. The LINRF(Z) problem is PTIME-decidable
for SLC loops in which the transition polyhedronQ is guaranteed
to be integral. This also applies to any easy class of polyhedra,
namely a class where the integer hull is PTIME-computable.

Proof. Immediate from Lemma 4.1 and the fact that LINRF(Q) is
PTIME-decidable.

COROLLARY 4.4. The LINRF(Z) problem is PTIME-decidable
for SLC loops in which the condition polyhedron C is guaranteed
to be integral, or belongs to an easy class, and the update is linear
with integer coefficients.

Proof. We show that in such case the transition polyhedronQ is, in
fact, integral, and thus Cor. 4.3 applies. Let C be integral, and the
update be x′ = A′x+c′ where the entries ofA′ and c′ are integer.
Let x′′ =

( x
x′
)
∈ Q, that is, x ∈ C and x′ = A′x + c′. Since C

is integral, x is a convex combination of some integer points. I.e,
x =

∑
ai · xi where ai ≥ 0,

∑
ai = 1 and xi ∈ I(C). Hence,

x′ = A′(
∑
ai · xi) + c′ =

∑
ai · (A′xi + c′) and

x′′ =

(
x
x′

)
=

(∑
ai · xi∑
ai · (A′xi + c′)

)
=
∑

ai ·
(

xi
A′xi + c′

)
Now note that

(
xi

A′xi+c′
)

are integer points from I(Q), which
implies that x′′ is a convex combination of integer points in Q.
Hence,Q is integral.

Corollaries 4.3 and 4.4 suggest looking for classes of SLC
loops where we can easily ascertain that Q is integral, or that its
integer hull can be computed in polynomial time. In what follows
we address such cases: Sec. 4.1 discusses special cases in which
the transition or condition polyhedron is integral by construction;
Sec. 4.2 shows that for certain cases of two-variables per inequality
constraints the integer hull can be computed in a polynomial time;
Sec. 4.3 discusses the case of octagonal relations; Sec. 4.4 shows
that for some cases LINRF(Z) is even strongly polynomial; and
Sec. 4.5 extends the results to MLC loops.

4.1 Loops specified by integer polyhedra
There are some well-known examples of polyhedra that are known
to be integral due to some structural property. This gives us classes
of SLC loops where LINRF(Z) is in PTIME. The examples below
are all from [41], where the proofs of the lemmas can be found.

LEMMA 4.5. For any rational matrix B, the cone {x | Bx ≤ 0}
is an integer polyhedron.

COROLLARY 4.6. The LINRF(Z) problem is PTIME-decidable
for SLC loops of the form

while (Bx ≤ 0) do x′ = A′x + c′

where the entries in A′ and c′ are integer.

Recall that a matrix A is totally unimodular if each subdetermi-
nant of A is in {0,±1}. In particular, the entries of such matrix are
from {0,±1}.
LEMMA 4.7. For any totally unimodular matrix A and integer
vector b, the polyhedron P = {x | Ax ≤ b} is integral.

For brevity, if a polyhedron P is specified by Ax ≤ b in which
A is a totally unimodular matrix and b an integer vector, we say
that P is totally unimodular.

COROLLARY 4.8. The LINRF(Z) problem is PTIME-decidable
for SLC loops in which (1) the transition polyhedron Q is totally
unimodular; or (2) the condition polyhedron C is totally unimodu-
lar and the update is linear with integer coefficients.

As a notable example, difference bound constraints [7, 10, 11]
are defined by totally unimodular matrices. Such constraints have
the form x − y ≤ d with d ∈ Q; constraints of the form ±x ≤ d
can also be admitted. In the integer case we can always tighten d to
bdc and thus get an integer polyhedron.

It might be worth mentioning that checking if a matrix is totally
unimodular can be done in polynomial time [41, Th. 20.3, p. 290].

4.2 Two-variable per inequality constraints
In this section we consider cases in which the input loop involves
two-variable per inequality constraints (TVPI for brevity), i.e.,
inequalities of the form ax + by ≤ d with a, b, d ∈ Q. Clearly,
polyhedra defined by such inequalities are not guaranteed to be
integral. See, for example, Fig. 1(B).

