
A Types-as-Sets Semant ics for Milner-Style Polymorphism

Mitchell Wand

Computer Science Department
Indiana University
Lindley Hall 101

Bloomington, IN 47405 USA

Abs t r ac t

In this paper we present a semantics for Milner-style polymor-
phism in which types are sets. The basic picture is tha t our
programs are actually terms in a typed X-calculus, in which the
type information can be safely deleted from the concrete syntax.
In order to allow for common programming constructs, we allow
reflexive or infinite types, and we also allow opaque types, which
have private representations.

An adaptation of llindley's Principal Typing Theorem then
asserts tha t the (ype information can be reconstructed. Thus
expressions are polymorphic, since they may have more than one
correct typing, but values are not. Expressions tha t are not well-
typed arc syntactically ill-formed, as they are in conventional
mathematics, rather than having the meaning "wrong".

The resulting semantics is simpler than that for fully poly-
morphic models [Leivant 83], and generalizes (,he standard con-
structions, such as retracts and ideals.

1 In t roduct ion

In conventional mathematical discourse, the intuitive notion
of "type" seems much better founded than it is in computer
science. In general, one can regard types as sets of objects, and
a function may only be applied to an object from its domain.
If one has a function j" whose domain is the integers, and one
attempts to apply it to a real number, say e, then one says tha t
the expression f(~) is meaningless because of an error in types.
Thus we hold with Reynolds [83] tha t type structure is a syntactic
discipline: terms which are not well-typed are considered to be
ill-formed and therefore meaningless.

This situation is muddied in computer science because our
machines always do something with every input, including our
f(~). One is then led to the notion of types as predicates on
some universal domain: an integer is an object passing the integer
predicate, and a function from integers to integers is an object
which, when supplied with an object passing the integer predi-
cate, produces another object passing the integer predicate. One

. =

This Material is based on work supported by the National Science
Foundation under grant number MCS79-04183.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1983 A C M 0 - 8 9 7 9 1 - 1 2 5 - 3 / 8 4 / 0 0 1 / 0 1 5 8 $00.75

then proves by induction that Uwell-typed" expressions produce
"well-typed" answers, but expressions tha t are not "well-typed*
may produce any answer at all. As Reynolds points out, these
predicates inevitably overlap, leading to problems when an ob-
ject may be both an integer and a function, etc. [Reynolds 83]
at tempts to deal model-theoretically with these issues.

In keeping with the spirit of [Wand 82, 83], we attempt
t o deal proof-theoretically with these issues. This is the tradi-
tional mathematical approach to abstraction and representation
independence. Our starting point is the typed),-calculus, which
is the epitome of a well-understood theory of type. In order to
invest this formulation with enough power to prove any useful
theorems, we must supply it with some additional structure:

I. We need to allow the use of types other than functional types.
We present the definition of a typed X-calculus with such an
expanded system of types. These types permit the use of
arbitrary type constructors other than "--*" and so-called
"reflexive" types rather than just the finite types typically
considered in the typed X-calculus.

2. We then show how such a language accounts for programs
written under Milner's type discipline, including the expand-
ed notion of type. We prove an extension of the Principal
Typing Theorem to show that it is decidable whether a term
is typable, and tha t its principal type may be deduced by a
simple extension to the usual unification algorithm.

3. We need to account for some primitive type constructors,
such as products and sums, tha t do not seem to be definable
in our general paradigm. We give a t reatment of these; the
t reatment of sums, in particular, based on Reynolds, seems
to be better than the ones usually used.

4. We then present our formalization of user-defined types. We
model such types by including primitive constants which
provide the isomorphism between a public type (such as, say,
Complex.) and its private representation (say (pair Real ReaO).
Such type constructors may also be parameterlsed to account
for type abstraction, such as the type of (liet-ol a} for any
type a.

5. We present a definition of model for our theories. To ac-
complish this, we show that Meyer's combinatory model
theorem [Meyer 82] extends to any set of types which is
closed under "--* ", including reflexive types.

