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ABSTRACT 

Program development often proceeds by 
t ransforming simple, clear programs into 
complex, involuted, but  more efficient ones. 
This paper examines ways this process can be 
rendered more systematic. We show how 
analysis of program performance, partial 
evaluation of functions, and abstraction of 
recursive function definitions from recurring 
subgoals can be combined to yield many global 
t ransformations in a methodical fashion. 
Examples are drawn from compiler 
optimization, list processing, very high level 
languages, and APL execution. 
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1. I N T R O D U C T I O N  

Optimizing transformations provide a means 

for converting a clear, well-art iculated but 

inefficient program into one with equivalent 

results but better performance characteristics. 

Certain optimizing transformations have been 

used for some years in the compilers for 

algebraic languages. A 1972 survey by Cooke. 

and Allen [3]  lists and classifies approximately 

twenty such transformations. 

Languages in which the buil t- in operations 

act o n  composite objects such as arrays (e.g., 

APL [16]), sets (e.g., SETL [21]), or relations 

(e.g., VERS [12]) give rise to the need for 

additional classes of optimizing transformations. 

There are three reasons for this. (1) The 

substantial  gulf which separates language from 

underlying machine makes it possible for the 

programmer inadvertently to write simple 

programs for which unoptimized execution 

yields poor performance. (2) The pervasive 

use of composite objects often makes such 

programs the most natural expression: easiest 

to write, debug, and modify. (3) ;vluch of the 

appeal of these languages is due precisely to 

the decoupling of expression from 

implementation. For these reasons, the 

potential payoff from an appropriate set of 

optimizing transformations for these languages 

is substantial.  

This paper shows how the process of 

program transformation can be rendered 

systematic. Our thesis, in brief, is tha t  

program transformation can be made goal- 

directed. It  is possible to analyze programs so 

as to obtain expressions for their execution 

performance and the complexity of their 

output.  Based on discrepancies between these. 

performance goals are established. These goals 

are used to direct the process of program 

transformat ion--which is carried out by local 
simplification, partial evaluation of recursive 

functions, abstraction of new recursive function 

definitions from recurring subgoals, and 

generalization of expressions as required to 

obtain compatible subgoals. Thus, high-level 

goals or i.ntentions are used to guide and give 

coherence to the operations of local activities. 
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We expand on this brief description below. 

Our intention in this paper is three-fold. 

(1) We show how this approach provides a 

framework in which many of the optimizing 

compiler t ransformations can be placed and 

systematized. In this framework, related 

transformations not commonly implemented in 

optimizing compilers are seen to have a natural 

place. (2) We show how many of the 

optimizing t ransformations for very high level 

languages [2]  can be obtained in a 

s t raightforward way from the program. Thus, 

these techniques may find a role in the future  

processors of such very high level languages. 

(3) We hope to make a small step in 

identifying and explicating techniques by which 

those software-engineers who must  be 

concerned with efficiency can carry out their 

design in a systematic fashion. Considerable 

at tent ion has been given in recent years to the 

systematic development of wel l-s t ructured 

programs, formalizing the practices of 

outstanding programmers. Comparable a t tent ion 

should, perhaps, be paid to the fundamental  

techniques which underlie the systematic 

development of high-performance programs. 

2. BASIC IDEAS 

One means for t ransforming a program into 

an equivalent one with better  performance 

relies on program analysis to single out the 

appropriate portions of the program to be 

rewritten. By program analysis, we mean the 

derivation of closed-form algebraic expressions 

which describe execution behavior• These 

expressions specify the program's computat ion 

cost (e.g., execution time, amount  of storage 

used, number of I/O requests) and . the 

program's output  characteristics (e.g., size of 

the result, textual source of allocated storage 

comprising the result, probabili ty of the result 

satisfying a given predicate) as a function of 

input  characteristics [23]. 

Using program analysis techniques, our 

t ransformation approach proceeds as follows: 

(1) Obtain some idea of the minimum 

computation cost required to produce the 

i npu t /ou tpu t  mapping being realized by the 

program. (2) Analyze the program to 

determine its comPutation cost, and relate 

components of the cost to specific segments of 

the program text. (3) Find those program 

segments whose computat ion costs are not 

accounted for in the estimates of minimum 

cost. These segments are potential sources of 

computational waste and are therefore 

designated as targets for simplification. (4) 

If the targets so designated contain multiple 

possibilities for simplification, focus a t tent ion 

on the program segments having the greatest  

analyzed cost: Insofar as the program can b e .  

t ransformed to realize a significant performance 

improvement, it must  be by simplifying these 

segments• 

The central idea we wish to present is tha t  

this approach can be rendered systematic and 

thus has a place in programming methodology 

as well as serving as a basis for mechanical 

program transformation. 

2.1. NOTATION 

Several of our example programs will be 

wri t ten in a syntactic variant  of Lisp, using 

the following notation: 

• The empty list is denoted by nil. 

• Cons(x,y) constructs a list in which the 

first  element is x and y is the list of all 

elements except the first. 

• H, read as "Head", is a prefix operator 

which extracts t h e f i r s t  element from a 

non-empty list; to avoid parenthesis clutter,  

the argument  to H is not parenthesized, 

e.g. H Cons(x,y) = x. 

• T, read as "Tail", is a prefix operator which 

extracts all elements except the f irst  from 

a non-empty list; T Cons(x,y) = y. 
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• Nul l (x)  is def ined  as x=nil. 

• Condi t ional  express ions  are w r i t t e n  as 

i f  Pl  t h e n  e 1 

e l se  i f  P2 t h e n  e 2 

e l se  e n 

• Func t ion  def in i t ions  are w r i t t e n  as 

fname(parameter I . . . . .  parameterk) 
de fining form 

<=' 

2.2. EXAMPLE--CONCATENATION 

LISTS 

OF THREE 

Given  the  fol lowing de f in i t ion  of Append,  

A(x,y)  <= i f  Nul l (x)  t h e n  y 

e l s e  Cons(Hx,  A(Tx,y))  

consider  append ing  x to  y to z by the  

express ion  A(A(x,y) ,  z). 

Analysis:  

P r o g r a m  analys is  shows t h a t  the  execu t ion  cost  

is p ropor t iona l  to 2 'N+ly  I where  Ix] is the  

l eng th  of the  l ist  x. I t  is usefu l  to 

d i f f e r e n t i a t e  be tween  the  inner  and ou te r  calls 

On Append.  Le t  these  be denoted  by A1, and 

A 2 and let  the  assoc ia ted  calls on Cons be 

Cons 1 and Cons 2. Then  p rog ram analys is  

shows t h a t  Al (A2(x ,y) ,  z) executes  ]x] calls on 

Cons 2 and N+[jl  calls on Cons 1. Analys is  of 

the  output of Al (A2(x ,y) ,  z) shows t h a t  i ts  

l eng th  is [x]+[yl+]z ]. D i f f e r e n t i a t i n g  the  source 

of t he  Cons-cel ls  which  compr ise  the  ou tpu t ,  

ana lys is  shows t h a t  Ixl+]y[ calls come f rom 

Cons 1 and t h a t  ]z] calls come f rom the  inpu t  z. 

Compar ing  the  execut ion  costs  ( in t e rna l  work)  

to the  o u t p u t  ( accoun tab le  work) ,  i t  is seen 

t h a t  the  Ix] calls on Cons 2 r e p r e s e n t  was ted  

e f for t .  These  calls are be ing execu ted  

in t e rna l ly  bu t  cannot  be accounted  for  in the  

ou tpu t .  The  t a sk  of t r a n s f o r m a t i o n  is to 

r ewr i t e  the  p rog ram so as to r emove  the  calls 

on Cons 2. We re fe r  to Cons 2 as the  target for 
simplification. 

