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Abs t r ac t  

In this paper we present a semantics for Milner-style polymor- 
phism in which types are sets. The basic picture is tha t  our 
programs are actually terms in a typed X-calculus, in which the 
type information can be safely deleted from the concrete syntax. 
In order to allow for common programming constructs, we allow 
reflexive or infinite types, and we also allow opaque types, which 
have private representations. 

An adaptation of llindley's Principal Typing Theorem then 
asserts tha t  the (ype information can be reconstructed. Thus 
expressions are polymorphic, since they may have more than one 
correct typing, but values are not. Expressions tha t  are not well- 
typed arc syntactically ill-formed, as they are in conventional 
mathematics, rather than having the meaning "wrong". 

The resulting semantics is simpler than that  for fully poly- 
morphic models [Leivant 83], and generalizes (,he standard con- 
structions, such as retracts and ideals. 

1 In t roduct ion  

In conventional mathematical discourse, the intuitive notion 
of "type" seems much better founded than it is in computer 
science. In general, one can regard types as sets of objects, and 
a function may only be applied to an object from its domain. 
If one has a function j" whose domain is the integers, and one 
attempts to apply it to a real number, say e, then one says tha t  
the expression f(~) is meaningless because of an error in types. 
Thus we hold with Reynolds [83] tha t  type structure is a syntactic 
discipline: terms which are not well-typed are considered to be 
ill-formed and therefore meaningless. 

This situation is muddied in computer science because our 
machines always do something with every input, including our 
f(~). One is then led to the notion of types as predicates on 
some universal domain: an integer is an object passing the integer 
predicate, and a function from integers to integers is an object 
which, when supplied with an object passing the integer predi- 
cate, produces another object passing the integer predicate. One 
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then proves by induction that  Uwell-typed" expressions produce 
"well-typed" answers, but expressions tha t  are not "well-typed* 
may produce any answer at all. As Reynolds points out, these 
predicates inevitably overlap, leading to problems when an ob- 
ject may be both an integer and a function, etc. [Reynolds 83] 
at tempts to deal model-theoretically with these issues. 

In keeping with the spirit of [Wand 82, 83], we attempt 
t o  deal proof-theoretically with these issues. This is the tradi- 
tional mathematical approach to abstraction and representation 
independence. Our starting point is the typed ),-calculus, which 
is the epitome of a well-understood theory of type. In order to 
invest this formulation with enough power to prove any useful 
theorems, we must supply it with some additional structure: 

I. We need to allow the use of types other than functional types. 
We present the definition of a typed X-calculus with such an 
expanded system of types. These types permit the use of 
arbitrary type constructors other than "--*" and so-called 
"reflexive" types rather than just the finite types typically 
considered in the typed X-calculus. 

2. We then show how such a language accounts for programs 
written under Milner's type discipline, including the expand- 
ed notion of type. We prove an extension of the Principal 
Typing Theorem to show that  it is decidable whether a term 
is typable, and tha t  its principal type may be deduced by a 
simple extension to the usual unification algorithm. 

3. We need to account for some primitive type constructors, 
such as products and sums, tha t  do not seem to be definable 
in our general paradigm. We give a t reatment  of these; the 
t reatment  of sums, in particular, based on Reynolds, seems 
to be better  than the ones usually used. 

4. We then present our formalization of user-defined types. We 
model such types by including primitive constants which 
provide the isomorphism between a public type (such as, say, 
Complex.) and its private representation (say (pair Real ReaO). 
Such type constructors may also be parameterlsed to account 
for type abstraction, such as the type of (liet-ol a} for any 
type a. 

5. We present a definition of model for our theories. To ac- 
complish this, we show that  Meyer's combinatory model 
theorem [Meyer 82] extends to any set of types which is 
closed under "--* ", including reflexive types. 

8. This formulation, however, does not allow induction on ap- 
proximate solutions, as do the standard limit constructions. 
We remedy this to some extent by using a suitably modified 
notion of the theory of Boehm-trees. Using the resulting 
theory, we prove some benchmark results. 

