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Abstract 

We study the complexity of type inference for a core 
fragment of ML witch lambda abstraction, function 
application, and the polymorphic let declaration. 
Our primary technical tool is the unification problem 
for a class of “polymorphic” type expressions. This 
form of unification, which we call polymorphic un$- 
ca-tion, allows us to separate a combinatorial aspect of 
type inference from the synta.x of ML programs. Af- 
ter observing that ML typing is in DEXPTIME, we 
show that polymorphic unification is PSPACE hard. 
From this, we prove that recognizing the typable core 
ML programs is also PSPACE hard. Our lower bound 
stands in contrast to the common belief that typing 
ML programs is “efficient,” and to practical experi- 
ence which suggests that t,he a.lgorithms commonly 
used for this task do not slow compilation substan- 
tially. 

1 Introduction 

A convenient feature of the programming language 
ML [GMW79,Mi185] is the way that type inference 
is used to eliminate the need for type declarations 
[Mi178]. When the programmer enters untyped code, 
the compiler responds with the type of the expres- 
sion. For example, a programmer may declare the 
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identity function by writing let Id = Xx.x. The com- 
plier then infers that Id has type t+t, meaning that 
the identity maps any type t to itself. If the compiler 
cannot find a type for an expression, an error message 
is printed. Thus ML programmers receive the bene- 
fit of compile-time type checking (early detection of 
errors), without the inconvenience of supplying types 
explicitly. Since ML typing has proven useful in prac- 
tice, the main ideas have also been adopted in other 
languages, such as Miranda [Tur85]. 

To simplify our analysis, we will focus OII core ML 
expressions using only lambda abstraction, function 
application, and let. Since the main result is a lower 
bound, choosing a small fragment of ML makes our 
study more widely applicable. The ML type inference 
problem is: given a core ML expression h4, find a 
type for M if one exists, otherwise return untypable. 
Our lower bound will actually apply to the appar- 
ently simpler recognition problem: given a core ML 
expression M, return typable if M has a type, else 
return untypable. It is clear that any algorithm for 
the type inference problem also solves the recognition 
problem. A useful fact about ML typing is that when 
an expression M has a type, there is a principal type 
which indicates the form of all other types for M. 

The main source of super-polynomial complexity 
is the let declaration, which is crucial to ML poly- 
morphism. If we declare a function f by saying 
let f = . . ., then different occurrences of f within 
this scope may be given different types. This is prac- 
tically important, since it allows expressions such as 

let f = X32.l: in . . . f(3) . . f(trtie) . . 

in which a single function is applied to arguments of 
several types. Without let, ML type inference can 
be done efficiently. Using a linear time unification al- 
gorithm (as in [PW78], for example) we can compute 
the principle type of any let-free core ML expres- 
sion in linear time. Even in this simple case, how- 
ever, one must be careful with the representation of 
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type expressions. To achieve linear time, types must 

be represented (and printed out) as directed acyclic 
graphs, or dags, since the string representation of a 
type may be exponentially longer than the given ex- 
pression. Dag representations are a common data 
structure in unification [F1W78,MM82,DKM84]. 

With let, we give a straightforward deterministic- 
time upper-bound that is exponential in the num- 
ber of nested let declarations of the input. How- 
ever, the type of an ML program may be doubly- 
exponential in its size, when written as a string, or 
singly-exponential when represented as a dag. This 
causes the usual ML type inference algorithms to 
have doubly-exponential worst-case behavior, since 
the type is usually printed out as a string. A priori, 
it might seem reasonable to look for a more succinct 
representation that would allow us to improve upon 
the exponential dag algorithm. 

In studying the complexity of ML typing, we in- 
troduce a class of “polymorphic” type expressions 
that allow many types to be written concisely. We 
call the unification problem for these extended type 
expressions polymorphic unification, and show that 
determining the solvability of a polymorphic unifi- 
cation problem is PSPACE hard. By representing 
hard instances of polymorphic unification within ML 
programs, we then show that recognizing the typable 
core ML programs is PSPACE hard. It follows that 
no polynomial-time algorithm can recognize the ty- 
pable programs, unless P=PSPACE. Our results con- 
tradict what appears to be a well-known “folk theo- 
rem ,” namely, ML typing is linear timel, and stands 
in contrast to the perce:ived efficiency of the algo- 
rithm in practice. The polymorphic unification proof 
uses an encoding of quantified propositional formulas, 
while the reduction to typing uses lambda calculus 
programming of approximately the same sophistica- 
tion as the proof of Turing completeness for untyped 
lambda calculus [Bar84]. It remains to close the gap 
between our PSPACE lovver bound and the exponen- 
tial time upper bound. 