Harvey [29] showed that for two-dimensional polyhedra, which
are specified by TVPI constraints by definition, the integer hull
can be computed in O(m logAmax) where m is the number of
inequalities and Amax is the magnitude of the largest coefficient.

DEFINITION 4.9. Let T be a set of TVPI constraints. We
say that T is a product of independent two-dimensional TVPI
constraints (PTVPI for brevity), if it can be partitioned into
T1, . . . , Tn such that (1) each Ti is two-dimensional, i.e., involves
at most two variables; and (2) each distinct Ti and Tj do not share
variables.

LEMMA 4.10. The integer hull of PTVPI constraints can be
computed in polynomial time.
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Proof. According to [41, Sec. 16.3, p. 231], a polyhedron P is
integral iff each of its faces has an integer point. A face of P is
obtained by turning some inequalities to equalities such that the
resulting polyhedron in not empty (over the rationals). Clearly, if T1

and T2 are two sets of inequalities that do not share variables, and
their faces have integer points, then all faces of T1∪T2 have integer
points. Thus, T1 ∪ T2 is integral. Partitioning T into independent
T1, . . . , Tn and checking that each is two-dimensional can done
in polynomial time. Computing the integer hull of each Ti can be
done in polynomial time using Harvey’s method.

The above approach can easily be generalized. Given any poly-
hedron, we first decompose it into independent sets of inequalities,
in polynomial time (these are the connected components of an ob-
vious graph), and then check if each set is covered by one of the
special cases for which the integer hull can be efficiently computed.

COROLLARY 4.11. The LINRF(Z) problem is PTIME-decidable
for SLC loops in which: (1) the transition polyhedron Q is
PTVPI ; or (2) the condition polyhedron C is PTVPI , and the
update is linear with integer coefficients.

EXAMPLE 4.12. Consider the following SLC loop, as an exam-
ple for case (1) of Cor. 4.11

while (4x1 ≥ 1, x2 ≥ 1) do
2x1 − 5x′1 ≤ 3, −2x1 + 5x′1 ≤ 1, x′2 = x2 + 1

(15)

Applying LINRF(Q) does not find a LRF since the loop does not
terminate when the variables range over Q, e.g., for x1 = 1

4
and

x2 = 1. The transition polyhedron is not integral, however, it is
PTVPI since it can be divided into T1 = {4x1 ≥ 1, 2x1−5x′1 ≤
3,−2x1 + 5x′1 ≤ 1} and T2 = {x2 ≥ 1, x′2 = x2 + 1}. It is easy
to check that T2 is already integral. Computing the integer hull of
T1 adds the inequalities −x1 + x′1 ≤ −1 and 1

3
x1 − x′1 ≤ 1

3
. See

Fig. 1(C). Now LINRF(Q) finds the LRF f(x1, x2) = x1 − 1.

EXAMPLE 4.13. Consider the following loop, as an example for
case (2) of Cor. 4.11

while (−x1 + x2 ≤ 0,−2x1 − x2 ≤ −1, x3 ≤ 1) do
x′1 = x1, x

′
2 = x2 − 2x1 + x3, x

′
3 = x3

(16)

Applying LINRF(Q) does not find a LRF since it does not termi-
nate over Q, e.g., for x1 = x2 = 1

2
and x3 = 1. The condition

polyhedron is not integral, but it is PTVPI since the constraints
can be divided into T1 = {−x1 + x2 ≤ 0,−2x1 − x2 ≤ −1}
and T2 = {x3 ≤ 1}. It is easily seen that T2 is already integral;
computing the integer hull of T1 adds x1 ≥ 1. See Fig. 1(B). Now
LINRF(Q) finds the LRF f(x1, x2, x3) = 2x1+x2−1. Note that
the update in this loop involves constraints which are not TVPI .

4.3 Octagonal relations
TVPI constraints in which the coefficients are from {0,±1} have
received considerable attention in the area of program analysis.
Such constraints are called octagonal relations [37]. A particular
interest was in developing efficient algorithms for checking satisfi-
ability of such relations, as well as inferring all implied octagonal
inequalities, for variables ranging either over Q or over Z.

