
Filter Fusion

Todd A. Proebsting” Scott A. Watterson

University of Arizona University of Arizona

1 Introduction

Filters are a common data-manipulation abstraction

in networking, operating systems, and simulation

software. Filters read data from a single source and

write data to a single destination. In filter applica-

tions, data flows from a source to a sink through

intermediate filters. Logically, filters are separate,

modular entities. Modular implementations unfor-

tunately suffer a substantial performance penalty rel-

ative to integrated implementations. Where perfor-

mance matters most, systems programmers will sac-

rifice the modular design for the greater speed of an

integrated design.

We present a new compiler optimization, Filter Fu-

sion, that eliminates the overhead of a modular de-

sign of independent filters. Our algorithm automates

the integration of arbitrary, independently designed

filters. FFC, our Filter Fusion compiler, composes fil-

ters and produces code that is as efficient as hand-

integrated code. The optimized code can achieve up

to a t we-fold improvement over independent filters.

Network protocol layers are often filters. Typically,

each protocol layer performs some data manipula-

tion by traversing the message from beginning to end.

Programmers have traditionally merged these filters

by hand to produce efficient code. Integrating filters

allows data to be read once, manipulated many times,

and then stored once, thus avoiding loads and stores

for each filter’s manipulations. Excessive memory ac-

Address: Department of Computer Science, Uni-

versity of Arizona, Tucson, AZ 85721. Internet:

{todd,.aw}@cs. arizona. edu.

Permission to make digitsl/hard copies of ail or prut of this material for

personel or clasaroom use ia granted without fee provided that the copies
are not made or distributed for profit or commercial advantage, the copy-
right notice, the title of the publication and ita date appear, and notice ia
given that copyright ia by permiaaion of the ACM, Inc. To copy otherwise,
to republish, to post on servera or to redistribute to Iiats, requires specific
permission and/or fee.

POPL ’96, St. Petersburg FLA USA
@1996 ACM 0-89791-769-3/95/01. .$3.50

cesses cripple the performance of network code. Filter

Fusion eliminates unnecessary memory accesses.

Manually integrating filters is a time-consuming,

error-prone process. In addition, hand-integrated

programs are difficult to maintain and modify be-

cause small changes in a single filter can result in

global changes in the integrated program. FFC au-

tomates the integration process and therefore elimi-

nates this concern. Furthermore, automatic integra-

tion enables the maintenance of a library of useful

filters (protocol layers) that can be composed freely

to develop specialized protocols. Each library com-

ponent is maintained separately, and yet integration

and optimization is automatic. The programmer de-

signs and optimizes in a modular fashion, without

sacrificing performance in the final composition.

While Filter Fusion is well suited for systems soft-

ware applications, no assumptions about its problem

domain are made. FFC places few restrictions on the

filters it integrates. It handles arbitrary control flow

and data manipulations within each each filter.

2 Related Work

2.1 Network Programming

FFC is part of the compiler suite of the Scout project

[MMO~95]. Scout aims to deliver high-performance

systems soft ware—especially communications-

oriented operating systems. The Scout compilers

do non-traditional optimizations, like Filter Fusion,

to increase software performance and to liberate

the programmer from tedious, error-prone tasks

[OPM94].

Network applications often require many simple

manipulations of each network packet. These manip-

ulat ions form the protocol stack. Redundant mem-

ory access can dominate the processing time for

these applications. A technique called Integrated

Layer Processing (ILP) optimizes these data ma-

119

nipulations [CT90]. ILP, a generalization of loop

j arnming or loop fusion, does increase performance

[CT90, CJRS89, DAPP93].

Clark and Tennenhouse report dramatic perfor-

mance improvements from ILP [CT90]. Based

on their results, they argue for less modular

programming—when efficiency is critical and sequen-

tial data manipulations are too costly, the program-

mer must abandon abstraction and merge protocols.

By automating ILP, Filter Fusion allows the program-

mer to retain modular design without sacrificing per-

formance.

Abbot partially automated ILP for network appli-

cations [Abb93]. His system has two significant draw-

backs, however: it cannot handle arbitrary control-

flow within a filter, and it assumes the typical network

data layout that partitions header and data. His pro-

tocols had three stages: initial, data manipulation,

and final. The integrated code performed the initial

and final stages serially with only the data manipu-

lation stages truly integrated. Not all protocols (e.g.,

message re-assembly), and certainly not all filters, fit

into this framework. Filter Fusion has no such re-

strictions.