The rest of this paper is organized as follows. Basic 
definitions of ML syntax, typing and unification are 
given in Section 2. Examples of programs with large 
types, and upper bounds, appear in Section 3. Ex- 
tended type expressions and PSPACE hardness for 
polymorphic unification are presented in Section 4; 
PSPACE hardness for M:L typing is discussed in Sec- 
tion 5. Concluding remarks appear in Section 6. For 
the reader who is not farniliar with ML, typing rules 
and an algorithm for computing principal types are 
included in an Appendix. 

ITo the embarrassment of the second author, the incorrect 
“folk theorem” was put in pr.int in [MHSS]. 

2 ML expressions, types and 
unification 

2.1 Core ML 

The core MT, expressions have the following abstract 
syntax 

M : : = x 1 MM 1 Ax.M 1 let 2 = M in M, 

where z may be any expression variable (c.f- [DM82, 
Mi178]). In writing expressions, we will adopt the 
usual conventions of lambda calculus. For example, 
MNP should be read as ((MN)P), and Ax.MN read 
as Xz.(MN). 

In Xx.M and let x = N in M, the variable x 
becomes bound in M. This leads to the renaming 
equivalences 

(41 Xz.M = Xy.[y/x]M, y not free in M 

(a):!let z = N in M = let y = N in [y/z]M, 

y not free in M 

where [N/x]M denotes the result of substituting N 
for free occurrences of x in M (with renaming of 
bound variables to avoid capture, as usual). We say 
two expressions are o-equivalent if they differ only in 
the names of bound variables, and,generally treat cr- 
equivalent expressions as identical. An expression is 
closed if all variables are bound. 

Reduction is a relation on a-equivalence classes of 
ML expressions which resembles symbolic execution. 
Reduction is axiomatized by 

(PI (Xz.M)N -f+ [N/x]M 

(let) let x = N in M 2 [N/z]M 

(There are also q-reduction rules, as in [Bar84], but, 
they will not be needed in this paper.) Since let x = 
M in N and (Az.iV)M both reduce to [M/x]N, these 
expression produce the same final value. However, 
there are different typing restrictions in ML. 

We say M let-reduces to N, and write MZN, 
if we can obtain N from h/l by repeatedly apply- 
ing rule (let) to subexpressions, and renaming bound 
variables. If we can produce N from M using both 
(let) and (/3), th en we write M * N. An interest- 
ing fact about let-reduction (only) is that it is finite 
Church-Rosser. The following proposition is essen- 
tially the uniqueness and finiteness of developments 
for untyped lambda calculus [Bar84], since every let 
in M may be regarded as a “marked” X-redex. 
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Proposition 2.1 Let M be any core ML program. 

There is a ukque Let-free program N such that every 
maximal sequence of let-reductions starting from M 
terminates at N. In particular, there are no infinite 
sequences of let-reductions. 

If N is a let-free expression obtained from M by 
repeated let-reduction, then we say N is a let nor- 
mal form of M. By Prop 2.1, let normal forms are 
unique. 

2.2 Types and typing assertions 

The type expressions of core ML have the following 
form 

u -.- t ) UdU ..- 

where t may be any type variable. The standard syn- 
tactic convention is that + associates to the right. 
For example, (T--~T+Q should be read as (g--+(7-4~)). 

The type of an expression depends on the types we 
assume for its free variables. For this reason, we use 
typing assertions of the form r D M : u, where M is 
an ML program, u is a type expression, and r is a 
type assignment, i.e., a finite set 

I? = {2~:u~,-.,x~:u.k} 

associating at most one type with each variable x. 
The assertion r D M : c may be read, “the expression 
M has type g in context I’.” 

We say M is typable if there is some provable typing 
assertion F D M : c about M. Typing assertions 
are proved using the ML inference system, which is 
summarized in the Appendix. Since the action of the 
ML type checker is more relevant to our lower-bound 
proof, the Appendix also includes an equivalent type 
inference algorithm. 