Our formulations should be regarded us preliminary: we have 
included just  the axioms needed to prove the desired theorems, 
subject only to the existence of reasonable models. 
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2 L a n g u a g e  and  Theo r i e s  

Deflnl t lom A lype discipline A is a set of trees (possibly 
including some infinite trees) closed under --., tha t  is, if a, $ E A 
then (o - .  $) E A. 

Examplea:  (1) Let E be a ranked set. Then the set of all 
finite trees built from ~- ."  and elements of E (i.e., the initial 
algebra generated by EU{- .})  is a type discipline. 

(2) Same, but  all finite and infinite trees with nodes labelled 
by r.u{--.}. 

(3) Same, but  all finite and rational trees (i.e. only a finite 
number of elements of  E appear,  and the set of occurrences of 
each label is a regular set). 

(4) The set consisting of a single tree: the complete infinite 
binary tree in which every node is labelled by " ~  ." 

We omit parentheses and associate arrows to the right, as 
usual. We say a type discipline is effective iff there exists a set 
of finite representat ions for the elements of A such tha t  the 
construct ion of a tree from its subtrees and the decomposition of 
a tree into its root and its subtrees are both recursive. Examples 
(1), (3), and (4) are effective, llenceforth, we assume whenever 
necessary tha t  the type disciplines arc effective. 

For eve/)' type a E A, we assume a countably infinite supply 
of variable symbols z~', z~ . . . . .  We also allow a countable set (" of 
constants  with associated types. Generally such constants come 
in families, e.g. tense : a ~ (listaJ ~ (tista) for each type a. 

We now'formulate  the notion of a typed X-term. This defi- 
nition is s tandard,  except that  it is relative to a type. discipline 
A. In fact, it follows exactly the definition in [Barendregt 81, p. 
~ool. 

Deflnlt lom The language A(C) of A-typed X-terms consists 
of a set of strings with associated types in A. We write M : a 
to indicate tha t  string M has type a. The terms are defined as 
follows: 

(1) If z ° is a variable of type a, then z ~ : a is a term. 

(2) If c: a E C, then c : a  is a term. 

(3) If M : a -~ /~ and N : a are terms,  then (MN) : ~ i:~ a 
term. 

(4) If xo is a variable of type a, and M : ~ is a term, then 
(Xx°.M) : a - -  ~ is a term. 

(5) Nothing else is a term. 

The notion of a theory is also s tandard:  

Deflnl t iom A A.theory is a set of pairs of A(C)-terms closed 
under a-conversion, 0-conversion, reflexivity, symmetry,  transi- 
tivity, congruence (from M =~ M'  and N = N '  deduce M N  ---- 
M~N~), and the  ~-rule (from M ~- N deduce X~.M ffi Xz.N). 

3 P o l y m o r p h i s m  

A A-theory constitutes a strongly-typed programming lan- 
guage, like PASCAL. A program is jus t  a term in the language, 
and we compute  by ~ reducing the  term to normal form. This 
is not, however, a particularly convenient language to program 
in, because one must  put  in too much type information: one 
needs a separate mapcar function for lists of every type (just  as 
in PASCAL one needs separate routines for arrays of every size). 

In practice, one does not need all these separate routines for 
two reasons, one pragmatic and one mathematical .  

The pragmatic reason is tha t  representations of related types 
share facets of their  representation in a computer .  Thus arrays of 
various sizes are all implemented as linear sequences of locations, 

and lists of booleans, integers, etc., are all typically implemented 
as linked lists of cells. Thus procedures such as mapc~r can be 
imlymorphic because they only manipulate the portion of the 
representation which is shared among the various instances. 

In this analysis, polymorphism is a syntactic phenomenon: 
expressions are polymorphic because we are too lazy to put in 
all the subscripts on the combinators,  and it so happens that  
we can get away with this because of s tandard  implementat ion 
conventions. Values are not polymorpbic. 