8. This formulation, however, does not allow induction on ap-
proximate solutions, as do the standard limit constructions.
We remedy this to some extent by using a suitably modified
notion of the theory of Boehm-trees. Using the resulting
theory, we prove some benchmark results.

Our formulations should be regarded us preliminary: we have
included just the axioms needed to prove the desired theorems,
subject only to the existence of reasonable models.

158

2 L a n g u a g e and Theo r i e s

Deflnl t lom A lype discipline A is a set of trees (possibly
including some infinite trees) closed under --., tha t is, if a, $ E A
then (o - . $) E A.

Examplea: (1) Let E be a ranked set. Then the set of all
finite trees built from ~- ." and elements of E (i.e., the initial
algebra generated by EU{- .}) is a type discipline.

(2) Same, but all finite and infinite trees with nodes labelled
by r.u{--.}.

(3) Same, but all finite and rational trees (i.e. only a finite
number of elements of E appear, and the set of occurrences of
each label is a regular set).

(4) The set consisting of a single tree: the complete infinite
binary tree in which every node is labelled by " ~ ."

We omit parentheses and associate arrows to the right, as
usual. We say a type discipline is effective iff there exists a set
of finite representat ions for the elements of A such tha t the
construct ion of a tree from its subtrees and the decomposition of
a tree into its root and its subtrees are both recursive. Examples
(1), (3), and (4) are effective, llenceforth, we assume whenever
necessary tha t the type disciplines arc effective.

For eve/)' type a E A, we assume a countably infinite supply
of variable symbols z~', z~ We also allow a countable set (" of
constants with associated types. Generally such constants come
in families, e.g. tense : a ~ (listaJ ~ (tista) for each type a.

We now'formulate the notion of a typed X-term. This defi-
nition is s tandard, except that it is relative to a type. discipline
A. In fact, it follows exactly the definition in [Barendregt 81, p.
~ool.

Deflnlt lom The language A(C) of A-typed X-terms consists
of a set of strings with associated types in A. We write M : a
to indicate tha t string M has type a. The terms are defined as
follows:

(1) If z ° is a variable of type a, then z ~ : a is a term.

(2) If c: a E C, then c : a is a term.

(3) If M : a -~ /~ and N : a are terms, then (MN) : ~ i:~ a
term.

(4) If xo is a variable of type a, and M : ~ is a term, then
(Xx°.M) : a - - ~ is a term.

(5) Nothing else is a term.

The notion of a theory is also s tandard:

Deflnl t iom A A.theory is a set of pairs of A(C)-terms closed
under a-conversion, 0-conversion, reflexivity, symmetry, transi-
tivity, congruence (from M =~ M' and N = N ' deduce M N ----
M~N~), and the ~-rule (from M ~- N deduce X~.M ffi Xz.N).

3 P o l y m o r p h i s m

A A-theory constitutes a strongly-typed programming lan-
guage, like PASCAL. A program is jus t a term in the language,
and we compute by ~ reducing the term to normal form. This
is not, however, a particularly convenient language to program
in, because one must put in too much type information: one
needs a separate mapcar function for lists of every type (just as
in PASCAL one needs separate routines for arrays of every size).

In practice, one does not need all these separate routines for
two reasons, one pragmatic and one mathematical .

The pragmatic reason is tha t representations of related types
share facets of their representation in a computer . Thus arrays of
various sizes are all implemented as linear sequences of locations,

and lists of booleans, integers, etc., are all typically implemented
as linked lists of cells. Thus procedures such as mapc~r can be
imlymorphic because they only manipulate the portion of the
representation which is shared among the various instances.

In this analysis, polymorphism is a syntactic phenomenon:
expressions are polymorphic because we are too lazy to put in
all the subscripts on the combinators, and it so happens that
we can get away with this because of s tandard implementat ion
conventions. Values are not polymorpbic.

