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Abstract 

In this paper, I introduce a new formal system, ACCL, 
based on Curien’s Categorical Combinators [Cur86a]. I show 

that ACCL has properties not possessed by Curien’s orig- 
inal combinators that make it particularly appropriate as 
the basis for implementation and analysis of a wide range 

of reduction schemes using shared environments, closures, 
or X-terms. As an example of the practical utility of this 
formalism, I use it to specify a simple lazy interpreter for 
the )c-calculus, whose correctness follows trivially from the 
properties of ACCL. 

I then describe a labeled variant of ACCL, ACCLL, 
which can be used as a tool to determine the degree of Sazi- 
ness” possessed by various A-reduction schemes. In particu- 
lar, ACCLL is applied to the problem of optimal reduction 
in the X-calculus. A reduction scheme for the kcalculus is 
optimal if the number of redex contractions that must be 
performed in the course of reducing any .&term to a normal 
form (if one exists) is guaranteed to be minimal. Results of 
LCvy [LCv78,LCv8O] showed that for a natural class of reduc- 
tion strategies allowing shored redexes, optimal reductions 
were, at least in principle, possible. He conjectured that 

an optimal reduction strategy might be realized in practice 
using shared closures and environments as well as shared X- 
terms. I show, however, using ACCLL, a practical optimal 
reduction scheme for arbitrary X-terms using only shared 
environments, closures, or terms is unlikely to exist. 

1 Background 

There has been much recent interest in efficient implemen- 
tations of lazy functional programming languages whose se- 

*This research was supported by NSF grent DCR X2-02677 
and ONR grant NOOOO14-88K-0594. 

t Author’s Address: Department of Computer Science, Cor- 
nell University, Upson Hall, Ithaca, NY 14853. Electronic mail: 
field@cs.comell.edu. 

Permission to copy without fee all or part of this material is granted 

provided that the copies are not made or distributed for direct 

commercial advantage, the ACM copyright notice and the title of the 

publication and its date appear, and notice is given that copying is by 

permission of the Association for Computing Machinery. To copy other- 

wise , or to republish, requires a fee and/or specific permission. 

@ 1990 ACM 089791-343-4/90/0001/0001 $1.50 

mantics are based on normalizing reduction schemes for the 
Xcalculus [Pey87,FH88]. Most such implementations have 
made use of some combination of the notions of graph re- 
duction [Wad?l,Aug84,Joh84], environments [Lan64,HM76, 
AP81,FW87] or combinatora [Tur79,Hug84,Joh85]. The first 
two are means to allow certain redexes to be effectively 
shared during reduction; the latter can be considered a re- 
stricted form of X-expression for which certain implementa- 
tion techniques are more efficient. 

While ail these methods are normalizing, that is, guar- 
anteed to yield a normal form’ if one exists, all end up 
performing more @-contractions than are absolutely neces- 
sary by effectively copying redexes. In some cases, this lack 
of sufficient laziness can result in considerable unnecessary 
additional computation. Concern for this phenomenon led 
to the introduction of methods allowing “fully-lazy” reduc- 
tion [Hug84]. However, J.-J. Levy’s analysis [L&78&%80] 
made clear that there was a wide range of laziness possible, 
ranging from profligate (simple leftmost /l-reduction without 
sharing) to optimal, with full-laziness actually somewhere 
in between. The exact nature of laziness in various imple- 
mentation has apparently heretofore been something of a 
mystery”, and I aim here to give means to analyze this phe- 
nomenon more precisely. 

This paper presupposes a familiarity with the ~-calculus 
[Chu41,Bar84,HS86], the de Bruijn ~-calculus [dB72,dB78, 
CurSGal, and basic ideas from term rewriting systems [ROBO, 
Hue80,Der87]. A brief review of relevant concepts and no 
tation for these subjects is provided in Appendix A. An 
acquaintance with with Curien’s Categorical Combinators 
[CurBGa,Cur86b,CCM87], and with the work of Lbvy on op 
timality [L&78,L&vBO] would also be useful. 

‘Technically, implementations of functional languages gener- 
ally yield weok heod norm01 forma. 

2Peyton Jones [Pey87, p. 400) states that “. . . it is by no means 
obvious how lazy a function is, and.. . we do not at present have 
any tools for reasoning about this. Laziness is a delicate property 
of a function, and seemingly innocuous program transformations 
may lose laziness.” 
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2 Redex Sharing and Environ- 
ments 

Consider the >-term M Z (Ag.(vr))(Zz), where Z G Az.2. It 
may be reduced to a normal form in any one of three ways: 

Example 2.1 

u1: M - (ZX)(Z%) - x(Za) - 2% 
62: M - (Z%)(Z%) - (Zz)z - 2% 
us: M - (Ap(yy))z - %% 

u1 is a leftmost reduction-one where the leftmost redex is 
contracted at each step. us is an opplicutive order reduction, 
where (informally) the argument part of a redex is reduced 
to a normal form before the redex is contracted. It is ev- 
ident that us reaches the normal form (zz) in the fewest 
steps. It would clearly be desirable to have an optimal re- 
duction strategy-one that always yields a normal form if 
one exists (i.e., is normalizing) and is also guaranteed to do 
so using the fewest possible redex contractions. Unfortu- 
nately, results of Sarendregt, et al. [BBKV76], show that no 
such (recursive) strategy exists. However, we can improve 
matters considerably by extending the model of reduction a 
bit. 

Note in the example above that the redex (Zz) of M is 
copiedin reductions ur and ur, since it is substituted for two 
instances of y. A natural alternative to copying expressions 
in arguments is to #hare them instead, using a graph-like 
data structure. The idea is illustrated below: 

Example 2.2 

ui proceeds from left to right, analogous to or. In this case, 
however, the redex (Zz) is shored, rather than copied, as a 
result of its substitution for the two instances of variable 
y. The result of (1%)‘~ reduction to E is shared as well. 
Using this method, the normal form’s graph representation 
is reached after only two reduction steps. 

Wadsworth’s gmph reduction algorithm [wad711 formal- 
izes the idea of Example 2.2. It combines a leftmost re- 
dex selection strategy with sharing of argument expres- 
sions. However, Wadsworth’s algorithm is not optimal. If 
we contract non-leftmost redexes, shorter reductions (still 
using shared argument expressions) can be achieved, as 
the following example illustrates: Let N I (Nt Ns), where 
NI E Xz.(zw)(zz) and Ns 3 .4v.(Zy). Then the following 
are two graph reductions of N: 

Example 2 .S 

Wadsworth’s algorithm performs reduction ~1, while ps 
reaches the normal form in fewer steps by contracting the 
shared (Zy) redex inside Ns before applying it to either w 
or z (a minimal length reduction can also be achieved with- 
out any sharing by contracting the (Zy) redex before Nt is 
applied to Ns). 

Reducing inner redexes, as in ps, seems to bring about 
shorter reductions in many cases. Unfortunately, contraction 
of arbitrary inner redexes can sometimes lead to unnecessar- 
ily diverging reductions, as is the csse with the applicative 
order strategy. Wadsworth’s scheme reduces only leftmost 
redexes in order to ensure norm&ability (although this is 
not by any means the only way to do so, see [BKKSS’I]). 

There is evidently a subtle interplay among the issues of 
efficiency, normalieability, and redex sharing. The quandary 
is then to find a way to edge closer to the brink of optimality 
without plunging into the abyss of non-normalizabiiity. 

