
On Laziness and Optimality in Lambda Interpreters:
Tools for Specification and Analysis*

John Field’
Cornell University

Abstract

In this paper, I introduce a new formal system, ACCL,
based on Curien’s Categorical Combinators [Cur86a]. I show

that ACCL has properties not possessed by Curien’s orig-
inal combinators that make it particularly appropriate as
the basis for implementation and analysis of a wide range

of reduction schemes using shared environments, closures,
or X-terms. As an example of the practical utility of this
formalism, I use it to specify a simple lazy interpreter for
the)c-calculus, whose correctness follows trivially from the
properties of ACCL.

I then describe a labeled variant of ACCL, ACCLL,
which can be used as a tool to determine the degree of Sazi-
ness” possessed by various A-reduction schemes. In particu-
lar, ACCLL is applied to the problem of optimal reduction
in the X-calculus. A reduction scheme for the kcalculus is
optimal if the number of redex contractions that must be
performed in the course of reducing any .&term to a normal
form (if one exists) is guaranteed to be minimal. Results of
LCvy [LCv78,LCv8O] showed that for a natural class of reduc-
tion strategies allowing shored redexes, optimal reductions
were, at least in principle, possible. He conjectured that

an optimal reduction strategy might be realized in practice
using shared closures and environments as well as shared X-
terms. I show, however, using ACCLL, a practical optimal
reduction scheme for arbitrary X-terms using only shared
environments, closures, or terms is unlikely to exist.

1 Background

There has been much recent interest in efficient implemen-
tations of lazy functional programming languages whose se-

*This research was supported by NSF grent DCR X2-02677
and ONR grant NOOOO14-88K-0594.

t Author’s Address: Department of Computer Science, Cor-
nell University, Upson Hall, Ithaca, NY 14853. Electronic mail:
field@cs.comell.edu.

Permission to copy without fee all or part of this material is granted

provided that the copies are not made or distributed for direct

commercial advantage, the ACM copyright notice and the title of the

publication and its date appear, and notice is given that copying is by

permission of the Association for Computing Machinery. To copy other-

wise , or to republish, requires a fee and/or specific permission.

@ 1990 ACM 089791-343-4/90/0001/0001 $1.50

mantics are based on normalizing reduction schemes for the
Xcalculus [Pey87,FH88]. Most such implementations have
made use of some combination of the notions of graph re-
duction [Wad?l,Aug84,Joh84], environments [Lan64,HM76,
AP81,FW87] or combinatora [Tur79,Hug84,Joh85]. The first
two are means to allow certain redexes to be effectively
shared during reduction; the latter can be considered a re-
stricted form of X-expression for which certain implementa-
tion techniques are more efficient.

While ail these methods are normalizing, that is, guar-
anteed to yield a normal form’ if one exists, all end up
performing more @-contractions than are absolutely neces-
sary by effectively copying redexes. In some cases, this lack
of sufficient laziness can result in considerable unnecessary
additional computation. Concern for this phenomenon led
to the introduction of methods allowing “fully-lazy” reduc-
tion [Hug84]. However, J.-J. Levy’s analysis [L&78&%80]
made clear that there was a wide range of laziness possible,
ranging from profligate (simple leftmost /l-reduction without
sharing) to optimal, with full-laziness actually somewhere
in between. The exact nature of laziness in various imple-
mentation has apparently heretofore been something of a
mystery”, and I aim here to give means to analyze this phe-
nomenon more precisely.

This paper presupposes a familiarity with the ~-calculus
[Chu41,Bar84,HS86], the de Bruijn ~-calculus [dB72,dB78,
CurSGal, and basic ideas from term rewriting systems [ROBO,
Hue80,Der87]. A brief review of relevant concepts and no
tation for these subjects is provided in Appendix A. An
acquaintance with with Curien’s Categorical Combinators
[CurBGa,Cur86b,CCM87], and with the work of Lbvy on op
timality [L&78,L&vBO] would also be useful.

‘Technically, implementations of functional languages gener-
ally yield weok heod norm01 forma.

2Peyton Jones [Pey87, p. 400) states that “. . . it is by no means
obvious how lazy a function is, and.. . we do not at present have
any tools for reasoning about this. Laziness is a delicate property
of a function, and seemingly innocuous program transformations
may lose laziness.”

1

2 Redex Sharing and Environ-
ments

Consider the >-term M Z (Ag.(vr))(Zz), where Z G Az.2. It
may be reduced to a normal form in any one of three ways:

Example 2.1

u1: M - (ZX)(Z%) - x(Za) - 2%
62: M - (Z%)(Z%) - (Zz)z - 2%
us: M - (Ap(yy))z - %%

u1 is a leftmost reduction-one where the leftmost redex is
contracted at each step. us is an opplicutive order reduction,
where (informally) the argument part of a redex is reduced
to a normal form before the redex is contracted. It is ev-
ident that us reaches the normal form (zz) in the fewest
steps. It would clearly be desirable to have an optimal re-
duction strategy-one that always yields a normal form if
one exists (i.e., is normalizing) and is also guaranteed to do
so using the fewest possible redex contractions. Unfortu-
nately, results of Sarendregt, et al. [BBKV76], show that no
such (recursive) strategy exists. However, we can improve
matters considerably by extending the model of reduction a
bit.

Note in the example above that the redex (Zz) of M is
copiedin reductions ur and ur, since it is substituted for two
instances of y. A natural alternative to copying expressions
in arguments is to #hare them instead, using a graph-like
data structure. The idea is illustrated below:

Example 2.2

ui proceeds from left to right, analogous to or. In this case,
however, the redex (Zz) is shored, rather than copied, as a
result of its substitution for the two instances of variable
y. The result of (1%)‘~ reduction to E is shared as well.
Using this method, the normal form’s graph representation
is reached after only two reduction steps.

Wadsworth’s gmph reduction algorithm [wad711 formal-
izes the idea of Example 2.2. It combines a leftmost re-
dex selection strategy with sharing of argument expres-
sions. However, Wadsworth’s algorithm is not optimal. If
we contract non-leftmost redexes, shorter reductions (still
using shared argument expressions) can be achieved, as
the following example illustrates: Let N I (Nt Ns), where
NI E Xz.(zw)(zz) and Ns 3 .4v.(Zy). Then the following
are two graph reductions of N:

Example 2 .S

Wadsworth’s algorithm performs reduction ~1, while ps
reaches the normal form in fewer steps by contracting the
shared (Zy) redex inside Ns before applying it to either w
or z (a minimal length reduction can also be achieved with-
out any sharing by contracting the (Zy) redex before Nt is
applied to Ns).

Reducing inner redexes, as in ps, seems to bring about
shorter reductions in many cases. Unfortunately, contraction
of arbitrary inner redexes can sometimes lead to unnecessar-
ily diverging reductions, as is the csse with the applicative
order strategy. Wadsworth’s scheme reduces only leftmost
redexes in order to ensure norm&ability (although this is
not by any means the only way to do so, see [BKKSS’I]).

There is evidently a subtle interplay among the issues of
efficiency, normalieability, and redex sharing. The quandary
is then to find a way to edge closer to the brink of optimality
without plunging into the abyss of non-normalizabiiity.

By examining the reductions above, however, we can see
that Wadsworth left the door open to further improvements
by not taking advantage of all conceivable opportunities for
redex sharing. Note in pt that as Nr is applied in sequence
to w and to L, the inner redex (Zu) is effectively copied (af-
ter each substitution for 9). If there were some means to
porometricolly share the (Zy) redex while still substituting
w and t separately for I, more efficient, and perhaps opti-
mal reductions might still be achievable. This suggests the
use of the notions of environment and cloaue familiar from
implementations of programming languages.

2.1 Reduction Using Environments

A number of reduction schemes for the &~&~lus have been
proposed using environments. These include that of Laudin
[La4 using applicative order evaluation, and updated ver-
sions devised by Henderson and Morris (HM76] and Aiello
and Prini [AP8i] to accommodate leftmost evaluation. Each
of these systems avoids immediate substitutions for all in-
stances of bound variables in the body of a X-abstraction
after &contraction, constructing a closure instead.