This seems to be the analysis of polymorphism implicit in
the discussion, though not in the theory, of [Milner 78]. It is
to be contrasted with the full polymorphism or [Reynolds 74,
l,eivant 83] where values can be truly polymorphic. In Milner-
s,yle polymorphism, the type structure is weaker, but in compen-
sation, it has a simpler semantics, as we will show. Furthermore,
it seems adequate for a large number of applications, including a
system for semanlic prototyping [Wand 83a], whose construction
motivated us to examine this question.

The mathematical reason is given by the Principal Typing
Theorem of [[lindley 09], which states that given an arbitrary
string M, it is decidable whether that string was obtained By
removing the type superscripts from some term of the typed x-
calculus. If A! was obtained by removing the type information
from a term of type cz, we sift that c~ is a possible type of M.

• Furthermore, one can effectively find a unique "type scheme,"
called the principal typing of AI, such tha t every possible type of AI
is an instance of that scheme. The proof utilizes the unification
algorithm of [Robinson O5].

Ilindley's proof allowed only finite types (not necessarily
restricted to functional types, however), llis proof, however,
relies only on the decidability of the unification problem, so it
goes through whenever the set of type schemes has a decidable
unification problem. In particular, it goes through for the set
of rational schemes. There the unification algorithm is just the
conventional one, except that the so-called "occurrence check"
is omit ted [Robinson, personal communication].

DIgren lon : In order to apply l l indley's proof, we need to
take care of a few details. First , we need to extend the notion of
a type discipline, as defined above, to a discipline of type schemes,
which are like types except they may contain type variables.
A discipline must be closed under --. and under subst i tut ion of
schemes for type variables. The types, as defined above, then
become just the type schemes with no variables (i.e. the ground
type schemes). Also, in place of the t rea tment of constants above,
we associate with each constant symbol a principal type scheme,
so rule (2) in the definition of terms becomes: "if c : ~ E C, and
r is an instance of rl, then c, : r is a term ~. Also, t l indley's
proof is in terms of combinatory logic rather than the lambda-
calculus, but Theorem 2 in his paper shows tha t this difference is
inessential (see, for example, the s ta tement of l l indley's theorem
in [Barendregt 81, Proposition A.I.10]). End of Dlg ren lon

Thus, given a term without type information, we can recon-
struct, the type information, and do so in the "most general"
way. This allows us to program without giving types (though
exactly where one should specify types anyway is a language
design question). We can rely on the principal typing theorem
to assure us tha t we will get answers of the right type, and on
our shared representations to share object code.

Again, we see tha t expressions are polymorphic, but values
are not. When we introduce a new constant , say c0nz, we actually
are introducing an infinite family of typed constants cons~ : ~
(listaj ~ (listaJ for each type a. Furthermore, a - . (lista I -.* (lisla)
is a principal type scheme for cons.

What about generics? This is a troubling subject for conven-
tional analyses. We account for generics, either local or global,
by regarding them as merely syntactic sugar for their definition
expressions. Thus something like " let f = AI In N" in ML

159

[Gordon st. at. 78] is syntactic sugar for N [M / I] , which hgs
quite a different principal type from (Xf.N)M.

4 P r o d u c t s and Sums

In order to do any useful examples, we need some additional
type s t ructure beyond the pure typed X-calculus. We will assume
the following:

I. We have some ground types, atnong which are the type Triv
with element triv.

2. We assume tha t for certain types ~, there will be const:tnts
d ~ : a --- # anti eo,~ : /~ - . a. at most one such pair per a,
subject to the axioms:

dc,~leo,s z) = z

3.

These symbols are the key to the solution of domain equa-
tions, as discussed in the following section.

Our types are closed under the 2-place type constructors pair
and union, and for all types a ,#, 7, we have constants

pairc, ~ : a -.. B -'* pair a#

I s o n ~ : pair ai5 ~ a

rsona# : pair a15 ~ #

inLo~ : a -.., union a~

inRao :/3 --* union ctl3

caseoo. ~ : union a # -.. (c~ .--. 7) "" (15 --* "r) "-* "r

subject to the following axioms:

Ison(pairx y) = z

rson(pairr y} = y

pair(lson z, rson z) : x

case{inL z) f g = f z

case(inR x) f g = g~

4.