By examining the reductions above, however, we can see 
that Wadsworth left the door open to further improvements 
by not taking advantage of all conceivable opportunities for 
redex sharing. Note in pt that as Nr is applied in sequence 
to w and to L, the inner redex (Zu) is effectively copied (af- 
ter each substitution for 9). If there were some means to 
porometricolly share the (Zy) redex while still substituting 
w and t separately for I, more efficient, and perhaps opti- 
mal reductions might still be achievable. This suggests the 
use of the notions of environment and cloaue familiar from 
implementations of programming languages. 

2.1 Reduction Using Environments 

A number of reduction schemes for the &~&~lus have been 
proposed using environments. These include that of Laudin 
[La4 using applicative order evaluation, and updated ver- 
sions devised by Henderson and Morris (HM76] and Aiello 
and Prini [AP8i] to accommodate leftmost evaluation. Each 
of these systems avoids immediate substitutions for all in- 
stances of bound variables in the body of a X-abstraction 
after &contraction, constructing a closure instead. 

To be more specific, an environment consists of sets of 
mappings between variable names and values, or bindings. 
The result of a &contraction is then a closure consisting of 
the body of the abstraction part of the redex, paired with an 
environment updated to contain the binding of the abstrac- 
tion’s bound variable to the argument of the redex. The idea 
is illustrated below: 

(Xz.(zz))N - [(a), ((2 := N))] 

In general, [T, E] will represent a closure consisting of term 
T and environment E. An environment is denoted thus: 

ULBZ,...)) 

where Z31, &, etc. are bindings. 

The following example (using the same term as in Ex- 
ample 2.2) shows that sharing of X-terms can be achieved 
indirectly through shared bindings: 



Example 2.4 

(WUU))(~~) - t(w)* ((Ii := (I%)))] 
- (rul lb, I) 

t-L au := (Z%))) 
- (b, lb7 I) * * - - (2%) 

I-L ((u := 2)) 

Use of closures obviates copying any part of the body of an 
abstraction after &contraction. Wadsworth’s scheme, how- 
ever, copies the parts of the body of an abstraction contain- 
ing the abstraction’s bound variable, in order to avoid in- 
correct substitutions in pieces of the abstraction’s body that 
might be shared by other terms. By using environments, 
the body of the abstraction term, and hence any redexes 
contained therein, have the potential to be shared, avoiding 
redundant reductions. 

Below is another reduction using the term of Example 
2.3, showing that shared environments can be used to mini- 
mize the number of redex contractions performed in a nomi- 
nally leftmost strategy: Once again, let N E (NINz), where 
Nl E Xz.(zw)(zt) and N2 z Xy.(Zy). Then, using shared 
environments, we have: (repeated meta-variables such as I% 
below correspond to terms or environments shared through 
graphical data structures) 

Example 2.5 

N - [(XW)(X%), ((2 := Iv4 - * * - 
- ((k? mw, 4) K-h m 

where e s ((x := Ns)} 

- CM2 rwt 0 [(=I, a 
where I? z ((2 := rs,)), fl2 = h/.(ZY) 

- . . . 

Note that the (Zy) redex in N2 is reduced in a shared envi- 
ronment, independently of the substitution for free variabl? 
g in closures that refer to N2 

The question then arises as to whether some combination 
of shared environments, closures, and terms could be used to 
achieve an optimal reduction scheme, or at least improve on 
Wadsworth’s method. To pxoceed any further, we will need 
a more formal system to study reduction using environments 
and closures. 

3 ACCL 
In [CurBGal, P.-L. Curien defines a number of equational 
theories based on Cartesian Closed Categories (CCCs) using 
terms from the Pure Categorical Combinatory Logic, CCL. 
Curien observed that the CCC axioms could model reduction 

in the ~-calculus, i.e., its operational semantics as well as its 
denotational semantics. Treated as combinators, Curien’s 
axioms have the advantage of avoiding the difficulties with 

variables and substitution normally encountered in the X 
calculus, and thus has aspects in common with the de ErGin 
A-calcuius [dB72 ,dB78]. 

One set of equational axioms, deemed Weak Categori- 
cal Combinatory Lo&, is the basis for the Categorical Ab 
etract Machine ([CCMS?]). However, Curien proposed no 
system strong enough to simulate arbitrary B-reductions in 
the X-calculus that could itself be simulated using only p- 
reduction. It such a system were available, it would pro- 
vide an immediate proof of correctness for any reduction 
scheme for the ~-calculus based on it (since any combinator 
reduction would correspond to a b-reduction). X-reduction 
methods based on Categorical Combinaturs proposed thus 
far, such as the Categorical Abstract Machine and scheme6 
by Lins &in87], have heretofore required ad-hoc proofs of 
correctness. 

To provide a more sophisticated tool for modeling A- 
reduction using environments, 1 will define a new Z-sorted 
equational theory, ACCL, akin to Curien’s theory CCLB. 
It8 sort structure makes possible prooh of close correspon- 
dence between B-reduction and ACCL reduction not pos- 
sible in Curicn’s original theory. While this modified term 
structure obscures the elegant categorical origint? of Curien’s 
original system, it makes its connection to reduction with 
environments much more evident. 

In the sequel, I will wsume that any X-terms under con- 
sideration are actually terms of the de Bruijn x-calculus, 
although I wiU feel free to give examples using named vari- 
ables. 

3.1 Term Structure 

Definition 3.1 The terms of AC-CL are built from a set of 
variables and constructors over a two-rorted signokre. The 
sorts ore au fd10?66: 

- C, the sort of lambda-like expressions 

- f, the aort of environments 

The constructor-6 ore listed below. Each construclor is given 

with the 6ort of the term constructed and the sorts of its ar- 
gument(6) specified in the corresponding argument positions. 

Var:L 
Apply(L, t): L 

A(L): L 
[C, &]:L 

$:E 

(E, ;:“E 
&oE:E 

(variable reference) 
(opplicdtion) 
(abstmction) 
(C106UFV) 

(null environment) 

(MV 
(eaprewion list) 
(environment composition) 

The terms of ACCL will be denoted by Ter(ACCL) and 
the closed fermu, thoee terms containing no variablea, by 
Terc(ACCL). 

The following notation (for ude Bruijn” numbers) will be 
used: 

Defbition 3.2 

n= 0 
n>O 



where 

Cl 

L 

II= 
0” E q 0(00(...(000)...)) a>: I 

n times 

The intuition behind the term structure of ACCL is fairly 
straightforward: Terms of sort L are analogous to terms in 
the de Bruijn ~-calculus, after variable numbers are encoded 
as above. Closures are created by the ACCL equivalent of /3- 
contraction. Environments are essentially lists of terms, the 
association between bound variables and the terms to which 
they are bound being represented implicitly by position in 
the list. Au environment informally presented as 

((21 := M1,z2 := M~,...,z,, := M,,)) 

is represented in ACCL as 

(((---(It Mm)...), Mz), Ml). 