These prior implementations have proven the effi-

cacy of ILP, but they have not fully generalized or au-

tomated the optimization. Thus, a tension exists be-

tween modular software design and integrated high-

performance implementation. FFC, an implementa-

tion of Filter Fusion, provides a solution. While main-

taining a clean, intuitive model for protocol construc-

tion, it provides both modularity and performance.

2.2 Program Transformation

Many different program transformations that im-

prove performance by removing redundant compu-

tations have been previously studied. Partial evalu-

ation, listlessness, and deforestation exploit, in one

way or another, the basic unfold/instantiate/fold

framework originally proposed by Burstall and Dar-

lington to improve programs [B D77]. While this sys-

tem automated program transformation rather than

program analysis, its framework was revolutionary.

Recently, partial evaluation has been the dom-

inant paradigm for eliminating unnecessary com-

putation from programs [JGS93]. While an over-

simplification, partial evaluation strengthens Burstall

and Darlington’s work by maintaining significant

state information—the state of the static values—

at all program points during transformation. Par-

tial evaluation has been applied to functional lan-

guages with much more success than to imperative

languages.

Filter Fusion is a very limited special-purpose par-

tial evaluation system for producer and consumer

functions that alternate their computations like co-

rout ines. Partially evaluating adjacent filters with

respect to a given composition results in a fusion of

those filters. Restricting the optimization to compos-

ing filters simplifies the partial evaluation consider-

ably.

Filter Fusion most strongly resembles Wadler’s list-

less transformer [Wad84]. This functional program-

ming optimization composes functions that create

and utilize lists into code that avoids building inter-

mediate lists. Like listlessness, Filter Fusion sym-

bolically executes programs to create a graph rep-

resentations of the residual, composed program that

eliminates intermediate steps (list manipulations for

listlessness, and reads/writes for Filter Fusion). Fil-

ter Fusion, on the other hand, operates on impera-

tive “filters” that explicitly read from and write to

one another. Given a function, F, that maps im-

perative programs to functional programs, and an

imperative filter program, P, it would be interest-

ing to know whether Listlessness(F’ (P)) is isomor-

phic to F(FilterF’uszon(P)). Whether or not Filter

Fusion is isomorphic to listlessness is not clear, but

the symbolic execution and residual graphs do indi-

cate a close relationship. We developed Filter Fusion

without knowledge of the listless transformer.

Deforestation is related to listlessness and Filter

Fusion, because it too eliminates intermediate struc-

tures through symbolic execution [Wad90].

3 Filters

A linear composition of filters specifies the path data

will follow from source to sink:

Source --+ Filterl -+ ~. . + FilterN + Sink

In a modular implementation, the source produces all

of the data before passing it to the first filter. That fil-

ter then processes all the data before passing it to the

next filter. This continues until the sink ultimately

consumes the data. Unfortunately, this implementa-

tion requires that each filter read and write data. It is

much more efficient to merge these filters to perform

all the data manipulations at once.

3.1 Filter Specifications

A filter specification is simply a parameterless pro-

cedure extended by three operations: put, get, and

filter. A put produces data for the next filter, and

a get retrieves data from the previous filter. (Filter

120

Fusion will merge filters so that matching put’s and

get’s can be replaced by assignments.) filter is a

special predicate that guides Filter Fusion. filter

guards statements that either require more input or

may produce more output. filter is explained fur-

ther in section 5.

The first filter of a composition, the source, cannot

contain any get ‘s. The last filter, the sink, cannot

contain any put ‘s. Figure 1 contains source and sink

filters for simple array reading and writing.

Data manipulation filters exist between the source

and the sink. Typical filters may do encryption, com-

pression, checksumming, or data marshaling (e.g.,

byte swapping). In addition, glue filters are useful for

combining filters that may require special invariants.

For instance, the simple filter for swapping pairs of

adjacent bytes, 2ByteSwap, requires an even number

of bytes as input. The Evener is a glue filter that al-

ways writes an even number of bytes by simply copy-

ing its input to its output and conditionally append-

ing a single zero. Thus, the Evener typically precedes

2ByteSwap to ensure proper functioning. Figure 2

gives the specifications for 2ByteSwap and Evener.