Our t rea tment of sums is motivated by the definition of a
coproduct in a category, aml was anticipated by Reynohls
[75]. It allows expressions involving sum types to be well-
typed, and avoids the introductions of canonical error ele-
ments, as required by the conventional t rea tment via "re-
s t r ic t ions?

We need in addit ion to postulate tha t these constants inter-
act nicely. An appropriate set of axioms seems to be the
following:

at(ease r fg)y) = (c a s e z (a o f) (a o g))y

where a is lson, rson, d, or e (but not pair)

(ease(case y i j) f g) = (casey

Xu.casc (iu) fg

Xu.case (j u) f g)

5 User -de f ined types

In programming languages such .~s CI,U or Simula, one can
create %paque" types, whose representation is known only in a

small scope, though functions which manipulate that represen-
tat ion may be known in the rest of the program. This device
allows a cleaner interface between types and their users.

To formalize this, let Pub be an opaque type with represen-
tat ion Priv. We add two constants to the typed),-calculus: d :
Pub -.. Priv (decode) and c : Priv - . Pub (encode), subject to the
axiom tha t these constants are two-sided inverses. We can then
define the "public" operations on Pub in terms of d and e. This
makes Pub a type tha t is isomorphic to Priv but dist inct from it:
one cannot manipulate an element of Pub except by using the
decode anti encode operations explicitly. Thus, the resulting cal-
cult,s may be modelled by interpret ing Pub as any set isomorphic
to l'riv, but not necessarily the same as Pr/v.

We are now in a position to do some examples. We introduce
a bit of syntax:

' / de f type typerep type

definitions

end

This defines a new type in terms of its representation, and gives
the definitions of the functions for manipulat ing it in terms of d
and c. As a programming language construct , d e ~ p e ought to
restrict the scope of d and e, but we will not do so, since tha t is
an issue of language design, not of semantics.

de f type Boo l rep union Triv Triv

true = c(inL triv)

false = e (inR triv)

ifo : B o o l - - * a "-'* ct --* cl = k zyz .case(dz) (Xu.y) (Xu.z)

end

This defines Booi as an opaque type, represented by the
disjoint sum of two copies of Triv , with constants true and f a l se ,
and a family or functions if o : B o o l - . a - . a - . a , one for each a.
Thus, if (without the subscript) becomes a global generic symbol
for the code above, so t ha t one may have multiple occurrences
of if, with different types, in a single scope. Note also tha t in
keeping with our philosophy, we have suppressed the subscripts
wherever possible.

The same machinery allows us to specify reflexive types.
I le ts we introduce stream as a t y p e constructor by simultaneously
defining (s t reama) for all a:

de f type (stream a) r e p pair a (stream a)
firsto, : (s t reama) .--, a

:)~s.lson(d s)

retto : (s t r e a m ct) - - (stream or)

= Xs.rson(d s)

cons-slreama : a ---, (stream a) -.* (stream a)
---- Xas.c(pair a 8)

end

As in the case of Bool, we have introduced a family of operators
first, rest, and cons-stream, one for each type a. This is quite
similar to the definition of an abaree type in ML [Gordon 78].
We can build s t reams without using a stream constant by using

} 6 0

fixed points, e.g.:

stream-o/-lalsc = fiz(Xs.cons.stream Salse s)

which builds an infinite stream of raise's. (Note that since we
have allowed rational types, fiz is definable).

Now let us do something slightly more complicated: a da ta
type of lists.

def type (list a) rep union Triv(pair a (list a))

nil~ : (list a)

e{inL triv)

coast, :el - . (list a)--* (list a)

= Xal.c(inR(pairal))

list-caSCoa : (list c 0 ~ B "-" (ct - - (list a) --* IJ) -" i~

-~- x l n / . (case (d l) (Xn.a)(X,,./(lson u) (r so , n)))
end

d. for every a,B,7 E A, elements

eoa E /)(o--a)~{c,~/~)

such tha t

1. for a l l z E D o , y E D a , k o a . z V = r .