This seems to be the analysis of polymorphism implicit in 
the discussion, though not in the theory, of [Milner 78]. It is 
to be contrasted with the full polymorphism or [Reynolds 74, 
l,eivant 83] where values can be truly polymorphic. In Milner- 
s,yle polymorphism, the type structure is weaker, but in compen- 
sation, it has a simpler semantics, as we will show. Furthermore,  
it seems adequate for a large number of applications, including a 
system for semanlic prototyping [Wand 83a], whose construction 
motivated us to examine this question. 

The mathematical  reason is given by the Principal Typing 
Theorem of [[lindley 09], which states that  given an arbitrary 
string M, it is decidable whether that  string was obtained By 
removing the type superscripts from some term of the typed x- 
calculus. If A! was obtained by removing the type information 
from a term of type cz, we sift that  c~ is a possible type of M. 

• Furthermore,  one can effectively find a unique "type scheme," 
called the principal typing of AI, such tha t  every possible type of AI 
is an instance of that  scheme. The proof utilizes the unification 
algorithm of [Robinson O5]. 

Ilindley's proof allowed only finite types (not necessarily 
restricted to functional types, however), llis proof, however, 
relies only on the decidability of the unification problem, so it 
goes through whenever the set of type schemes has a decidable 
unification problem. In particular, it goes through for the set 
of rational schemes. There  the unification algorithm is just  the 
conventional one, except  that  the so-called "occurrence check" 
is omit ted [Robinson, personal communication].  

DIgren lon :  In order to apply l l indley's proof, we need to 
take care of  a few details. First ,  we need to extend the notion of 
a type discipline, as defined above, to a discipline of type schemes, 
which are like types except  they may contain type variables. 
A discipline must be closed under --. and under subst i tut ion of 
schemes for type variables. The types, as defined above, then 
become just  the type schemes with no variables (i.e. the ground 
type schemes). Also, in place of the t rea tment  of constants  above, 
we associate with each constant  symbol a principal type scheme, 
so rule (2) in the definition of terms becomes: "if c : ~ E C, and 
r is an instance of rl, then c, : r is a term ~. Also, t l indley's  
proof is in terms of combinatory logic rather than the lambda- 
calculus, but  Theorem 2 in his paper shows tha t  this difference is 
inessential (see, for example, the s ta tement  of l l indley's theorem 
in [Barendregt 81, Proposition A.I.10]). End  of  Dlg ren lon  

Thus,  given a term without  type information, we can recon- 
struct, the type information, and do so in the "most general" 
way. This allows us to program without giving types (though 
exactly where one should specify types anyway is a language 
design question). We can rely on the principal typing theorem 
to assure us tha t  we will get answers of the right type, and on 
our shared representations to share object  code. 

Again, we see tha t  expressions are polymorphic, but  values 
are not. When we introduce a new constant ,  say c0nz, we actually 
are introducing an infinite family of typed constants cons~ : ~ 
(listaj ~ (listaJ for each type a. Furthermore,  a - .  (lista I -.* (lisla) 
is a principal type scheme for cons. 

What  about generics? This is a troubling subject  for conven- 
tional analyses. We account for generics, either local or global, 
by regarding them as merely syntactic sugar for their definition 
expressions. Thus something like " let f = AI In N" in ML 
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[Gordon st. at. 78] is syntactic sugar for N [ M / I ] ,  which hgs 
quite a different principal type from (Xf.N)M. 

4 P r o d u c t s  and  Sums  

In order to do any useful examples, we need some additional 
type s t ructure  beyond the pure typed X-calculus. We will assume 
the following: 

I. We have some ground types, atnong which are the type Triv 
with element triv. 

2. We assume tha t  for certain types ~, there will be const:tnts 
d ~  : a --- # anti eo,~ : /~ - .  a. at most one such pair per a, 
subject  to the axioms: 

dc,~leo,s z )  = z 

3. 

These symbols are the key to the solution of domain equa- 
tions, as discussed in the following section. 