Lightweight filter design encourages modular design

and separation of concerns.

Typical network protocols such as CRC32 check-

sum and MD-5 encryption are also filters. Other

functions we have implemented as filters include Run-

length Decoding and Run-length Encoding, simple

checksumming, and data marshaling. Filter Fusion

allows the programmer to create arbitrarily complex

compositions of these independently developed filters;

FFC will integrate them into a single optimized func-

tion.

Efficiency and modularity are advantages of using

FFC. Without FFC, reorganizing a protocol stack re-

quires re-integrating the stack by hand. With FFC,

reorganizing a stack simply requires changing the in-

dividual filters (if necessary) and specifying a new

composition.

4 Sample Fusion

Filter Fusion is an optimization based on a symbolic

execution of the filters. Filter Fusion integrates two

filters-a producer and a consume~at a time. The

goal is to match the put’s of the producer with the

get’s of the consumer and to replace them with as-

signments. Using dynamic programming, Filter Fu-

sion follows all possible control flow paths through

both filters while tracking the flow of values via the

put’s and get ‘s. Filter Fusion composes the control-

flow graphs of the filters into new, larger graph.

Where necessary, Filter Fusion replicates filter code.

As an example, we will merge the Evener and the

2ByteSwap filters in Figure 2. Figure 3 gives their

control-flow graphs, Rectangles denote nodes from

2ByteSwap throughout this example; ovals denote

Evener nodes.

The final control-flow graph is composed of nodes

from the two original graphs, except that the ap-

propriate put’s and get’s are replaced with assign-

ments to temporary variables. Basically, the dynamic

programming executes each filter symbolically—

alternating between the producer and consumer at

put’s and get ‘s, respectively. For each node that is

symbolically executed, a copy of that node is placed

into the fused graph. Bookkeeping information main-

tained at each node of the final graph controls the

composition. Each added node is annotated with

three pieces of information: the last node executed

in the producer, the last node executed in the con-

sumer, and which filter this node came from. This

information is a configuration. Two nodes are equal

if their configurate ions are identical.

The producer symbolically executes until it reaches

a put or end operation. After reaching a put in the

producer, execution switches to the consumer, which

must execute until it reaches a get (or end). The

put that suspended the producer is matched with the

consumer’s get for subsequent replacement by an as-

signment. This alternating execution continues until

all possible execution paths are exhausted.

The filter predicate will represent a conditional

node in a control flow graph of either the producer

or the consumer. The state of a suspended producer

determines the value of a consumer’s filter predi-

cate. If a consumer is executing while the producer

is suspended at a put, then filter evaluates to true;

if the producer is suspended at its end, then filter

evaluates to false. filter predicates in the producer

remain undetermined. 1

Figure 4 depicts the control flow of the fused filter

after the producer has followed all possible paths to

put’s or end’s. Symbolic execution must now switch

to the consumer.

When expanding the consumer (2 ByteSwap), the

first node to be executed is a f ilter predicate. Thus,

all three paths will add a filter node. On the left-

most path, the producer had suspended at a end, but

on the center and right-most paths, the producer sus-

pended at a put. Therefore, consumer will continue

along the false branch when expanding the left-most

I This discussion assumes that the producer is driving Fil-

ter Fusion. If the consumer were driving Filter Fufiion, then

the filter predicates in the producer would be determined by

whether or not the consumer were suspended at a get.

121

Filter ReadFromArray

Decls

int i;

Code

i=O;

while (i < 10000)

put input[i];

1++;

end-while

End-Filter

Filter WriteToArray

Decls

int j;

Code

while filter

get output[j];

j++;

end-while

End-Filter

Figure 1: Source and Sink Filters

Filter Evener

Decls

int c, k;

Code

~=o;

while filter

get c;

put c;

k++ ;

end-while

if (k%2)

put o;

End-Filter

Filter 2ByteSwap

Decls

int x, y;

Code

while filter

get x;

get y;

put y;

put x;

end-while

End-Filter

Figure 2: Sample Filters

path, and itwill continue along the true branch when

expanding the others.