Trans fo rma t ion :  

To r emove  a Cons, we can apply  t he  local 

simplification rules 

H Cons(a,#) -~ a 

T Cons(af t )  -~ fl 

To ob ta in  an o p p o r t u n i t y  to app ly  these,  we 

expand  the  def in i t ion  of Append  to the  po in t  

where  H and T appea r ing  in the  p r o g r a m  can 

be appl ied  to Cons 2. S t a r t  with:  

(2.1) A l ( A 2 ( x , y  ), z) 

Expand A2(x,y ), i.e., replace  the  call by an 

i n s t a n t i a t e d  body, r e su l t i ng  in: 

A l ( i f  Nul l (x)  t h e n  y 

e l se  Cons2(Hx,  A2(Tx,y)) ,  z) 

Distribute the  condi t ional ,  i.e., b r ing  the  

condi t iona l  express ion  f rom the  a r g u m e n t  

pos i t ion  to ou ts ide  the  call on A 1, so t h a t  A 1 

is appl ied  to the  r e su l t  of each condi t iona l  

clause. Th is  yields: 

i f  Nul l (x)  t h e n  Al(Y,Z ) 

e l se  Al(COns2(Hx,  A2(Wx,y)), z) 

Expand the  second call on A 1 and then  

simplify. We call th is  partial evaluation, and 

the  s teps  in th is  case are as follows: Consider  

Al(COns2(Hx,  A2(Tx,y)) ,  z). Le t  ~ deno te  

Cons2(Hx,  A2(Tx,y)) ,  so we are cons ider ing  

Al(~,z ). Expand ing  A 1 r e su l t s  in i f  Nul l (v)  

t h e n  z e l se  COnSl(H~, Al(TY,z)). Since ~ is 

not  Null, i t  fol lows t h a t  Al(Y,z ) = COnSl(HY, 

Al(T-r,z)). Fu r the r ,  we can app ly  t he  local 
simplification rules for  Cons to  "r, so t h a t  H~r -~ 

Hx and T~ -~ A2(Tx,y ). Thus,  we have  

r emoved  one ins tance  of Cons2- -a  s t ep  toward  

our  goal. We  have  Al(~,,z ) = COnSl(HX , 

A i ( A 2 ( T x , y  ), z)). Thus,  (2.1) has  been 
pa r t i a l ly  eva lua t ed  to yield: 

(2.2) i f  Nul l (x)  t h e n  Al(Y,Z ) 

e l se  COnSl(HX, Ai (A2(Tx ,y ) ,  z)) 
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Because one Cons 2 is absent,  the  eva lua t ion  of  

(2.2) requires,  in the  case of a non-Nul l  x, one 

fewer  Cons 2 than  the  eva lua t ion  of (2.1). 

Thus,  (2.2) is a s l ight ly  improved  way of  

c o m p u t i n g  (2.1). 

Wheneve r  we are conf ron ted  wi th  

eva lua t ing  an expression of the  form (2.1), i t  

is desirable to use (2.2) in i ts  place. Observe 

t h a t  the  form (2.1) appears  as a subexpress ion  

of  (2.2) wi th  the  substitution of Tx for  x, i.e., 

as A i (A2(Tx ,y  ), z). We have  ident i f ied  a 

subproblem,  A i (A2(Tx ,y  ), z) which  is ident ical  

in fo rm to a more global problem, Al (A2(x ,y  ), 

z). We call th is  iden t i f i ca t ion  subgoal 

abstraction and use it  to  define a new 

recurs ive  func t ion  in which  the  pe r fo rmance  

i m p r o v e m e n t  of (2.2) is sys t ema t i ca l ly  

achieved.  We in t roduce  F(x,y,z) to s t and  for  

A l (A2(x ,y  ), z). Then (2.1) and (2.2) become 

(2.1') F(x,y,z) 

(2.2') i f  Nul l (x)  t h e n  Al(Y,Z ) 

e lse  COnSl(HX, F(Tx,y,z)) 

Ignor ing  subscripts ,  we have  

F(x,y,z) <: 

i f  Nul l (x)  t h e n  A(y,z) 

e lse  Cons(Hx, F(Tx,y,z)) 

as an execu tab l e  def in i t ion  of F. Since the  

above der iva t ion  preserves  correctness ,  i t  

follows t h a t  A(A(x;y),  z) : F(x,y,z). Analysis  

shows t h a t  the  execut ion  cost  for F is l inear 

in N+lyl and, in par t icular ,  the  n u m b e r  of Cons 

executed is N+]yl. Thus,  t he  goal has been 

a t ta ined.  

2.3.  FURTHER EXAMPLES 

Some addi t ional  examples  will i l lus t ra te  

t h a t  this  approach  can yield in t e res t ing  results .  

We show the  problem, analysis,  and final  

p r o g r a m - - o m i t t i n g  der ivat ions .  

2.3.1 The fol lowing p rogram compares  two 

arrays  B [ l : n J  and C [ l : n J  and sets  the  

Boolean .  var iable  same to t r u e  if t h e y  are 

pairwise equal 

j+0; same+t rue ;  

w h i l e  j t n  

do (j~j+l; same + same A B[j]=C[j])  

r e t u r n  same 

Analys is  shows t h a t  th is  requires  n s teps  and 

t h a t  the  resu l t  is a Boolean scalar. I t  is 

the re fo re  possible t h a t  t he  scalar  could be 

computed  in fewer  steps. The ent i re  loop is 

the  t a rge t  for  s impl i f icat ion.  The A opera to r  

has the  local simplification rule 
x A y -~ i f  x t h e n  y e lse  f a l s e  

which  avoids compu t ing  y when  the  va lue  of x 

de te rmines  the  result .  We wr i te  the  above 

loop as a recurs ive  funct ion ,  and apply our  

t r an s fo rma t ion  me thod  us ing  the  local 

s impl i f ica t ion  rule. We ob ta in  a new func t ion  

which,  when  pu t  in to  i t e ra t ive  form, is 

j~-O; same+t rue ;  

w h i l e  jCn A same 

do (j+j+l; same + B[j]=C[j]);  

r e t u r n  same; 

This requires  n s teps  in the  wors t  case and 1 

s tep in the  bes t  case. I f  the  probabi l i ty  t h a t  

B[j]=C[j]  is fl, p rogram analysis  shows t h a t  the  

average  n u m b e r  of  s teps  is ( I - f i n ) / ( 1 -# ) .  

Observe t h a t  th is  is bounded  f rom above by 

min(n,  1/(1-fl)).  

2 .3 .2  The  fol lowing A P L l " o n e - l i n e r  '' has  

the  value  1 if n is p r ime  and 0 otherwise:  

2=+/O=(m)ln. (Reading f rom r igh t  to left ,  th is  

may  be rendered as: Consider n and the  

sequence 1,2,...,n; obta in  the  remainders  a f t e r  

d iv id ing  the  e lements  of  the  sequence in to  n; 

f ind  the  e lements  w i t h  0 remainder ;  coun t  

the i r  occurrences;  and t e s t  t he  coun t  to see if 
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it is 2. If so, then n is prime.) Analysis 

shows tha t  this constructs three temporary 

arrays each of length n, but  tha t  the output  is 

a single scalar. Transformation takes place in 

three stages each of which eliminates one 

unneeded array. The final result is 2=H(1,n) 
where 

HCk,n) <= 

i f  k>n t h e n  0 

else i f  (n mod k)=O t h e n  l+H(k+l ,n)  
else H(k+l,n) 

which constructs no temporary arrays: I t  
simply counts the number of times the 

remainder of n divided by k is 0, for k from 1 
to n. 

3. TECHNIQUES 

The preceding derivations employ three 

techniques: program analysis, partial  

evaluation, and subgoal abstraction. These 

activities may be roughly characterized as: 

analyzing the program's resource expenditure 

and output  to find appropriate targets for 

simplification; rewriting portions of the 

program to realize a performance improvement 

on the f irst  execution of the program's loops; 

recognizing subproblems and using these to 

form recursive programs such tha t  the 

performance improvement is at tained on every 

execution of the program's loops. We now 

examine these in greater detail. 

3.1. PROGRAM ANALYSIS 

Program analysis obtains closed-form 

expressions which describe execution behavior 

as a function of input characteristics, e.g., 

worst-case execution time as a function of the 

input-length.  A system which automatical ly 

carries out program analysis for simple 

programs is discussed in [23]. Techniques, 

implementation issues, and l imitations are 

discussed there. In the interest  of brevity, we 

confine our discussion here to outl ining the 

sorts of analysis which can be produced in this 

way. 

Analysis is carried out  for three cases-- 

best, worst, and average (under some 

assumptions about input distributions).  I t  is 

useful to write the closed-form expressions 

describing execution cost in a partially factored 

form, separating out the dependence on input  

characteristics from the dependence on machine 

implementation. For example, the execution 

time of Append is wri t ten as Co+cl'n where n 

is the length of the first  argument  to Append 

and Co,C 1 are implementat ion constants. The 

implementation constants are wri t ten as linear 

ar i thmetic  expressions of the form r l ' P l  + ... + 

rk'Pk where the ri's are rational numbers and 

the Pk'S denote costs of executing primitive 

operations. For the case of Append, 

c o = [ncall + 2"vref + null 

c I = car + cdr + Cons + 3"vref + fncall  

The lower case spelling of a pr imit ive 

operation stands for tha t  operation; fncall  

denotes the action required to invoke a non- 

primitive operation; vre[ denotes access to a 

variable. 