2. for all z E D,,~a--~, Y E D o - a , anti z E I),,, s,,a~ • r . V ' z =
z.-" .(V. :}.

3. for a l l z E D o _ ~ , v E D ~ , e o ~ . z . y = z . v .

4. for all z,y E Do-a , ((¥ ~ E D~){z. z = V" :) D (eoa " X = e,~ a . v))

E n d o f definit ion

ilere we have homogeneous lists, with nil anti cons as the
usual list construction functions; the i lL and inR serve to inject
values into the appropriate summand of the representation. The
list decomposition, however, is not the usual one: list-casc takes
a list anti two more arguments. The first ext ra argument is
returned if the list is empty; otherwise the second argument I f
above) is applied to the first e l eme , t and the remainder of the
list. Like if, list-ease has an additional degree of genericity. We
have used this style of programming extensively. It turns out
to be quite pleasant {and ra ther reminiscent of I tOPE [13urstall,
MacQueen, & Sannella 80 D.

To illustrate this programming style, we can write the func-
tion reduce (seej e.g., [Henderson 80, p. 41D as follows:

A

reduce = X f al.fi.z(XO.lisl-casc I a (Xxy.f ~(Oy)))

As a second example, consider the case of stacks.

deftygm (stock a) r e p (list a)
push° : a - . (s tacta) -.. (aacka)

= Xas.e(consu s)

popo~ : (slacka) - - ((aack a) -,. #) -,. ,0 -,. #

= Xs f errt,aluc, list-case (d s)errvalue (Xal.f(*'l))

top.~ : (s tacka)- . . (a - . #1 ..-. # - - , /~

= Xsfcrrvaluc. lisl-case(ds)errt,aluc(Xal.fa)

e n d

Again, pop and top have additional genericity: the type scheme
of toe, for example, is (stacka) -.-. (a - . ~) - . ~ --. ~. Ilence, to
take the top of a stack of a, one supplies the function tol,,~ with
the stack, an error value of type ~ to be returned in ease the
stack is empty, and a function (of type c~ --, t~) to receive the
top element in case the stack is non-empty. Such functions are
ubiquitous in this programming style. They are analogous to
Reynolds ' accepters [Reynolds 81], and provide a smooth, type-
checkable t rea tment of error conditions.

0 Models

We now present the definition of a model for our theories.
The definition is adapted from [Meyer 82].

Definl t lom A model £ of A(CJ consists of the following data:

~. for every a E A, a set D~.

b. for every e: o E C, an element c C E D,,.

e. for every c~, B, E A, a function ",,n : Do--a X D~, --* D,,

Given a model ~', we can extend it to a valuation, which we
will also call £, on A{C)-terms. To do this, let an environment p
be any type-preserving function from variable symbols to U Do.
Then tile valuation is defined in the usual way, letting

when ^! is of type /~ and dMa, has the property that for all
d e 0 , , d^fp , , d--- ¢[~qa[d/, I. It is easy to show that the stan-
dard bracket-abstraction algorithm preserves types, from which
it follows tha t the dm~, exist.

Given a model £, the theory of £, Th{3) is defined as {hi =
N I t~^fl = £UN]).

It is easy to show tha t Th(£) is always a A-theory. Further-
more, we call s tate

T h e o r e m 1. ((?omplctcness Theorcm}. If T is a A.theory, then there
is a modrl £ such that Th(£) ~ T.

Proof: We construct the term model : choose Do = {[AI]T [M :
~}, that is, the set of T-equivalence classes of terms of type c~.
l ,et far l • [N] = [(Af N)], and let tile s , k , e be the denotat ions
(independent of environment) of appropriately typed versions of
X~.vz.r~(y:), Xzy.~, and X~y.Tg. Then Th(C) = T; the proof, as
sketched in [Meyer 82] goes through in the typed version a.s well.
|

With these models, we complete the semantics for reflexive
types in Mihwr's polymorphic system, in which expressions but
not wdnes are polymorpiii¢. Terms in the system are terms in
the typed X-calculus, without the type subscripts, which can then
be inserted by the principal typing algorithm. The fully typed
terms can then be interpreted in the model.

