
Language-Integrated Query with Ordering,
Grouping and Outer Joins (Poster Paper)

Tatsuya Katsushima
Tohoku University, Japan

katsushima@sf.ecei.tohoku.ac.jp

Oleg Kiselyov
Tohoku University, Japan

oleg@okmij.org

Abstract
Language-integrated query systems like T-LINQ or QUEΛ make
relational operations on (generally external) data feel like the
ordinary iteration over native arrays. As ordinary programs, queries
are type-checked, can be abstracted over and composed. To access
relational database systems, queries are eventually translated into
well-formed, well-typed and efficient SQL. However, most existing
language-integrated query systems implement only a small subset
of relational operations supported by modern databases.

To make QUEΛ full-featured, we add to it the operations corre-
sponding to SQL’s ORDER BY, LIMIT, OUTER JOIN, GROUP BY
and HAVING. We describe the type system and the normalization
rules to produce the efficient SQL code. The type system not only
ensures by construction the intricate SQL validity constraints. It also
prevents the accidental composition of hard-to-optimize queries.

Our extended QUEΛ is embedded in OCaml in the tagless-final
style.

Categories and Subject Descriptors D.3.4 [Programming Lan-
guages]: Processors—Code Generation; H.2.3 [Database Manage-
ment]: Languages—Query Languages

Keywords SQL, tagless-final, language-integrated query, LINQ,
EDSL

1. Introduction
Language-integrated query is “smooth integration” of database
queries with a conventional programming language. Not only do
we access (generally external) relational data as if they were local
arrays of records. Not only do we type-check queries as ordinary
programs. Mainly, we use the abstraction facilities of the program-
ming language – functions, modules, classes, etc. – to parameterize
queries, reuse old queries as parts of new ones, and compile query
libraries.

Alas, the completely smooth integration is still an open problem.
For one, the lingua franca of relational databases, SQL, was not
designed as a programming language and is not compositional.
The later added subqueries help, yet the full compositionality is
still lacking: e.g., the SQL standard and many databases disallow

ORDER BY in subqueries. Mainly, subqueries are optimized less
well. Even the vendor literature recommends subqueries be re-
written into a flat SQL for performance.

The re-writing approach has been worked out in detail in [2],
and implemented, in particular, in T-LINQ [1]. QUEΛ [5] is a re-
implementation of T-LINQ using the tagless-final embedding into
OCaml, which makes the rewriting rules user-definable, extensible
and typeable. The rules convert the query to a normal form from
which the ‘flat’ SQL (without subqueries) can be easily generated.

T-LINQ and the original QUEΛ used only the core relational
operations of selections, cartesian products, projections and unions.
QUEΛ also considered the type system (but not the re-writing
rules) for grouping. The practically used SQL however has more
operations: specifically, sorting, selection of a subset of sorted rows
(LIMIT), and outer joins. It is not known how to optimize composite
queries that involve these facilities .

We report on the ongoing work to make language-integrated
queries (QUEΛ in particular) support the full range of practically
significant relational operations of the modern database engines:

• We smoothly integrate into programming language the oper-
ations corresponding to SQL’s ORDER BY, LIMIT, OUTER
JOIN, GROUP BY and HAVING;

• We give the semantics of these operations independent of SQL;
• We assign types to those operations so to ensure, by construction,

that the generated SQL code passes the intricate validity checks
imposed by the SQL Standard. We also prevent the acciden-
tal composition of hard-to-execute queries, such as composing
GROUP BY with other queries. Our type system makes the pro-
grammer aware of the performance implications and forces the
explicit use of common-table-expressions if such compositions
are really desirable.

• We design re-writing rules for queries with nested ORDER BY
and outer joins;

• We cast the query normalization as an effectful normalization-
by-evaluation.

The closely related to us Haskell’s Opaleye [3] and HRR [4]
also deal with ordering, grouping and outer joins. They do not
present relational data as local arrays to iterate over. They have rather
complicated type system. The published materials offer no semantics
other than the re-writing into SQL. Mainly, these systems consider
no query normalization and optimizations, relying on subqueries to
achieve compositionality.

2. Extended QUEΛ
We describe the extended QUEΛ by examples. The examples rely
on the following sample database (the same as in [5]) of two tables
below. The first query sorts the products table by price (we show

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the Owner/Author.
Copyright is held by the owner/author(s).

PEPM’17, January 16–17, 2017, Paris, France
ACM. 978-1-4503-4721-1/17/01...$15.00
http://dx.doi.org/10.1145/3018882.3018893

123

products
pid name price

1 Tablet 500
2 Laptop 1,000
3 Desktop 1,000
4 Router 150
5 HDD 100
6 SSD 500

orders
oid pid qty

1 1 5
1 2 5
1 4 2
2 5 10
2 6 20
3 2 50

type Product = 〈pid : Int,
name : String, price : Int〉

type Order = 〈oid : Int,
pid : Int, qty : Int〉

QUEΛ alongside the corresponding SQL):
Qo1 =

for (p← table(“products”))
order [(price, DESC)]

yield p

SELECT p.∗
FROM products AS p
ORDER BY price DESC

The second query returns only the first two rows of the sorted table

Qol1 =
for (p← table(“products”))
orderlimit [(price, DESC)] (0, 2)
yield p

SELECT p.∗
FROM products AS p
ORDER BY
price DESC

LIMIT 2 OFFSET 0
The next example demonstrate query composition, reusing al-

ready built queries like Qo1 to define new ones:
Qo2 = for (x← Qo1) for (o← table(“orders”))

where (x.pid = o.pid) order [(sale, ASC)]
yield 〈pid=x.pid, name=x.name, sale=x.price ∗ o.qty〉

Naively doing the similar composition in SQL results in
SELECT x.pid, x.name, x.price ∗ o.qty AS sale
FROM

(SELECT ∗ FROM products ORDER BY price DESC) AS x,
orders AS o

WHERE x.pid = o.pid ORDER BY sale

with ORDER BY in a subquery – which is not allowed in many
databases (e.g., Oracle). PostgreSQL does allow nested ORDER BY
but performs unnecessary sorting, costing performance.