To be more specific, an environment consists of sets of
mappings between variable names and values, or bindings.
The result of a &contraction is then a closure consisting of
the body of the abstraction part of the redex, paired with an
environment updated to contain the binding of the abstrac-
tion’s bound variable to the argument of the redex. The idea
is illustrated below:

(Xz.(zz))N - [(a), ((2 := N))]

In general, [T, E] will represent a closure consisting of term
T and environment E. An environment is denoted thus:

ULBZ,...))

where Z31, &, etc. are bindings.

The following example (using the same term as in Ex-
ample 2.2) shows that sharing of X-terms can be achieved
indirectly through shared bindings:

Example 2.4

(WUU))(~~) - t(w)* ((Ii := (I%)))]
- (rul lb, I)

t-L au := (Z%)))
- (b, lb7 I) * * - - (2%)

I-L ((u := 2))

Use of closures obviates copying any part of the body of an
abstraction after &contraction. Wadsworth’s scheme, how-
ever, copies the parts of the body of an abstraction contain-
ing the abstraction’s bound variable, in order to avoid in-
correct substitutions in pieces of the abstraction’s body that
might be shared by other terms. By using environments,
the body of the abstraction term, and hence any redexes
contained therein, have the potential to be shared, avoiding
redundant reductions.

Below is another reduction using the term of Example
2.3, showing that shared environments can be used to mini-
mize the number of redex contractions performed in a nomi-
nally leftmost strategy: Once again, let N E (NINz), where
Nl E Xz.(zw)(zt) and N2 z Xy.(Zy). Then, using shared
environments, we have: (repeated meta-variables such as I%
below correspond to terms or environments shared through
graphical data structures)

Example 2.5

N - [(XW)(X%), ((2 := Iv4 - * * -
- ((k? mw, 4) K-h m

where e s ((x := Ns)}

- CM2 rwt 0 [(=I, a
where I? z ((2 := rs,)), fl2 = h/.(ZY)

- . . .

Note that the (Zy) redex in N2 is reduced in a shared envi-
ronment, independently of the substitution for free variabl?
g in closures that refer to N2

The question then arises as to whether some combination
of shared environments, closures, and terms could be used to
achieve an optimal reduction scheme, or at least improve on
Wadsworth’s method. To pxoceed any further, we will need
a more formal system to study reduction using environments
and closures.

3 ACCL
In [CurBGal, P.-L. Curien defines a number of equational
theories based on Cartesian Closed Categories (CCCs) using
terms from the Pure Categorical Combinatory Logic, CCL.
Curien observed that the CCC axioms could model reduction

in the ~-calculus, i.e., its operational semantics as well as its
denotational semantics. Treated as combinators, Curien’s
axioms have the advantage of avoiding the difficulties with

variables and substitution normally encountered in the X
calculus, and thus has aspects in common with the de ErGin
A-calcuius [dB72 ,dB78].

One set of equational axioms, deemed Weak Categori-
cal Combinatory Lo&, is the basis for the Categorical Ab
etract Machine ([CCMS?]). However, Curien proposed no
system strong enough to simulate arbitrary B-reductions in
the X-calculus that could itself be simulated using only p-
reduction. It such a system were available, it would pro-
vide an immediate proof of correctness for any reduction
scheme for the ~-calculus based on it (since any combinator
reduction would correspond to a b-reduction). X-reduction
methods based on Categorical Combinaturs proposed thus
far, such as the Categorical Abstract Machine and scheme6
by Lins &in87], have heretofore required ad-hoc proofs of
correctness.

To provide a more sophisticated tool for modeling A-
reduction using environments, 1 will define a new Z-sorted
equational theory, ACCL, akin to Curien’s theory CCLB.
It8 sort structure makes possible prooh of close correspon-
dence between B-reduction and ACCL reduction not pos-
sible in Curicn’s original theory. While this modified term
structure obscures the elegant categorical origint? of Curien’s
original system, it makes its connection to reduction with
environments much more evident.

In the sequel, I will wsume that any X-terms under con-
sideration are actually terms of the de Bruijn x-calculus,
although I wiU feel free to give examples using named vari-
ables.

3.1 Term Structure

Definition 3.1 The terms of AC-CL are built from a set of
variables and constructors over a two-rorted signokre. The
sorts ore au fd10?66:

- C, the sort of lambda-like expressions

- f, the aort of environments

The constructor-6 ore listed below. Each construclor is given

with the 6ort of the term constructed and the sorts of its ar-
gument(6) specified in the corresponding argument positions.

Var:L
Apply(L, t): L

A(L): L
[C, &]:L

$:E

(E, ;:“E
&oE:E

(variable reference)
(opplicdtion)
(abstmction)
(C106UFV)

(null environment)

(MV
(eaprewion list)
(environment composition)

The terms of ACCL will be denoted by Ter(ACCL) and
the closed fermu, thoee terms containing no variablea, by
Terc(ACCL).

The following notation (for ude Bruijn” numbers) will be
used:

Defbition 3.2

n= 0
n>O

where

Cl

L

II=
0” E q 0(00(...(000)...)) a>: I

n times

The intuition behind the term structure of ACCL is fairly
straightforward: Terms of sort L are analogous to terms in
the de Bruijn ~-calculus, after variable numbers are encoded
as above. Closures are created by the ACCL equivalent of /3-
contraction. Environments are essentially lists of terms, the
association between bound variables and the terms to which
they are bound being represented implicitly by position in
the list. Au environment informally presented as

((21 := M1,z2 := M~,...,z,, := M,,))

is represented in ACCL as

(((---(It Mm)...), Mz), Ml).

“0” allows separate environments to be merged. The only
perhaps mysterious term present is ‘Cl”, which when com-
posed on the left with an arbitrary environment effects the
“shifting” of de Bruijn numbers required when environments
are moved inside abstractions, and when composed on the
right with an environment causes the outermost piece of the
list to be stripped away in the course of variable lookup. All
these operations are embodied in the axioms below:

3.2 Axioms
Definition 3.3 The tioms of ACCL ore ad follows:

(Beta) APP~Y(A(A), B) = [A, (a, B)]
W-C) [[A, El], Ez] = [A, EI 0 Ez]

(NuIIEL) BoE=E
(NnlIER) Eolil=E
(Shift E) Oo(E, A)=E
(VarRef) l-V=, (E, A)] = A
(DA) [A(A), E] = A&% (E 0 0, Var)l)
(“El (El, A)oEz=(EloEz, [A, &I)
;;“P$Y’ [Apply@, B), El = Apply&& El, P, 4)

(N’&C)
(E~oE2)oE~=E~o(EzoEs)

[A, @]=A

I define a related equational theory, ECCL, as follows:

Definition 3.4 The azioms of ECCL are those of ACCL
without rule Beta.

It will be useful to consider ACCL as the union of two sys-
tems intended for different purposes: ECCL, which governs
manipulation of environments, and (Beta), which models
&reduction.

3.3 ACCL as Rewriting System on
Closed Terms

By orienting the equations of ACCL from left to right, they
can be treated as a term rewriting system. The notation

-*CCL will be used to denote the application of a rule
of ACCL in some context, i.e., A-ACCL B if and only
if A z C[X], X may be rewritten to Y using one of the
oriented axioms of ACCL, and B E C[Y] (contexts are de-
fined in Appendix A. I will use similar notation for ECCL
and applications of single rules of ACCL, e.g. -(By*.) ,
However, I will restrict myself in the sequel to the closed
terms of ACCL, Terc(ACCL). Since I am interested in
using ACCL to model A-reduction rather than to prove the-
orems, this restriction will be of no concern. More impor-
tantly, in conjunction with the a-sorted term structure of
ACCL, the restriction to closed terms makes it possible to
prove properties of ACCL that did not hold for arbitrary
terms of Curien’s system CCL/3. I will refer to the formal
theories and their corresponding rewriting systems by the
same name. The following properties hold of ACCL:

Theorem 3.1 ECCL is noetherian (strongly normalizing).

Proof We can orient the rules of ECCL by combining the

recursive path ordering method of Dershowitz and the leti-
cogruphic path ordering method of Kamin and L&y (both of
which are described in [Der87]) using an extension of Lee
canne’s notion of status [Les84].