“0” allows separate environments to be merged. The only 
perhaps mysterious term present is ‘Cl”, which when com- 
posed on the left with an arbitrary environment effects the 
“shifting” of de Bruijn numbers required when environments 
are moved inside abstractions, and when composed on the 
right with an environment causes the outermost piece of the 
list to be stripped away in the course of variable lookup. All 
these operations are embodied in the axioms below: 

3.2 Axioms 
Definition 3.3 The tioms of ACCL ore ad follows: 

(Beta) APP~Y(A(A), B) = [A, (a, B)] 
W-C) [[A, El], Ez] = [A, EI 0 Ez] 

(NuIIEL) BoE=E 
(NnlIER) Eolil=E 
(Shift E) Oo(E, A)=E 
(VarRef) l-V=, (E, A)] = A 
(DA) [A(A), E] = A&% (E 0 0, Var)l) 
(“El (El, A)oEz=(EloEz, [A, &I) 
;;“P$Y’ [Apply@, B), El = Apply&& El, P, 4) 

(N’&C) 
(E~oE2)oE~=E~o(EzoEs) 

[A, @]=A 

I define a related equational theory, ECCL, as follows: 

Definition 3.4 The azioms of ECCL are those of ACCL 
without rule Beta. 

It will be useful to consider ACCL as the union of two sys- 
tems intended for different purposes: ECCL, which governs 
manipulation of environments, and (Beta), which models 
&reduction. 

3.3 ACCL as Rewriting System on 
Closed Terms 

By orienting the equations of ACCL from left to right, they 
can be treated as a term rewriting system. The notation 

-*CCL will be used to denote the application of a rule 
of ACCL in some context, i.e., A-ACCL B if and only 
if A z C[X], X may be rewritten to Y using one of the 
oriented axioms of ACCL, and B E C[Y] (contexts are de- 
fined in Appendix A. I will use similar notation for ECCL 
and applications of single rules of ACCL, e.g. -(By*.) , 
However, I will restrict myself in the sequel to the closed 
terms of ACCL, Terc(ACCL). Since I am interested in 
using ACCL to model A-reduction rather than to prove the- 
orems, this restriction will be of no concern. More impor- 
tantly, in conjunction with the a-sorted term structure of 
ACCL, the restriction to closed terms makes it possible to 
prove properties of ACCL that did not hold for arbitrary 
terms of Curien’s system CCL/3. I will refer to the formal 
theories and their corresponding rewriting systems by the 
same name. The following properties hold of ACCL: 

Theorem 3.1 ECCL is noetherian (strongly normalizing). 

Proof We can orient the rules of ECCL by combining the 

recursive path ordering method of Dershowitz and the leti- 
cogruphic path ordering method of Kamin and L&y (both of 
which are described in [Der87]) using an extension of Lee 
canne’s notion of status [Les84]. 

We first order the operators of ACCL as follows: 

B < 0 < Var < A(,) < Apply(., .) < (., .) < [., .] = o 

Let A and B be terms of ACCL, whose outermost oper- 
ators are f and g, respectively. We then define the following 
quasi-ordering such terms: 

if 

or 

A E f(a,, . . . , &?I) >- B=g(t1,...,tn) 

Si & t, for some i = 1.. . m, 

f>g and 8 + tj for all j = 1 . ..n. 

or 

or 

or 

{=s,f f o,f $ ia, 4 and 
Sl,...,&n)~M (t1,...tn} 

f zf 

zoorfE[., -1, and 

,... ,bn)~*(tl,.-.tn) 

y,gl f ; y;[i;;l: , , rl;” 
. ..I m _ n 

where ?.M is the extension of 2 to multisets of terms and 2. 
is the lexicographic extension of k to sequences (see [Der87] 
for details of these extensions). 

Depending on the “status” of unordered pairs of opera- 
tors, either the multiset or lexicographic ordering is used to 
compare operands. The ordering defined above is a well- 
quasi-ordering on terms of ACCL since it meets Kamin 
and LCvy’s requirements for a simplification ordering[KL80]. 
Generalizations of Lescanne’s notion of status were sug- 
gested in [Rus87]. Using this ordering, it is straightforward 
to show that if A---+EccL B, A >- B, and thus that ECCL 
is noetherian. 0 
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Lemma 3.2 BCCL and (Beta) commute, i.e., Theorem 3.2 ECCL is cqnfluent (thus Church-Rossser) 
on closed terms, i.e., 

A -ECCL Et A A -ECCL B2 

--r4 @c) BI -ECCL (7 A B2 -ECCL c 

Proof We can show ECCL confluent by showing critical 
pairs to be locally confluent [Hue80]. The only problem oc- 
curs with the rule pair (DA) and (NuilC), for which we 
must show 

(VA)(Vn) [A, (((-s-(0”, (n - l)!) --a), l!), O!)] -ECCL A 

and 

(‘da??)(h) E 0 (((... (On, (tz - I)!). . a), I!), O!) -ECCL E 

which can be proved for closed terms by a straightforward 
induction on the structure of A or E. The a-sorted structure 
of terms of ACCL is essential to this argument. 0 

We can also have the following 

Theorem 3.3 (Beta) is confluent, i.e., 

A-(Beta) Bt A A -(Beta) B2 

--( (=) & -(Beta) c A Bz -(Beta) (7 

Proof (Beta) redexes cannot overlap (i.e., there are no 
critical pairs), confluence thus follows trivially. 0 

We can now show ACCL confluent by a technique similar 
to the Tait/Martin-L6f proof of the Church-Rosser property 
for the ~-calculus. The following reduction relation will be 
useful: 

Definition 3.5 

-Dev q -ECCL * -(Beta) ’ -ECCL 

where ‘- ’ denotes relational composition. 

*DeV is intended to correspond roughly to the notion of a 
developmentin the X-calculus. As usual, -De” represents 
the reflexive, transitive closure of -*De”. I also define the 
following variant of ECCL: 

Definition 3.6 The azioms of BCCL consist of those of 
ECCL without rule (DApply). 

In order to show ACCL confluent, we need the follow- 
ing sequence of lemmas, each represented as a commuting 
diagram (dotted arrows denote reductions existentially de- 
pendent on the arbitrary reductions represented by solid ar- 
rows) : 

Lemma 3.1 BCCL and @eta) strongly commute, i.e., 

fBdr1 

Proof Trivial, since BCCL and (Beta) have no critical 
pairs. 0 

(Beta) 

Proof Fill the diagram using lemma 3.1 (by induction on 
the lengths of the ---CCL and -(Bet.) reductions). 0 

Lemma 9.3 
(Beta) 

ECCL l,,l_,,,_,J BccL 

Proof One need only consider the critical pair of 

APP~Y([A(A), El, [B, El) and [[A, (fl, B)], El, for which 
it is easy to show there is a common reduct using the sort 
of reductions required by the lemma. 0 

Lemma 3.4 
(EM*) 

ECCL i,,_,,,_,,,j BccL 

Proof If the ECCL rule used is not (DApply), then the 
result follows from lemma 3.2. Otherwise, the (DApply) 
redex in the diagram’s premise can also be a (Beta) redex. 
Without loss of generality, assume that some subterm is both 
a (Beta) redex and a (DApply) redex, and that it is the first 
redex contracted in the (Beta) reduction. (Since (Beta) 
redexes cannot create other (Beta) redexes, redexes in a 
(Beta) reduction can be permuted arbitrarily). We can then 
construct the desired diagram using lemmas 3.3 and 3.2 ss 
follows: 

(Bet.) (Bet.) 