The provable typing assertions are closed under 
substitution. For our purposes, a substitution will be 
a function from type variables to type expressions. 
A substitution S is applied to a type expression as 
usual, and to a type assignment l? by applying S to 
every type expression in I’. More specifically,%’ is 
the type assignment 

sr = {z: s+ (T E r). 

A typing statement I” D M : CT’ is an instance of 
l? D M : B if there exists a substitution S with 

I”>%, anda’=Su. 

Proposition 2.2 (Milner 78) If I” D M : u’ is an 
instance of a provable typing assertion r D M : u, 
then I” D M : u’ is provable. 

A typing assertion l? D M : u is principal typing 

for M if it is provable, and has every provable typing 
assertion for M as an instance. When M is closed, the 
principal typing will have an empty type assignment, 
and so we say M has a principal type. It was first 
shown in [DM82] that every typable ML expression 
has a principal typing. 

Proposition 2.3 (Damas-Milner 82) If M is ty- 

pable, then M has a principal typing. 

We will use the phrase length of a typing (or type 
expression) for the number of symbols we use to write 
the expression down on a piece of paper. It is some- 
times useful to write 1~1 for the length of type expres- 
sion T, and similarly for core ML expressions. Since 
a substitution cannot decrease the length of a typing, 
the principal typing of any expression has minimum 
length. 

2.3 Unification and graph represen- 
tation of type expressions 

If E is a set of equations between type expressions, 
then a substitution S unifies E if Su = ST for ev- 
ery equation u = T E E. The unification algorithm 
of [Rob651 computes a most general unifying substi- 
tution, where S is more general than R if there is a 
substitution T with R = To S. 

Proposition 2.4 (Robinson 65) Let E be any set 

of equations between type expressions. There is an 
algorithm UNIFY such that if E is unifiable, then 

UNIFY(E) computes a most general unifier. Further- 
more, if E is not unifiable, then UNIFY(E) returns 
failure. 

An important part of the algorithm used to compute 
principal typings is the way that unification is used 
to combine typing statements about subexpressions. 
Specifically, if M: U-V and N: ,Q, then we must unify 
u and Q in order to type the application MN. 

While most implementations of unification have 
slightly higher asymptotic running time, unification 
can be done in linear time [MM82,PW78]. To per- 
form unification efficiently, it is common to represent 
the expressions to be unified (in our case, type ex- 
pressions) as directed acyclic graphs (see [AHU83], 
for example). A directed acyclic graph (dug) repre- 
sentation is like the parse tree of an expression, with 
each vertex labeled by an operator or operand (in our 
case, + or a type variable). However, repeated subex- 
pressions need be represented only once, resulting in 
vertices with indegree greater than one. It is easy to 
show that a dag of size n may represent an expression 
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of length 2”. Nonetheless,, the time required for uni- 
fication is l&ear in the s,ixe of the dags representing 
the expressions to be unifed. 

3 

3.1 

Lower bounds on type size 
and upper bounds on type 
inference 

Lambda ternx wit bout “let” 

Even without let, expressions may have principal 
types of exponential length. In constructing expres- 
sions with specific principal types, it is useful to adopt 
the abbreviation 

(MI )...) M,) ::= h..zMI...Mk 

where z is a fresh variable not occurring in any of 
the ik?i. This is a common encoding of sequences in 
untyped lambda calculus. It is easy to verify that if 
kfi has principal type (pi, then the principal type of 
the sequence is 

Pfl,..., Mk) : (cq- . . . -+U~4)-4 

where t is a fresh type va.riable.not occurring in any of 
the cri. We will write ~1 x . . . x ‘TL asan abbreviation 
for any (cl+ . . . -+uI;+t)-+t with 1 not occurring in 
any ui. 

Example 3.1 The closed expression 

P:: = AT.?. (2,x) 

has principal type t-+(t x t). If we apply P lo an 
expression M with principal type u, then the applica- 

tion PM will be typed by unifying t with u, resulting 
in the typing PM : u x u. Thus applying P to a 

typable expression doubles the length of its principal 

Qw- 

By iterating the application of P from Example 3.1 
to any typable expression, we can prove the following 
proposition. 

Proposition 3.2 FOT arbitrarily large n, there exist 

let-free closed expressions M of length n whose prin- 
cipal types have length 2”tn). 

Since the type of an expression may have many 
repeated subexpressions, the minimum-size dag rep- 
resentation of the type need not be exponential. In 
fact, using dag representations of types, we can com- 
pute principal typings in linear time. It follows that 
the dag size of the principal typing of any let-free 
ML expression is linear. 