It is e:my to construct models of the sort we have described.
Hcsides the tertn moclels constructed in the proof, the s tandard
universal model constructions, with retracts, provide many such
models]Scott 80]. The Semantic Soundness Theorem in [Milner
78] essentially shows that the ideals are a model of the finite
functional types; this result has recently been extended to ra-
tional and other types by McQueen, Plotkin, and Sethi [83].

7 R e p r e s e n t a t i o n I n d e p e n d e n c e

Reynolds, i)onahue, and others have discussed the notion of
representation indepenclence. The idea is tha t the result of a
computat ion involving opaque types, such as stacks, should not
depend on how they are actually represented, tha t is, upon the
model chosen. Our picture provides a simple t rea tment of this
idea. One cannot talk about the first component of a complex

161

number; one can merely talk about the first component of the
Cartesian representation of ~ complex number, beenuse typing
provides the syntactic discipline. Whatever one can prove about
the complex numbers will be true in any model, so it must be
independent of the actual representation of the complexes. This
provides a notion of representation independence that seems to
be adequate for implementation; the results of [Donahue 79,
Fokkinga 81, llaynes 82, etc.] remain of interest, however, ~s
studies in model theory.

8 Restoring induction

Our treatment of opaque (ypes deals with them ~ solutions
to domain equations. Though our treatment is proof-theoretic,
it of course relies on the work of Scott [72, 76], I,ehmann and
Smyth [81], and others who established the existence of such
solutions by model-theoretic means, primarily using the notion
of limits. (Lehmann and Smylll even pointed out (hat operations
on data types could be defined in terms of the isomorphisms; this
is implicit ~-s well in the standard implementations, e.g. [Gordon
78], [Liskov a . at. 77].

llow are solutions constructed by limits different from ar-
bitrary solutions of domain equalions? By analogy with the case
of fixed points, one finds tha t limit solutions admit proofs by
induction.

The natural proof-theoretic analog of an induction rule is
the use of Boebm trees [Barendre~ 81]. The Boehm tree of a
X-term is constructed, roughly, by taking the leftmost reduction
until one gets a term of the form Xr~...~,,.~tM~ M~...Mp, and then
proceeding similarly with the Mj; in general this gives an infinite
tree. In our c~se, one needs to add the axioms of section ,5 ~q
reduction rules as well. One then adds all the equations of the
form M = N when l l T I M) = IIT(N). This technique w,~ used
for compiler optimization in [Wand 83].

We conclude by showing some examples of theorems that can
be proved by this principle. Consider the following definitions:

succs: int --* (stream int)

= f i z{Xfn .cone-s t rramn(f l l+ '1)11

mop: (~ -. a) -. ((stre,,~ ~) - . (strcom,~))
=] i : (xo/s.

, 'o,)s. st re o m (/ (f i r s t . ,)) (Of (rest s)))

ints = ft.z(Xe.cone-strea,,',O (map 1+ s))

Ilere succs is a function which, given an integer n, produces
the stream consisting of n followed by its successors in order.
Thus (succsO) produces the stream 0, i, 2 The function map
is like mapcar for streams. Last, ints is the stream which begins
with 0, and whose rest is obtained from ints by adding 1 to each
element. Thus ints is also the stream 0, i, 2, ..

T h e o r e m 2. i n ts= (euccsO).

Proof: Both have Boehm tree c(pairO(c(pair I ..))). (See Figure
1). To conserve space, we have omitted the rather mechanical
deduction. This example requires the use of the rules for d and
e as reduction rules. II

T h e o r e m 3. map(fog) = (map f)o(rnapg) .

Proof: Both Boehm trees look like

X,,.e (pair (f(a(18on(d a))))(c (pair (f(g(lson(d(rson (ds))))))...)))