Over Q, this is done by computing the transitive closure of
the relation, which basically adds inequalities that result from the
addition of two existing inequalities, and possibly scaling to ob-
tain coefficients of ±1. E.g., starting from the set of inequalities
{−x1 + x2 ≤ 0,−x1 − x2 ≤ −1}, we add −2x1 ≤ −1, or, after
scaling, −x1 ≤ − 1

2
. Over Z, this is done by computing the tight

closure, which in addition to transitivity, is closed also under tight-
ening. This operation replaces ax + by ≤ d by ax + by ≤ bdc.
For example, tightening −x1 ≤ − 1

2
yields −x1 ≤ −1. The tight

closure can be computed in polynomial time [4, 30, 39]. Since the

tightening eliminates some non-integer points, it is tempting to ex-
pect that it actually computes the integer hull. It is easy to show that
this is true for two-dimensional relations, but it is false already in
three dimensions, as we show in the following example.

EXAMPLE 4.14. Consider the following loop

while (x1 + x2 ≤ 2, x1 + x3 ≤ 3, x2 + x3 ≤ 4) do
x′1 = 1− x1, x′2 = 1 + x1, x

′
3 = 1 + x2

(17)

Note that the transition polyhedron is octagonal, but not integral.
Applying LINRF(Q) does not find a LRF , since the loop does
not terminate over Q, e.g., for x1 = 1

2
, x2 = 3

2
, and x3 = 5

2
.

Computing the tight closure does not change the transition (or
condition) polyhedron, and thus, it is of no help in finding the LRF .
In order to obtain the integer hull of the transition (or condition)
polyhedron we should add x1 + x2 + x3 ≤ 4, which is not an
octagonal inequality. Having done so, LINRF(Q) finds the LRF
f(x1, x2, x3) = −3x1 − 4x2 − 2x3 + 12.

Although it is not guaranteed that the tight closure of an octag-
onal relation corresponds to its integer hull, in practice, it does in
many cases. Thus, since it can be computed in polynomial time,
we suggest computing it before applying LINRF(Q) on loops that
involve such relations. The above example shows that this does not
give us a complete polynomial-time algorithm for LINRF(Z) over
octagonal relations.

EXAMPLE 4.15. Consider the following SLC loop

while

(
−x1+x2 ≤ 0, −x1 − x2 ≤ −1,
x2 − x3 ≤ 0, −x2 − x3 ≤ −1

)
do

x′1 = x1, x
′
2 = x2 − x1 − x3 + 1, x′3 = x3

The condition polyhedron is octagonal, but not integral; moreover,
it is not PTVPI . LINRF(Q) does not find a LRF (indeed the
loop fails to terminate for x1 = x2 = x3 = 1

2
). Computing the

tight closure of the condition adds −x1 ≤ −1 and −x3 ≤ 0,
which results in the integer hull. Now LINRF(Q) finds the LRF
f(x1, x2, x3) = x1 + x2 − 1.

A polynomial-time algorithm for computing the integer hull of
octagonal relations is, unfortunately, ruled out by examples of such
relations whose integer hulls have exponentially many facets.

THEOREM 4.16. There is no polynomial-time algorithm for com-
puting the integer hull of general octagonal relations.

Proof. We build an octagonal relation O, such that the minimum
number of inequalities required to describe its integer hull OI is
not polynomial in the number of inequalities in O.

For a complete graph Kn = 〈V,E〉, we let P be defined by the
set of inequalities {xe ≥ 0 | e ∈ E} ∪ {

∑
v∈e xe ≤ 1 | v ∈ V }.