Along the left-most path, the consumer immedi-

ately encounters an end node. This path is com-

plete. Along the other paths, the consumer, following

the true branch, immediately hits a get. The get

matches the suspended put of the producer, so exe-

cution suspends at the consumer and resumes at the

producer along both paths. Figure ,5 gives the flow

graph at this point.

The producer must now resume execution by ex-

ploring all possible control paths from its suspended

put. Control continues to switch back and forth until

no more progress can be made. A configuration la-

belseach new node. Prior to adding anew node, its

configuration is checked against the nodes already in

the new graph—upon a match, the existing node is

used rather than the new node.

Figure 6shows the graph resulting from this corn-

position. Filter Fusion is not finished at this point,

however. Some paths reach a get without a corre-

sponding put. These paths are removed from the

control flow, since they make no sense. Trimming of-

ten creates a conditional for which only one branch

remains—in these cases, we may remove the condi-

tional too. In general, trimming conditionals is an

unsafe optimization. If, however, filters are properly

composed such that put’s must always reach get’s (as

they do here), the optimization can be both safe and

effective. The nodes to be safely trimmed have dou-

ble borders in Figure 6. Figure 7 gives the trimmed

graph.

The final step of Filter Fusion is transforming the

matched put’s and get’s into assignments to and

reads from a temporary, respectively. The temporary

is unique to a particular filter composition. Each sus-

pended put that is copied into the composition graph

becomes a write to the temporary, and all get’s be-

come reads of the temporary. Figure 8 highlights the

transformed nodes in the resulting graph with double

borders.

122

Evener 2ByteS wap

8

begin

k=O b
‘be in -

filter

True False

get x end

10get y

‘._—.—— L9!ll M

Figure 3: Original Control Flow Graphs

zbegin

k=O

8

begin

k=o

Figure 4: Stage 1

5 Algorithm

Filter Fusion is done pairwise, starting with the

source and its immediate consumer. Because the

composition of a source and a general filter is itself

a source, this method can compose arbitrarily many

filters. (Filter Fusion can operate in the opposite di-

rection too, but giving the less general algorithm here

is simpler,)

FFC implements Filter Fusion with a work-list al-

gorithm. Elements of the work-list represent config-

urations that have been added to the control-flow

graph (CFG), but whose successors have not. The

algorithm is responsible for computing the successors

and adding them to the CFG and the work-list, when

necessary. No computed configuration already in the

&filter

True False

Figure 5: Stage 2

CFG will be added to the work-list, since the previ-

ous inst ante can be reused in its place. This ensures

termination. It also bounds number of nodes in the

fused graph by the product of the number of nodes in

the input graphs. (In practice, the code size will not

increase to this maximum, particularly when merging

filters with the same size data units.)

Figure 9 gives the algorithm. Let z be a CFG

node. Its configuration is defined by x. orig~roducer],

x. orig[consumer], and x. tag. x. orig[prochmer] and

x. orig[consumer] represent the last nodes visited in

the two filters when this node was generated. x. tag

indicates which filter generated this node. Additional

attributes of x, insn and successors, denote the node’s

act ual instruction and its CFG successors.

The algorithm begins by adding a start con figu-

123

E
bejyn
k =0
f,lcer

I

Figure 6: Untrimmed Control Graph

Eget .

put c

p“t y

put x

Figure 7: Final Control Graph Figure 8: Assignment Substitution

124

Procedure Fusiono

start. orig[producer] := producer’s start node

start. orig[consumer] := consumer’s start node

start. tag := producer

start. insn := empty instruction

CFG := { start }

worklist := { start }

repeat

x := Pop(worklist)

if x.insn @ trigger[x.tag] then

this := x. tag

other := not x. tag

else

thts := not x. tag

other := x.tag

endif

Vi 6 r. orig[this] successors do

node := new node

node. orig[this] := i

node. orig[other] := x. orig[other]

node. tag := this

node. insn := i.insn

if node @ CFG then

CFG := (7FG u node

Append(worklist, node)

// Initialize start node’s configuration

// Seed CFG and worklist,

// {put,end} for producer; {get ,end} for consumer.

// Stay with current filter.

// Switch to other filter.

// Follow all paths.

// Store current nodes.