When analysis is used for the purpose of 

directing program transformations,  it is useful 

to distinguish the source of a primitive 

operation based on the defining function in 

which it  appears. Thus, cons A denotes those 

Cons-cells created by the execution of the Cons 

operation textually inside Append (c.f., the 

definition of Append, Section 2.2). To do this, 

we distinguish the symbolic "costs" of 

elementary operations based on their textual 

position: a Cons textually inside function A is 

treated, for the purpose of analysis, as if it 

were dist inct  from a Cons textually inside 

function B. In the case where a defined 

function, F, appears more than once in the 

expression to be transformed, it is useful, for 
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the purpose of analysis, to t reat  each 

occurrence of F in the expression as if it were 

a dist inct  function. Suppose F is recursive 

and the expression is F(G(x), F(y, z)). This is 

treated as if it were Fi(G(x),. F2(Y , z)). All 

calls to F from F 1 (and from functions called 

by F1) are treated as calls on F 1. Similarly, 

F 2 is treated as calling F 2 recursively. A 

function call "within" the inner F is therefore 

labeled fncall F . Thus, we can distinguish the 

cost of executing the inner F from the cost of 

executing the outer F (once its arguments  have 

been evaluated). 

This representation of execution was chosen 

for its generality. From it, we can obtain the 

answer to specific questions by assigning 

appropriate values to the primitive operation 

symbols. For example, to obtain total  
execution time" on a given machine, let each 

primitive symbol stand for the execution t ime 

of the corresPonding operation. To obtain the 

total number of Cons cells created, let cons i 

(for all i) be 1 and let the other elementary 

operation symbols be 0. In analogous fashion, 

we may obtain the number of [ncall's 

(function calls) out  of a specific function, or 

t h e  computat ion time spent within a specific 

group of functions. 

Several other sorts of analysis are also of 

interest. One class is output analysis, e.g., 

determining the length of a function's  output  

if an array or list, or its range if a scalar. In 

the case of list length, it is useful to 

distinguish the textual  source of Cons-cells 

which occur in the output,  e.g. an output  list 

might  be of length Ixl, but  this is more 

usefully expressed as l'cons R + (N-1) 'cons A. 

Such expressions are obtained by computing 

the output  list length as a polynomial, in a 

way similar to the execution cost analysis. 

Another class of analysis is concerned with 

internal operations, e.g., the probabili ty of a 

Boolean-valued procedure returning the value 

true; such analysis is required as auxiliary data 

in computing computat ion cost. These are 

obtained, and the results are expressed using 

methods similar to those for execution cost. 

The results of analysis are employed in two 

ways. The first  method exploits discrepancies 
between the complexity of a program's ou tpu t  

and the computat ion cost of obtaining tha t  

output.  Such discrepancies represent wasted 

work and the corresponding program 

components are therefore targets  for 

simplification. When this singles out  a 

specific portion of the program, it provides a 

sharp criterion. 

In some cases, this may not be specific 

enough; to fur ther  narrow the target, a second 

method is employed. This consists of 

hypothesizing plausible goals on the basis of 

current  performance and using the results of 

analysis to determine the program components 

causing discrepancies between these goals and 

the computat ion cost. For example, if a 

program runs in n 2 steps, a plausible goal is n 

steps and the target  for simplification is 

narrowed to those sub-regions responsible for 

the n 2 behavior. If the goal of n steps is 

attained, then a second, more stringent,  goal 

will be tried, i.e., fewer steps in the best  case. 

Thus, at  each step, the plausible goal is taken 

to be the next significant performance level. 

This selects as the target for simplif ication 

those program components which mus t  be 

simplified if tha t  performance level can be 

at tained by our t ransformat ion method. We 

stop when the computat ion cost is 

commensurate  with the complexity of the 

generated output,  or when t ransformat ions  fail 

to at tain a goal. 

3.2.  PARTIAL EVALUATION 

Partial evaluation consists of rewrit ing 

portions of a function to exploit knowledge of 

its arguments. In the simplest case, a partial 

evaluator takes a funct ion P of n formal 

parameters Xl,...,x n along with values al,...,a k 
for the f irst  k actual arguments  and constructs  

a new function P' such tha t  P'(bk+l,...,bn) = 

P(al,,...,a k, bk+ 1 ..... b.n ) for all sets of bj. That  
is, P is a variant  of P, specialized to the case 

where the first  k parameters are known 
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constants. To the extent  tha t  P' is a 

simplified version of P, its computat ion cost is 

smaller. 

Here we employ an extension of this idea: 

Rather than knowing the actual values of 

certain formal parameters, we know the 

function which constructs them. Let Q1,...,Qk 

be defined functions (of one argument,  for 

simplicity). Our partial evaluator will typically 

take an expression such as P(Qi(Yl) ..... Qk(Yk), 

Yk+l,...,yn) along with the definitions of 

Q1 ..... Qk and construct  a new function P' such 

that  P'(bl,...,b k, bk+ 1 ..... bn) = P(Ql (b l )  ..... Qk(bk), 
bk+ 1 ..... bn). That  is, P' is a var iant  of P, 
specialized to the case where the first k 

parameters are known to be computed by 

Q1 ..... Qk" To the extent tha t  P' combines the 

computations of the first  k arguments  with 

each other and with the execution of P, P' 

runs faster than the sequential execution of 

Q1 ..... Qk followed by P. 

I t  is. useful to distinguish four facets of 

partial evaluation: expanding function 

definitions, distributing conditionals, 

simplifying, and evaluating in context. 

Expansion replaces a function call by a 

suitably instantiated copy of the function 

definition. If P has formal parameters Xl,...,x n, 

then the complete expansion of 

P(Ql(Yl),...,Qk(Yk), Yk+l,...,yn) is obtained as 
follows: 

(i) 

(ii) 

Let R i be the result  of instant ia t ing the 

body of Qi with argument  Yi' for i=l,...,k. 

In the body of P, subst i tu te  R i for x i 

( i : l  ..... k) and yj for xj (j=k+l ..... n). 

I t  is undesirable to carry out an expansion 

of all defined functions (even to one level), 

since this blows up the program size and 

makes difficult  the recognition of recurring 

subexpressions needed for subgoal abstraction. 

Instead, we adopt the following method: 

defined functions are expanded only if  they 

can be reduced to constants or so far as 

necessary to expose the target for 

simplif ication to local simplif ication rules. 

This resolves into three expansion criteria: 

(El)  The function call which contains the 

target  is expanded. 

(E2) The surrounding function is expanded as 

necessary to obtain surrounding context 

for the local simplification rule. 

(E3) If  all the arguments (and free variables) 

of a function call are constant  then the 

function call is expanded. 

Thus, to eliminate a Cons by the local 

simplification rule H Cons(a,fl) -, a, we expand 

the function call which contains tha t  Cons 

(criterion El)  and also expand the surrounding 

function call so as to obtain an H operation 

which may be applied to the Cons (criterion 

E2). 

Typically, a function expanded in this way 

contains conditional expressions, e.g., controlling 

recursion. Suppose such an expanded function 

occurs as the argument  to an outer function, 

say F. We then have an expression such as 

F(a, i f  Pl t h e n  e 1 

else if  P2 t h e n  e 2 

else en, ~) 

where a, the conditional expression, and v are 

the first, second, and third arguments  to F. 