We first order the operators of ACCL as follows:

B < 0 < Var < A(,) < Apply(., .) < (., .) < [., .] = o

Let A and B be terms of ACCL, whose outermost oper-
ators are f and g, respectively. We then define the following
quasi-ordering such terms:

if

or

A E f(a,, . . . , &?I) >- B=g(t1,...,tn)

Si & t, for some i = 1.. . m,

f>g and 8 + tj for all j = 1 . ..n.

or

or

or

{=s,f f o,f $ ia, 4 and
Sl,...,&n)~M (t1,...tn}

f zf

zoorfE[., -1, and

,... ,bn)~*(tl,.-.tn)

y,gl f ; y;[i;;l: , , rl;”
. ..I m _ n

where ?.M is the extension of 2 to multisets of terms and 2.
is the lexicographic extension of k to sequences (see [Der87]
for details of these extensions).

Depending on the “status” of unordered pairs of opera-
tors, either the multiset or lexicographic ordering is used to
compare operands. The ordering defined above is a well-
quasi-ordering on terms of ACCL since it meets Kamin
and LCvy’s requirements for a simplification ordering[KL80].
Generalizations of Lescanne’s notion of status were sug-
gested in [Rus87]. Using this ordering, it is straightforward
to show that if A---+EccL B, A >- B, and thus that ECCL
is noetherian. 0

4

Lemma 3.2 BCCL and (Beta) commute, i.e., Theorem 3.2 ECCL is cqnfluent (thus Church-Rossser)
on closed terms, i.e.,

A -ECCL Et A A -ECCL B2

--r4 @c) BI -ECCL (7 A B2 -ECCL c

Proof We can show ECCL confluent by showing critical
pairs to be locally confluent [Hue80]. The only problem oc-
curs with the rule pair (DA) and (NuilC), for which we
must show

(VA)(Vn) [A, (((-s-(0”, (n - l)!) --a), l!), O!)] -ECCL A

and

(‘da??)(h) E 0 (((... (On, (tz - I)!). . a), I!), O!) -ECCL E

which can be proved for closed terms by a straightforward
induction on the structure of A or E. The a-sorted structure
of terms of ACCL is essential to this argument. 0

We can also have the following

Theorem 3.3 (Beta) is confluent, i.e.,

A-(Beta) Bt A A -(Beta) B2

--((=) & -(Beta) c A Bz -(Beta) (7

Proof (Beta) redexes cannot overlap (i.e., there are no
critical pairs), confluence thus follows trivially. 0

We can now show ACCL confluent by a technique similar
to the Tait/Martin-L6f proof of the Church-Rosser property
for the ~-calculus. The following reduction relation will be
useful:

Definition 3.5

-Dev q -ECCL * -(Beta) ’ -ECCL

where ‘- ’ denotes relational composition.

*DeV is intended to correspond roughly to the notion of a
developmentin the X-calculus. As usual, -De” represents
the reflexive, transitive closure of -*De”. I also define the
following variant of ECCL:

Definition 3.6 The azioms of BCCL consist of those of
ECCL without rule (DApply).

In order to show ACCL confluent, we need the follow-
ing sequence of lemmas, each represented as a commuting
diagram (dotted arrows denote reductions existentially de-
pendent on the arbitrary reductions represented by solid ar-
rows) :

Lemma 3.1 BCCL and @eta) strongly commute, i.e.,

fBdr1

Proof Trivial, since BCCL and (Beta) have no critical
pairs. 0

(Beta)

Proof Fill the diagram using lemma 3.1 (by induction on
the lengths of the ---CCL and -(Bet.) reductions). 0

Lemma 9.3
(Beta)

ECCL l,,l_,,,_,J BccL

Proof One need only consider the critical pair of

APP~Y([A(A), El, [B, El) and [[A, (fl, B)], El, for which
it is easy to show there is a common reduct using the sort
of reductions required by the lemma. 0

Lemma 3.4
(EM*)

ECCL i,,_,,,_,,,j BccL

Proof If the ECCL rule used is not (DApply), then the
result follows from lemma 3.2. Otherwise, the (DApply)
redex in the diagram’s premise can also be a (Beta) redex.
Without loss of generality, assume that some subterm is both
a (Beta) redex and a (DApply) redex, and that it is the first
redex contracted in the (Beta) reduction. (Since (Beta)
redexes cannot create other (Beta) redexes, redexes in a
(Beta) reduction can be permuted arbitrarily). We can then
construct the desired diagram using lemmas 3.3 and 3.2 ss
follows:

(Bet.) (Bet.)

I
n

*
8 I

ECCL

I

BCCL 1

%5EL-- p;c~- -ti?bx-

0

Lemma 3.5

ECCL

(Bear)

I-

L
I

ECCL : BCCL

-EEEt’-~bX;~--lk%L- i

Proof Follows by noetherian induction (see [BueBO]) on
the left-hand ECCL reduction using lemma 3.4 as a base
case. (The rather odd -ECCL appendage in the upper
left-hand corner of the diagram is required to provide the
appropriate induction hypothesis). 0

5

Lemma 3.6
ECCL (Bela) ECCL

c

4
I
I

: ECCL

i

I
; (Bet.)

i

I
i :

ECCL ; ECCL

J “i%XX~~B’ci~“~iEEL

Proof Simple diagram construction using lemma 3.5, the-
orem 3.2, and theorem 3.3. D

Proof The reductions used in lemma 3.6 are d&v con-
tractions, and the theorem thus follows by diagram chase.
0

Theorem 3.4 ACCL is confZuent on closed termr.

Proof -*cr and --ACCL are relationally equivalent.
Thus from Lemma 3.7, we must conclude that -ACCL is
confluent. 0

Theorem 3.4 is a principal result; Curien was unable to
exhibit a confluent system strong enough to model arbitrary
reductions in the ~-calculus. However, independent work
of Hardin [Har87,Har89] and Yokouchi wok891 has led to a
characterization of subsets of Curien’s original CCL terms

for which confluence of the system CCL/3 can be proven.
By contrast, the 2-sorted term structure of ACCL rules out
the construction of “uninteresting” terms that Hardin and
Yokouchi’s CCL subsets explicitly omit.

Yokouchi’s technique for proving the confluence of CCLB
on subsets of terms is quite similar to the confluence proof
given here. Lemma 3.5 was used in an earlier version of
this paper to prove a somewhat stronger intermediate result
than lemma 3.6; the proof used here was simplified upon ob-
serving that Yokouchi’s proof of confluence essentially used
lemma 3.5 directly, without resort to a more complicated
intermediate lemma. Hardin’s proof of relies on confluence
of the X-calculus.

Hardin and Yokouchi’s proofs of confluence both rely on
the fact that a “substitutive” subset of CCL similar to
ECCL is noetherian. Thii was shown to be the csse by
Hardin and Laville [HL86], but required considerable inge-
nuity, since the substitutive part of CCL is apparently im-
mune to more conventional techniques used to show termi-
nation. The proof that ECCL is noetherian is considerably
simplified by its term structure, which in particular admits
a distinction between closures and environment not present
in CCL.

3.4 Normal Forms

Definition 3.7 The set of lambda normal forms (LNF) is (I

subset of the terms of ACCL, defined inductively 08 follows:

n! E LNF
AELNF ==+ A(A)c LNF

A E LNF, B E LNF --7 Apply (A, B) E LNF

Lambda normal forms are intuitively those terms that “look
like” terms of the (de Bruijn) X-calculus.

Theorem 5.5 All lambda-like ezpressions (terms of sort Cc)
of ACCL are reducible to a lambda normal form, using the
rules of ECCL. That is,

(VA: L) (38 E LNF) 3-t. A -ECCL B

Proof Simply note that any term of sort C that is not in
LNF contains an ECCL redex. Keep reducing such redexes
using rules of ECCL until LNFla reached, which must hap
pen eventually since ECCL is noetherian. •I

For any term A:&, I will refer to its corresponding term
B E LNF by Inf(B). S ince ECCL is confluent and terms in
LNF are irreducible in ECCL, this normal form is unique.