Proposition 3.3 Given a let-free expression M of 

lengdh n, there is a linear lime algorithm which com- 

putes a dag representing the principal typing of M, if 
il exists, and returns untypable otherwise. If it ex- 

ists, the principal typing of M has length. 20cn) and 
dag size O(n). 

3.2 Type size with “let” 

Before discussing expressions with large types, it may 
be helpful to review the behavior of the ML typing 
algorithm on let expressions. To simplify matters, 
we will consider let f = M in N with M closed. 
Essentially, this expression is typed by first comput- 
ing the principal type of M. This type will generally 
contain type variables which are used as “place hold- 
ers” for arbitrary types. In typing the body N, each 
occurrence of f is given a copy of the principal type 
of M with all type variables renamed to be different 

from those used in every other type. (Something sim- 
ilar but slightly more complicated is done when M is 
not closed.) Type inference then proceeds as usual, 
using different types for different occurrences of f. 
Because variables are renamed, the number of type 
variables involved in the principal type of an expres- 
sion may be exponential. The following example is 
due to Mitchell Wand and, independently, to Peter 
Buneman. 

Example 3.4 Consider the expression 

let x = M in (x,x) 

where M is closed with principal type u. The principal 

type of this expression is u’ x a”, where u’ and u” 
are copies of u with type variables renamed differently 
in each case. Thus, unlike (Xo.(z,z))M, not only is 
the type twice as long as u, but the type has twice 

as many type variables. For this reason, even the 
dag representation for the type of Zhe expression with 
let is twice as large as the dag representation for the 
type of M. By nesting declarations of pairs, we can 

produce expressions 

W ..- n ..- 
let x0 = M in 

let x1 = (x0, x0) in 
. . . 
let 2, = (xn-lrxn-l) in I, 

with n nested declarations whose principal types have 

20(n) type variables. Consequently, the dag represen- 
tations of these types will have 2°C”) vertices. 

It is worth mentioning that although the dag rep- 
resentation of the principal type for the expression 
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in Example 3.4 has exponential size, other types for 
this expression have smaller dag representations. In 
particular, consider the instance obtained by apply- 
ing a substitution which replaces all type variables 
with a single variable t. Since all subexpressions of 
the resulting type share the same type variable, this 
produces a typing with linear size dag representation. 
However, there are other expressions with principal 
types that are doubly-exponential when written out 
symbolically, and such that the dag representation of 
any type must have at least exponential size. 

Example 3.5 Recall that the expression P:: = 
Xx.(x,x) from Example 3.1 doubles the length of the 
principal type of its argument. Consequently, the n- 
fold composition of P (with itself) increases the length 
of the principal type by 2”. Using nested let ‘s, we 
can define the an-fold composition of P using an ex- 
pression of length n. This gives us an expression 
whose principal type has double-exponential length, 
and exponential dag size. Since there is only a sin- 
gle type variable in the principal type, any substitution 
instance of the principal type also has exponential dag 
size. To see how this works, consider the expression 
V, defined as follows. 

v, ::= 
let q = XZ.(X,~) in 

let x2 = Xy.xi(xiy) in 
. . . 
let x n = Xy.x,-l(x,J-ly) in x,(Xt.t) 

To write the principal type of this expression sim- 
ply, let us use the notation Jnl for the n-ary prod- 
uct defined inductively by 4’1: : = r and J”+ll: : = 
(Jnl) x (Jnl). It is easy to see that &I has 2°C”) 
symbols. By examining the expression V, and tracing 
the behavior of the ML typing algorithm, we can see 
that x1 = P has principal type t+tr21, and for each 
i > 0 the principal type of xi has type t--#“]. Con- 
sequently, the principal type of the entire expression 
V, is (t+t)[2”l, which has 22”(n) symbols. Since a 
dag representation can reduce this by at most one ex- 
ponential, the dag size of the principal type is 2n(n). 

Proposition 3.6 For arbitrarily large n, there exist 
closed expressions of length n whose principal types 
have length 2 2n(n’, dag size 2 n(“), and 2n(n) distinct 
type variables. Furthermore, every instance of the 
principal type must have dag size 2n(n). 