Distributing the conditional consists of bringing 

the conditional tests out of the argument  

position to the surrounding scope. This yields 

a conditional expression in which F is applied 

to the result  of each conditional clause: 

if Pl then F(a,el,v) 
else if P2 then F(a,e2,T) 

... 

else F(a,en,V) 
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This creates new, specialized funct ion calls-- 

F(a,el,~ ), F(a,e2n, ) . . . . .  F(a,enn, ). Because they 
are specialized, their  fu r ther  partial  evaluation 

may lead to simplifications• 

To i l lustrate  the steps of partial  

evaluation, we re turn  to the example of 

Section 2.2 and consider Al(A2(x,y),  z). Since 

the Cons in A 2 is chosen as the target  for 

simplification, A 2 is selected for expansion by 

criterion El. From the defini t ion of A2, we 

obtain: 

A l ( i f  Null(x) t h e n  y 

else Cons2(Hx, A2(Tx,y)), z) 

Distributing the conditionals, we obtain 

i f  Null(x) t h e n  Al(Y,Z ) 

else Al(COns2(Hx, A2(Tx,y)), z) 

The target  for simplification, Cons2, is now in 

an argument  position. Expansion cri terion E2 

selects the surrounding function, A1, for 

expansion. Thus, Al(COns2(Hx, A2(Tx,y)), z) is 
expanded into 

i f  Null(Cons2(Hx, A2(Tx,y)) ) t h e n  z 

else COnSl(H Cons2(Hx, A2(Tx,y)) , 

AI(T Cons2(nx, A2(Tx,y)), z)) 

which is ripe for simplification. 

In regard to simplification, we take the 

following operational point  of view. Let  la] be 

the cost 2 of computing expression a. Then 

expression 8 is simpler than expression a if 16 I 

< lal for some assi.gnment of values to 

variables and 161 _< la I for all assignments of 
values to variables. By this criteria, the 

• following are simplifications: 

Pl A P2 -~ i f  Pl  t h e n  P2 else fa l se  

H Cons(el,e2) -~ e 1 
Null(Cons(el,e2) ) -~ fa lse  

i f  fa l se  t h e n  e I else e 2 -~ e 2 
i f  p t h e n  e else e -~ e 

Applying these sorts of local s implif icat ion 

rules to the above expression results in 

COnSl(SX, Ai(A2(Tx,y ), z)) 
Thus, the partial evaluation of Al(A2(x,y),  z) 

yields i f  Null(x) t h e n  Al(Y,Z ) else COnSl(HX , 

-Ai(A2(Tx,y  ), z)). We denote this as 

Al(A2(x,y),  z) = 

i f  Null(x) t h e n  Al(Y,Z ) 

else COnSl(HX, Al(A2(Tx,y),z))  

That  is, a = 6 means t h a t  a can be part ia l ly  

evaluated to yield 6 and, thus, if  the 

computat ion a terminates  then  the computat ion 

6 terminates  and yields the same answer. 

An additional facet  of part ial  evaluation, 

not i l lustrated by the above example, is 

evaluation in context. This consists of using 

information derived from conditional 

expressions to assist in local simplification. 

Evaluation in context  arises when an 

expression embedded within a conditional is 

selected for expansion--all  the predicates on 

tes t  branches leading to tha t  expression are 

known to be true. Consider, for example, the 

expression b=M(b,y) where M computes  the 

maximum of the s e t  {b}Uy, as follows: 

M(b,y) <= 

i f  Null(y) t h e n  b 

else i f  b<Hy t h e n  M(Hy,Ty) 

else M(b,Ty) 

Expanding M(b,y) in b=M(b,y) and simplifying 

yields 

i f  Null(y) t h e n  t r u e  

else i f  b<Hy t h e n  b=M(Hy,Ty) 

else b=M(b,Ty) 

where b:b has been simplified to t rue .  Next, 

we expand the expression b:M(Hy,Ty). In so 

doing, we can use results of the tests  leading 

to this point, so we know: -Nul l (y)  A b<Hy. 

We call these tests  context conditions for the 

expansion of b=M(Hy, Ty).  Expanding this in 

context  yields 
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i f  Nu l l ( y )  t h e n  f a l s e  

e l s e  i f  Hy<HTy t h e n  b=M(HTy,TTy)  

e l s e  b=M(Hy,TTy)  

This  fo l lows because  va lue  of  t h e  f i r s t  

c o n d i t i o n a l  express ion ,  b=Hy, can be s i m p l i f i e d  

to f a l s e  in t he  c o n t e x t  b<Hy. 

To express  t he  use of c o n t e x t  cond i t i ons  in 

p a r t i a l  e v a l u a t i o n ,  we e x t e n d  t h e  above  

n o t a t i o n  and  w r i t e  

a {in  c o n t e x t  p)  : 6 

Similarly, we extend the definition of simpler 
to include context conditions: 6 is simpler 
than a in context p if 161<lal for some 

assignment of values to variables which 

satisfies p and [61_<H for all assignments of 

values to variables which satisfy p. 

3.3. SUBGOAL ABSTRACTION 

Subgoal abstraction cons i s t s  of  i d e n t i f y i n g  

s u b p r o b l e m s  w h i c h  a re  i d e n t i c a l  in fo rm to 

more  g lobal  p r o b l e m s  and  us ing  t h i s  

i d e n t i f i c a t i o n  to c o n s t r u c t  t h e  d e f i n i t i o n s  of 

r ecu r s ive  func t ions .  Suppose  t h a t  

a -- i f  p t h e n  e e l s e  r ( # )  

when  a and  fl a re  exp res s ions  and  r is an  

express ion  i nvo lv ing  ft. Suppose  t h a t  t h e r e  is  

some s u b s t i t u t i o n  3 e w h i c h  ca r r i e s  a in to  fl, 

i.e., ae=fl. W e  say  t h a t  a is t he  goal, # is t h e  

subgoal, and fl is a s u b s t i t u t i o n  i n s t a n c e  of  a. 

R e w r i t i n g  t h e  above,  

a = i f  p t h e n  e e l s e  r ( a e ) .  

Le t  f be t h e  se t  of  v a r i a b l e s  in a. Le t  F( f )  be 

de f i ned  by  

(3.1) F(~) <= i f  p t h e n  e e l s e  r(F(fe)) 

I t  fo l lows t h a t  a = F(f) .  T h a t  is, i f  t h e  

c o m p u t a t i o n  a t e r m i n a t e s  t h e n  t h e  c o m p u t a t i o n  

F(~) t e r m i n a t e s  and  t h e i r  va lue s  a re  equal .  

The  reason for  i n t r o d u c i n g  such  a 

d e f i n i t i o n  is to  o b t a i n  a p e r f o r m a n c e  

i m p r o v e m e n t .  Hence,  we c o n s t r u c t  such  a 

d e f i n i t i o n  F and use i t  to  c o m p u t e  a on ly  

when  F is c o m p u t a t i o n a l l y  simpler t h a n  a. I f  

[a[ _> [if p t h e n  e e l s e  r(fl)[ for  al l  a s s i g n m e n t s  

of  va lue s  to  va r i ab les ,  t h e n  [a[ _> [F(~)[; i f  a lso  

[a[ > [ i f  p t h e n  e e l s e  r(fl][ for  some 

a s s i g n m e n t  of  va lue s  to  va r i ab le s ,  t h e n  [a[ > 

IF[t)[ for  t h a t  a s s ignmen t ;  thus ,  F(~) is  simpler 
t h a n  a. In  t h e  genera l  ease, c o m p a r i n g  t h e  

cos t s  of  a w i t h  " i f  p t h e n  e e l s e  r(f l)"  is 

ca r r i ed  o u t  by  ana lyz ing  t h e  c o m p u t a t i o n a l  

cos t s  of  t h e  l a t t e r  express ion .  S ince  some of  

i t s  c o n s t i t u e n t s  have  been  p r e v i o u s l y  ana lyzed  

and  s ince  t h e  ana lys i s  t e c h n i q u e  r euse s  t h e  

ana lys i s  of  c o n s t i t u e n t s  when  de a l i ng  w i t h  a 

l a rge r  express ion  in wh ich  t h e y  are  con ta ined ,  

such  ana lys i s  is g e n e r a l l y  eas ie r  t h a n  t h e  

o r ig ina l  ana lys i s  of a. 

In  a commonly  occu r r ing  case, a cos t  

c ompa r i son  can be ca r r i ed  o u t  more  d i r ec t ly .  

To exp la in  th is ,  i t  is neces sa ry  to f i r s t  c l a r i f y  

t h e  r e l a t i o n  b e t w e e n  p a r t i a l  e v a l u a t i o n  and  

c o m p u t a t i o n  cost.  I f  a = 6, t h e n  6 m u s t  

t e r m i n a t e  w h e n e v e r  a t e r m i n a t e s ,  b u t  t h e r e  is 

no a s su rance  t h a t  6's cos t  is less t h a n  £s .  In  

o b t a i n i n g  6 f rom a, two c o u n t e r p o s i n g  

p h e n o m e n a  are  a t  work:  (1)  Local  

S i m p l i f i c a t i o n  t e n d s  to m a k e  5 s i m p l e r  t h a n  a. 