Here every edge e ∈ E has a corresponding variable xe, and
the notation v ∈ e means that v is a vertex of edge e. Note
that P is not octagonal. It is well-known that PI , the matching
polytope of Kn, has at least

(
n
2

)
+ 2n−1 facets [41, Sec. 18.2,

p. 251], and thus any set of inequalities that defines PI must have
at least the same number of inequalities. Now let O be defined by
{xe ≥ 0 | e ∈ E} ∪ {xe1 + xe2 ≤ 1 | v ∈ e1, v ∈ e2},
which includes n + n ·

(
n−1
2

)
octagonal inequalities. It is easy

to see that the integer solutions of P and O are the same, and
thus PI = OI . This means that any set of inequalities that define
OI must have at least

(
n
2

)
+ 2n−1 inequalities. Therefore, any

algorithm that computes such a representation must add at least(
n
2

)
+ 2n−1 − n − n ·

(
n−1
2

)
inequalities to O, which is super-

polynomial in the size of O. Unsurprisingly, the tight closure of O
does not yield its integer hull (it only adds xe ≤ 1 for each xe).
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Note that the above theorem does not rule out a polynomial-time
algorithm for LINRF(Z), for SLC loops in which the transition
polyhedron Q is octagonal, or where the condition polyhedron is
octagonal and the update is linear with integer coefficients. It just
rules out an algorithm that is based on computing the integer hull
of the polyhedra. However, the coNP-hardness proof of Sec. 3.1
could be also carried out by a reduction from 3SAT that produces
an SLC loop where the condition is octagonal and the update is
linear with integer coefficients—so at least for this class there is,
presumably, no polynomial solution. This reduction can be found
in the technical report [8].

4.4 Strongly polynomial cases
Polynomial-time algorithms for LINRF(Q) [3, 36, 38] inherit their
complexity from that of LP . While it is known that LP can be
solved by a polynomial-time algorithm, it is an open problem
whether it has a strongly polynomial algorithm. Such an algorithm
should perform a number of elementary arithmetic operations poly-
nomial in the dimensions of the input matrix instead of its bit-size
(which accounts for the size of the matrix entries), and such oper-
ations should be performed on numbers of size which is polyno-
mial to the input bit-size. However, there are some cases for which
LP is known to have a strongly polynomial algorithm. We first use
these cases to define classes of SLC loops for which LINRF(Q)
has a strongly polynomial algorithm, which we then use to show
that LINRF(Z) has a strongly polynomial algorithm for some cor-
responding classes of SLC loops. Our results are based on the fol-
lowing result by Tardos [44] (quoted from [41, p. 196]).

THEOREM 4.17 (Tardos). There exists an algorithm which solves
a given rational LP problem max{c · x | Ax ≤ b} with at most
P (size(A)) elementary arithmetic operations on numbers of size
polynomially bounded by size(A,b, c), for some polynomial P .

Note that the number of arithmetic operations required by the
LP algorithm only depends on the bit-size of A. Clearly, if we
restrict the LP problem to cases in which the bit-size of the entries
of A is bounded by a constant, then size(A) depends only on its
dimensions, and we get a strongly polynomial time algorithm. In
particular we can state the following.

COROLLARY 4.18. There exists a strongly polynomial algo-
rithm to solve an LP problem max{c · x | Ax ≤ b} where the
entries of A are {0,±1,±2}.

We can use this to show that LINRF(Q) can sometimes be
implemented with strongly polynomial complexity. To do this, we
use the Podelski-Rybalchenko formulation of the procedure [38],
slightly modified to require that the LRF decreases at least by 1
instead of by some δ > 0.

THEOREM 4.19 (Podelski-Rybalchenko). Given an SLC loop
with a transition polyhedron Q ⊆ Q2n, specified by A′′x′′ ≤ c′′,
letA′′ = (AA′) where eachA andA′ has n columns andm rows,
and let ~µ, ~η be row vectors of different m rational variables each.
A LRF forQ exists iff there is a (rational) solution to the following
set of constraints

~µ, ~η ≥ 0T , (18a)

~µ ·A′ = 0T , (18b)

(~µ− ~η) ·A = 0T , (18c)

~η · (A+A′) = 0T , (18d)

~η · c′′ ≤ −1 . (18e)

THEOREM 4.20. The LINRF(Q) problem is decidable in strongly
polynomial time for SLC loops specified byA′′x′′ ≤ c′′ where the
coefficients of A′′ are from {0,±1}.