I 
n 

* 
8 I 

ECCL 

I 

BCCL 1 

%5EL-- p;c~- -ti?bx- 

0 

Lemma 3.5 

ECCL 

(Bear) 

I- 

L 
I 

ECCL : BCCL 

-EEEt’-~bX;~--lk%L- i 

Proof Follows by noetherian induction (see [BueBO]) on 
the left-hand ECCL reduction using lemma 3.4 as a base 
case. (The rather odd -ECCL appendage in the upper 
left-hand corner of the diagram is required to provide the 
appropriate induction hypothesis). 0 

5 



Lemma 3.6 
ECCL (Bela) ECCL 

c 

4 
I 
I 

: ECCL 

i 

I 
; (Bet.) 

i 

I 
i : 

ECCL ; ECCL 

J “i%XX~~B’ci~“~iEEL 

Proof Simple diagram construction using lemma 3.5, the- 
orem 3.2, and theorem 3.3. D 

Proof The reductions used in lemma 3.6 are d&v con- 
tractions, and the theorem thus follows by diagram chase. 
0 

Theorem 3.4 ACCL is confZuent on closed termr. 

Proof -*cr and --ACCL are relationally equivalent. 
Thus from Lemma 3.7, we must conclude that -ACCL is 
confluent. 0 

Theorem 3.4 is a principal result; Curien was unable to 
exhibit a confluent system strong enough to model arbitrary 
reductions in the ~-calculus. However, independent work 
of Hardin [Har87,Har89] and Yokouchi wok891 has led to a 
characterization of subsets of Curien’s original CCL terms 

for which confluence of the system CCL/3 can be proven. 
By contrast, the 2-sorted term structure of ACCL rules out 
the construction of “uninteresting” terms that Hardin and 
Yokouchi’s CCL subsets explicitly omit. 

Yokouchi’s technique for proving the confluence of CCLB 
on subsets of terms is quite similar to the confluence proof 
given here. Lemma 3.5 was used in an earlier version of 
this paper to prove a somewhat stronger intermediate result 
than lemma 3.6; the proof used here was simplified upon ob- 
serving that Yokouchi’s proof of confluence essentially used 
lemma 3.5 directly, without resort to a more complicated 
intermediate lemma. Hardin’s proof of relies on confluence 
of the X-calculus. 

Hardin and Yokouchi’s proofs of confluence both rely on 
the fact that a “substitutive” subset of CCL similar to 
ECCL is noetherian. Thii was shown to be the csse by 
Hardin and Laville [HL86], but required considerable inge- 
nuity, since the substitutive part of CCL is apparently im- 
mune to more conventional techniques used to show termi- 
nation. The proof that ECCL is noetherian is considerably 
simplified by its term structure, which in particular admits 
a distinction between closures and environment not present 
in CCL. 

3.4 Normal Forms 

Definition 3.7 The set of lambda normal forms (LNF) is (I 

subset of the terms of ACCL, defined inductively 08 follows: 

n! E LNF 
AELNF ==+ A(A)c LNF 

A E LNF, B E LNF --7 Apply (A, B) E LNF 

Lambda normal forms are intuitively those terms that “look 
like” terms of the (de Bruijn) X-calculus. 

Theorem 5.5 All lambda-like ezpressions (terms of sort Cc) 
of ACCL are reducible to a lambda normal form, using the 
rules of ECCL. That is, 

(VA: L) (38 E LNF) 3-t. A -ECCL B 

Proof Simply note that any term of sort C that is not in 
LNF contains an ECCL redex. Keep reducing such redexes 
using rules of ECCL until LNFla reached, which must hap 
pen eventually since ECCL is noetherian. •I 

For any term A:&, I will refer to its corresponding term 
B E LNF by Inf(B). S ince ECCL is confluent and terms in 
LNF are irreducible in ECCL, this normal form is unique. 

Definition 3.8 The set of partial environment normal 
forms (PENF) is a subset of the terms of ACCL defined 
inductively as follows: 

ii E PENF 

0” E PENF 

E E PENF a (E, A) E PENF 

Theorem 3.6 All environments (terms of sort E) of 
ACCL are reducible to a partial environment normal form 
using the rules of ECCLr 

(VEI: E) (3% E PENF) s.t. EI -ECCL E2 

Proof Once again, we can observe that every term of sort 
E that is not in PENF must contain an ECCL redex. Such 
redexes can be reduced until the normal form is reached. 0 

Terms in PENF are not necessarily irreducible in ECCL, 
thus partial environment normal forms are not unique. 

3.5 Translation 

We can now show state the translation between terms of the 
de Bruijn &calculus and terms of ACCL. 

Definition 3.9 For ony term M E XDB, we can define a 

corresponding term UMUAccL E ACCL inductively as fol- 
lows: 

KllaccL = i! 

uPwl*ccL = *wn,ccL) 

u(~J5~n*CCL = APP~Y(U~~,,,~,~ IIW~XL) 
The reverse transformation, Unix, is defined in the obvious 
way on members of LNF. 
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3.6 Equivalence 

I now claim that there is an equivalence between &reduction 
and reduction of terms of sort C in ACCL. The following 
two lemmas are required: 

Lemma 3.8 Let M and N be arbitrary terma of the 
(de Bruijn) X-calculus such that M -+p N. Then 

wn accL~ LNF-AccL[N&~~~E LNF 

Proof A construction isomorphic to that used by Curien 
in [Cur86a] to prove a similar result for CC&p suffices, and 
is omitted here. The ACCL equivalent of his construction 
has the following property: 

M ----+P N ==+ WI UMllaccL -(Beta) B and 

Curien’s construction yields the following corollary: 

Corollary 3.1 If A E LNF, C E LNF, and there ez- 
ists B such that A-cBeta) B and B--wECCL C then 

IT4 -aUBllx 
Proof Since (Beta) redexes are non-overlapping, we can 
perform Curien’s /3-simulation separately on each (Beta) 
redex contracted in the reduction from A to B, yielding a 
term in LNF at each stage. Once this process is complete, 
the resulting term must be C, since ACCL is confluent and 
CELNF. 0 

We can now prove the other direction: 

Lemma 3.9 Let A: L --~CCL E. Let lnf(A) = A’ and 
Inf (B) = E’. Then nAqx -p [B’&. 

Proof Divide the ACCL reduction into subreduc- 
tions alternating use of ECCL rules and uses of rule 
(Beta). The proof then reduces to showing that if 

Ai *(zeta) Ai+I 1 Inf(A;) = Ai’, lnf(A;+l) = Ai+l’p then 

UAi’II, -0 flAi+l’],. This can be done using corollary 3.1, 
which is used in the construction below: 

We can use the construction of the term above to make 
the following definition: 

Definition 3.10 Let A be a term of ACCL containing a 
(Beta) redez B. Then the residuals of l3 (relative to the 
reduction of A to ZNF) are those (Beta) redezes contracted 
in the proof of Lemma 3.9 to simulate p-reduction in Inf(A). 
The set of such residuals is denoted by Resid(B, A). 

Putting the results from lemmas 3.8 and 3.9 together 
yields: 

Theorem 3.7 Given M 6 Ter(ADB), 

This result shows that any reduction of a ACCL term A E 
LNF simulates a reduction in the X-calculus. 

We can now show that in terms of the number of (Beta) 
contractions performed, ACCL is always at least as efficient 
as the corresponding reduction in the Xcalculus: 

Theorem 3.8 Let a:A --~cc~ B be u reduction in 
ACCL. Let hf(A) = A’ and Inf(B) = B’. Let 

P: UA’Jx -B [B’& be the reduction given by Lemma 3.9. 
Then the number of /3-contrcactiow in p is greater than or 
equal to the number of (Beta) contractions in 6. 