// Tag which filter derived node,

x.successors := x.successors u node

else // Reuse existing node.

x.successors := x. successors U CFG [node]

endif

end V

until worklist = q5

end Fusion

Figure 9: Algorithm

ration that represents the initial nodes of each of

the input graphs to both the CFG and the work-

list. start will be the beginning node of the resulting

graph. While elements remain in the work-list, they

are removed one at a time, to compute their succes-

sors. Recall that successor nodes may or may not

come from the same control flow graph as a node,

x, itself (e.g., the successor of a put in the producer

comes from the consumer, but the successor of a sim-

ple statement in the producer would also come from

the producer). trigger~roducer] represents the set

of nodes that cause control to switch from the pro-

ducer to consumer, put and end. trigger[consumer]

is a set consisting only of get. “not tag” alternates

between producer and consumer.

After computing the source of x‘s successors, the

algorithm simply follows the control flow from the

last executed statement in that source graph to find

the actual successor instructions. Each successor has

a configuration that is checked against the CFG to

determine if it already exists. If the configuration

already exists, the control flow arc out of x simply

points to the existing configuration. If the configura-

tion is new, it is added to the CFG and the work-list.

The new configuration is also the target of the arc

from x.

The algorithm describes the steps to compute the

untrimmed graph. Trimming the graph of dangling

put nodes is straightforward. Also, a little additional

bookkeeping is necessary to transform put’s and get’s

into assignment and reads of temporaries.

125

6 Experimental Results

FFC is a 200-line Icon program [G G90]. FFC is a

preprocessor that generates C code from a compact

specification language. We tested FFC’S code against

modular and hand-integrated implementations on a

variety of platforms and compilers. The modular im-

plementation uses arrays for communicating values

between adjacent filters. Because gcc consistently

produced worse code than the vendor compilers, we

aborted its use. (gee had difficulty re-ordering ba-

sic blocks to avoid chains of jumps. It also did not

handle copy propagation and dead-code elimination

as well as the vendor compilers.)

To test FFGgenerated code, we created different

filter compositions. Our first test was the following

composition.

ReadFromArray ~ Evener ~ 2ByteSwap ~ CRC32

~ WriteToArray

These filters (1) read bytes from an array, (2) pad

arrays to an even length, (3) swap bytes, (4) com-

pute CRC32 checksumming, and finally, (5) write the

bytes to an array. Appendix A contains the speci-

fication for CRC32 and the composition, Figure 10

gives the final flow graph. Note that some chunks

of code are replicated multiple times and that the

graph is quite complicated given the simple nature of

its constituent filters. Table 1 shows the size of sev-

eral fused filters on both a DEC Alpha and the Sun

SPARCsystem 10. Since FFC may replicate the same

code multiple times, the final fused filter may contain

a great amount of C code, Although the C code pro-

duced by the Filter Fusion compiler was much larger

than that of the modular and hand-integrated imple-

mentations, the object code sizes were very nearly

comparable. Compiler optimizations eliminate much

of the redundancy.

FFC-generated code must be optimized because of

its heavy reliance on temporary variables and arbi-

trary control flow. The code particularly stresses—

and finds deficiencies in—a compiler’s copy propaga-

tion and dead code elimination optimizations. Unfor-

tunately, in many cases, all of the available compilers

failed to eliminate useless counters or to propagate

copies. In addition, the compilers did not appear to

unroll unstructured loops. Therefore, FFC-generated

code’s performance suffered. Performing these opti-

mization by hand yields code that performs compa-

rably to that of the hand-integrated routines.

We timed three different implementations of

the first five-filter composition: modular, hand-

integrated, and FFC-generated integration. Table 2

gives the results of running these filters 10,000 times

over a 10,000 element array. All tests were run on

four different architectures using the vendor’s C com-

pilers.

The second experiment again used five filters.

ReadFromArray -+ RLE -+ 2ByteSwap + PES -+

WriteToArray

These filters (1) read bytes from an array, (2) Run-

Length Encode bytes, (3) swap bytes, (4) PES “en-

crypt” bytes, and (5) write the bytes to an array.

