
How Languages Can Save Distributed Computing

Andrew C. Myers
Department of Computer Science

Cornell University
Ithaca, New York, United States

andru@cs.cornell.edu

1. Current abstractions are failing us
Current networked computing platforms make available to users
an immense and growing amount of computing power and storage.
This should be an exciting time for computing, and it is. To users,
it might seem an infinitely powerful Internet Computer exists with
a manifestation on each of their several computing devices.

However, distributed applications are still relatively primitive
and unreliable; they are too centralized on clusters provisioned by
individual organizations; users find it hard to share code or even
data without opening themselves up to attacks.

The grit in the gears of progress is the difficulty of building
applications for the Internet Computer. Our programming mod-
els are simply too difficult and low-level for programmers to use
effectively. We need higher-level programming models and pro-
gramming languages that get us closer to programming the Internet
Computer directly.

The software stack Industry-standard programming models in-
volve developing the application logic in a programming language
such as Java. (The situation is not very different in most other pro-
gramming languages, except that library and tool support are typ-
ically weaker.) This application logic sits atop a large stack of ab-
stractions, whose abbreviations seem to proliferate: SQL, HTTP,
EJB, RMI, XML, AJAX, SOAP, JSON, etc. Because these abstrac-
tions don’t hide the software layers below, applications must be
written in a way that is aware of too much of the stack. This struc-
ture makes the application complex and unreliable, and more likely
to have security vulnerabilities. Further, as it filters through these
layers, information within the program is transformed through mul-
tiple representations as it migrates from persistent storage to remote
clients and back, creating fragility and inefficiency.

Of course, there are reasons why the software stack has evolved
to this complex state. Distributed programs must handle distributed
code and data securely and efficiently. They usually span multiple
domains of trust: a user client and a server, at least, though ap-

Categories and Subject Descriptors D.3.2 [Programming Lan-
guages]: Language Classifications—Concurrent, distributed, and parallel
languages; D.4.6 [Operating Systems]: Security and Protection—inform-
ation flow controls

Keywords security, information flow, abstractions

Copyright is held by the author/owner(s).
POPL’13, January 23–25, 2013, Rome, Italy.
ACM 978-1-4503-1832-7/13/01.

plications that bring together information and code from multiple
domains are becoming more common.

If past history is any guide, industry will keep incrementally
adding new layers to the software stack. On the current trajectory,
our computers will become increasingly difficult and unpleasant
to program, and less secure. Something better is needed, and lan-
guages can help.

2. A higher-level abstraction: Fabric
In Fabric [1, 6], we have been exploring a very different approach
to building distributed applications, centered around a high-level
programming language in which code and data can be used in a uni-
form and transparent way, regardless of where that code and data is
located on the network. Objects at the language level may be per-
sisted at remote nodes in the network. Analogously to the current
use of JavaScript, the code for those objects may be located at re-
mote, untrusted nodes and dynamically loaded by the using node.
Dynamic loading is important because we want to (securely) sup-
port the kinds of activities already common in the web ecosystem,
in which programmers share and swap code and data freely.

There are two challenges in realizing this vision: first, to de-
velop a programming model that in an abstract way exposes to the
programmer the underlying systems issues: persistence, distribu-
tion, failure, and security. Second, to realize this model in an imple-
mentation that, even in a completely decentralized system, respects
the properties that the language-level abstraction purports to offer.
These properties can easily be in tension with each other. For ex-
ample, the distributed protocols needed to ensure consistency can
easily enable distrusted participants to infer confidential informa-
tion.

The language abstraction The Fabric programming language
closely resembles Java, but differs in some important respects.

• Similarly to the Jif programming language [7], it adds infor-
mation security annotations that specify the confidentiality and
integrity of information manipulated by the program. The secu-
rity of the system is enforced both statically and dynamically
by using these policies to control information flow. Fabric goes
beyond Jif by adding annotations that control new attacks on
confidentiality and integrity that arise in a distributed setting:
covert channels created by requests for remote objects, and at-
tacks on integrity that might be launched by downloaded mobile
code.

• All information, including distributed and persistent data and
code, is presented to the programmer as language-level objects.
The system automatically takes care of caching, migrating, and
persisting these objects to support efficient, secure, consistent
execution. There is no need to have a relational database as part
of the software stack.

315



• Distribution is exposed explicitly to the programmer through
annotations on constructors and method calls that indicate
where allocation or computation, respectively, should occur.
For example, a method call o.m@n() transfers control to net-
work node n to run the code.

• The consistency and durability of computations of these dis-
tributed, persistent objects is supported by a language-level
transaction mechanism. The statement atomic {S} executes
statement S as though in isolation from everything else hap-
pening on the network, even when S contains distributed com-
putation.