Proof. First observe that, in Th. 4.19, when the matrix A′′ has only
entries from {0,±1}, then all coefficients in the constraints (18a–

18d) are from {0,±1,±2}. Moreover, the number of inequalities
and variables in (18a–18d) is polynomial in the dimensions of A′′.
Now let us modify the Podelski-Rybalchenko procedure such that
instead of testing for feasibility of the constraints (18a–18e), we
consider the minimization of ~η · c′′ under the other constraints
(18a–18d). Clearly, this answers the same question since: (18a–
18e) is feasible, iff the minimization problem is unbounded, or the
minimum is negative. This brings the problem to the form required
by Cor. 4.18 and yields our result.

COROLLARY 4.21. The LINRF(Z) is decidable in strongly
polynomial time for SLC loops, specified by A′′x′′ ≤ c′′, that
are covered by any of the special cases of secs. 4.1 and 4.2 and the
entries of A′′ are from {0,±1}.

Proof. In the cases of Sec. 4.1, the transition polyhedron is guaran-
teed to be integral. In the PTVPI case of Sec. 4.2: (1) the integer
hull can be computed using Harvey’s procedure, which is strongly
polynomial in this case since the entries of A are from {0,±1}.
This can be done also using the tight closure of 2-dimensional oc-
tagons; and (2) the TVPI constraints that we add when computing
the integer hull have coefficients from {0,±1}, and the number
of such constraints is polynomially bounded by the number of the
original inequalities. Thus, by Th. 4.20, we can apply a strongly
polynomial-time algorithm for LINRF(Q).

4.5 Multipath loops
Recall that a linear function ρ is a LRF for an MLC loop with tran-
sition polyhedra Q1, . . . ,Qk, iff it is a LRF for each Qi. Thus,
if we have the set of LRFs for each Qi, we can simply take the
intersection and obtain the set of LRFs for Q1, . . . ,Qk. In the
Podelski-Rybalchenko procedure, the set of solutions for the in-
equalities (18a–18e) defines the set of LRFs for the corresponding
SLC loop as follows.

LEMMA 4.22. Given an SLC loop with a transition polyhedron
Q, specified byA′′x′′ ≤ c′′, let ∆(~µ, ~η,A′′, c′′) be the conjunction
of (18a–18e). Then, ρ(x) = ~λ · x + λ0 is a LRF for Q iff
∆(~µ, ~η,A′′, c′′) has a solution such that ~λ = ~η·A′ and λ0 ≥ ~µ·c′′.

The following lemma shows how to compute, using the above
lemma, the intersection of sets of LRFs for several transition
polyhedra, and thus obtain the set of LRFs for a given MLC loop.
(a very similar statement appears in [22, Lemma 3]).

LEMMA 4.23. Given an MLC loop with transition polyhedra
Q1, . . . ,Qk, each specified by A′′i x

′′ ≤ c′′i , let ∆(~µi, ~ηi, A
′′
i , c
′′
i )

be the constraints (18a–18e) for the i-th path, and (λ0,~λ) be n+ 1
rational variables. Then, there is a LRF for Q1, . . . ,Qk, iff the
following is feasible (over the rationals)

k∧
i=1

∆(~µi, ~ηi, A
′′
i , c
′′
i ) ∧ ~λ = ~ηi ·A′i ∧ λ0 ≥ ~µi · c′′i (19)

Moreover, the values of (λ0,~λ) in the solutions of (19) define the
set of all LRFs forQ1, . . . ,Qk.

Proof. Immediate by Lemma 4.22, noting that for each i the con-
straints ∆(~µi, ~ηi, A

′′
i , c
′′
i ) use different ~µi and ~ηi, while (λ0,~λ) are

the same for all i.

COROLLARY 4.24. The LINRF(Q) problem for MLC loops is
PTIME-decidable.

Proof. The size of the set of inequalities (19) is polynomial in
the size of the input MLC loop, and checking if it has a rational
solution can be done in polynomial time.
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COROLLARY 4.25. The LINRF(Z) problem for MLC loops is
PTIME-decidable when each path corresponds to one of the special
cases, for SLC loops, discussed in secs. 4.1 and 4.2.

Proof. Immediate, since if the transition polyhedra are integral,
LINRF(Z) and LINRF(Q) are equivalent.