Thus  i f  a con t a in s  " i f  p'  t h e n  e' e l s e  e'" and  

t h i s  is s i m p l i f i e d  to e', t h e n  5 wi l l  be s i m p l e r  

by t h e  cos t  of p' p lus  t he  cos t  of  an if .  (2)  

D u p l i c a t i n g  a c t u a l  a r g u m e n t s  when  e x p a n d i n g  

f u n c t i o n s  t e n d s  to m a k e  6 more  cos t ly  t h a n  a 

when  t h e  a r g u m e n t s  a re  complex  exp res s ions  

and  m u s t  be e x e c u t e d  more  t h a n  once. Thus,  

if  a c o n t a i n s  F ( C o n s ( G ( x ) + l ,  x))  and  i f  F is 

e x p a n d e d  and s i m p l i f i e d  to " i f  P (G(x ) )  t h e n  

G(x]+2 e l s e  Cons(x, G(x))"  t h e n  6 wi l l  be more  

cos t ly  s ince  i t  execu te s  G(x)  twice  in t h e  

e x p a n d e d  body  of  F r a t h e r  t h a n  once as t he  

a r g u m e n t  to F. 4 Because  t h e  c o m b i n e d  e f f e c t  

of t h e s e  two p h e n o m e n a  m a y  be complex ,  t h e  

r e l a t i o n  of  a to 5 is d e t e r m i n e d ,  in t h e  mos t  

genera l  case, by  ana lyz ing  6. 

Often, however, the second phenomenon 

does not occur. After local simplification, the 

arguments to an expanded function appear at 

most once on each execution path through the 

expanded portion of the function body. In 
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such cases, the cost of 6 differs from the cost 

of a only insofar as local simplifications may 

have taken place. If there have, in fact, been 

any simplifications, then 6 is necessarily 

simpler than a. If  a new function F is 

defined as specified in (3.1), then F is known 

to be a bet ter  way of computing the same 

result  than a computes. 

It  is important  to appreciate tha t  the goal 

for subgoal abstraction need not be the 

original top-level problem. In general, the goal 

a will be some subexpression which arises in 

the course of partial evaluation, and the 

subgoal fl will be the matching subexpression. 

Let p be the context condition for the 

evaluation of a. The criteria for subgoal 

abstraction are: 

(SA1) a {in con tex t  p} : Zx(fl) 

(SA2) there is a subst i tut ion e such tha t  ae=fl 

(SA3) A(fl) is simpler than a in context p 

(SA4) pO is true at the points in Zx where fl 

appears 

The last of these criteria may require fur ther  

explanation: In order for a subgoal fl to be 

identical in form to a goal a, the context 

conditions used in partially evaluating a must  

be true at each appearance of /~ in A. We 

refer to this as cheching the context conditions. 

An example will i l lustrate the importance 
these considerations. Let  M be the 

maximum of (c)Uy defined 

M(c,y) <: 

i f  Null(y) t h e n  c 

else if  c<Hy t h e n  M(Hy,Ty) 

else M(c,Ty) 

Evaluation in context shows tha t  

b=M(c,y) {in con t ex t  b<c} : 

i f  Null(y) t h e n  fa lse  

else i f  c<Hy t h e n  b=M(Hy,Ty) 

else b:M(c,Ty) 

We match b=M(Hy,Ty) against b=M(c,y) with 

the subst i tut ion O={Hy/c, Ty/y) .  Checking the 

context condition b<c under the subst i tu t ion e 

requires showing tha t  b<Hy at the expression 

b=M(Hy,Ty) which is true since b<c A c<Hy 

implies b<Hy. Similarly, we match b=M(c,Ty) 

against b=M(c,y) with the subs t i tu t ion  {Ty/y}; 

the context condition, b<c, is easy to check 

since it is unchanged by this subst i tut ion.  

Thus, subgoal abstraction can be carried out. 

We let F(b,c,y) stand for b=M(c,y) {in c o n t e x t  

b<c} meaning that  F is defined only when its 

first  argument  is less than its second. We 

have 

F(b,c,y) <: if  Null(y) t h e n  fa lse  

else if  c<Hy t h e n  F(b,Hy,Ty) 

else F(b,c,Ty) 

Simplifying this, F(b,c,y) = fa lse  since the only 

way F can terminate  is by re turning false. 

Thus b=M(c,y) {in c o n t e x t  b<c} = false. This 

may be read as b<c ~ b#maximum({c}Uy). 

Stated as a theorem, this is unremarkable. 

However, in program optimization, one does not 

have explicit s ta tements  of desirable theorems 

as input. That  the t ransformat ion method 

obtains this directly from the expression and 

definitions is of interest. 

3.4 .  GENERALIZATION 

A somewhat  subtle point in subgoal 

abstraction is the way in which argument  

positions are generalized. We first  consider 

the generalization of constant  arguments.  

Consider an expression of the form F(0, G(x,y)) 

and suppose tha t  the target  for simplification 

is inside G, so tha t  G is to be expanded 

followed by a par t ia l  evaluation of F. I t  

would not be desirable to uniformly replace all 

constants by new individual variables--here,  

replacing 0 by some new zi--since F might  be 

simplified in its partial evaluation in the case 

tha t  its first  argument  is known to be 0. An 

extreme case would be where F(0, G(x,y)) is 

partially evaluated to a constant. On the 
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other  hand, there are cases in which match ing  

is blocked by the presence of d i f fe ren t  

constants  in the same a rgumen t  position of a 

goal expression and a subgoal. For example, 

par t ia l  evaluat ion of F(0, G(x,y)) migh t  lead to 

an expression in which F(Hx, G(Tx,Ty)) 

appears. Hx cannot  be matched  against  0, so 

subgoal abs t rac t ion is inhibited. 

When a match  fails because of the  

presence of a constant  in the  goal, 

generalization is employed: Argument  pos i t ions  

which are constant  in the goal and d i f fe ren t  in 

the subgoal are replaced by new individual 

variables. Then the generalized goal expression 

is part ial ly evaluated. I f  the resul t  is s imilar  

to the previous result, the match  will succeed. 

For example, suppose F(O, G(x,y)) is generalized 

to F(z 1, G(x,y)) and tha t  part ial  evaluat ion of 

this  leads to an expression in which F(Zl+HX, 

G(Tx,Ty)) appears. The match  is successful 

wi th  the subs t i tu t ion  {Zl+HX/Zl, Tx/x,  Ty/y}. 

A similar  s i tuat ion is caused by the 

mult iple  appearance of an individual variable 

in a goal expression. Consider, for example, 

E(I(k,n), k), where the variable k appears  

twice. I t  would be undesirable to adopt  the 

uniform policy of generalizing this to E(I(Zl,n ), 

z2) and then a t t empt ing  to optimize this, for 

it might  be the case tha t  E(I(Zl,n ), z2) has a 

simple part ial  evaluat ion and subgoal 

abst ract ion for Zl=Z 2 but  not otherwise. I t  

would be equally undesirable to accept only 

subgoal matches  of the form E(I(el ,e2),  e l )  

since it might  be the case t ha t  no such 

subgoals occur. Suppose, for example, t ha t  the 

f i rs t  "near match" in the  par t ia l  evaluat ion of 

E(I(k,n), k) was the  subexpression E(I(k+l ,n) ,  

k) and t ha t  all subsequent  near matches  had 

the form E(I(k+j,n), k) for j=2,3 .... We adopt  

the  same solution here as for constants:  The 

matching  process const ructs  a l ist  of 

subst i tut ions.  If  a match  fails because the  

subs t i tu t ions  for a var iable  are incompatible,  

i.e., e l / x  and e2 /x  where e l t e2 ,  then  the  
conflict ing appearances of the var iable  in the  

g o a l  expression are generalized to dis t inct  

individual variables. 

In summary,  the  s t ra tegy  for general izat ion 

is to delay so doing unti l  required by subgoal 

abstract ion,  to generalize as dic ta ted by the  

match,  and then to de te rmine  the e f fec t  of 

this  generalization by repeat ing the part ial  

evaluation.  

An example will show the importance  of 

generalization and how generalizat ion interacts  

wi th  evaluation in context. Consider, for 

example, the Fibonacci func t ion .  