Our types are closed under the 2-place type constructors pair 
and union, and for all types a ,#,  7, we have constants  

pairc, ~ : a -.. B -'* pair a#  

I s o n ~  : pair ai5 ~ a 

rsona# : pair a15 ~ # 

inLo~ : a -.., union a~  

inRao :/3 --* union ctl3 

caseoo. ~ : union a #  -.. (c~ .--. 7) "" (15 --* "r) "-* "r 

subject  to the following axioms: 

Ison(pairx y) = z 

rson(pairr  y} = y 

pair(lson z, rson z)  : x 

case{inL z ) f  g = f z 

case(inR x ) f g  = g~ 

4.  

Our t rea tment  of sums is motivated by the definition of a 
coproduct  in a category, aml was anticipated by Reynohls 
[75]. It allows expressions involving sum types to be well- 
typed, and avoids the introductions of canonical error ele- 
ments,  as required by the conventional t rea tment  via "re- 
s t r ic t ions?  

We need in addit ion to postulate tha t  these constants inter- 
act nicely. An appropriate set of axioms seems to be the 
following: 

at(ease r fg )y )  = ( c a s e z  (a o f ) ( a  o g) )y  

where a is lson, rson, d, or e (but  not pair) 

(ease(case y i j )  f g) = (casey  

Xu.casc ( iu ) fg  

Xu.case ( j u ) f g )  

5 User -de f ined  types  

In programming languages such .~s CI,U or Simula, one can 
create %paque" types, whose representation is known only in a 

small scope, though functions which manipulate that  represen- 
tat ion may be known in the rest  of the  program. This device 
allows a cleaner interface between types and their  users. 

To formalize this, let Pub be an opaque type with represen- 
tat ion Priv. We add two constants  to the  typed ),-calculus: d : 
Pub -.. Priv (decode) and c : Priv - .  Pub (encode), subject  to the 
axiom tha t  these constants  are two-sided inverses. We can then  
define the  "public" operations on Pub in terms of d and e. This 
makes Pub a type tha t  is isomorphic to Priv but  dist inct  from it: 
one cannot  manipulate an element of Pub except  by using the  
decode anti encode operations explicitly. Thus, the resulting cal- 
cult,s may be modelled by interpret ing Pub as any set isomorphic 
to l'riv, but  not necessarily the same as Pr/v. 

We are now in a position to do some examples.  We introduce 
a bit of syntax: 

' / de f type  typerep type 

definitions 

end 

This defines a new type in terms of its representation,  and gives 
the  definitions of the  functions for manipulat ing it in terms of d 
and c. As a programming language construct ,  d e ~ p e  ought to 
restrict  the scope of  d and e, but  we will not  do so, since tha t  is 
an issue of language design, not of semantics.  

de f type  Boo l rep  union Triv Triv 

true = c( inL triv) 

false = e ( inR  triv) 

ifo : B o o l - - *  a "-'* ct --* cl = k zyz .case(dz) (Xu.y) (Xu.z )  

end 

This defines Booi as an opaque type, represented by the 
disjoint sum of two copies of Triv ,  with constants  true and f a l se ,  
and a family or functions if o : B o o l - .  a - .  a - .  a ,  one for each a. 
Thus, if (without  the subscript)  becomes a global generic symbol 
for the  code above, so t ha t  one may have multiple occurrences 
of if, with different types, in a single scope. Note also tha t  in 
keeping with our philosophy, we have suppressed the  subscripts 
wherever possible. 

The same machinery allows us to specify reflexive types. 
I le ts  we introduce stream as a t y p e  constructor  by simultaneously 
defining (s t reama)  for all a: 

de f type  (stream a) r e p  pair a (stream a) 
firsto, : ( s t reama)  .--, a 

: )~s.lson(d s) 

retto : ( s t r e a m  ct) - -  (stream or) 

= Xs.rson(d s) 

cons-slreama : a ---, (stream a) -.* (stream a) 
---- Xas.c(pair a 8) 

end 

As in the case of Bool, we have introduced a family of operators 
first, rest, and cons-stream, one for each type a. This is quite 
similar to the definition of an abaree type  in ML [Gordon 78]. 
We can build s t reams without  using a stream constant  by using 
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fixed points, e.g.: 

stream-o/-lalsc = fiz(Xs.cons.stream Salse s) 

which builds an infinite stream of raise's. (Note that  since we 
have allowed rational types, fiz is definable). 