Definition 3.8 The set of partial environment normal
forms (PENF) is a subset of the terms of ACCL defined
inductively as follows:

ii E PENF

0” E PENF

E E PENF a (E, A) E PENF

Theorem 3.6 All environments (terms of sort E) of
ACCL are reducible to a partial environment normal form
using the rules of ECCLr

(VEI: E) (3% E PENF) s.t. EI -ECCL E2

Proof Once again, we can observe that every term of sort
E that is not in PENF must contain an ECCL redex. Such
redexes can be reduced until the normal form is reached. 0

Terms in PENF are not necessarily irreducible in ECCL,
thus partial environment normal forms are not unique.

3.5 Translation

We can now show state the translation between terms of the
de Bruijn &calculus and terms of ACCL.

Definition 3.9 For ony term M E XDB, we can define a

corresponding term UMUAccL E ACCL inductively as fol-
lows:

KllaccL = i!

uPwl*ccL = *wn,ccL)

u(~J5~n*CCL = APP~Y(U~~,,,~,~ IIW~XL)
The reverse transformation, Unix, is defined in the obvious
way on members of LNF.

6

3.6 Equivalence

I now claim that there is an equivalence between &reduction
and reduction of terms of sort C in ACCL. The following
two lemmas are required:

Lemma 3.8 Let M and N be arbitrary terma of the
(de Bruijn) X-calculus such that M -+p N. Then

wn accL~ LNF-AccL[N&~~~E LNF

Proof A construction isomorphic to that used by Curien
in [Cur86a] to prove a similar result for CC&p suffices, and
is omitted here. The ACCL equivalent of his construction
has the following property:

M ----+P N ==+ WI UMllaccL -(Beta) B and

Curien’s construction yields the following corollary:

Corollary 3.1 If A E LNF, C E LNF, and there ez-
ists B such that A-cBeta) B and B--wECCL C then

IT4 -aUBllx
Proof Since (Beta) redexes are non-overlapping, we can
perform Curien’s /3-simulation separately on each (Beta)
redex contracted in the reduction from A to B, yielding a
term in LNF at each stage. Once this process is complete,
the resulting term must be C, since ACCL is confluent and
CELNF. 0

We can now prove the other direction:

Lemma 3.9 Let A: L --~CCL E. Let lnf(A) = A’ and
Inf (B) = E’. Then nAqx -p [B’&.

Proof Divide the ACCL reduction into subreduc-
tions alternating use of ECCL rules and uses of rule
(Beta). The proof then reduces to showing that if

Ai *(zeta) Ai+I 1 Inf(A;) = Ai’, lnf(A;+l) = Ai+l’p then

UAi’II, -0 flAi+l’],. This can be done using corollary 3.1,
which is used in the construction below:

We can use the construction of the term above to make
the following definition:

Definition 3.10 Let A be a term of ACCL containing a
(Beta) redez B. Then the residuals of l3 (relative to the
reduction of A to ZNF) are those (Beta) redezes contracted
in the proof of Lemma 3.9 to simulate p-reduction in Inf(A).
The set of such residuals is denoted by Resid(B, A).

Putting the results from lemmas 3.8 and 3.9 together
yields:

Theorem 3.7 Given M 6 Ter(ADB),

This result shows that any reduction of a ACCL term A E
LNF simulates a reduction in the X-calculus.

We can now show that in terms of the number of (Beta)
contractions performed, ACCL is always at least as efficient
as the corresponding reduction in the Xcalculus:

Theorem 3.8 Let a:A --~cc~ B be u reduction in
ACCL. Let hf(A) = A’ and Inf(B) = B’. Let

P: UA’Jx -B [B’& be the reduction given by Lemma 3.9.
Then the number of /3-contrcactiow in p is greater than or
equal to the number of (Beta) contractions in 6.

Proof Direct corollary of proof of Lemma 3.9. 0

Any reduction scheme for the &calculus implemented us-
ing ACCL would have to perform ECCL reductions as
weU as (Beta) contractions, but it is not unreasonable to
count the former as “overhead,” as do many other reduction
schemes that manipulate environments as well as contract-
ing P-redexes. One can generally show that in a reasonable
reduction scheme, the number of ECCL reductions required
is proportional to the number of (Beta) reductions and the

size of the initial term.

3.7 Example and Applications

Let M s Xy.((Xz.z)v). We then have

M -P b-v

The equivalent term in ACCL after encoding variables, is
given by

wnrccL 3 A(Apply(A(O!), O!)) s A(Apply(A(Var), Var))

We then have

A(W-WA(Var), W)
-(Beta) NIk 04
-(~dtd) NW

and
Uh(Var)& S Xy.y

WI)

In essence, ACCL is just a formalization of the informal
notions of closure and environment given in the introduction,
coupled with a mechanism for indexing environments.

If we treat the axioms of ACCL as transformation rules
on terms, we can note that opportunities for sharing of
terms in practical reduction schemes are inherent in the rule.
Met&variables in the axioms may be treated as pointers to
terms, and transformations on terms using the axioms as
rules should simply copy the corresponding pointer when a
meta-variable appears on both sides of the equation, rather

7

than copying the entire term. When a met&variable is re-
pealedon the right side of the equation, as with rules (DAp
ply) and (DE), the term-pointers corresponding to the re-
peated variables may safely be set to point to the same term,
creating graph-like structures. When any of the rules which
contain a single met&variable on the right side are applied,
one has a choice of using indirection nodes of some sort or
copying the topmost operator of the term.

I will not pursue a formal characterization of sharing
here; an informal approach suffices for the purposes of the
discussion here. More formal techniques for describing re-
duction using sharing have been proposed by Staples in
[StaSOa,Sta80b,Sta80c,Sta81].

Figure 1 describes an algorithm, rwhnf(), that trans-
forms a term of the form [A, E] to the ACCL equivalent
of weak head normal form, WHNF. It is very similar to the
interpreters of Henderson and Morris [HM76]) and Aiello
and Prini [AP81]. The algorithm is specified using rules
of ACCL, a recursive redex selection strategy, and shared
terms. Since this function simply applies ACCL rules to a
term in a fixed order, Theorem 3.7 shows it to be correct
(i.e., that it effectively performs P-reduction and nothing
else). Though the algorithm is not fully-lazy in the sense
of Wadsworth, it illustrates the simplicity with which inter-
preters can be specified using ACCL, and functions as a
starting point for much more lazy interpreters that can be
analyzed using ACCLL.

The normalization properties of reduction schemes using
ACCL depend on whether or not applications of the rule
(Beta) are needed; this property is discussed below. rwhnf()
does indeed turn out to be normalizing.

Given M E Ter(XDB), we construct term [[MIACCL, 01 E
Ter(ACCL), and reduce it to (B E WHNF) I [NlaccL.
We thus have M -#N, N E whnf. Figures 2, 3, and
4 are algorithms for normalizing environments (to “partial
environment normal form,” PENF).

The functional notation used in the algorithm should
be reasonably self explanatory for someone familiar with
a language such as ML or Miranda. However, the algo-
rithm should be considered a recursively specified sequence
of transformations on the term given 8s argument, not a
true function, since no value is to be returned. The case
statement executes various statements depending on a pat-
tern to be matched. Subpatterns within larger patterns are
named using the notation “subpot: A” Pattern variables rep
resent pointers to terms, and if a pattern variable appears
on the right side of a pattern, the pointer to the term rep
resented by the variable, not the term itself, is copied. “:=”
causes a term to he overwritten according to some rule of
ACCL; only those parts of the overwriting term not named
by pattern variables are newly allocated. Statements inside
%eq., . endseq” are executed in sequence. copy(A) copies
the topmost operator of A; all of A’s subterms are referred
to by pointers in the new term.

rwhnf([l, E]:C) P
ca8eLof

APP~Y(& B): seq
C := Apply ([A, E]: A’, [B, E]: B’);

{rule DApply }
rwhnf(A’);
if A’ I [A(A”), E’]
then seq

C := [A”, (E’, B’j]; {rule Beta’]
rwhnf(C);
endseq

else skip;
A(A): skip; (C E WHNF}

[Ll, El]: seq
C := [Cl, El o E]; {rule AssC}
rwhnf(C)
endseq;

(Var: LI): seq {C = O!}
rpenf (E); {transform E to PENF}
case E of

0: C:=L;
{rule NullC)

0”: skip;
{E = IT’, thus C E WHNF}

(E, A): seq
rwhnf(A);
C := copy(A);