F(n) <= i f  n:0 V n=l t h e n  1 

else F(n-1)+F(n-2)  

Analysis shows tha t  F(n) takes exponential  

time. We s ta r t  wi th  the r ight  hand side of 

the definition. 

i f  n=0 V n : l  t h e n  1 e lse  F(n-1)+F(n-2)  

Analysis shows tha t  the cost of F(n-1)  is the 

largest  component,  so it is selected for par t ia l  

evaluation. Expansion uses the context  

condition n#0 A n~l. Af te r  d is t r ibut ing  

conditionals and simplifying, the resul t  is 

i f  n=0 V n=l t h e n  1 

else i f  n=2 t h e n  2 

else 2"F(n-2)+F(n-3) 

Taking F(n-1)+F(n-2)  as the goal and 2"F(n- 

2)+F(n-3) as the subgoal, we a t t e m p t  to 

match.  This fails, since the constant  2 does 

not match  the implici t  constant  1 in l ' F ( n - l ) .  

We generalize the goal to k 'F(n-1)+F(n-2) .  

Part ial ly evaluat ing k 'F(n-  1)+F(n-2) 

{in c o n t e x t  n~0 A n#l} we get 

i f  n=2 t h e n  k+l  else (k+ l ) 'F (n-2)+k 'F(n-3)  

Again, the match  fails due to a constant  

a rgument  in the goal and again we generalize. 

Taking k ' F ( n - l )  + j 'F(n-2)  {in c o n t e x t  n#O A 

n#l} as the goal and par t ia l ly  evaluating,  we 

get 

i f  n=2 t h e n  k+j else (k+j) 'F(n-2)+k 'F(n-3)  

The match  is now.  successful wi th  the 

subs t i tu t ion  {k+j/k, k/j ,  n - l /n} .  Under this  

subst i tu t ion,  the context  conditions are t rue at  

the calls on F, so we can carry out  subgoal 
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abstraction.  Let G(k,j,n) s tand for k 'F(n-  

1)+j 'F(n-2) {in c o n t e x t  n¢0 A n¢1). Then 

define 

G(k,j,n) <= i f  n=2 t h e n  k+j 

else G(k+j, k, n - l )  

Thus, we have t ha t  F(n) can be computed  as 

i f  n=0 V n=l t h e n  1 else G(1,1,n) 

which executes in l inear time. 

4. FURTHER EXAMPLES 

In this  section, we present  three examples  

to i l lus t ra te  par t icular  points  of interest .  Each 

example is labeled wi th  the points  i t  

i l lustrates.  We confine our exposit ion to a 

s t a t emen t  of the origina.1 program, the  key 

points  of the processing, and the  result .  

Omit ted  steps are e i ther  s t ra ightforward,  or 

repet i t ions  of points i l lus t ra ted elsewhere. 

4.1. TREATMENT OF W H I L E  LOOPS, SPECIAL- 

PURPOSE LOCAL SIMPLIFICATION RULES, 

EVALUATION IN CONTEXT, CHECKING 

CONTEXT CONDITIONS IN SUBGOAL 

ABSTRACTION 

Consider the while loop 

(4.1) whi le  P do i f  Q t h e n  R else S 

where the  value of Q is unaffec ted  by R and 

S, i.e., the tes t  is taken in the same direction 

on the i+l st  i terat ion as on the i th. Let  ~ be 

a vector  of the variables  appearing in P,Q,R, or 

S. I t  turns  out t ha t  processing is s implif ied if 

such i te ra t ive  programs are converted to 

funct ional  form, viz. F(~), where 

(4.2) F(~) <= 

i f  -P~ t h e n  

else i f  Q~ t h e n  FR~ 

e l s e  FSf 

provided t h a t  P and Q have no side effects.  

Let  the  number  of t imes the  loop is executed 

be n. The cont r ibut ion  of Q to the  

computa t ion  cost is [Q['n. Suppose analysis 

shows this is large so t h a t  Q becomes the  

ta rge t  for simplif ication.  Since the  value of Q 

is unchanged by S and R; we have two special-  

purpose local simplification rules. 

(4.3) QR~ -, Q~ and QS~ -~ Q~ 

Transformat ion  proceeds as follows: S ta r t  wi th  

(4.2) and expand the funct ions which contain 

the t a rge t  for s impl i f i ca t ion- - the  inner calls on 

F. 

F(~) = i f  -P~ t h e n  

e lse  i f  Q~ t h e n  

( i f  ~PR~ t h e n  R~ 

else i f  QR~ t h e n  FRR~ 

else FSR~) 

e lse  ( i f  -PS~ t h e n  S~ 

else i f  QS~ t h e n  FRS~ 

else FSS~) 

We now proceed to evaluate in context and 

apply local s implif icat ion rules. Using (4.3), 

QR~=true in the  context  Q~=true while 

QS~=false in the context  Q~=false. Thus 

F(~) : i f  -P~ t h e n  

e l s e  i f  Q~ t h e n  

( i f  -PR~ t h e n  R~ else  FRR~) 

e l s e  ( i f  ~PS~ t h e n  S~ e lse  FSS~) 

Comparing this  to (4.2), we have  

FR~ {in c o n t e x t  Q~} 

= i f  -PR~ t h e n  R~ else  FRR~ 

FS~ {in c o n t e x t  -Q~} 

= i f  - P S i  t h e n  S~ else  FSS~ 

We can match  FRR~ against  FR~ wi th  the  

subs t i tu t ion  e={R~/~}. For the match  to 

succeed, i t  is also necessary to check t h a t  the  
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context conditions of the goal, FRL are also 

t rue for the subgoal, FRR~. Here, this  requires 

checking t ha t  the context  condition, Q~, is t rue  

af ter  the subs t i tu t ion  0 at the point  where 

FRR~ is invoked. Since (Q~)e=QRL this  is 

manifes t ly  true. Matching FSSf against  FS~ is 

similar. Let t ing  Fr(~) and Fs(~) s tand for FR~ 

and FS~ respectively, we have the  following 

definitions: 

Fr(¢ ) <= i f  -PC t h e n  ~ else FrR~ 

Fs(¢ ) <= i f  -P~ t h e n  ~ else FsS ~ 

Subs t i tu t ing  these into (4.2) and convert ing to 

i tera t ive  form, the final resul t  is: 

i f  P t h e n  { i f  Q 

t h e n  (R; wh i l e  P do R) 

else (S; wh i l e  P do S)} 

The contr ibut ion of Q to the computa t ion  cost 

has been reduced f rom n'lQ [ to IQ[, so the goal 

has been attained.  The t rans format ion  of (4.1) 

to this  form is generally termed loop 

unswitching [3]  in compiler optimization.  Tha t  

this  is a s t ra ight forward  applicat ion of the 

general t ransformat ion  method is of interest .  

The ut i l i ty  of carrying out the der ivat ion in 

functional  form should be apparent .  

4.2. SUCCESSIVE TRANSFORMATIONS WITH 

INCREASINGLY STRINGENT PERFORMANCE 

GOALS, THEOREM PROVING TO ENABLE A 

LOCAL SIMPLIFICATION RULE 

We use the following defini t ions for set  

membership,  M, and set  union, U, where sets 

are represented as non-repeat ing  lists: 

M(b,y) <= i f  Null(y) t h e n  f a l se  

else i f  b=Hy t h e n  t rue  

else M(b,Ty) 

U(x,y) <= i f  Null(x) t h e n  y 

else i f  M(Hx,y) t h e n  U(Tx,y) 

else Cons(Hx, U(Tx,y)) 

Consider the expression M(b, U(x,y)), i.e., bexUy 

in more conventional  notat ion.  Analysis shows 

tha t  this  has a best  case t ime  proport ional  to 

Ixl, and a worst-case t ime  of Ix[ly[, using Ixl 

Cons-cells. The resul t  is a Boolean. Thus, the  

el iminat ion of the Cons-cells is taken as the  

goal; in part icular,  the Cons in U is the  ta rge t  

for simplification.  We s t a r t  wi th  M(b, U(x,y)), 

expand the funct ion call U which contains the 

ta rge t  'for simplification,  distribute the 
conditional, and partially evaluate the  th i rd  

invocation of M - - t h e  only one which simplifies.  

The resul t  is 

i f  Null(x) t h e n  M(b,y) 

else i f  M(Hx,y) t h e n  M(b, U(Tx,y)) 

else i f  b=Hx t h e n  t r u e  

else M(b, U(Tx,y)) 

We have found a subgoal: M(b, U(Tx,y)) in 

its two occurrences can be matched against  the 

original expression M(b, U(x,y)). This allows 

defini t ion of a funct ion F(b,x,y) to s tand for 

M(b, U(x,y)) 

F(b,x,y) (= i f  Null(x) t h e n  M(b,y) 

else i f  M(Hx,y) t h e n  F(b,Tx,y) 

else i f  b=Hx t h e n  t rue  

else F(b,Tx,y) 

Analysis shows this has a best -case  t ime  of Ixl 

and a worst-case t ime of IxHyl but  now uses 

no Cons-cells. Our f i r s t  goal has been 

at tained.  