Proof Direct corollary of proof of Lemma 3.9. 0 

Any reduction scheme for the &calculus implemented us- 
ing ACCL would have to perform ECCL reductions as 
weU as (Beta) contractions, but it is not unreasonable to 
count the former as “overhead,” as do many other reduction 
schemes that manipulate environments as well as contract- 
ing P-redexes. One can generally show that in a reasonable 
reduction scheme, the number of ECCL reductions required 
is proportional to the number of (Beta) reductions and the 

size of the initial term. 

3.7 Example and Applications 

Let M s Xy.((Xz.z)v). We then have 

M -P b-v 

The equivalent term in ACCL after encoding variables, is 
given by 

wnrccL 3 A(Apply(A(O!), O!)) s A(Apply(A(Var), Var)) 

We then have 

A(W-WA(Var), W) 
-(Beta) NIk 04 
-(~dtd) NW 

and 
Uh(Var)& S Xy.y 

WI) 

In essence, ACCL is just a formalization of the informal 
notions of closure and environment given in the introduction, 
coupled with a mechanism for indexing environments. 

If we treat the axioms of ACCL as transformation rules 
on terms, we can note that opportunities for sharing of 
terms in practical reduction schemes are inherent in the rule. 
Met&variables in the axioms may be treated as pointers to 
terms, and transformations on terms using the axioms as 
rules should simply copy the corresponding pointer when a 
meta-variable appears on both sides of the equation, rather 
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than copying the entire term. When a met&variable is re- 
pealedon the right side of the equation, as with rules (DAp 
ply) and (DE), the term-pointers corresponding to the re- 
peated variables may safely be set to point to the same term, 
creating graph-like structures. When any of the rules which 
contain a single met&variable on the right side are applied, 
one has a choice of using indirection nodes of some sort or 
copying the topmost operator of the term. 

I will not pursue a formal characterization of sharing 
here; an informal approach suffices for the purposes of the 
discussion here. More formal techniques for describing re- 
duction using sharing have been proposed by Staples in 
[StaSOa,Sta80b,Sta80c,Sta81]. 

Figure 1 describes an algorithm, rwhnf(), that trans- 
forms a term of the form [A, E] to the ACCL equivalent 
of weak head normal form, WHNF. It is very similar to the 
interpreters of Henderson and Morris [HM76]) and Aiello 
and Prini [AP81]. The algorithm is specified using rules 
of ACCL, a recursive redex selection strategy, and shared 
terms. Since this function simply applies ACCL rules to a 
term in a fixed order, Theorem 3.7 shows it to be correct 
(i.e., that it effectively performs P-reduction and nothing 
else). Though the algorithm is not fully-lazy in the sense 
of Wadsworth, it illustrates the simplicity with which inter- 
preters can be specified using ACCL, and functions as a 
starting point for much more lazy interpreters that can be 
analyzed using ACCLL. 

The normalization properties of reduction schemes using 
ACCL depend on whether or not applications of the rule 
(Beta) are needed; this property is discussed below. rwhnf() 
does indeed turn out to be normalizing. 

Given M E Ter(XDB), we construct term [[MIACCL, 01 E 
Ter(ACCL), and reduce it to (B E WHNF) I [NlaccL. 
We thus have M -#N, N E whnf. Figures 2, 3, and 
4 are algorithms for normalizing environments (to “partial 
environment normal form,” PENF). 

The functional notation used in the algorithm should 
be reasonably self explanatory for someone familiar with 
a language such as ML or Miranda. However, the algo- 
rithm should be considered a recursively specified sequence 
of transformations on the term given 8s argument, not a 
true function, since no value is to be returned. The case 
statement executes various statements depending on a pat- 
tern to be matched. Subpatterns within larger patterns are 
named using the notation “subpot: A” Pattern variables rep 
resent pointers to terms, and if a pattern variable appears 
on the right side of a pattern, the pointer to the term rep 
resented by the variable, not the term itself, is copied. “:=” 
causes a term to he overwritten according to some rule of 
ACCL; only those parts of the overwriting term not named 
by pattern variables are newly allocated. Statements inside 
%eq., . endseq” are executed in sequence. copy(A) copies 
the topmost operator of A; all of A’s subterms are referred 
to by pointers in the new term. 

rwhnf([l, E]:C) P 
ca8eLof 

APP~Y(& B): seq 
C := Apply ([A, E]: A’, [B, E]: B’); 

{rule DApply } 
rwhnf(A’); 
if A’ I [A(A”), E’] 
then seq 

C := [A”, (E’, B’j]; {rule Beta’] 
rwhnf(C); 
endseq 

else skip; 
A(A): skip; (C E WHNF} 

[Ll, El]: seq 
C := [Cl, El o E]; {rule AssC} 
rwhnf(C) 
endseq; 

(Var: LI): seq {C = O!} 
rpenf (E); {transform E to PENF} 
case E of 

0: C:=L; 
{rule NullC) 

0”: skip; 
{E = IT’, thus C E WHNF} 

(E, A): seq 
rwhnf(A); 
C := copy(A); 

{rule VarRef, C E WHNF} 
endseq 

endcase 
endseq 

endcase 
endfn 

Figure 1: Algorithm rwhnf() 

rpenf(E) z 
case E of 

e: hipi 
0”: skip; 

(El, A): rpenf(Er); 
El o ES: seq 

rpenf( El); 
rpenf (Ez); 
composeEnvs( E) 
endseq 

endcase 
endfn 

Figure 2: Algorithm rpenf () 

{E E PENF} 
{E E PENF} 



’ composeEnvs((El 0 E2): E) E 
case El of 

0: E := E2; 
0: distribShiftL(E); 
((0: ES) o Ed): seq 

{El, E2 E PEW} 

{rule NuIIEL} 

(~5, 

endcase 
end& 

E := ES o (( Eh o ES): E’); {rule AssE} 
composeEn vs (E’ ) ; 
distribShiftL(E) 
endseq 
A): seq 
E := ((Es o E2): E’, [A, E2J); 

{rule DE} 
composeEn vs ( E’ ) 
endseq 

Figure 3: Algorithm composeEn vs() 

distribSbiftl(((o: El) o E2): E) 3 (E2 E PENF) 

case EZ of 
0: E:=El; {rule NuIlER} 
0”: skip; {E = IT’+’ E PEAJP, n > 0) 
(ES, A): E := ES {rule ShiftE) 

endcase 
endfn 

Figure 4: Algorithm cfistribShiftl() 

4 Opt imality Criteria 
In [LCv78,LCv80], J.-J. Levy studied the issue of optimal re- 
duction in the X-calculus in light of the previous work of 
Wadsworth on graph reduction. LCvy noted that by shar- 
ing redexes through graph structures, Wadsworth was essen- 
tially contracting multiple @-redexes in parallel. L&y was 
able to define a natural class of parallef reductions on re- 
dexes thbt are essentially copies of one another, and specify 
criteria that would have to be satisfied by any optimal par- 
allel reduction of sets such copies. The notion of copy Levy 
had in mind was sets of identical terms, modulo substitu- 
tions for free variables. Such copies are exactly the terms 
created by the process of substituting the argument term 
for multiple instances of the binding variable in the body of 
a A-term, and are formally known as residuals. 