Now let us do something slightly more complicated: a da ta  
type of lists. 

def type  (list a) rep  union Triv(pair a (list a)) 

nil~ : (list a) 

e{inL triv) 

coast, :el - .  (list a)--* (list a) 

= Xal.c(inR(pairal)) 

list-caSCoa : (list c 0 ~ B "-" (ct - -  (list a) --* IJ) -" i~ 

-~- x l n / . (  case (d l) (Xn.a)(X,,./(lson u ) ( r so ,  n))) 
end 

d. for every a,B,7 E A, elements 

eoa E /)(o--a)~{c,~/~) 

such tha t  

1. for a l l z E D o ,  y E D a ,  k o a . z V = r .  

2. for all z E D,,~a--~, Y E D o - a ,  anti z E I),,, s,,a~ • r .  V ' z = 
z.-" .(V. :}. 

3. for a l l z E D o _ ~ , v E D ~ ,  e o ~ . z . y = z . v .  

4. for all z,y E Do-a , ( (¥  ~ E D~){z. z = V" :) D (eoa " X = e,~ a . v)) 

E n d  o f  definit ion 

ilere we have homogeneous lists, with nil anti cons as the 
usual list construction functions; the i lL  and inR serve to inject 
values into the appropriate summand of the representation. The 
list decomposition, however, is not the usual one: list-casc takes 
a list anti two more arguments.  The first ext ra  argument is 
returned if the list is empty;  otherwise the second argument I f  
above) is applied to the first e l eme , t  and the remainder of the 
list. Like if, list-ease has an additional degree of genericity. We 
have used this style of programming extensively. It turns out 
to be quite pleasant {and ra ther  reminiscent of I tOPE [13urstall, 
MacQueen, & Sannella 80 D. 

To illustrate this programming style, we can write the func- 
tion reduce (seej e.g., [Henderson 80, p. 41D as follows: 

A 

reduce = X f al.fi.z(XO.lisl-casc I a (Xxy.f  ~(Oy))) 

As a second example,  consider the case of stacks. 

deftygm (stock a) r e p  (list a) 
push° : a - .  (s tacta)  -.. (aacka)  

= Xas.e(consu s) 

popo~ : (slacka) - -  ( (aack a) -,. #) -,. ,0 -,. # 

= Xs f  errt,aluc, list-case (d s)errvalue (Xal.f(*'l)) 

top.~ : (s tacka)- . .  (a - .  #1 ..-. # - - , /~ 

= Xsfcrrvaluc. lisl-case(ds)errt,aluc(Xal.fa) 

e n d  

Again, pop and top have additional genericity: the type scheme 
of toe, for example,  is (stacka) -.-. (a - .  ~) - .  ~ --. ~. Ilence, to 
take the top of a stack of a, one supplies the function tol,,~ with 
the stack, an error value of type ~ to be returned in ease the 
stack is empty,  and a function (of type c~ --, t~) to receive the 
top element in case the stack is non-empty.  Such functions are 
ubiquitous in this programming style. They are analogous to 
Reynolds '  accepters [Reynolds 81], and provide a smooth,  type- 
checkable t rea tment  of error conditions. 

0 Models  

We now present the definition of a model for our theories. 
The definition is adapted  from [Meyer 82]. 