3.3 Upper bound with “let” 

One way to type a core ML expression is simply to re- 
duce to let normal form and then use the linear-time 

algorithm of Proposition 3.3. The main reason this 
method works properly is tha,t typing is generally pre- 
served by let reduction, as described in the following 
lemma. The one exception occurs when we reduce an 
expression let x = A4 in N where 2 does not occur 
free in N. However, this case may be eliminated by 
a simple syntactic transformation. 

Lemma 3.7 Consider ari expression let x = 
M in N and the result [M/X]N of let reduction. 
If M is typable or x occurs free in N, then these ex- 
pressions have precisely the same typings, and hence 
the same principal typing. 

Lemma 3.8 A core ML expression of the form 
let I = h4 in N has precisely the same types as the 
expression let 2 = M in (Xy.N)x, provided y not 
free in N. In particular, the two expressions have the 
same principal type. 

Note that in the second expression let x = 
M in (Ay.N)x of Lemma 3.8, the bound variable 2 
occurs free in (Xy.N) 2, and so by Lemma 3.7 the prin- 
cipal type of this term is preserved by let reduction. 

In general, the length of a core ML expression may 
increase exponentially as a result of let-reduction. 
We can give a more precise description of the increase 
by considering the way that let’s occur. To be pre- 
cise, we define the let-depth, k’d(M), of M induc- 
tively as follows. 

Wx) = 

kl(MN) = max{&l(M), [d(N)) 
ed(Xx.M) = !!d(M) 
&d(let x = M in N) = 1d(M) + [d(N)} 

The depth of let z = M in N is additive since when 
we reduce to [M/X] N, expressions nested to depth 
cd(M) in M may become nested to depth Cd(M) + 
la(N) by substitution into N. In the common special 
case that M is let-free, the let-depth of let x = 
M in N is 1 t-id(N). 

Lemma 3.9 Let N be the let normal form of an 
ML expression M. Then INi = 2°(elogsIMI), where e 
is the let-depth of M. 

Theorem 3.10 There is an algorithm which decides 
whether any given core ML expression M has a prov- 
able typing in time 2°(e10g2 I”I), where k! is the let- 
depth of M. When M is typable, this algorithm yields 
a dag representing the principal typing. 

Corollary 3.11 If M is a core ML expression of 
length n, then a principal typing of M has length at 
most doubly-exponential in n, and dag size 2O(“). 
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Corollary 3.12 If we restrict our attention to ML 
expressions with let-depth !, for some fixed -!!, then 

we can determine typability, and compute principal 
typings, in polynomial tim.e. 

4 

4.1 

Extended t:ype expressions 
and polymorphic unification 

Extended type expressions 

The extended type expressions include a polymorphic 
let declaration which resembles the polymorphic let 
in ML expressions. Formally, the extended type ex- 
pressions are defined as follows. 

u : : = t ( u+u ( let t = u in 0 

Perhaps the simplest way to think of let t = (T in r is 
as an abbreviation for the expansion [[u/t]]T obtained 
by replacing each occurrence oft in r with a different 
alphabetic variant of q. More specifically, if 7 has k 
occurrences oft, then we choose k alphabetic variants 

01,.-e, ck of u such that no type variable appears in 
more than one of the expressions ~1, . . . , Uk, T. Then, 
we replace the k-t11 occurrence of t in r by uk. For 
example, let t = r-+r in -t+t may be underst,ood as 
an abbreviation for the expansion 

[[r-+]](t+t) = (T’+T’)+(T”--t’T”). 

A precise inductive definition requires some “book- 
keeping” mechanism to guarantee that all alphabetic 
variants use distinct type variables, but is otherwise 
straightforward. Note that as described, [[u/t]]r is 
only defined up to renamings of type variables. How- 
ever, renaming type variables does not effect the 
unifiability of expressions (provided distinct variables 
are not identified). By Proposition 2.1, adapted to 
type expressions, every extended type expression may 
be expanded to a let-free ordinary type expression, 
unique modulo renamings of type va.riables intro- 
duced by expansion. We write expand(u) for any type 
expression obtained from u by expanding all let’s. 

Since we consider a type expression equivalent to its 
expansion, extended type expressions may be viewed 
as a technical device for obtaining succinct represen- 
tations of ordinary type expressions. However, the 
obvious counting argumeut shows that not all ordi- 
nary type expressions may be represented succinctly 
by extended expressions. 