This can be carried one impor tan t  s tep 

fur ther .  The worst-case factor  of lYl is due to 

the  expression M(Hx,y): This becomes the  

next  t a rge t  for simplif ication.  We have the  

local s implif icat ion rule 

i f  p t h e n  e e l s e  e -, e 

This could be employed to e l iminate  M(Hx,y) 

if  we could exchange the  order of the second 

and thi rd  clauses of the conditional. Such an 

exchange is legal so long as the value of the  

program is not  affected, i.e., 

i f  P l  t h e n  e I e l s e  i f  P2 t h e n  e 2 e l s e  e 3 

i f  P2 t h e n  e 2 e l s e  i f  P l  t h e n  e I e l s e  e 3 
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p r o v i d e d  t h a t  if  P l  is t r u e  t h e n  P2 t e r m i n a t e s  

and  

P l  A P2 ~ e l=e2 
T h a t  is, when  bo th  p r e d i c a t e s  a p p l y  t h e  v a l u e s  

p r o d u c e d  are  iden t i ca l .  To e l i m i n a t e  M(Hx,y) ,  

we m u s t  p rove  

M(Hx,y)  A b=Hx D F ( b , T x , y ) = t r u e  

This  is a s imp le  t h e o r e m  and, in fact ,  has  been  

p roved  us ing  the  p r o g r a m  v e r i f i e r  d e s c r i b e d  in 

[6] .  Thus ,  we have  

F(b ,x ,y)  <= 

i f  N u l l ( x )  t h e n  M(b ,y )  

e l s e  i f  b=Hx t h e n  t r u e  

e l s e  F(b ,Tx,y)  

w h i c h  has  c o n s t a n t  t i m e  in t h e  b e s t  case and  

t i m e  ]x[+[y[ i n  t h e  w o r s t  case, t h u s  a t t a i n i n g  

t h e  second  goal.  No te  t h a t  t h e  f i na l  p r o g r a m  

is e q u i v a l e n t  to  " i f  box t h e n  t r u e  e l s e  bey",  

as  expec ted .  

4.3. GENERALIZATION, DECOMPOSITION 

COMPLEX EXPRESSIONS 

OF 

This  e x a m p l e  has  i t s  o r ig in  in t h e  

p roces s ing  of APL. W e  use s eve ra l  A P L  

o p e r a t o r s  w h i c h  m a y  be u n f a m i l i a r  to  t h e  

reader .  For  ease  of expos i t ion ,  we r e s t r i c t  

usage  to sca la r  and  vec to r  a r g u m e n t s  and  

a s s u m e  t h a t  a l l  v ec to r s  a re  c o n f o r m a b l e  as  

r equ i red ;  thus ,  t h e i r  d e f i n i t i o n s  are  s i m p l i f i e d :  

m t h e  v e c t o r  1,2,...,n 

x,y t h e  c o n c a t e n a t i o n  of x w i t h  y 

+ \ y  t h e  p a r t i a l  sums  of  y, i.e., t h e  

v e c t o r  (Yl '  Yl+Y2'""Yl+Y2+'"+Yn )'  

x / y  t h e  compres s ion  of  y by  x, i.e., 

se lec t s  t h o s e  e l e m e n t s  Yi such  

t h a t  x .=l  and  fo rms  a new v e c t o r  
1 

of t h e  s e l e c t e d  e l emen t s .  

~y 

xly 

t h e  n e g a t i o n  of  y; t h e  i - t h  

e l e m e n t  of  t h e  r e s u l t  is 1 i f  Yi is 

0 and 0 i f  Yi is  no t  0. 

t h e  rood ope ra t i on .  I f  x is a 

s ca l a r  and  y a vec tor ,  t h e  r e s u l t  

is a v e c t o r  of e l e m e n t s  (Yi mod  

x). 

The  o t h e r  b i n a r y  o p e r a t i o n s  on 

sca la r s  a re  e x t e n d e d  in t h e  s a m e  

way. 

A / y  t h e  a n d - r e d u c t i o n  of  y, i.e., t h e  

l o g i c a l - a n d  of  a l l  e l e m e n t s  of  y. 

To s i m p l i f y  t h e  d i s c us s ion  and  ca r ry  i t  o u t  

in t h e  s ame  f r a m e w o r k  as  t h e  o t h e r  examples ,  

we t r e a t  A P L  v e c t o r s  as  i f  t h e y  were  l i s t s .  

T h u s  Ln is t r e a t e d  as I (n ,1)  w h e r e  ! is t h e  

f u n c t i o n  def ined :  

I (n ,k )  <= i f  k>n t h e n  ni l  

e l s e  Cons(k,  I ( n , k + l ) )  

The  s t o r a ge  e x p e n d i t u r e  for  m is t h e r e f o r e  n 

Cons-ce l l s ,  w h i c h  is i s o m o r p h i c - - u n d e r  our  

r e p r e s e n t a t i o n - - t o  a v e c t o r  of n e l e m e n t s  as  

e x p e n d e d  in an a c t u a l  A P L  i m p l e m e n t a t i o n .  

Suppose  y is an a r r a y  of  l ' s  and  O's. The  

fo l lowing  express ion ,  s u g g e s t e d  b y  A lan  Per l i s ,  

t e s t s  w h e t h e r  al l  s equences  of  l ' s  a re  of  even  

l eng th :  A /N21( -y ,0 ) /+ \y ,0 .  Th i s  m a y  be read,  

f r om r i g h t  to  l e f t  as: cons ide r  t h e  v e c t o r  y 

c o n c a t e n a t e d  w i t h  a 0; fo rm a vec to r  of p a r t i a l  

sums;  se l ec t  f rom t h a t  v e c t o r  a l l  e l e m e n t s  

whose  c o r r e s p o n d i n g  e l e m e n t  in t h e  v e c t o r  

(y,0)  is 0; t a k e  t h e  r e m a i n d e r s  of  t h a t  v e c t o r  

w h e n  d i v i d e d  by  2; c o n s t r u c t  a v e c t o r  whose  i -  

t h  e l e m e n t  is 1 or 0 as  t h e  i - t h  r e m a i n d e r  is  

0 or  1; f o rm  t h e  l o g i c a l - a n d  of  a l l  e l e m e n t s .  

T h a t  l o g i c a l - a n d  wi l l  be t r u e  i f  and  on ly  i f  a l l  

s equences  of  l ' s  in y a re  of  even  l eng th .  Th i s  

c o n s t r u c t s  seven  t e m p o r a r y  a r r a y s  and  m a k e s  

e i g h t  passes  over  y and  t h e  t e m p o r a r i e s .  
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In our Lisp notation, this is wr i t ten  as 

(4.4) R(N(E(C(N(A(y,Cons(0,nil))), 

S(0, A(y,Cons(0,nil))))))) 

where 

A(x,y) <= i f  Null(x) t h e n  y 

else Cons(Hx, A(Tx,y)) 

S(k,y] (= i f  Null(y) t h e n  nil 

else Cons(k+Hy, S(k+Hy,Ty)) 

N(y) <: if  Null(y) t h e n  nil 

else Cons(Not(Hy), N(Ty)) 

C(x,y) <= i f  Null(x) t h e n  nil 

else i f  Hx=0 t h e n  C(Tx,Ty) 

else Cons(Hy, C(Tx,Ty)) 

E(x) <: if  Null(x] t h e n  nil 

else Cons(Hx mod 2, E(Tx)) 

R(x) <= i f  Null(x) t h e n  t r u e  

else i f  Hx:0 t h e n  fa lse  

else R(Tx) 

Optimization proceeds from the inside out: 

t ransforming argument  expressions, subs t i tu t ing  

the t ransformed arguments  in place of the 

original ones, and using these in t ransforming 

enclosing operations. We begin wi th  S(0, 

A(y,Cons(0,nil))), which corresponds to +\y ,0 .  

Analysis shows tha t  this computat ion takes 

2(lyl+1) Cons-cells, tha t  the length of the 

ou tpu t  is ly]+l, and tha t  the cells cons t i tu t ing  

the ou tpu t  come from S. The executions of 

Cons in A are being wasted. These become 

the target  for simplification. 