Definl t lom A model £ of A(CJ consists of the following data: 

~. for every a E A, a set D~. 

b. for every e: o E C, an element c C E D,,. 

e. for every c~, B, E A, a function ",,n : Do--a X D~, --* D,, 

Given a model ~', we can extend it to a valuation, which we 
will also call £, on A{C)-terms. To do this, let an environment p 
be any type-preserving function from variable symbols to U Do. 
Then tile valuation is defined in the usual way, letting 

when ^! is of type /~ and dMa, has the property that  for all 
d e  0 , ,  d^fp , ,  d--- ¢[~qa[d/, I. It is easy to show that  the stan- 
dard bracket-abstraction algorithm preserves types, from which 
it follows tha t  the dm~, exist. 

Given a model £, the theory of £, Th{3) is defined as {hi = 
N I t~^fl = £UN]). 

It is easy to show tha t  Th(£)  is always a A-theory. Further- 
more, we call s tate  

T h e o r e m  1. ((?omplctcness Theorcm}. If T is a A.theory, then there 
is a modrl £ such that Th(£)  ~ T. 

Proof: We construct  the term model :  choose Do = {[AI]T [ M : 
~}, that  is, the set of T-equivalence classes of terms of type c~. 
l ,et far l • [N] = [(Af N)], and let tile s , k , e  be the denotat ions 
( independent  of environment) of appropriately typed versions of 
X~.vz.r~(y:), Xzy.~, and X~y.Tg. Then Th(C) = T; the proof, as 
sketched in [Meyer 82] goes through in the typed version a.s well. 
| 

With these models, we complete the semantics for reflexive 
types in Mihwr's polymorphic system, in which expressions but 
not wdnes are polymorpiii¢. Terms in the system are terms in 
the typed X-calculus, without the type subscripts, which can then 
be inserted by the principal typing algorithm. The fully typed 
terms can then be interpreted in the model. 

It is e:my to construct  models of the sort we have described. 
Hcsides the tertn moclels constructed in the proof, the s tandard 
universal model constructions, with retracts,  provide many such 
models ]Scott 80]. The Semantic Soundness Theorem in [Milner 
78] essentially shows that  the ideals are a model of the finite 
functional types; this result has recently been extended to ra- 
tional and other  types by McQueen, Plotkin, and Sethi [83]. 

7 R e p r e s e n t a t i o n  I n d e p e n d e n c e  

Reynolds,  i)onahue, and others have discussed the notion of 
representation indepenclence. The idea is tha t  the result of a 
computat ion involving opaque types, such as stacks, should not 
depend on how they are actually represented, tha t  is, upon the 
model chosen. Our picture provides a simple t rea tment  of this 
idea. One cannot talk about the first component  of a complex 
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number; one can merely talk about the first component of the 
Cartesian representation of ~ complex number, beenuse typing 
provides the syntactic discipline. Whatever one can prove about 
the complex numbers will be true in any model, so it must be 
independent of the actual representation of the complexes. This 
provides a notion of representation independence that  seems to 
be adequate for implementation; the results of [Donahue 79, 
Fokkinga 81, llaynes 82, etc.] remain of interest, however, ~s 
studies in model theory. 

8 Restoring induction 

Our treatment of opaque (ypes deals with them ~ solutions 
to domain equations. Though our treatment is proof-theoretic, 
it of course relies on the work of Scott [72, 76], I,ehmann and 
Smyth [81], and others who established the existence of such 
solutions by model-theoretic means, primarily using the notion 
of limits. (Lehmann and Smylll even pointed out (hat  operations 
on data types could be defined in terms of the isomorphisms; this 
is implicit ~-s well in the standard implementations, e.g. [Gordon 
78], [Liskov a .  at. 77]. 

llow are solutions constructed by limits different from ar- 
bitrary solutions of domain equalions? By analogy with the case 
of fixed points, one finds tha t  limit solutions admit proofs by 
induction. 

The natural proof-theoretic analog of an induction rule is 
the use of Boebm trees [Barendre~ 81]. The Boehm tree of a 
X-term is constructed, roughly, by taking the leftmost reduction 
until one gets a term of the form Xr~...~,,.~tM~ M~...Mp, and then 
proceeding similarly with the Mj; in general this gives an infinite 
tree. In our c~se, one needs to add the axioms of section ,5 ~q 
reduction rules as well. One then adds all the equations of the 
form M = N when l l T I M )  = IIT(N).  This technique w,~ used 
for compiler optimization in [Wand 83]. 