(See Figure 2) I

e
I

pair

0 / ~ e
I

pair
/ \

1 e
I

Figure 1. Boehm tree for ints ~ (eucceO).

f /
I
g

Islon
I
d
I
s

~. s.e

I
pair

I.
p a i r f/"

i I.
g pair

Islon f /
I I
d g

I ,Ioo rson

d
i I
s rson

I rson
I
d
I
$

\
e

I

Fioure E. noehm tree for map(f o g) = (map f) o (map g},

162

A similar result can be shown for mapcar; in that case the
use of the rewriting rules for case is necegsary.

9 Open Problems

A variety of extensions and open problems suggest them-
selves:

• Our construction of term models extended that of Meyer to
reflexive types. Leivant's construction of term models for Rey-
nolds-style polymorphism [Leivant 83] also does not involve
induction on type, and hence the same extensions should work
to get an analog of our Theorem I for the logic of full polymor-
phism.

• If the set of types is closed under product as well as - , , then
our models form Cartesian closed categories in the obvious
way. Can one characterize the CC("s formed in this way?

• It may be posited that the theory of Boehm trees is the "real"
theory that we are interested in, rather than simply the theory
of 0-conversion. Can we characterize the models of Boehm-tree
theories in the same way that we now know how to characterize
the models of lambda4heories?

• What are the Church-Rosser properties of these systems? Our
system includes the surjective pairing axiom, pair(Isonz, rsonz)
= z , although this rule was not used in any of the examples
in Section 8. While this axiom causes the Church-Rosser
theorem to fail for the untyped calculus, it is known that the
pure typed)`-calculus with surjective pairing is Church-Rosser
[Pottinger 81]. The situation for the typed),-calculus with
infinite types is unknown. Nothing is known about the Church-
Rosser properties of typed X-calculi with case operators, though
in our examples we could interpret sums as products in the
usual way. Another problematic axiom is the surjective sum
axiom, essex inL inR ~ z.

10 Conclusions

We have presented a simple picture for Milner-style polymor-
phism. The picture accounts for type inference (polymorphism),
type abstraction (opaque types) including reflexive types, and
representation independence in a single framework.

We use proof theory to get abstraction, both as type abstrac-
tion and abstraction from representations; this is the traditional
mathematical approach to abstraction. Our treatment of reflex-
ive types is just a proof-theoretical counterpart to the model-the-
oretic approach of Scott, Plotkin, Lehmann and Smyth, ct. al.;
our work would be semantically vacuous without the hard-won
knowledge that our theories had tractable models.

Auk nowledgements

A preliminary version of this paper was presented at the
Workshop on Types and Polymorphism in Programming Lan-
guages, at Carnegle-Mellon University. We thank Ravi Sethi,
David MacQueen, and Daniel Leivant for the opportunity to
present the paper on very short notice. They, Dana Scott, and
Albert Meyer provided useful discussion.

References

[Barendregt 81]
Barendregt, I l . P . The Lambda Calculus: Its Syntaz and Semantics,
North-Ilolland, Amsterdam, 1981.

[Burstall, MacQueen, & Sannella 80]
Burstall, R.M., MacQueen, D.B., and Sannella, D.T. "HOPE:
An Experimental Applicative Language,* Conf. Rec. 1980
LISI" Conference, 136-143.

[Donahue 79]
Donahue, J. "On the Semantics of 'Data Type'," SlAM J.
('omput. S (1979), 546 560.

[Fokkinga 81]
Fokkinga, M.M. "On the Notion of Strong Typing," in At.
gorithmic Languages (deBakker and van Vliet, eds.), North-
ltolland, 1981, pp. 305--320.

[Gordon, st. o178]
Gordon, M., Milner, R., Morris, L., Newsy, M., and Wads-
worth, C. "A Metalanguage for Interactive Proof in LCF,"
Proe. 5lh Annual ACM Syrup. an Principles of Programming Lan-
guages (1978) i 19-130.

[Ilaynes 82]
Iiaynes, C. T. "A Theory of Data Type Representation Inde-
pendence," University of Iowa Computer Science Department
Technical Report Numer 82-04, December, 1982.