QUEΛ normalizes queries (see the next section), producing
Qn

o2 =
order [(sale, ASC)]
for (p← table(“products”))
for (o← table(“orders”))
where (p.pid = o.pid)
yield 〈pid=p.pid,
name=p.name,
sale=p.price ∗ o.qty〉

SELECT p.pid, p.name,
p.price ∗ o.qty as sale

FROM products AS p,
orders AS o

WHERE p.pid = o.pid
ORDER BY sale ASC

eliminating the nested ORDER BY (as well as the subquery). The
result is easily convertible to a flat SQL (shown on the right).

If we attempt to write Qo2 with the limited Qol1 in place of Qo1,
it will not type check in QUEΛ: ordering with the limit cannot be
eliminated and such a composition will have poor performance (if
even allowed in some databases). The user has to use the let-table–
expression (which corresponds to with-expression of SQL), to make
the performance implications explicit:
Qo2 = let table t = Qol1 in

for (x← t) for (o← table(“orders”))
where (x.pid = o.pid) order [(sale, ASC)]
yield 〈pid=x.pid, name=x.name, sale=x.price ∗ o.qty〉

For outer joins, we added the ‘binary version’ of the for-iterator
Qleft =

leftjoin (p← table(“products”))
(o← table(“orders”))
(p.pid = o.pid)

where (p.price > 700)
yield 〈pid=p.pid,
price=p.price, qty=o.qty〉

SELECT p.pid, p.price, o.qty
FROM products AS p

LEFT JOIN orders AS o
ON p.pid = o.pid

WHERE p.price > 700

which is however treated as a macro, expanding into a UNION ALL
of an inner join, and a traversal of the products table selecting pids
with no corresponding orders (In table’ below, each field is of the
option type.) The two queries can then be normalized as usual.
Qleft =

for (p← table(“products”))
for (o← table′(“orders”))
where (p.pid = o.pid)
where (p.price > 700)
yield 〈pid=p.pid, price=p.price,
qty=o.qty〉]

for (p← table(“products”))
for (o← yield 〈oid = None,

pid = None, qty = None〉)
where (¬exists
(for (o′ ← table(“orders”))

where (p.pid = o′.pid) yield 1))
where (p.price > 700)
yield 〈pid=p.pid, price=p.price,
qty=o.qty〉

SELECT p.pid,
p.price , o.qty

FROM products AS p,
orders AS o

WHERE p.pid=o.pid
AND p.price > 700
UNION ALL
SELECT p.pid,
p.price , null

FROM products AS p
WHERE NOT EXISTS
(SELECT 1
FROM orders AS o
WHERE p.pid=o.pid)
AND p.price > 700

3. Normalization and the Type System
To normalize the extended QUEΛ we added the following rules
(where L @ M means concatenation).

where L (orderM N)
orderM (where L N) (WHEREORDER)

for (x ← order LM) N
(for (x ← M) N) (FORORDER1)

for (x ← L) (orderM N)
orderM (for (x ← L) N) (FORORDER2)

order L (orderM N)
order (L @ M) N (ORDERORDER)

order []M M (ORDEREMPTY)
orderlimit LM (order N K)

orderlimit (L @ N) M K (ORDERLIMITORDER)

The rules make it clear that ordering is regarded as an effect, to
be applied to the finished complete query. This is the meaning given
to ORDER BY in SQL.

We omit the type system for the lack of space, only mentioning
the typing judgment Γ ` L : t; τ that an expression L has the type t
(like 〈pid : Int〉 Bag) with effect annotations τ . The latter describe
the effects of L such as ordering or grouping.

4. Conclusions
We have described the extension of QUEΛ with ordering and outer
joins, giving a short summary of the normalization process and
the type system. We are investigating the implementation of the
normalization as normalization-by-evaluation, with control effects
like ordering.

References
[1] J. Cheney, S. Lindley, and P. Wadler. A practical theory of language-

integrated query. In ICFP ’13, pages 403–416, New York, NY, USA,
2013. ACM.

[2] E. Cooper. The script-writer’s dream: How to write great sql in your
own language, and be sure it will succeed. In DBPL ’09, pages 36–51,
Berlin, Heidelberg, 2009. Springer-Verlag.

[3] T. Ellis. Opaleye. https://github.com/tomjaguarpaw/
haskell-opaleye. last visited: Dec. 2014.

[4] K. Hibino, S. Murayama, S. Yasutake, S. Kuroda, and K. Ya-
mamoto. Haskell relational record. http://khibino.github.io/
haskell-relational-record/. last visited: Jun. 2015.

[5] K. Suzuki, O. Kiselyov, and Y. Kameyama. Finally, safely-extensible
and efficient language-integrated query. In Proc. PEPM, pages 37–48.
ACM, 2016. .

124