We conclude by showing some examples of theorems that  can 
be proved by this principle. Consider the following definitions: 

succs: int --* (stream int) 

= f i z{Xfn .cone-s t rramn( f l l+ '1)11 

mop: (~ -. a) -. ((stre,,~ ~) - .  (strcom,~)) 
= ] i : (xo/s.  

, 'o,)s. st re o m ( / ( f i r s t  . , ) ) (Of (  rest s))) 

ints = ft.z(Xe.cone-strea,,',O (map 1+ s)) 

Ilere succs is a function which, given an integer n, produces 
the stream consisting of n followed by its successors in order. 
Thus (succsO) produces the stream 0, i, 2 . . . . .  The function map 
is like mapcar for streams. Last, ints is the stream which begins 
with 0, and whose rest is obtained from ints by adding 1 to each 
element. Thus ints is also the stream 0, i, 2, .. 

T h e o r e m  2. i n ts=  (euccsO). 

Proof: Both have Boehm tree c(pairO(c(pair I .. ))). (See Figure 
1). To conserve space, we have omitted the rather mechanical 
deduction. This example requires the use of the rules for d and 
e as reduction rules. II 

T h e o r e m  3. map(fog) = (map f )o(rnapg) .  

Proof: Both Boehm trees look like 

X,,.e (pair (f(a(18on(d a))))(c (pair (f(g(lson(d( rson (ds))))))...))) 

(See Figure 2) I 

e 
I 

pair 

0 / ~ e  
I 

pair 
/ \  

1 e 
I 

Figure 1. Boehm tree for ints ~ (eucceO). 
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A similar result can be shown for mapcar; in that case the 
use of the rewriting rules for case is necegsary. 

9 Open Problems 

A variety of extensions and open problems suggest them- 
selves: 

• Our construction of term models extended that of Meyer to 
reflexive types. Leivant's construction of term models for Rey- 
nolds-style polymorphism [Leivant 83] also does not involve 
induction on type, and hence the same extensions should work 
to get an analog of our Theorem I for the logic of full polymor- 
phism. 

• If the set of types is closed under product as well as - , ,  then 
our models form Cartesian closed categories in the obvious 
way. Can one characterize the CC("s formed in this way? 

• It may be posited that the theory of Boehm trees is the "real" 
theory that we are interested in, rather than simply the theory 
of 0-conversion. Can we characterize the models of Boehm-tree 
theories in the same way that we now know how to characterize 
the models of lambda4heories? 

• What are the Church-Rosser properties of these systems? Our 
system includes the surjective pairing axiom, pair(Isonz, rsonz) 
= z ,  although this rule was not used in any of the examples 
in Section 8. While this axiom causes the Church-Rosser 
theorem to fail for the untyped calculus, it is known that the 
pure typed )`-calculus with surjective pairing is Church-Rosser 
[Pottinger 81]. The situation for the typed ),-calculus with 
infinite types is unknown. Nothing is known about the Church- 
Rosser properties of typed X-calculi with case operators, though 
in our examples we could interpret sums as products in the 
usual way. Another problematic axiom is the surjective sum 
axiom, essex inL inR ~ z. 

10 Conclusions 

We have presented a simple picture for Milner-style polymor- 
phism. The picture accounts for type inference (polymorphism), 
type abstraction (opaque types) including reflexive types, and 
representation independence in a single framework. 

We use proof theory to get abstraction, both as type abstrac- 
tion and abstraction from representations; this is the traditional 
mathematical approach to abstraction. Our treatment of reflex- 
ive types is just a proof-theoretical counterpart to the model-the- 
oretic approach of Scott, Plotkin, Lehmann and Smyth, ct. al.; 
our work would be semantically vacuous without the hard-won 
knowledge that our theories had tractable models. 
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