Taking S(0, A(y, Cons(0,nil))), expanding A 

and partially evaluating S, results  . in an 

expression containing S(Hy, A(Ty, Cons(0,ni]))). 

The first  occurrence of 0 in the goal must  

correspond to Hy in the subgoal, so the match 

fails. Generalization of the first  argument  
position to a new individual variable k is 

required. Observe tha t  the second occurrence 

of 0 in the goal matches a 0 in the subgoal, 

so this is unaffected by generalization. After  

generalization, the new expression under 

consideration is S(k, A(y, Cons(0,nil))). 

Expanding A, part ial ly evaluat ing S, and 

abstract ing on a subgoal, results  in S(k, A(y, 

Cons(0,nil))) = F(k,y) where F is defined: 

F(k,y) <= i f  Nul l ( i )  t h e n  Cons(k,nil) 

else Cons(k+Hy, F(k+Hy,Ty)) 

This requires lyl+l calls of Cons to yield a 

resul t  of lyl+l new cells so the goal has been 

attained. 

Next, F(0,y) is subs t i tu ted  for S(0, A(y, 

Cons(0,nil))) in (4.4) and the decomposition 

process is repeated. The second expression for 

optimization is N(A(y, Cons(0,nil))). Again, 

analysis shows tha t  the executions of Cons in 

A are being lost. Transformat ion yields G(y), 

where 

G(y) <= i f  Null(y) t h e n  Cons(1,nil) 

else Cons(Not(Hy), G(Ty]) 

Next, the expression " C(G(y), F(0,y)) is 

considered. Analysis Shows tha t  the executions 

of Cons in both G and F are being lost. 

Transformation yields H(0,y), where 

H(k,y) <= i f  Null(y) t h e n  Cons(k,nil) 

else if  Hy#0 t h e n  H(k+Hy Ty) 

else Cons(k+Hy, H(k+Hy, Ty)) 

Successive steps consider E(H[0,y)), then N of 

tha t  result, and then R of tha t  result. In all, 

the optimization process is carried out six 

times. The final program is J(0,y), where 

J(k,y)  <: 

i f  Null(y) A k rood 2~0 t h e n  fa lse  

else i f  Null(y) t h e n  t r u e  

else i f  Hy#0 t h e n  J(k+Hy, Ty) 

else i f  k mod 2~0 t h e n  fa l se  

else J(k,Ty) 
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which, constructs no temporary arrays and 

makes, at  most, a single pass over y. This 

may be directly transformed to the i terative 

program: 

k~-0; 

whi le  ~Null(y) do 

{if Hy#0 t h e n  (k~-k+Hy; y~Ty) 

else if  k mod 2#0 t h e n  r e t u r n  fa lse  

else y~Ty}; 

if  k mod 2#0 t h e n  r e t u r n  fa lse  

else r e t u r n  t rue  

the program expansion steps during partial 

evaluation seems to be a natural and useful 

technique. Another  contr ibut ion is the use of 

context  conditions in partial evaluation to 

establish enabling conditions for local 

simplifications and, associated with this, the 

checking of context conditions in subgoal 

abstraction. A third contr ibut ion is the 

t rea tment  of generalization in subgoal 

abstraction. Delaying generalization unti l  

required and then generalizing as dictated by 

the match appears to be a promising approach. 

5. CONCLUSION 

5. I .  RELATION TO OTHER WORK 

Mechanical program analysis is discussed in 

[23]. An interactive system which provides 

assistance to the analyst-user  in es t imat ing 

program efficiency is discussed in [10]. A 

number of partial evaluators have been 

implemented for various purposes [8,17,20]. A 

good survey of partial evaluators and their  

applications may be found in [5]. Program 

transformations which preserve correctness with 

respect to given assertions are discussed in 

[13]. The notion of loop expansion followed 

by - abstraction to obtain a computat ional  

advantage is discussed in [15], in the context  

of generating efficient code for machines with 

parallel operation capabilities. More recently, 

[7]  and [18]  have. employed the idea tha t  a 

recursive function call can be formed when, in 

the course of working on a problem, a subgoal 

is generated tha t  is identical in form to the 

top-level goal. The use of t ransformat ions- -  

"beating" and "drag-along"-- to optimize the 

execution of APL programs is discussed in [1]. 

Further  studies in the optimized interpreta t ion 

of APL expressions are presented in [4]. 

The major contr ibut ion of this work is in 

the use of program analysis to direct the 

t ransformat ion process. Using analysis and 

performance goals to select a target  for 

simplification, and then using this to direct 

5.2. PROSPECTS 

While the techniques we have presented 

can yield some interest ing results, it would be 

a mistake to overest imate their  capabilities. 

They are limited in effect  to the 

transformation of one program to a bet ter  one. 

Cases in which the i n p u t / o u t p u t  mapping can 

be bet ter  realized by a radically different  

algorithm are beyond the scope of this method. 

For example, we can see no way to t ransform a 

definition of bubble-sort  to a version of quick- 

sort. Where change of algori thm is required, 

program synthesis [18] from i n p u t / o u t p u t  

specifications appears to be a more natural  way 

to proceed--particularly,  if such synthesis were 

guided by considerations derived from 

mechanical program analysis [23]. 

Even within the province of these 

techniques, there are notable lacuna which 

invite fur ther  investigation. As an example, 

consider a variation on Example 2.3.2; an APL 

expression which counts the number  of primes 

less than n is: +/2=+/[1]0=(m)o.lm. (Read this 

from right to left  as: Consider the n by n 

matrix obtained by considering the remainders 

of all pairs of elements from the arrays 

(1,2,...,n) and (1,2,...,n); test  for equali ty of the 

remainders with 0 and form a new matrix of 

the test  results; sum the columns of the 

result ing matrix; test for equali ty of the sums 

with 2; count the number of columns whose 
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sum is exactly 2.) This constructs two n by n 

temporary matrices and two vectors of length 

n. The result is a scalar. Analysis and 

subsequent t ransformation yields M(n,1) where 

M(n,k) <: 

i f  k>n t h e n  0 

else if  H(1,n,k,2) t h e n  l+M(n,k+l)  

else M(n,k+l) 

H(j,n,k,s) <: 

i f  j>n t h e n  s:0 

else if  k mod j=0 t h e n  H(j+l,n,k,s-1) 

else H(j+l,n,k,s) 

This achieves a considerable storage economy 

since it constructs no temporary matrices or 

vectors. However, two defects remain. First, 

the function H(j,n,k,s) does not terminate until  

j>n, which requires time n. Inspection shows 

tha t  if s is ever negative then H must  be 

false. Thus, inserting a leading test, "if s<0 

t h e n  false", would leave the i npu t / ou tpu t  

mapping unchanged but  typically lead to a 

performance improvement. Second, the test  j>n 

can be sharpened to j>k, since k mod jr0 for 

j>k. However, we can find no entirely 

satisfactory set of t ransformations tha t  would 

lead to these changes: 

In t h e  interest of brevity, we explain APL 

only to the extent  required for 

understanding the examples. The original 

definition by Iverson is given in [16]; a 

description of the APL system may be 

found in [19]. Our notation for APL 

expressions differs from the APL system's 

in tha t  we use lower case : le t ters  for 

variable names. 

There should be no confusion between lal 

to denote the cost of computing the 

expression a and !x I to denote the length of 

the list x. Context and the argument  type 

will indicate which is intended. 

The following usages are standard in 

formal logic. A subst i tut ion is a set of 

the form {ei/~ili=l ..... n} where the ~i are 

non-repeating variables and the e i are 

expressions. Let 0 be a subst i tut ion and a 

an expression. Then aO is the expression 

obtained from a by simultaneously 

replacing each occurrence of v i by e i. 

I t  should be pointed out tha t  there are 

evaluation techniques [22] which defer 

evaluation of arguments  unti l  they are 

needed and store the result so an argument  

is evaluated at most once. However, such 

techniques require tha t  the argument  be 

used in the body exactly as it appears as 

an actual parameter. In partial evaluation, 

we wish to carry out simplifications, e.g., 

H(Cons(G(x)+l, x ) ) - I  -~ G(x), so tha t  such 

techniques are not directly applicable. 

More recent studies [14] show promise of 

being extendable to such situations, but  

additional research seems required to 

clarify the relation between deferred 

evaluation, local simplification, and function 

expansion. 
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