{rule VarRef, C E WHNF}
endseq

endcase
endseq

endcase
endfn

Figure 1: Algorithm rwhnf()

rpenf(E) z
case E of

e: hipi
0”: skip;

(El, A): rpenf(Er);
El o ES: seq

rpenf(El);
rpenf (Ez);
composeEnvs(E)
endseq

endcase
endfn

Figure 2: Algorithm rpenf ()

{E E PENF}
{E E PENF}

’ composeEnvs((El 0 E2): E) E
case El of

0: E := E2;
0: distribShiftL(E);
((0: ES) o Ed): seq

{El, E2 E PEW}

{rule NuIIEL}

(~5,

endcase
end&

E := ES o ((Eh o ES): E’); {rule AssE}
composeEn vs (E’) ;
distribShiftL(E)
endseq
A): seq
E := ((Es o E2): E’, [A, E2J);

{rule DE}
composeEn vs (E’)
endseq

Figure 3: Algorithm composeEn vs()

distribSbiftl(((o: El) o E2): E) 3 (E2 E PENF)

case EZ of
0: E:=El; {rule NuIlER}
0”: skip; {E = IT’+’ E PEAJP, n > 0)
(ES, A): E := ES {rule ShiftE)

endcase
endfn

Figure 4: Algorithm cfistribShiftl()

4 Opt imality Criteria
In [LCv78,LCv80], J.-J. Levy studied the issue of optimal re-
duction in the X-calculus in light of the previous work of
Wadsworth on graph reduction. LCvy noted that by shar-
ing redexes through graph structures, Wadsworth was essen-
tially contracting multiple @-redexes in parallel. L&y was
able to define a natural class of parallef reductions on re-
dexes thbt are essentially copies of one another, and specify
criteria that would have to be satisfied by any optimal par-
allel reduction of sets such copies. The notion of copy Levy
had in mind was sets of identical terms, modulo substitu-
tions for free variables. Such copies are exactly the terms
created by the process of substituting the argument term
for multiple instances of the binding variable in the body of
a A-term, and are formally known as residuals.

His critical observation was that by examining a term and
the reduction that produced it (its “history”), it is decidable
which sets of redexes in the term are copies of some redex,
or more importantly, could houe been copies in an alternate
reduction (beginning and ending ‘with the same term). He
noted that by reducing maximal sets of such copies in par-
allel, an optimal reduction could be achieved. The ques-
tion was then whether any practical reduction scheme could
be implemented that would ensure that all such copies are
shared, and thus for which contraction of a single term would
effectively contract all copies. Levy speculated that some
scheme using shared closures, which permit contractions in-
dependent of substitutions for free variables (i.e., environ-
ments) might allow optimal reduction.

[L6v78] makes use of an extension to the ~-calculus that
allows terms to be labeled. Such annotations allow specific
terms to be “traced” as a reduction progresses, and provides
means to compare different reductions. In addition, the la-
belings are modified during the course of a reduction in such
a way that the reduction Uhistory” of a particular term is evi-
dent on inspection. An alternative analysis in [L&80] avoids
labelings, and instead allows reductions to be compared us-
ing the idea of meta-reduction, or reduction on reductions to
certain canonical forms. The analysis using labels provides
a greater intuitive feel for the problem, and, more to the
point, will simplify the proofs to follow. Therefore, I will
review the analysis using labelings here.

4.1 L&y’s Labeled Lambda Calculus

Levy’s labeled A\-colculua was first introduced in [L&75].
I will use a slightly simplified version proposed by Klop
[Klo80], in which an extensive investigation of properties
of reductions is made, much of which nicely complements
the work of L&y. A concise summary of Levy’s labeled X-
calculus is given in [Bar84, p. 382, Ex. 14.5.51, and a sum-
mary of a number of useful properties is given in [BKKSS’I,
Appendix].

First we must define what constitutes a label:

Definition 4.1 The set of L&y-labels, designated L, is de-
fined inductively 08 follows:

IES -7 1cL

9

w,vEL ==F WVEL

WEL ==+ &JCL

where S = {a, b, c,. . ,} is an infinite set of symbols) and WV
is the concatenation of labels w and v.

An atomic label ia a label consisting of a single symbol. Note
that nested underlinings, e.g. abed, may occur.

The set of lobeled X-terms czts of the regular A-terms
and terms annotated with labels:

Definition 4.2 The set of terms in LCuy’a labeled X-
calculus, designated Ter(XL), is defined as follows:

M E Ter (A) =+ M E Ter(A’)

M E Ter(AL), w E L =+ (M”) E Ter(XL)

where z is an arbitrary variable.

If M is a me&-variable referring to a labeled term, M”’
denotes the concatenation of w to the label of the term to
which M refers. I will often refer to terms “with” or “having”
label w. A term M has label w if M is of the form N” and N
is not of the form P” for non-null label U. The parentheses
surrounding a labeled term will often be omitted for the
sake of clarity if no confusion would arise. (If, however, a
parenthesized term is itself labeled, a formal reduction rule
is required to eliminate the parentheses; see below.}

In contexts where a labeled term is expected, unlabeled
terms will be treated as having the null label, c. We define
label concatenation and underlining to behave on the nulI
label as follows:

cw = w

wu(= w

The label of the abstraction part of a redex is called the
degree of the redex. Thus the degree of the (Iz) redex in
((XZ.(I~Z*)~)~Z~)~ is u (not c).

The /3-contraction rule is now defined for labeled terms as
follows:

Definition 4.3 Labeled P-contraction, denoted by +BL ,
is a relation on member8 of Ter(A=)dejined by:

C[((AZ. M)” N)”] -@L C[(M+ := NE])”]

where C is an arbitrary contest and M and N ore arbitrary
members of Ter(AL).

Note that with the null label convention, labeled p-
contraction is exactly the same as regular B-contraction on
unlabeled terms.

Though the labeled &contraction rule looks a bit
formidable, the idea is quite simple: Whenever a redex is
contracted, the underlined form of the label of the redex’s
abstraction (w) is attached both to the body of the abstrac-
tion (M) and to all instances of the argument (N) substi-
tuted into the body. Any label attached to the application

term (v) is left intact. The attachment to a label of an under-
lined substring, say (g), is an indication that the term wan
effectively generated by contraction of a redex having degree
w (this assumes, as I always will, that any labeled reduction
has an initial term with no underlined labels). One can thus

view labels ss a sort of genetic code, in the sense that by
knowing the labels of the initial term (“matriarch”?) of a
reduction, the lineage of a subsequent term in the reduction
may be traced by inspection of the labels.

The formation rules of Ter(AL) allow multiple labelings of
parenthesized terms, which can be created as a resulted of
labeled /?-contraction. This requires an auxiliary reduction
rule for labels:

Definition 4.4 The label simplification rule, -I& , ia the
following relation on members of Ter(XL):

c[(Id’“)”] -lab c[M””]

where C is on arbitrary contezt and M” is a term of

Ter (AL).

We then have:

Definition 4.5 Labeled b-reduction, -@L , is the rejlez-
ive, transitive closure of (--q&b lJ -Ed), where ‘U’ denotes
relotionol union.

The label simplification rule is a technical necessity, but
a practical nuisance. Without loss of generality, when refer-
ring to a labeled term, I will assume it has been simplified
as much as possible using -@L . This assumption is tech-
nically justified by the following theorem:

Theorem 4.1 ([L&75]) -@L has the Church-Roster
(confluence) property, i.e.,

M -,+ NI AM -By N2
a (3P)Nl -By PA Nz -By P

Thus labeled X-reduction is as “well-behaved” as its unla-
beled counterpart, and, in a sense, is a strict refinement of
the regular X-reduction. Ignoring the labels, it is simply
regular A-reduction. Depending on the initial labeling, how-
ever, it can give a great deal more information about the
reduction process.

We can now define transformations from the unlabeled to
the labeled world and vice versa:

Deflnition 4.6 Let M’ be a term of Ter(A’). Then the
erasure of M’, Er(M’) is the some term with all the labels
erased.

Definition 4.7 Let M be o term of Ter(X). Then M’ E
Ter (AL) is a labeling of M ifl Er(M’) = M.