His critical observation was that by examining a term and 
the reduction that produced it (its “history”), it is decidable 
which sets of redexes in the term are copies of some redex, 
or more importantly, could houe been copies in an alternate 
reduction (beginning and ending ‘with the same term). He 
noted that by reducing maximal sets of such copies in par- 
allel, an optimal reduction could be achieved. The ques- 
tion was then whether any practical reduction scheme could 
be implemented that would ensure that all such copies are 
shared, and thus for which contraction of a single term would 
effectively contract all copies. Levy speculated that some 
scheme using shared closures, which permit contractions in- 
dependent of substitutions for free variables (i.e., environ- 
ments) might allow optimal reduction. 

[L6v78] makes use of an extension to the ~-calculus that 
allows terms to be labeled. Such annotations allow specific 
terms to be “traced” as a reduction progresses, and provides 
means to compare different reductions. In addition, the la- 
belings are modified during the course of a reduction in such 
a way that the reduction Uhistory” of a particular term is evi- 
dent on inspection. An alternative analysis in [L&80] avoids 
labelings, and instead allows reductions to be compared us- 
ing the idea of meta-reduction, or reduction on reductions to 
certain canonical forms. The analysis using labels provides 
a greater intuitive feel for the problem, and, more to the 
point, will simplify the proofs to follow. Therefore, I will 
review the analysis using labelings here. 

4.1 L&y’s Labeled Lambda Calculus 

Levy’s labeled A\-colculua was first introduced in [L&75]. 
I will use a slightly simplified version proposed by Klop 
[Klo80], in which an extensive investigation of properties 
of reductions is made, much of which nicely complements 
the work of L&y. A concise summary of Levy’s labeled X- 
calculus is given in [Bar84, p. 382, Ex. 14.5.51, and a sum- 
mary of a number of useful properties is given in [BKKSS’I, 
Appendix]. 

First we must define what constitutes a label: 

Definition 4.1 The set of L&y-labels, designated L, is de- 
fined inductively 08 follows: 

IES -7 1cL 
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w,vEL ==F WVEL 

WEL ==+ &JCL 

where S = {a, b, c,. . ,} is an infinite set of symbols) and WV 
is the concatenation of labels w and v. 

An atomic label ia a label consisting of a single symbol. Note 
that nested underlinings, e.g. abed, may occur. 

The set of lobeled X-terms czts of the regular A-terms 
and terms annotated with labels: 

Definition 4.2 The set of terms in LCuy’a labeled X- 
calculus, designated Ter(XL), is defined as follows: 

M E Ter (A) =+ M E Ter(A’) 

M E Ter(AL), w E L =+ (M”) E Ter(XL) 

where z is an arbitrary variable. 

If M is a me&-variable referring to a labeled term, M”’ 
denotes the concatenation of w to the label of the term to 
which M refers. I will often refer to terms “with” or “having” 
label w. A term M has label w if M is of the form N” and N 
is not of the form P” for non-null label U. The parentheses 
surrounding a labeled term will often be omitted for the 
sake of clarity if no confusion would arise. (If, however, a 
parenthesized term is itself labeled, a formal reduction rule 
is required to eliminate the parentheses; see below.} 

In contexts where a labeled term is expected, unlabeled 
terms will be treated as having the null label, c. We define 
label concatenation and underlining to behave on the nulI 
label as follows: 

cw = w 

wu( = w 

The label of the abstraction part of a redex is called the 
degree of the redex. Thus the degree of the (Iz) redex in 
((XZ.(I~Z*)~)~Z~)~ is u (not c). 

The /3-contraction rule is now defined for labeled terms as 
follows: 

Definition 4.3 Labeled P-contraction, denoted by +BL , 
is a relation on member8 of Ter(A=)dejined by: 

C[ ((AZ. M)” N)” ] -@L C[ (M+ := NE])” ] 

where C is an arbitrary contest and M and N ore arbitrary 
members of Ter(AL). 

Note that with the null label convention, labeled p- 
contraction is exactly the same as regular B-contraction on 
unlabeled terms. 

Though the labeled &contraction rule looks a bit 
formidable, the idea is quite simple: Whenever a redex is 
contracted, the underlined form of the label of the redex’s 
abstraction (w) is attached both to the body of the abstrac- 
tion (M) and to all instances of the argument (N) substi- 
tuted into the body. Any label attached to the application 

term (v) is left intact. The attachment to a label of an under- 
lined substring, say (g), is an indication that the term wan 
effectively generated by contraction of a redex having degree 
w (this assumes, as I always will, that any labeled reduction 
has an initial term with no underlined labels). One can thus 

view labels ss a sort of genetic code, in the sense that by 
knowing the labels of the initial term (“matriarch”?) of a 
reduction, the lineage of a subsequent term in the reduction 
may be traced by inspection of the labels. 

The formation rules of Ter(AL) allow multiple labelings of 
parenthesized terms, which can be created as a resulted of 
labeled /?-contraction. This requires an auxiliary reduction 
rule for labels: 

Definition 4.4 The label simplification rule, -I& , ia the 
following relation on members of Ter(XL): 

c[ (Id’“)” ] -lab c[ M”” ] 

where C is on arbitrary contezt and M” is a term of 

Ter (AL). 

We then have: 

Definition 4.5 Labeled b-reduction, -@L , is the rejlez- 
ive, transitive closure of ( --q&b lJ -Ed ), where ‘U’ denotes 
relotionol union. 

The label simplification rule is a technical necessity, but 
a practical nuisance. Without loss of generality, when refer- 
ring to a labeled term, I will assume it has been simplified 
as much as possible using -@L . This assumption is tech- 
nically justified by the following theorem: 

Theorem 4.1 ([L&75]) -@L has the Church-Roster 
(confluence) property, i.e., 

M -,+ NI AM -By N2 
a (3P)Nl -By PA Nz -By P 

Thus labeled X-reduction is as “well-behaved” as its unla- 
beled counterpart, and, in a sense, is a strict refinement of 
the regular X-reduction. Ignoring the labels, it is simply 
regular A-reduction. Depending on the initial labeling, how- 
ever, it can give a great deal more information about the 
reduction process. 

We can now define transformations from the unlabeled to 
the labeled world and vice versa: 

Deflnition 4.6 Let M’ be a term of Ter(A’). Then the 
erasure of M’, Er(M’) is the some term with all the labels 
erased. 

Definition 4.7 Let M be o term of Ter(X). Then M’ E 
Ter (AL) is a labeling of M ifl Er( M’) = M. 

We can also define the erasure of a reduction (overloading 
the meaning of ‘Er()‘): 

Defbition 4.8 Let u’ be a labeled reduction. Then the era- 
sure of u’, Er(u’), ia the unlabeled reduction obtained by 
erasing the labels of 011 the terms in the reduction and replac- 
ing all labeled @-contmctions by unlabeled @-contractions. 
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Finally, we can ‘lift” reductions on unlabeled terms to 
their labeled counterparts: 

Definition 4.9 Let M be a term of Ter(A), M’ be some 
labeling of M, and U: M -6 N. Then the lifted reduction 
Lift(a, M’) is defined ad the labeled reduction with initial 

term M’ in which the redexes contracted are the labeled coun- 
terparts of those contracted in u. 