Timings for 10,000 iterations over a 10,OOO byte input

yields the results in Table 3. Appendix A contains

the specification for PES and RLE. The PES encryp-

tion simply takes two bytes and creates a new pair

of bytes by alternating bits from the originals. This

filter is a self inverse—the original data can be re-

covered from the encrypted data by simply reapply-

ing the filter. The data-accessing overhead in most

encryption methods (e.g., RSA, DES) is dwarfed by

intensive computation, and therefore gains little from

Filter Fusion. ‘The PES filter is not intended to model

an actual encryption method, but rather to model an-

other lightweight data manipulation [Abb93].

Our third experiment used more new filters. We

added a decryption phase, another byteswapping

phase, and a decode phase to the previous exper-

iment. To verify the correctness of FFC-generated

code, we created the following composition.

ReadFromArray +. RLE + 2ByteSwap -+ PES -+ PES

+ 2ByteSwap + RLD -+ WriteToArray

These filters (1) read bytes from an array, (2) Run-

Length Encode bytes, (3) swap bytes, (4) PES en-

crypt bytes, (5) PES decrypt bytes, (6) swap bytes,

(7) Run-Length Decode bytes, and finally, (8) write

the bytes to an array. Timings for 10,000 iterations

over a 10,000 byte input yields the results in Table 4.

Appendix A contains the specification for RLD filter.

FFC-generated output is always superior to mod-

ular code. FFGgenerated output typically is slower

than hand-integrated code, but only because of the

C compiler’s shortcomings. Filter Fusion allows the

programmer to maintain a modular design and im-

plementation without sacrificing performance.

This exhaustive computation of all possible execu-

tion paths is tedious and error-prone when done by

hand. Fortunately, FFC, an implementation of Filter

Fusion, automates this transformation. Filter Fusion

allows the programmer to forget about this complex

work, and focus on optimizing independent filters in

a modular fashion.

126

Program C size Alpha Binary Size Spare Binary Size

(in lines) (in bytes) (in bytes)

Modular Implementation 36 2,784 1,955

Hand Integrated 28 2,592 1,898

Filter Fusion 197 2,976 2,323

Fused & Tuned 144 3,040 2,127

Tablel: Code Size: ReadFromArray +Evener +2 ByteSwap +CRC324WrlteToArray

Architecture Fusion Technique (in sec.)

No Hand Filter

Integration Integration Fusion

DEC/Alpha 21.9 8.3 9.1

Sun/Spare 26.2 12.0 13.9

HP/700 38.5 19.9 28.2

Mips R2000A 66,7 33.9 41.4

Table2: FteadFromArray +Evener+2ByteSwap ~CRC32+ Wri’teToArray

Architecture Fusion Technique (in sec.)

No Hand Filter

Integration Integration Fusion

DEC/Alpha 22.3 11.9 12.2

Sun/Spare 26.7 13.1 13.5

HP/700 37.0 26.2 30.2

Mips R2000A 64.6 37.6 41.8

Table3: ReadFromArray -+ RLE-+2ByteSwap +PES+WriteToArray

Architecture Fusion Technique (in set.)

No Hand Filter

Integration Integration Fusion

DEC/Alpha 41.7 20.1 21.4

Sun/Spare 47.2 26.3 33.2

HP/700 68.4 41.3 52.3

Mips R2000A 121.5 70.1 88.4

Table 4: ReadFromArray +RLE+2ByteSwap +PES+PES+ 2ByteSwap+RLD +WriteToArray

References

[Abb93] Mark B. Abbott. ALanguoge-Based Ap-

proach to Protocol Implementation. PhD [CJRS89]
thesis, University of Arizona, 1993.

[ASU86] A. V.Aho, R. Sethi, andJ. D, Unman.

Compilers: Principles, Techniques, and

Tools. Addison-Wesley, Reading, Mas- [CT90]
sachusetts, 1986.

[BD77] R. M. Burstall and John Darlington. A

transformation system for developing re-

cursive programs. JournaloftheACM,

24(1):44-67, January 1977.

David D. Clark, Van Jacobson, John

Romkey, and Howard Salwen. An anal-

ysis oftcp processing overhead. IEEE

Communications Magazine, June 1989.

David D. Clark and David L. Tennen-

house. Architectural considerations fora

new generation of protocols. In Proceed-

ings of the SIGCOMM ’90 Symposium,

pages 200-208, September 1990.