EXAMPLE 4.26. Consider an MLC loop with the following two
paths: Loop (1) of Sec. 1; and the loop of Ex. 4.12. Applying
LINRF(Q) (as in Lemma 4.23) does not find a LRF since both
paths do not terminate when the variables range over Q. If we first
compute the integer hull of both paths, LINRF(Q) finds the LRF
f(x1, x2) = 3x1+x2−2. Note that the integer hull of the first path
is computable in polynomial-time since the condition is PTVPI
and the update is linear with integer coefficients. That of the second
path is also computable in polynomial-time as in Ex. 4.12.

5. Prototype Implementation
The different algorithms presented in this paper, both for the gen-
eral case and the special PTIME cases, have been implemented.
The tool receives as input an MLC loop in constraints representa-
tion, and allows applying LINRF(Z) or LINRF(Q). It can be tried
out via http://www.loopkiller.com/irankfinder, where all
examples of this paper are also available. The implementation in-
cludes the algorithms of Lemmas 3.19 and 4.23. By default it uses
the second one since the first one requires generating the generator
representation of the transition polyhedron, which is exponential.

Computing the integer hull of a polyhedron, in the case of
LINRF(Z), is done by first decomposing its set of inequalities into
independent sets, and then computing the integer hull of each set
separately. Each set of inequalities is first matched against one of
the PTIME cases of secs. 4.1 and 4.2. If this matching fails, it
computes the integer hull using Hartmann’s algorithm [28] as ex-
plained by Charles et al. [18]. Note that this algorithm supports
only bounded polyhedra, the integer hull of an unbounded polyhe-
dron is computed by considering a corresponding bounded one [41,
Th. 16.1, p. 231]. In addition, for octagonal relations, it gives the
possibility of computing the tight closure instead of the integer hull.
As we have seen in Sec. 4.3, when this option is used, completeness
of LINRF(Z) is not guaranteed. The Parma Polyhedra Library [5]
is used for converting between generator and constraints represen-
tations, solving (mixed) LP problems, etc.

6. Related work
There are several works [3, 20, 36, 38, 42] that directly address the
LINRF(Q) problem for SLC or MLC loops. In all these works,
the underlying techniques allow synthesizing LRFs and not only
deciding if one exists. The common observation to all these works
is that synthesising LRFs can be done by inferring the implied
inequalities of a given polyhedron (the transition polyhedron of
the loop), in particular inequalities like conditions (4) and (5) of
Def. 2.3 that define a LRF . Regarding completeness, all these
methods are complete for LINRF(Q) but not for LINRF(Z). They
can also be used to approximate LINRF(Z) by relaxing the loop
such that its variables range over Q instead of Z, thus sacrificing
completeness. All these methods have a corresponding PTIME
algorithm. Exceptions in this line of research are the work of
Bradley et al. [13] and Cook et al. [22] that directly address the
LINRF(Z) problem for MLC loops.

Sohn and Van Gelder [42] considered MLC loops with vari-
ables ranging over N. These are abstractions of loops from logic
programs. The loops were, in fact, relaxed from N to Q+ before
seeking a LRF , however, this is not explicitly mentioned. The main
observation is that the duality theorem of LP [41, p. 92] can be

used to infer inequalities that are implied by the transition poly-
hedron. The authors also mention that this was observed before
by Lassez [33] in the context of solving CLP(R) queries. Com-
pleteness was not addressed in this work, and the PTIME com-
plexity was mentioned but not formally addressed. Later, Mes-
nard and Serebrenik [36] formally proved that the techniques of
Sohn and Van Gelder [42] provide a complete PTIME method for
LINRF(Q), also for the case of MLC loops. They pointed out the
incompleteness for LINRF(Z).

Probably the most popular work on the synthesis of LRFs is
the one of Podelski and Rybalchenko [38]. They also observed the
need for deriving inequalities implied by the transition polyhedron,
but instead of using the duality theorem of LP they used the affine
form of Farkas’ lemma [41, p. 93]. Completeness was claimed, and
the statement did not make it clear that the method is complete for
LINRF(Q) but not for LINRF(Z). This was clarified, however, in
the PhD thesis of Rybalchenko [40].