We can also define the erasure of a reduction (overloading
the meaning of ‘Er()‘):

Defbition 4.8 Let u’ be a labeled reduction. Then the era-
sure of u’, Er(u’), ia the unlabeled reduction obtained by
erasing the labels of 011 the terms in the reduction and replac-
ing all labeled @-contmctions by unlabeled @-contractions.

10

Finally, we can ‘lift” reductions on unlabeled terms to
their labeled counterparts:

Definition 4.9 Let M be a term of Ter(A), M’ be some
labeling of M, and U: M -6 N. Then the lifted reduction
Lift(a, M’) is defined ad the labeled reduction with initial

term M’ in which the redexes contracted are the labeled coun-
terparts of those contracted in u.

4.2’ Optimality

4.2.1 Labels and Residuals

With the machinery of the labeled A-calculus at hand, cer-
tain definitions that are rather complicated without it be-
come straightforward. Labelings can be used to divide all’
the redexes in a reduction into equivalence classes based on
their label. Such equivalence classes are deemed redex fam-
ilies:

Definition 4.10 ([L&778]) Let

P:M--+~N

be a reduction. Let J be a labeling of M such that each sub-
term of M’ has a unique atomic label. Let

p’: M’ -By N’ = Lift(p, M’)

be the labeled version of p. Then a redex Rj
of p (not neceaJarily a redex contmcted by p)
of family class FL ifl the corresponding redex
degree w .

in any term
is a member
R$ in p’ has

Rather remarkably, it turns out that family classes can
consist not only of sets of redexes that are effectively copies
(i.e., residuals) of terms in the current reduction, but also
may consist of sets of redexes that are not residuals of any
redex in the current reduction, but would be residuals in
a different reduction with the same initial and final terms.
Thus labeling makes evident on inspection a property that
might seem to require enumeration of all reductions.

4.2.2 Redex Sharing and Parallel Reductions

Having demonstrated the usefulness of the labeled X-
calculus, we can now formalize the notion of sharingof terms.
LCvy noted that the reduction of a shared redex could be
viewed as a parallel reduction of all the redexes represented
by the shared term in its “flattened,” non-graphical form.
For instance, in Example 2.2 above, the shared contraction
of the (Iz) redex may be viewed as the parallel contraction
of the two terms that share it:

Example 4.1

0:): (AY.(YY))(lZ) -6 Vz)(lz) -Ilk3 2%

where ‘ b 11~ ’ represents parallel p-contraction. Note that
parallel P-contraction subsumes ordinary 0 or 1 step 8-
reduction (eEo), which is a development of 0 or 1 redexes.

Parallel reductions are represented thus:

Cl c2 cn
Q: Mo----~~MI-,,~. . . -ylaM,,

where the Ci are the sets of redex& in Mi contracted in
parallel at each step.

Defining a consistent notion of parallelism for overlapping
redexes requires a bit of care. Formally, LCvy defines a psral-
lel reduction as the complete development of a set of redexes.
See [LCv78] or [L&SO] for more details.

We can now define parallel reductions that reduce entire
family classes at once:

Definition 4.11 (Levy) A parallel reduction

Fw Fw Fw,
~:M~-$,MI-$,,Y~ -,,,&n

is family-complete iflfor each Mi, Fwi is the set of all mem-
bers of dome redex family F, in Mi.

4.2.3 Call-By-Need Reductions

In order to ensure that an optimal reduction does no un-
necessary work (although perhaps does it quite efficiently),
we need to ensure that any optimal reduction, like Ieftmost
reduction, reduces no unneeded redex. This leads to the fol-
lowing formal definitions:

Definition 4.12 (L&y) A redex R in some expression
M E Ter(A) is needed iff, for all terminating reductions
u with initial term M, either R or one of ita residuals is

contracted in 6.

Definition 4.13 (L&y) A pamllel reduction

is a call-by-need reduction ifl there is at least one needed
redex in each Ci.

We now have L&y’s optimality theorem:

Theorem 4.2 ([Lbv78,LBv80)) A pamllel reduction

P: M -\\a N

is optimal for the class of all parallel reductions with initial
tern3 M if

- p is family-complete.

- p is call-by-need.

Note that the theorem does not require that an optimal
strategy use shared redexes-a regular (non-parallel) fi-
contraction is a degenerate parallel contraction, and if all
family classes have one member, a complete reduction re-
quires contraction of only one redex at a time. However, if
a fixed redex selection strategy is to be used, some form of
sharing is inevitable.

11

5 Labeled ACCL

By analogy with L&y’s labeled ~-calculus, we can define a
similarly labeled version of ACCL, ACCLL.

Definition 5.1 The azioms of ACCLL are 08 follows:

(Beta) Apply(h(A)“, B)” = [A”“, (0, BE)]
(As&) [[A, El]“, Ez]” = [A”“, EI o E2]
(NullEL) @oE=E
(NullER) Eo@=E
(ShiftE) Oo(E, A)=E
[r;Re!f) [VaP, (4, A)]” = A””

[A(A)“, E]” = A([A, (E o 0, Var)])“”
(DE) (El, A) 0 E2 = (El 0 ~92, [A, E21)
;;AP$Y) [Apply@, D)“, El” =APP~Y([A> E], [D, 4)“”

(N:ilC)
(EIoE~)oE~=E~o(E~oE~)

[A”, 01” = A””
(DLabel) [A, El” = [A”, E]

Note that the DLabel has no analogue in unlabeled ACCL.
It is the ACCLL equivalent of the the convention allowing
the removal of parentheses in multiply-labeled parenthesized
terms of XL. By analogy with the labeled ,4-calculus, the
degree of a labeled (Beta) redex is the label of its abstraction
term; e.g., Apply(A(A”)“, D”)* has degree w.

Theorems 3.4, 3.5, 3.9, and 3.7 all apply to ACCLLand
AL; the proofs are quite similar and are omitted. The trans-
lations [I-DAL and [-BaCCLL are defined in the obvious way
analogous to their unlabeled counterparts.

We can now apply L&y’s optimality criteria directly to
reductions in ACCL, using ACCLL. The idea is to consider
each (Beta) contraction in a term A sa representing a par-
allel p-contraction on the corresponding A-term [lnf(A)l,.

We can then make the following definitions:

Definition 5.2 A reduction A --~cc~ B is A-optimal if
the number of (Beta) contractiona therein is less than or
equal the number of pamllel &contractions in on optimal X-
reduction from [lnf(A)& to [lnf(B)&.

Deflnition 5.3 A (Beta) redez B in o term A is X-
needed ifl the A-equivalent of one of B’s residuals Bi’ E

Rmid(B, A), UBi’Jx, is needed in [Inf(A in the sense of
Definition 4.12.

Theorem 5.X Let A’ E ACCLL be a term all of whose
subtemrs hove unique labels. Let p’: A’ wACCL~ 3’ be a
ACCLL reduction. Then the corresponding unlabeled re-
duction p:hf(A) --ACCL Inf(B) is X-optimal if no two
(Beta) redezes in pi have the same degree ond each (Beta)

redez is X-needed.

Proof Follows from Levy’s results on the labeled A-
calculus, the labeled form of Lemma 3.9 and Theorem 3.8.
0

The above theorem gives us the promised tool for analysis
of laziness. If we construct a X-interpreter whose action can
be expressed in terms of some application of the rules of
ACCL, we can determine how close to optimal&y any such
interpreter can come by showing how many (Beta) redexes
in the corresponding labeled reductions have the same label.

6 Non-Optimality of Reduction
with Shared Closures

I can now show that there is no A-optimal reduction pos-
sible in ACCLL, and thus that no reduction scheme that
can be expressed using the axioms of ACCL is optimal in
L&y’s sense. I do so by exhibiting a A-term for which eu-
ery ACCL reduction causes more than one (Beta) redex
to be contracted in the corresponding labeled form, even
when when all terms are shared that are permissible under
ACCL’s rules, The term is as follows:

where A and B are arbitrary X-abstractions. Not all sub-
terms are given labels for the sake of clarity.

Space does not permit a complete enumeration of all pas-
sible reductions of its corresponding ACCLL translation.
However, the crux of the matter is embodied in the follow-
ing term, which must be produced in any reduction of the
ACCL equivalent of the term above if no prior (Beta) re-
dexes with the same label are to be reduced twice:

NV := B’NI: C2))
[((t”t)(r%)), ((2 := Aw.(y%)))]:Cs

As before, ((.)) p re resents a ACCL environment with the
bound variable indicated explicitly. The notation T: N is
used to give names to subterms. One is forced here to choose
between reducing closure Ca or one of closures Cr or C2.

