
Practical Aspects of Bidirectional Graph Transformations

Zhenjiang Hu
National Institute of Informatics, Japan

hu@nii.ac.jp

Abstract
Bidirectional transformation [1, 7] consists of a pair of transforma-
tions, describing not only a forward transformation from a source to
a view, but also a backward transformation showing how to reflect
the changes in the view to the source. Bidirectional transforma-
tion provides a novel mechanism for synchronizing and maintain-
ing the consistency of information between input and output, and
has many potential applications in software development, including
model synchronization, round-trip engineering, software evolution,
multiple-view software development, reverse software engineering,
as well as the well-known view updating mechanism which has
been intensively studied in the database community for decades.

To support systematical development of well-behaved bidirec-
tional transformations, much research has been devoted to design of
bidirectional languages that can be interpreted both forwardly and
backwardly while guaranteeing the roundtrip property between the
forward and the backward transformations. Despite many promis-
ing results, most of them are limited to lists and trees [2, 6, 9, 10].
In fact, there are challenges in designing a language for bidirec-
tional transformation on graphs. First, unlike lists and trees, there
is no unique way to represent, construct, and decompose a gen-
eral graph, which requires more precise definition of equivalence
between two graphs. Second, graphs have sharing nodes and cy-
cles, which makes forward computation much more complicated
than that on trees (let alone to say about backward computation),
where naı̈ve computation on graphs would visit the same nodes
many times and possibly infinitely often.

We have challenged the problem of bidirectional transforma-
tions on graphs, and succeeded in bidirectionalizing graph queries
(in UnQL) [3, 4, 8] and implementing a bidirectional graph trans-
formation engine called GRoundTram [5]. In GRoundTram, graphs
are treated as regular trees and manipulated by structural recur-
sion that enjoys a nice bulk and bidirectional semantics. Although
GRoundTram has been successfully applied to nontrivial model-
code co-evolution [11], there are still many practical issues that
should be addressed to make it be more useful.

In this talk, I shall briefly explain our solution to the problem
of bidirectional graph transformation and demonstrate some appli-
cations in bidirectional model-driven software development, and
focus on discussing practical issues in manipulating various graphs
(such as unordered, ordered, and probability graphs), determining
backward transformation, and improving efficiency and scalability.

Copyright is held by the author/owner(s).
PEPM’13, January 21–22, 2013, Rome, Italy.
ACM 978-1-4503-1842-6/13/01.

Categories and Subject Descriptors Software [PROGRAMMING
TECHNIQUES]: Automatic Programming

General Terms Languages

Keywords Bidirectional Graph Transformation

References
[1] K. Czarnecki, J. N. Foster, Z. Hu, R. Lämmel, A. Schürr, and J. F. Ter-

williger. Bidirectional transformations: A cross-discipline perspective.
In International Conference on Model Transformation (ICMT 2009),
pages 260–283. LNCS 5563, Springer, 2009.

[2] J. N. Foster, M. B. Greenwald, J. T. Moore, B. C. Pierce, and
A. Schmitt. Combinators for bidirectional tree transformations: A lin-
guistic approach to the view-update problem. ACM Trans. Program.
Lang. Syst., 29(3), 2007.

[3] S. Hidaka, Z. Hu, K. Inaba, H. Kato, K. Matsuda, and K. Nakano. Bidi-
rectionalizing graph transformations. In ACM SIGPLAN International
Conference on Functional Programming, pages 205–216. ACM, 2010.

[4] S. Hidaka, Z. Hu, K. Inaba, H. Kato, K. Matsuda, K. Nakano, and
I. Sasano. Marker-directed optimization of uncal graph transforma-
tions. In G. Vidal, editor, LOPSTR, volume 7225 of Lecture Notes in
Computer Science, pages 123–138. Springer, 2011.

[5] S. Hidaka, Z. Hu, K. Inaba, H. Kato, and K. Nakano. GRoundTram:
An integrated framework for developing well-behaved bidirectional
model transformations (short paper). In 26th IEEE/ACM Interna-
tional Conference On Automated Software Engineering, pages 480–
483. IEEE, 2011.

[6] Z. Hu, S.-C. Mu, and M. Takeichi. A programmable editor for de-
veloping structured documents based on bidirectional transformations.
Higher-Order and Symbolic Computation, 21(1-2):89–118, 2008.

[7] Z. Hu, A. Schürr, P. Stevens, and J. F. Terwilliger. Bidirectional
transformation ”bx” (dagstuhl seminar 11031). Dagstuhl Reports, 1
(1):42–67, 2011.

[8] K. Inaba, S. Hidaka, Z. Hu, H. Kato, and K. Nakano. Graph-
transformation verification using monadic second-order logic. In
P. Schneider-Kamp and M. Hanus, editors, PPDP, pages 17–28. ACM,
2011.

[9] K. Matsuda, Z. Hu, K. Nakano, M. Hamana, and M. Takeichi. Bidi-
rectionalization transformation based on automatic derivation of view
complement functions. In 12th ACM SIGPLAN International Confer-
ence on Functional Programming (ICFP 2007), pages 47–58. ACM
Press, Oct. 2007.

[10] J. Voigtländer, Z. Hu, K. Matsuda, and M. Wang. Combining syntactic
and semantic bidirectionalization. In ACM SIGPLAN International
Conference on Functional Programming, pages 181–192. ACM, 2010.

[11] Y. Yu, Y. Lin, Z. Hu, S. Hidaka, H. Kato, and L. Montrieux. Main-
taining invariant traceability through bidirectional transformations. In
M. Glinz, G. C. Murphy, and M. Pezzè, editors, 34th International
Conference on Software Engineering, pages 540–550. IEEE, 2012.

1