Bagnara et al. [6] proved that the methods of Sohn and Van
Gelder [36] and Podelski and Rybalchenko [38] are actually equiv-
alent, i.e., they compute the same set of LRFs . They also showed
that the method of Podelski and Rybalchenko can, potentially, be
more efficient since it requires solving rational constraints systems
with fewer variables and constraints.

The earliest appearances of a solution based on Farkas’ Lemma,
that we know of, are by Colón and Sipma [20], in the context of ter-
mination analysis, and by Feautrier [25], in the context of automatic
parallelization of computations. Colón and Sipma did not claim that
the problem can be solved in polynomial time, and indeed their im-
plementation seems to have exponential complexity since they use
generators and polars, despite the similarity of the underlying the-
ory to that of [38]. Completeness was claimed, however it was not
explicitly mentioned that the variables range over Q and not Z.

Feautrier [25] described scheduling of computations that can be
described by recursive equations. An abstraction to a form similar
to an MLC loop allowed him to compute a so-called schedule,
which is essentially a ranking function, but used backwards, since
the computations at the bottom of the recursion tree are to be
completed first.

Cook et al. [22] observed that the Farkas-lemma based solution
is complete for LINRF(Z) when the input MLC loop is specified
by integer polyhedra. They also mention that any polyhedron can
be converted to an integer one, and that this might increase its size
exponentially. Unlike our work, they do not address PTIME cases
or the complexity of LINRF(Z). In fact, the main issue in that work
is the synthesis of ranking functions for bit-victors relations.

Bradley et al. [13] directly addressed the LINRF(Z) prob-
lem for MLC loops, and stated that the methods of Colón and
Sipma [20] and Podelski and Rybalchenko [38] are not complete
for LINRF(Z). Their technique is based on the observation that
if there is a LRF , then there exists one in which each coefficient
λi has a value in the interval [−1, 1], and moreover with denomi-
nators that are power of 2. Using this observation, they recursively
search for the coefficients starting from a region defined by a hyper-
rectangle in which each λi is in the interval [−1, 1]. Given a hyper-
rectangle, the algorithm first checks if one of its corners defines a
LRF , in which case it stops. Otherwise, the region is either pruned
(if it can be verified that it contains no solution), or divided into
smaller regions for recursive search. Testing if a region should be
pruned is done by checking the satisfiability of a possibly exponen-
tial (in the number of variables) number of Presburger formulas.
The algorithm will find a LRF if exists, but it might not terminate
if no LRF exists. To make it practical, it is parametrized by the
search depth, thus sacrificing completeness. It is interesting to note
that the search-depth parameter in their algorithm actually bounds
the bit-size of the LRF coefficients. Our Cor. 3.21 shows that it
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is possible to deterministically bound this depth, that turning their
algorithm into a complete one, though still exponential.

Codish et al. [19] studied the synthesis of LRFs for SLC
loops with size-change constraints (i.e., of the form xi ≥ x′j + c
where c ∈ {0, 1}), and monotonicity constraints (i.e., of the form
X ≥ Y + c, where X and Y are variables or primed variables, and
c ∈ {0, 1}). In both cases the variables ranged over N. For size-
change constraints, they proved that the loop terminates iff a LRF
exists, moreover, such function has the form

∑
λi · xi with λi ∈

{0, 1}. For the case of monotonicity constraints, they proved that
the loop terminates iff a LRF exists for the balanced version of the
loop, and has the form

∑
λi · xi with λi ∈ {0,±1}. Intuitively, a

balanced loop includes x′i ≥ x′j+c iff it includes xi ≥ xj+c. They
showed how to balance the loop while preserving its termination
behavior. Recently, Bozga et al. [10] presented similar results for
SLC loops defined by octagonal relations.

Bradley et al. [12] extended the work of Colón and Sipma [20]
and searched lexicographic LRFs . In [14, 15] they considered mul-
tipath loops with polynomial transitions and the synthesis of lexico-
graphic polynomial ranking functions, where the notion of ranking
functions was also relaxed to functions that eventually decrease.
Cousot [23] used Lagrangian relaxation for inferring possibly non-
linear ranking functions. In the linear case, Lagrangian relaxation
is similar to the affine form of Farkas’ lemma.