Choosing Cs yields:

(([

which reduces to

(((Ad’u)(Adcu))([, (b := B’))1:Cz))
I (WUWU))

in which two redexes of the form (Ad%) are created, thus
yielding a non-optimal reduction (since they have the same
degree and are no longer shared).

To avoid the copying that occurs above, one could alter-
nately first reduce closure Cr (or C’s, for which the argument
to follow is symmetric), which would eventually yield a term
of the following following form:

:= Xw.(Ad”u)))]:C~‘)([, {(z := ~w.(B”‘u)))]:Cz’))

WWb4)

which reduces to

The term above haa two (actually, two sets) of unshared
redexes with the same degree, e.g., ((Aw.(Adcu))“t) and

12

((~w.(Beeu))“f). If both are needed (which depends on the
particular abstractions chosen for A and B, a non-optimal
reduction will once again result. In the end, no matter what
choice is made, a non-optimal reduction occurs.

The informal observation that shared closures and en-
vironments alone are insufficient to implement optimal re-
duction schemes was also made independently by Curien in
[Cur86c]. He did not, h owever, provide a formal connection
(such ss that made above using labels) between redex fami-
lies in the lambda calculus and their equivalents in a formal
system using environments, nor was the system he was using
as general as the one proposed here.

7 Related Work and Conclu-.
sions

A system almost identical to ACCL has been independently
proposed by Abadi, et.al. [ACCJL89]. Its term structure is
isomorphic to that of ACCL, and its axioms are the same
with two minor exceptions. They propose to use their sys-
tem to study properties of substitutions, to describe type-
checking algorithms, and as the basis for machine-oriented
implementations of reduction schemes. They have not, how-
ever, proposed a labeled system for the study of the opti-
mality problem.

[AKP84] provides an analysis of the differences between
various lazy and fully-lazy A-interpreters without examining
the issue of optimality.

Two schemes, by Staples [Sta82] and, recently, by Lamp-
ing [Lam89], have been proposed that claim to implement
optimal A-reduction. Both seem to allow terms to be shared
that traditional environment or substitution mechanisms do

not allow. However, they are notable for their extreme com-
plexity, and it is not clear that the overhead incurred by
these schemes in order to ensure family classes are always
shared is not prohibitive.

A practical optimal reduction mechanism might indeed
exist for a restricted class of X-terms, e.g., the so-called %u-
percombinators” used in functional programming. However,
if one believes that ACCL is a sufficiently general model of
reduction using shared environments or closures, then one
must conclude that shared environments, closures, or terms
alone are insufficient to achieve optimality in a practical in-
terpreter.

To summarize, I have described a new system of combins-
tors, ACCL, with which one can describe a wide variety of
reduction methods for the ~-calculus using sharing. I have
proved that essentially any reduction in ACCL corresponds
to P-reduction in the X-calculus, and thus that A-reduction
schemes using ACCL may be proved correct trivially. I
have also described a labeled variant of ACCL, ACCLL,
which can be used as a tool to analyze the degree of lazy-
ness present in reduction schemes. I have shown, however,
that ACCL is insufficient for implementing optimal reduc-
tion schemes, and thus that more than shared closures, envi-
ronments, or A-terms are apparently necessary if optimality
is to be achieved at all.

8 Acknowledgements

I would like to thank Tim Teitelbaum for hi support, en-
couragement, and productive discussions during the genesis
of these ideas. I am also grateful to Pierre-Louis Curien
for his commente on an earlier version of this paper and to
Martin Abadi for supplying me with an unpublished version
of his joint paper. Finally, I would like to thank especially
Jean-Jacques Levy and ThCr&e Rardin for fruitful conver-
sation, providing helpful comments, and pointing me toward

related work.

A

I will

The Lambda Calculus and
Term Rewriting Systems

briefly review some of the notation for the lambda-
calculus used herein. The conventions used here will gener-
ally follow thoee of [Bar84], to which the reader is referred for
details, although a few are taken from wlo80] or [BKKS87].

A.1 Notation

C[M] denotes a contest containing M, i.e., C[M] is a X-
term with designated subterm M. M need not be a proper
subterm of C[M]. Contexts may be defined similarly for
other rewriting systems.

Ml” := N] denotes the result of substituting N for all free
occurrences of 2 in M.

/3-contraction is denoted by --+s .
The reflexive, transitive closure of -p, &reduction, is

denoted by -p.
Other notions of reduction will be defined using. analo-

gous notation: if -n is a relation, then -n will denote
its reflexive, transitive closure, and =n the induced equiva-
lence.

Since ‘=’ will be reserved to represent equality induced
by a reduction relation, I will use ‘z’ to denote syntactic
identity of X-terms. I will identify on the syntactic level
terms that are identical modulo changes of bound variable
and avoid the machinery of a-conversion, i.e., I will feel free
to say

x2.2 E X&V

(As a practical matter, some reduction schemes will require
a mechanism that effectively performs renaming. Such a
mechanism will be introduced later).

Reductions, sequences of /3-contractions, will be denoted
BB follows:

RI R2 R3 u:Mo-M,---,M2-+...+ Rn M,,

u designates the the entire reduction sequence. The Mi
are the terms of the reduction. The Ri denote the redexes
contracted at each step. Where clear from context, the Ri
may be omitted. Occasionally, it will be convenient to elide
the intermediate terms and denote the entire sequence by
u: Mt, -p IK,,.

13

A.2 The de Bruijn lambda calculus P=841
The de Bruijn &calculus [dB72,dB78] is a variant of the A-
calculus in which variables are replaced by de Bruijn num-
bersdenoting their binding depth in the term in which they
are contained. This facilitates reduction without concern for
variable %apture,” which can occur during conventional X
reduction even when the initial term of a reduction contains
no bound variables with the same name. By providing a
variable substitution mechanism that appropriately adjusts
the de Bruijn numbers of substituted terms, the de Bruijn A-
calculus eliminates the need for a-conversion. The following
definition8 are from [cur86a]

[BBKV76]

[BKKS87]

Definition A.1 The cret of termr in the de Bruijn A-
calculus, designated Ter(ADB), is defined inductively 08 fol-
lows

[CCM87]

n~hl =+ nETer(ADB)
M, N E Ter(XDB) _ (MN) E Ter(ADB)

M E Ter(AaS) _ A. iU E Ter(ADB)

where Af is the set of natural numbers.

[Chu41]

[Cur86a]

DeRnition A.2 For any M E Ter(A) such that
W(M) C (50,. . . , a~,,}, define its de Bruijn translation,
M DB(xo,.... x,) E Ter(ADB), au followr:

zDB(xo,...,x.) = i, where i is minimum s.t. z = z;

(~vJ~)DB(~~ ,_.., =.) = XJ%B(~~,=~,...,=~)

(MN), B(xo,....x,) = MDB(X~ ,..., x.)NDB(.~ ,..., I.)

(I will usually write MDB rather than MDB(~~,...,~.) when
the free variable ordering is irrelevant).

Substitution, p-reduction, and q-reduction can be suit-
ably redefined on XDBsuch that

For a concise exposition of the details of &reduction and the
substitution process, see [Cur86a]

References

[ACCJL89] M. Abadi, L. Cardelli, P.-L. Curien, and J.J.-
Levy. Explicit substitutions. In Proc. Seven-
teenth ACM Symposium on Principles of PFO-
gramming Languages, San Francisco, 1989.

[AKP84] Arvind, Vinod Kathsil, and Keshav Pingali.
Sharing of computation in functional language
implementations. In Proc. International Work-
ahop on High-Level Computer Architectuw, Los
Angeles, 1984.

[APSl] Luigia Aiello and Gianfranco Prini. An efficient
interpreter for the lambda calculus. Journal
of Cotnputer and System Sciences, 23~383424,
1981.

b%f’41 L. Augustsson. A compiler for Lazy ML. In
Proc. ACM Symp. on Lisp and Functional PFO-
gramming, Austin, 1984.