127

[DAPP93]

[GG90]

[JGS93]

[MMO+95]

[OPM94]

[Wad84]

[Wad90]

Peter Druschel, Mark B. Abbott,

Michael A. Pagels, and Larry L. Pe-

terson. Network subsystem design: A

case for an integrated data path. IEEE

Network Magazine, July 1993.

Ralph E. Griswold and Madge T. Gris-

wold. The Icon Programming Language.

Prentice Hall, 1990.

Neil D. Jones, Carsten K. Gomard, and

Peter Sestoft. Partial Evaluation and Au-

tomatic Program Generation. Prentice-

Hall, New York, 1993.

A. B. Montz, D. Mosberger, S. W.

O ‘Malley, L. L. Peterson, and T. A.

Proebsting. Scout: A communications-

oriented operating system. In Proceed-

ings of the 5th Workshop on Hot Toptcs

m Operating Systems, pages 58–61. IEEE

Computer Society Press, May 1995.

Sean O’Malley, Todd A. Proebsting, and

A. Brady Montz. USC: A universal stub

compiler. In Proceedings of SIGCOMM

94 Conference on Communacataons Ar-

chitectures, Protocols and Applications,

pages 295-306, August 1994.

Philip Wadler. Listlessness is better than

laziness: Lazy evaluation and garbage

collect ion at compile-time. In Proceed-

ings of theA CM Symposium on Lisp and

Functional Programming, pages 45-52,

August 1984.

Philip Wadler. Deforestation: ‘llans-

forming programs to eliminate trees.

Theoretical Computer Science, 73:23 l–

248, 1990.

A Five-Filter Specification

The FFC specifications of the Evener, 2ByteSwap,

ReadFromArray, and WriteToArray. are given in the

paper. The specification below describes the remain-

ing filters used in this paper. Figure 10 shows the

first composition’s final flow graph.

// Experiment 1

Compose prodeven i- ReadFromArray Evener

Compose prodevenBS 4-- prodeven Byteswap

Compose prodevenBSCRC + prodevenBS CRC32

Compose fulltest + prodevenBSCRC WriteToArray

// Experiment 2

Compose prodRLE + producer RLE

Compose BSmid i- prodRLE Byteswap

Compose RLencodemid + BSmid PES

Compose RLencode + RLencodemid consumer

// Experiment 3

Compose prodRLE + producer RLE

Compose BSmid i- prodRLE Byteswap

Compose pesmid +- BSmid PES

Compose unpesmid +- pesmid PES

Compose RLencodemid +- unpesmid Byteswap

Compose RLencode +- RLencodemid RLD

Compose massive G RLencode consumer

Filter CRC32

Decls

unsigned long crc = O;

unsigned char idx;

unsigned char CRC32temp;

Code

while filter

get CRC32temp

idx = (CRC32temp A crc) ;

idx k= Oxff;

crc >>= 8;

Crc A= crctable[idx];

put CRC32temp

endwhile

put crc & Oxff

put (crc >> 8) & Oxff

put (crc >> 16) & Oxff

put (crc > 24) & Oxff

End-Filter

Filter RLD

Decls

unsigned char item, count, number;

Code

while filter

get item

get number

count = o;
while (count < number)

put item

count++ ;

endwhile

endwhile

End-Filter

Filter RLE

Decls

unsigned char current, next, count;

Code

if filter

get current

endif

while filter

128

count = 1;

get next

while (filter F& (current == next))

count++ ;

get next

endwhile

put current

put count

current = next;

endwhile

End-Filter

Filter PES

Decls

unsigned char pesl, pes2;

unsigned char outl, out2;

co&?

while filter

get pesl

get pes2

Outl = (pesl& Oxaa) + (pes2&Ox55);

out2 = (pes2k Oxaa) + (pesl & 0x55);

put Outi

put out2

endwhile

End-Filter

129

la

E 5.M T

m..+-$ti.Nkl
!*.<.,’.., - ,,.= >>,,.0.”,

,*.-Q/l pm:* ,*
,..

.“,1, - *.*!-!
,W..!lk.,. (->>,4,.0,”

,..
-[l, . :&!–

.

/ ‘“” I

*

.,14.,

.W.”v

u“,
,,OM I

3

Figure 10: Final Composition: ReadFromArray -+ Evener + 2ByteSwap -+ CRC32 + WriteToArray.

(Note the nonstructured control flow in the lower-right.)

130