Implementing the abstraction Fabric aims to provide this high-
level programming abstraction, yet with an implementation that
runs code securely and efficiently on a completely decentralized
collection of nodes. The threat model is similar to that of the web,
so malicious nodes are assumed to be part of Fabric and to be able
to join and then provide code and data to other nodes. The Fab-
ric compiler and run-time system together ensure that information
does flow to any node that is not trusted to enforce its confidential-
ity policy, and that information does not flow from any node that is
not trusted to enforce its integrity policy. The inherent composition-
ality of information flow control then ensures that all information
flows across the distributed system respect the information security
policies, even though these policies are interpreted and enforced in
a decentralized way.

Cooperation between nodes requires explicit trust, so informa-
tion security policies are expressed in terms of principals. Nodes
are principals in Fabric, and like all other principals, are represented
by objects that can describe their trust in other principals. Complex
trust relationships can thus be expressed, enabling enforcement of
complex information security controls.

Nodes serve three roles in Fabric: as workers, which do compu-
tation over cached copies of objects persistently stored elsewhere;
as stores, which record the authoritative versions of persistent ob-
jects and ensure durability; and as dissemination nodes, which
make object data highly available. These different kinds of nodes
support a variety of different distributed architectures, including
web-like client–server structures, but also more general structures,
such as clients that directly interact or clients that use information
and code from multiple servers.

Fabric works differently from middleware systems such as RMI
or CORBA because worker nodes cache copies of remote objects
rather than representing remote objects as proxies. This implemen-
tation choice is important for security and for performance. Exe-
cution stays on the current node unless there is an explicit trans-
fer of control through a remote method call. Computing on object
copies means that remote nodes do not learn when objects they
store are used. A hierarchical two-phase commit protocol ensures
consistency while protecting the confidentiality and integrity of in-
formation from untrusted participants.

The prototype implementation of Fabric is publicly avail-
able [5].

3. Conclusions
The Fabric project is developing a new language and system to
support the kinds of activities now happening on the web: the
free exchange of code and data across a decentralized, distributed
system. Fabric eliminates much of the complexity of the current
web-based distributed programming model, by raising the level of
abstraction at which applications are developed. This makes the
resulting system simpler overall, by eliminating software layers and
data conversions that are not essential to application functionality.
By exposing security considerations in information flow policies, it

supports secure composition of code and data from different trust
domains.

Fabric is one approach to raising the level of abstraction, and
clearly could be extended usefully in various ways. There have
been several other recent language-based attempts to raise the level
of abstraction for programming distributed systems, particularly for
web applications [2–4, 8]. Some of these show that the Fabric ab-
straction is not the only candidate for an effective high-level pro-
gramming abstraction. For example, abstractions centered around
streams are likely to be useful for some applications.

If we are to obtain a clean, high-level language-level abstraction
for programming future distributed computing systems, it is to be
hoped that the programming language community will be involved.
However, this will require that language researchers confront some
traditionally “systems” issues such as persistence, distribution, and
security, and to develop effective abstractions for handling these
issues. To program the Internet Computer, programming-language
research will need to break out of its abstraction layer.

References
[1] Owen Arden, Michael D. George, Jed Liu, K. Vikram, Aslan Askarov,

and Andrew C. Myers. Sharing mobile code securely with information
flow control. In Proc. IEEE Symposium on Security and Privacy, pages
191–205, May 2012.

[2] Adam Chlipala. Static checking of dynamically-varying security poli-
cies in database-backed applications. In Proc. 9th USENIX Symp. on
Operating Systems Design and Implementation (OSDI), October 2010.

[3] Stephen Chong, Jed Liu, Andrew C. Myers, Xin Qi, K. Vikram, Lan-
tian Zheng, and Xin Zheng. Secure web applications via automatic
partitioning. In Proc. 21st ACM Symp. on Operating System Principles
(SOSP), October 2007.

[4] Ezra Cooper, Sam Lindley, Philip Wadler, and Jeremy Yallop. Links:
Web programming without tiers. In Proc. 5th International Symposium
on Formal Methods for Components and Objects, November 2006.

[5] Jed Liu, Owen Arden, Michael D. George, K. Vikram,
and Andrew C. Myers. Fabric 0.2. Software release,
http://www.cs.cornell.edu/projects/fabric, October 2012.

[6] Jed Liu, Michael D. George, K. Vikram, Xin Qi, Lucas Waye, and An-
drew C. Myers. Fabric: A platform for secure distributed computation
and storage. In Proc. 22nd ACM Symp. on Operating System Principles
(SOSP), pages 321–334, 2009.

[7] Andrew C. Myers, Lantian Zheng, Steve Zdancewic, Stephen Chong,
and Nathaniel Nystrom. Jif 3.0: Java information flow. Software
release, http://www.cs.cornell.edu/jif, July 2006.

[8] M. Serrano, E. Gallesio, and F. Loitsch. HOP, a language for program-
ming the Web 2.0. In Proc. 1st Dynamic Languages Symposium, pages
975–985, October 2006.

316


	Current abstractions are failing us
	A higher-level abstraction: Fabric
	Conclusions