4.2’ Optimality 

4.2.1 Labels and Residuals 

With the machinery of the labeled A-calculus at hand, cer- 
tain definitions that are rather complicated without it be- 
come straightforward. Labelings can be used to divide all’ 
the redexes in a reduction into equivalence classes based on 
their label. Such equivalence classes are deemed redex fam- 
ilies: 

Definition 4.10 ([L&778]) Let 

P:M--+~N 

be a reduction. Let J be a labeling of M such that each sub- 
term of M’ has a unique atomic label. Let 

p’: M’ -By N’ = Lift(p, M’) 

be the labeled version of p. Then a redex Rj 
of p (not neceaJarily a redex contmcted by p) 
of family class FL ifl the corresponding redex 
degree w . 

in any term 
is a member 
R$ in p’ has 

Rather remarkably, it turns out that family classes can 
consist not only of sets of redexes that are effectively copies 
(i.e., residuals) of terms in the current reduction, but also 
may consist of sets of redexes that are not residuals of any 
redex in the current reduction, but would be residuals in 
a different reduction with the same initial and final terms. 
Thus labeling makes evident on inspection a property that 
might seem to require enumeration of all reductions. 

4.2.2 Redex Sharing and Parallel Reductions 

Having demonstrated the usefulness of the labeled X- 
calculus, we can now formalize the notion of sharingof terms. 
LCvy noted that the reduction of a shared redex could be 
viewed as a parallel reduction of all the redexes represented 
by the shared term in its “flattened,” non-graphical form. 
For instance, in Example 2.2 above, the shared contraction 
of the (Iz) redex may be viewed as the parallel contraction 
of the two terms that share it: 

Example 4.1 

0:): (AY.(YY))(lZ) -6 Vz)(lz) -Ilk3 2% 

where ‘ b 11~ ’ represents parallel p-contraction. Note that 
parallel P-contraction subsumes ordinary 0 or 1 step 8- 
reduction ( eEo ), which is a development of 0 or 1 redexes. 

Parallel reductions are represented thus: 

Cl c2 cn 
Q: Mo----~~MI-,,~. . . -ylaM,, 

where the Ci are the sets of redex& in Mi contracted in 
parallel at each step. 

Defining a consistent notion of parallelism for overlapping 
redexes requires a bit of care. Formally, LCvy defines a psral- 
lel reduction as the complete development of a set of redexes. 
See [LCv78] or [L&SO] for more details. 

We can now define parallel reductions that reduce entire 
family classes at once: 

Definition 4.11 (Levy) A parallel reduction 

Fw Fw Fw, 
~:M~-$,MI-$,,Y~ -,,,&n 

is family-complete iflfor each Mi, Fwi is the set of all mem- 
bers of dome redex family F, in Mi. 

4.2.3 Call-By-Need Reductions 

In order to ensure that an optimal reduction does no un- 
necessary work (although perhaps does it quite efficiently), 
we need to ensure that any optimal reduction, like Ieftmost 
reduction, reduces no unneeded redex. This leads to the fol- 
lowing formal definitions: 

Definition 4.12 (L&y) A redex R in some expression 
M E Ter(A) is needed iff, for all terminating reductions 
u with initial term M, either R or one of ita residuals is 

contracted in 6. 

Definition 4.13 (L&y) A pamllel reduction 

is a call-by-need reduction ifl there is at least one needed 
redex in each Ci. 

We now have L&y’s optimality theorem: 

Theorem 4.2 ([Lbv78,LBv80)) A pamllel reduction 

P: M -\\a N 

is optimal for the class of all parallel reductions with initial 
tern3 M if 

- p is family-complete. 

- p is call-by-need. 

Note that the theorem does not require that an optimal 
strategy use shared redexes-a regular (non-parallel) fi- 
contraction is a degenerate parallel contraction, and if all 
family classes have one member, a complete reduction re- 
quires contraction of only one redex at a time. However, if 
a fixed redex selection strategy is to be used, some form of 
sharing is inevitable. 
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5 Labeled ACCL 

By analogy with L&y’s labeled ~-calculus, we can define a 
similarly labeled version of ACCL, ACCLL. 

Definition 5.1 The azioms of ACCLL are 08 follows: 

(Beta) Apply(h(A)“, B)” = [A”“, (0, BE)] 
(As&) [[A, El]“, Ez]” = [A”“, EI o E2] 
(NullEL) @oE=E 
(NullER) Eo@=E 
(ShiftE) Oo(E, A)=E 
[r;Re!f) [VaP, (4, A)]” = A”” 

[A(A)“, E]” = A([A, (E o 0, Var)])“” 
(DE) (El, A) 0 E2 = (El 0 ~92, [A, E21) 
;;AP$Y) [Apply@, D)“, El” =APP~Y([A> E], [D, 4)“” 

(N:ilC) 
(EIoE~)oE~=E~o(E~oE~) 

[A”, 01” = A”” 
(DLabel) [A, El” = [A”, E] 

Note that the DLabel has no analogue in unlabeled ACCL. 
It is the ACCLL equivalent of the the convention allowing 
the removal of parentheses in multiply-labeled parenthesized 
terms of XL. By analogy with the labeled ,4-calculus, the 
degree of a labeled (Beta) redex is the label of its abstraction 
term; e.g., Apply(A(A”)“, D”)* has degree w. 

Theorems 3.4, 3.5, 3.9, and 3.7 all apply to ACCLLand 
AL; the proofs are quite similar and are omitted. The trans- 
lations [I-DAL and [-BaCCLL are defined in the obvious way 
analogous to their unlabeled counterparts. 

We can now apply L&y’s optimality criteria directly to 
reductions in ACCL, using ACCLL. The idea is to consider 
each (Beta) contraction in a term A sa representing a par- 
allel p-contraction on the corresponding A-term [lnf(A)l,. 

We can then make the following definitions: 

Definition 5.2 A reduction A --~cc~ B is A-optimal if 
the number of (Beta) contractiona therein is less than or 
equal the number of pamllel &contractions in on optimal X- 
reduction from [lnf(A)& to [lnf(B)&. 

Deflnition 5.3 A (Beta) redez B in o term A is X- 
needed ifl the A-equivalent of one of B’s residuals Bi’ E 

Rmid(B, A), UBi’Jx, is needed in [Inf(A in the sense of 
Definition 4.12. 

Theorem 5.X Let A’ E ACCLL be a term all of whose 
subtemrs hove unique labels. Let p’: A’ wACCL~ 3’ be a 
ACCLL reduction. Then the corresponding unlabeled re- 
duction p:hf(A) --ACCL Inf(B) is X-optimal if no two 
(Beta) redezes in pi have the same degree ond each (Beta) 

redez is X-needed. 

Proof Follows from Levy’s results on the labeled A- 
calculus, the labeled form of Lemma 3.9 and Theorem 3.8. 
0 

The above theorem gives us the promised tool for analysis 
of laziness. If we construct a X-interpreter whose action can 
be expressed in terms of some application of the rules of 
ACCL, we can determine how close to optimal&y any such 
interpreter can come by showing how many (Beta) redexes 
in the corresponding labeled reductions have the same label. 

6 Non-Optimality of Reduction 
with Shared Closures 

I can now show that there is no A-optimal reduction pos- 
sible in ACCLL, and thus that no reduction scheme that 
can be expressed using the axioms of ACCL is optimal in 
L&y’s sense. I do so by exhibiting a A-term for which eu- 
ery ACCL reduction causes more than one (Beta) redex 
to be contracted in the corresponding labeled form, even 
when when all terms are shared that are permissible under 
ACCL’s rules, The term is as follows: 

where A and B are arbitrary X-abstractions. Not all sub- 
terms are given labels for the sake of clarity. 