Alias et al. [3] again rediscovered the Farkas-lemma based solu-
tion for LINRF(Q), or rather “ported” it from the former work by
Feautrier, but this time for termination and cost analysis. Like [12],
they construct lexicographic LRFs , however, they do it for pro-
grams with an arbitrary control-flow graph, and they prove com-
pleteness of their procedure. Their goal was to use these functions
to derive cost bounds (like a bound on the worst-case number of
transitions in terms of the initial state); this bound is (when it can
be found) a polynomial, whose degree is at most the dimension of
the (co-domain of the) lexicographic ranking function. Alias et al.’s
construction produces a function of minimum dimension. They,
too, have relaxed the problem from integers to rationals and failed
to state that their completeness results depend on this relaxation.

Decidability and complexity of termination (in general, not nec-
essarily with LRFs) of SLC and MLC loops has been intensively
studied for different classes of constraints. For SLC loops, Ti-
wari [45] proved that the problem is decidable when the update is
linear and the variables range over R. Braverman [16] proved that
this holds also for Q, and for the homogeneous case it holds for
Z. Both considered universal termination. Also, in both cases they
allow the use of strict inequalities in the condition. Ben-Amram
et al. [9] showed that the termination of SLC loops is at least
EXPSPACE-hard, and that the problem is undecidable for some
extensions that introduce a simple form of non-linearity; and also
for SLC loops in which the use of a single irrational coefficient is
allowed. See these works for references to additional results on the
decidability of termination in other types of loops.

7. Concluding remarks
We have studied the Linear Ranking problem for single-path and
multipath linear constraint loops and observed the difference be-
tween the LINRF(Q) problem, where variables range over the ra-
tionals, and the LINRF(Z) problem, where variables only take in-
teger values. In practice, the latter is more common, but the com-
plexity of the problem has not been studied before; the common
approach has been to relax the problem to the rationals, where com-
plete, polynomial-time decision procedures have been known.

We have confirmed that LINRF(Z) is a harder problem, proving
it to be coNP-complete. On a positive note, this shows that there is
a complete solution, even if exponential-time. We further showed
that some special cases of importance do have a PTIME solution.

The latter results arise from a proof that for integer polyhedra,
LINRF(Z) and LINRF(Q) are equivalent. Interestingly, this is not
the case for termination in general. For example, the transition
polyhedron of the loop “while x ≥ 0 do x′ = 10−2x” is integral;
the loop terminates when the variables range over Z but does not
terminate when they range over Q, specifically for x = 3 1

3
. Note

that this loop does not have a LRF over the integers.
A more general notion of ranking function applies to an arbi-

trary control-flow graph with transitions specified by source and
target nodes as well as linear constraints on the values of variables.
In this setting, one seeks to associate a (possibly different) affine
function ρν with each node ν, so that on a transition from ν to ν′

we have ρν(x) > ρν′(x
′). Such functions can be found by LP , a

procedure complete over the rationals, using a simple extension of
the solution for the loops we have discussed [3, 36]. The consider-
ations regarding the complexity of the corresponding problem over
integers are essentially the same as those we have presented, and
we preferred to use the simpler model for clearer presentation.

In all examples that we have discussed in this paper, when a
loop has a LRF over Z but not over Q, then the loop did not
terminate over Q. This is, however, not the case in general. A
counter-example can be constructed by combining (i.e., executing
simultaneously) the loop of Ex. 3.6 and Loop (1) of Sec. 1.

In the context of complexity (cost) analysis, there is a special
interest in LRFs that decrease at least by 1 in each iteration, since
they bound the number of iterations of a given loop. In order to
get tight bounds, even if Q has a LRF it might be worthwhile
to compute one for I(Q). To see this, let us add 4x1 ≥ 3 to the
condition of Loop (1) in Sec. 1. Then, both Q and I(Q) have
LRFs . For I(Q) the most tight one (under the requirement to
decrease by at least 1) is f1(x1, x2) = x1 + x2 − 1, while forQ it
is f2(x1, x2) = 2x1 + 2x2 − 2. Hence, a better bound is obtained
using I(Q). The same observation applies to loop parallelization:
the functions’ value gives the schedule’s latency (depth of the
computation tree) and a lower value is preferable.
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