[llenderson 80]
llenderson, P., Functional Programming: Application and lmple-
m~:ntation, i'rentice-llall International, Englewood Cliffs, N J,
1980.

[I lindley 09]
ltindley, R. "The Principal Type-Scheme of an Object in
Combinatory Logic," Trans. Am. Math. Sou. 146 (1969) 29-60.

[Lehmann & Smyth 81]
Lehmann, D.J. and Smyth, M.B. "Algebraic Specification of
Data Types: A Synthetic Approach," Moth. Sye. Th. 14 (1981),
97-139.

[Leivant 83]
l,eivaat, D. "Structural Semantics for Polymorphic Data Types
(preliminary report)," Conf. Rec. lOth ACM Symposium on
Principles of Programming Languages (1983), 1,55-166.

[Liskov et. al 77]
Liskov, B., Snyder, A., Atkinson, R. and Schaffert, C. ~Ab-
stractlon Mechanisms in CLU," Comm. ACM eO (1977), 564-
'576.

[MacQueen, PIotkin, & Sethi 83]
MacQueen, D.B., PIotkin, G., and Sethi, R. "An Ideal Model
for Recursive Polymorphic Types, ~ presentation at Workshop
on Data Types, Carnegie-Mellon University, June 9-10, 1983.

[Meyer 82]
Meyer, A.R. "What Is a Model of the Lambda Calculus,"
Information and Control 5e (1982), 87-122.

[Milner 78]
Milner, R. "A Theory of Type Polymorphism in Program-
ruing," J. Camp. O Sys. Sci. 17(1978), 348-37'5.

[Pottinger 81]
Pottinger, G. "The Church-Rosser Theorem for the Typed
),-Calculus with Snrjective Pairing," Notre Dame Journal of
Formal Logic gg (1981) 204-268.

[Reynolds 74]
Reynolds, J.C. "Towards a Theory of Type Structures, ~ in
Programming Symposium (Colloque sur la Programmation, Paris)
Springer Lecture Notes in Computer Science, Vol. 19, Berlin,
1974, pp. 408-425.

1 6 3

[Reynolds ;'5]
Reynolds, J.C. "User-Defined Types and Procedural Data
Structures as Complementary Approaches to Data Abstrac-
tion" Conf. on New Directions on Algorithmic Languages, IFIP
WG 2.1, Munich, August, 1975.

[Reynolds ~:1]
Reynolds, J.C. ~The Essence of Algol," in Alyorithmic Lan-
guages, (J. W. deBakker and J.C. van Vliet, eds.) North-
Holland, Amsterdam, 1981, pp. 345-372.

[Reynolds 83]
Reynolds, J.C. "Types, Abstractions, and Parametric Poly-
morphism," Pros. lbTP 88.

[Robinson 65]
Robinson, J.A. "A Machine-Oriented Logic Based on the Res-
olution Principle," J. Assoc. Comput. Mach. 1£ (1965), 23-41.

[Scott 72]
Scott, D. "Continuous Lattices" in Toposes, Algebraic Geometry,
andLogic (F.W. Lawvere, ed.), Lecture Notes in Mathematics.
vol. 274, Springer-Verlag, New York, pp. 97-130.

[Scott 70]
Scott, D. "Data Types as Lattices" SIAM J. Comput. 5 (1976],
522-587.

[Scott 80]
Scott, D. "Relating theories of the X-calculus," in To H.ll.
Curry: Essays on Combinatory Logic, Lambda-Calculus and For-
malism (ilindley and Seldin, eds.) Academic Press, New York
and London, 1980, pp. 403-450.

[Wand 82]
Wand, M. "Semantics-Directed Machine Architecture" Conf.
Rec. 9th ACM Symp. on Principles of Prog. Lang. (1982), 234-
241.

[Wand 83]
Wand, M. "Loops in Combinator-Based Compilers," Conf.
Rec. lOth ACM Symposium on Principles of Programming Lan-
guages (1983), 190-196.

[Wand 83a]
Wand, M. ~A Semantic Prototyping System," June, 1983.

164