Space does not permit a complete enumeration of all pas- 
sible reductions of its corresponding ACCLL translation. 
However, the crux of the matter is embodied in the follow- 
ing term, which must be produced in any reduction of the 
ACCL equivalent of the term above if no prior (Beta) re- 
dexes with the same label are to be reduced twice: 

NV := B’NI: C2)) 
[((t”t)(r%)), ((2 := Aw.(y%)))]:Cs 

As before, ((.)) p re resents a ACCL environment with the 
bound variable indicated explicitly. The notation T: N is 
used to give names to subterms. One is forced here to choose 
between reducing closure Ca or one of closures Cr or C2. 

Choosing Cs yields: 

(([ 

which reduces to 

(((Ad’u)(Adcu))([ , (b := B’))1:Cz)) 
I (WUWU)) 

in which two redexes of the form (Ad%) are created, thus 
yielding a non-optimal reduction (since they have the same 
degree and are no longer shared). 

To avoid the copying that occurs above, one could alter- 
nately first reduce closure Cr (or C’s, for which the argument 
to follow is symmetric), which would eventually yield a term 
of the following following form: 

:= Xw.(Ad”u)))]:C~‘)([ , {(z := ~w.(B”‘u)))]:Cz’)) 

WWb4) 

which reduces to 

The term above haa two (actually, two sets) of unshared 
redexes with the same degree, e.g., ((Aw.(Adcu))“t) and 
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((~w.(Beeu))“f). If both are needed (which depends on the 
particular abstractions chosen for A and B, a non-optimal 
reduction will once again result. In the end, no matter what 
choice is made, a non-optimal reduction occurs. 

The informal observation that shared closures and en- 
vironments alone are insufficient to implement optimal re- 
duction schemes was also made independently by Curien in 
[Cur86c]. He did not, h owever, provide a formal connection 
(such ss that made above using labels) between redex fami- 
lies in the lambda calculus and their equivalents in a formal 
system using environments, nor was the system he was using 
as general as the one proposed here. 

7 Related Work and Conclu-. 
sions 

A system almost identical to ACCL has been independently 
proposed by Abadi, et.al. [ACCJL89]. Its term structure is 
isomorphic to that of ACCL, and its axioms are the same 
with two minor exceptions. They propose to use their sys- 
tem to study properties of substitutions, to describe type- 
checking algorithms, and as the basis for machine-oriented 
implementations of reduction schemes. They have not, how- 
ever, proposed a labeled system for the study of the opti- 
mality problem. 

[AKP84] provides an analysis of the differences between 
various lazy and fully-lazy A-interpreters without examining 
the issue of optimality. 

Two schemes, by Staples [Sta82] and, recently, by Lamp- 
ing [Lam89], have been proposed that claim to implement 
optimal A-reduction. Both seem to allow terms to be shared 
that traditional environment or substitution mechanisms do 

not allow. However, they are notable for their extreme com- 
plexity, and it is not clear that the overhead incurred by 
these schemes in order to ensure family classes are always 
shared is not prohibitive. 

A practical optimal reduction mechanism might indeed 
exist for a restricted class of X-terms, e.g., the so-called %u- 
percombinators” used in functional programming. However, 
if one believes that ACCL is a sufficiently general model of 
reduction using shared environments or closures, then one 
must conclude that shared environments, closures, or terms 
alone are insufficient to achieve optimality in a practical in- 
terpreter. 

To summarize, I have described a new system of combins- 
tors, ACCL, with which one can describe a wide variety of 
reduction methods for the ~-calculus using sharing. I have 
proved that essentially any reduction in ACCL corresponds 
to P-reduction in the X-calculus, and thus that A-reduction 
schemes using ACCL may be proved correct trivially. I 
have also described a labeled variant of ACCL, ACCLL, 
which can be used as a tool to analyze the degree of lazy- 
ness present in reduction schemes. I have shown, however, 
that ACCL is insufficient for implementing optimal reduc- 
tion schemes, and thus that more than shared closures, envi- 
ronments, or A-terms are apparently necessary if optimality 
is to be achieved at all. 
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A 

I will 

The Lambda Calculus and 
Term Rewriting Systems 

briefly review some of the notation for the lambda- 
calculus used herein. The conventions used here will gener- 
ally follow thoee of [Bar84], to which the reader is referred for 
details, although a few are taken from wlo80] or [BKKS87]. 

A.1 Notation 

C[M] denotes a contest containing M, i.e., C[M] is a X- 
term with designated subterm M. M need not be a proper 
subterm of C[M]. Contexts may be defined similarly for 
other rewriting systems. 

Ml” := N] denotes the result of substituting N for all free 
occurrences of 2 in M. 

/3-contraction is denoted by --+s . 
The reflexive, transitive closure of -p, &reduction, is 

denoted by -p. 
Other notions of reduction will be defined using. analo- 

gous notation: if -n is a relation, then -n will denote 
its reflexive, transitive closure, and =n the induced equiva- 
lence. 

Since ‘=’ will be reserved to represent equality induced 
by a reduction relation, I will use ‘z’ to denote syntactic 
identity of X-terms. I will identify on the syntactic level 
terms that are identical modulo changes of bound variable 
and avoid the machinery of a-conversion, i.e., I will feel free 
to say 

x2.2 E X&V 

(As a practical matter, some reduction schemes will require 
a mechanism that effectively performs renaming. Such a 
mechanism will be introduced later). 

Reductions, sequences of /3-contractions, will be denoted 
BB follows: 

RI R2 R3 u:Mo-M,---,M2-+...+ Rn M,, 

u designates the the entire reduction sequence. The Mi 
are the terms of the reduction. The Ri denote the redexes 
contracted at each step. Where clear from context, the Ri 
may be omitted. Occasionally, it will be convenient to elide 
the intermediate terms and denote the entire sequence by 
u: Mt, -p IK,,. 
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A.2 The de Bruijn lambda calculus P=841 
The de Bruijn &calculus [dB72,dB78] is a variant of the A- 
calculus in which variables are replaced by de Bruijn num- 
bersdenoting their binding depth in the term in which they 
are contained. This facilitates reduction without concern for 
variable %apture,” which can occur during conventional X 
reduction even when the initial term of a reduction contains 
no bound variables with the same name. By providing a 
variable substitution mechanism that appropriately adjusts 
the de Bruijn numbers of substituted terms, the de Bruijn A- 
calculus eliminates the need for a-conversion. The following 
definition8 are from [cur86a] 

[BBKV76] 

[BKKS87] 

Definition A.1 The cret of termr in the de Bruijn A- 
calculus, designated Ter(ADB), is defined inductively 08 fol- 
lows 

[CCM87] 

n~hl =+ nETer(ADB) 
M, N E Ter(XDB) _ (MN) E Ter(ADB) 

M E Ter(AaS) _ A. iU E Ter(ADB) 

where Af is the set of natural numbers. 

[Chu41] 

[Cur86a] 

DeRnition A.2 For any M E Ter(A) such that 
W(M) C (50,. . . , a~,,}, define its de Bruijn translation, 
M DB(xo,.... x,) E Ter(ADB), au followr: 

zDB(xo,...,x.) = i, where i is minimum s.t. z = z; 

(~vJ~)DB(~~ ,_.., =.) = XJ%B(~~,=~,...,=~) 

(MN), B(xo,....x,) = MDB(X~ ,..., x.)NDB(.~ ,..., I.) 

(I will usually write MDB rather than MDB(~~,...,~.) when 
the free variable ordering is irrelevant). 

Substitution, p-reduction, and q-reduction can be suit- 
ably redefined on XDBsuch that 

For a concise exposition of the details of &reduction and the 
substitution process, see [Cur86a] 
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