[Cur86b]

[Cur86c]

[dB72]

[dB78]

[Der87]

FJJ881

[FW87]

[Har87]

H.P. Barendregt. The Lambda Calculus, vol-
ume 103 of Studies in Logic and the Founda-
tions of Mathematics. North-Holland, Amster-
dam, 1984.

H.P. Barendregt, J. Bergstra, J.W. Klop, and
H. Volken. Degrees, reductions, and repre-
sentability in the lambda calculus. Preprint 22,
Department of Mathematics, University of
Utrecht, The Netherlands, 1976.

H.P. Barendregt, J.R. Kennaway, J.W. Klop,
and M.R. Sleep. Needed reduction and spine
strategies for the lambda cakulus. Information
and Computation, 75:191-231, 1987.

G. Cousineau, P.-L. Curien, and M. Mauny.
The categorical abstract machine. Science of
Computer Programming, 8:173-202, 1987.

A. Church. The Calculi of Lambda Conver-
sion. Princeton University Press, Princeton,
NJ, 1941.

P.-L. Curien. Categorical combinators. Infor-
mation and Control, 69:188-254, 1986.

P.-L. Curien. Categorical Combinators, Sequen-
tial Algorithms, and Functional Programming.
&search Notes in Theoretical Computer Sci-
ence. Pitman, London, 1986.

P.-L. Curien. De la difficult4 d’implbmenter le
partage optimal au sens de l&y. Unpublished
Note, Universit(! de Paris VII, 1986.

N.G. de Bruijn. Lambda calculus notation
with nameless dummies, a tool for automatic
formula manipulation, with application to the
church-Tosser theorem. Proc. of the Koninkli-
jke Nederlandse Akademie van Wetenschappen,
75(5):381-392, 1972.

N.G. de Bruijn. Lambda calculus with name-
free formulas involving symbols that represent
reference transforming mappings. Proc. of the
Koninklijke Nederlandse Akademie van Weten-
schappen, 81(3):348-356, 1978.

Nachum Dershowitz, Termination of rewriting.
J. Symbolic Computation, 3:69-116, 1987.

Anthony J. Field and Peter G. Harrison. Func-
tional Programming. Addison-Wesley, Woking-
ham, England, 1988.

Jon F&bairn and Stuart Wray. Tim: A sim-
pie, lazy abstract machine to execute supercom-
binators. In Proc. Conference on Functional
Progmmming Languagea and Computer Archi-
tectuq pages 34-45, Portland, 1987. Springer-
Verlag. Lecture Notes in Computer Science 274.

Therbe Hardin. Rdsultats de Confluence pour
lea RBgles Fortes de la Logique Combinatoire
Co~4gorique et Liens ovec lea Lambda-Calculs.
PhD thesis, Universite de Paris VII, 1987.

14

[Har89]

[HL86]

PM’161

(HOSO]

[HS86]

[HueSO]

PW41

[Joh84]

[Joh85]

l3-3~801

[KloSO]

[Lam891

[Lan64]

[Les84]

The&se Hardin. Confluence results for the pure
strong categorical logic CCL. A-calculi as sub-
systems of CCL. Theoretical Compuler Science,
65:291-342, 1989.

Th&&se Hardin and Alain Laville. Proof of
termination of the rewriting system SUBST
on CCL. Rapports de Recherche 560, Insti-
tut National de Recherche en Informatique et
en Automatique, Domaine de Voluceau, R.oc-
quencourt, B.P. 105, 78153 Le Chesnay Cedex,
France, August. 1986.

P. Henderson and J.H. Morris. A lazy evaluator.
In Proc. Third ACM Symposium on Principles
of Programming Languages, pages 95-103, 1976.

G. Huet and D.C. Oppen. Equations and
rewrite rules: A survey. In R.V. Book, edi-
tor, Formal Language Theory, PerapecCives, and
Open Problems, pages 349-405. Academic Press,
London, 1980.

J.R. Hindley and J.P. Seldin. Introduction to
Combinotors and Lambda- Galculus, volume 1
of London Malhematical Society Student Texts.
Cambridge University Press, Cambridge, 1986,

G. Huet. Confluent reductions: Abstract prop-
erties and applications to term rewriting sys-
tems. Journal of the ACM, 27(4):797-821, 1980.

R.J.M. Hughes. The Design and Implementa-
tion of Progmmming Languages. PhD thesis,
Oxford University, September 1984. (PRG-40).

T. Johnsson. Eff-cient compilation of lazy eval-
uation. In Proc. ACM Conf. on Compiler Con-
struction, Montreal, 1984.

T. Johnsson. Lambda lifting: Transforming
programs to recursive equations. In Proc.
Conference on Functional Programming Lan-
guages and Computer Architecture. Springer-
Verlag, 1985. Lecture Notes in Computer Sci-
ence 201.

S. Kamin and J.-J. Ldvy. Two generalizations of
the recursive path orderings. Unpublished note,
Department of Computer Science, Univerity of
Illinois, Urbana, IL, 1980.

J.W. Klop. Combinatory Reduction Systems,
volume 127 of Mathematical Centre Tracts.
Mathematical Centre, Kruislaan 413, Amster-
dam IOQSSJ, The Netherlands, 1980.

John Lamping. An algorithm for optimal
lambda calculus reduction. In Proc. Seuen-
teenth ACM Symposium on Principles of Pro-
gramming Languages, San Francisco, 1989.

P.J. Landin. The mechanical evaluation of ex-
pressions, Computer Journal, 6:308-320, 1964.

Pierre Lescanne. Uniform termination of term
rewriting systems. In B. Courcelle, editor,

F&75]

[L&78]

[L&80]

[LinS’l]

[Per871

[Rus87]

[StaSOa]

[StaSOb]

[StaBOc]

[StaSl]

[%a821

[Tur79]

[Wad711

[YokSQ]

Ninth Colloquium on Trees in Algebm and Pro-
gramming, pagea 181-191, Bordeaux, France,
1984. Cambridge University Press.

Jean-Jacques L&y. An algebraic interpretation
of the &3K-calculus and a labelled &calculus.
In C. Bbhm, editor, Proc. Symp. on X-Calculus
and Computer Science Theory. Springer-Verlag,
1975. Lecture Notes in Computer Science 37.

Jean-Jacques L&y. Rdductions correctes et op-
timales dons le lambda-calcul. PhD thesis, Uni-
versitC de Paris VII, 1978. (Th&se d’Etat).

Jean-Jacques Levy. Optimal reductions in the
lambda-calculus. In J.P. Seldin and J.R. Hind-
ley, editors, To H.B. Gurry: Essays on Combi-
natory Logic, Lambda Calculus, and Formalism.
Academic Press, London, 1980.

R.D. Lins. On the efficiency of categorical
combinators as a rewriting system. Software-

Practice and Experience, 17(8):547-559, August
1987.

S. L. Peyton Jones. The Implementation of
Functional Programming Languages. Prentice
Hall International, Englewood Cliffs, New Jer-
sey, 1987.

Michael Rusinowitch. Path of subterms order-
ing and recursive decomposition ordering re-
visited. J. Symbolic Computation, 3:117-131,
X987.

John Staples. Computation on graph-like
expressions. Theoretical Computer Science,
10:171-185, 1980.

John Staples. Optimal evaluations of graph-
like expressions. Theoretical Computer Science,
10:297-316, 1980.

John Staples. Speeding up subtree replacement
systems. Theoretical Computer Science, 11:39-
47, 1980.

John Staples. Efficient combinatory reduc-
tion. Zeitschr. f. math. Logik und Grundlagen
d. Math., 27:391-402, 1981.

John Staples. Two-level expression representa-
tion for faster evaluation. In Proc. Second In-
ternationnl Workshop on Graph Grammars arrd
Their Applications, pages 392-404. Springer-
Verlag, 1982. Lecture Notes in Computer Sci-
ence 153.

D.A. Turner. A new implementation technique
for applicative languages. Software-Pmctice
and Ezperience, 9:31-49, 1979.

C.P. Wadsworth. Semantics and Pragmatic8 of
the Lambda-Calculus. PhD thesis, Oxford Uni-
versity, 1971.

Hirofumi Yokouchi. Church-rosset theorem
for a rewriting system on categorical combi-
natore. Theoretical Computer Science, 65:271-
290, 1989.

15