Example 4.1 Recall the following expression from 

Example 3.4. 

let 20 =: M in 
let 21 = (20,2u) in 

. . . 
let xk = (xk-I, xk-I) in xk 

Using extended type expressions, its principal type 
may be written as 

let to = u in 
let tr = to x to in 

. . . 
let tk = tk-1 x tk-1 in tk 

where we assume M has principal type u. The ex- 
tended type expression is linear in the size of the ex- 
pression (assuming u is linear in the sire of M), but 
when we expand all let’s, we obtain the exponential- 
size type described in Example 3.4. Because of the 
way type variables are renamed in expansion, the ex- 
panded type will have exponentially many type vari- 
ables. 

4.2 Polymorphic unification 

Polymorphic unification is the unification problem for 
extended type expressions. More precisely, a substi- 
tution S nnijes extended type expressions u and r if 
S expand(u) = S expand(r). 

Theorem 4.2 Given two extended type expressions 
u and T, it is PSPACE hard to determine whether u 
and I- are unifiable. 

Proof Sketch: The proof is by reduction from quan- 
tified propositional formulas. We assume we are given 
a formula 

where Qi, . . . , Q,, are quantifiers V or 3, symbols 
PI, . . , P, are propositional variables, and II, is a ma- 
trix 

of disjuncts of positive and negated variables. In 
other words, each Ci has the form 

c; E P;,1 v . . V Pi,j V 7Pi,j+l V . . . V 7Pi,l 

for some 
sequence of propositional variables Pi,l, . . , P;,l. It 
is well-known that determining the validity of such 
formulas is PSPACE complete [GJ79,SM73]. 

We will construct extended type expressions u and 
r which are unifiable iff 4 is not valid. In this confer- 
ence paper we outline the construction when all quan- 
tifiers are 3, and defer the details for the V quantifiers 
to the final version of the paper. 
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Intuitively, 0 is an extended expression which, 
when expanded and viewed as a directed acyclic 
graph, looks like a full binary tree of height n, with 
distinct subgraphs cri, . . . , ~2” placed at the “leaves.” 
(The graph is not a tree since the CY’S will not gener- 
ally be trees.) Subgraph pi encodes the truth values 
of conjuncts Ci, . . . , C, at the i-th truth assignment 
to variables PI, . . . , P,,. More specifically, each ai is 
constructed to have 2m leaves, two for each conjunct. 
If conjunct Cj is true at the i-th assignment, then 
leaves 2j - 1 and 2j of cya will be the same vertex; 
otherwise, all leaves are distinct. 

When all quantifiers are existential, the expression 
r depends only on the number of propositional vari- 
ables, and the number of conjuncts. When expanded 
and viewed as a dag, T also looks like a full binary 
tree of height n, with copies of a certain “test” graph 
,~3 placed at each “leaf.” Essentially, when we at- 
tempt to unify u and 7, the i-th copy of p tests to 
see whether CY~ encodes a satisfying assignment for $J. 
When some quantifiers are universal, r will include 
extra structure to combine the results of these tests. 

Since it seems difficult to construct the cy;‘s di- 
rectly, we construct the entire type expression u by 
unifying n expressions ul, . . , u,, with ui encoding 
the dependence of $ on the value of the i-the propo- 
sitional va.riable Pi. (A minor technical detail is that 
we must actually produce a unification problem that 
causes u to be built from 61,. . , u, in the process of 
testing for unifiability with 7. However, this is easily 
arranged by standard techniques [PW7S,DKMS4] .) 

To build ui, we begin with two expressions T; and 
Fi. Intuitively, Ti tells what happens to the matrix $ 
when P; = True, and F; encodes the result of setting 
P; = False. In graphical terms, we think of T; as a 
root with 2m children, one pair of children for each 
conjunct of the propositional formula. If setting Pi = 
True guarantees that Cj = True, then children 2j - 1 
and 2j of Ti are the same leaf. Otherwise, we let 
children 2j - 1 and 2j be distinct. To be more precise, 
since we do not have 2m-ary function symbols, we let 
Ti have the form 

where Si,j = t;,j iff setting Pi = True forces clause 
C; = True. The extra variable r is included to sim- 
plify a technical problem in the proof of Theorem 5.1, 
which follows the structure of this proof. Expression 
F; is defined similarly. 

Once we have T; and Fi, we construct CT; by a nested 
sequence of let’s. For i = 1, the graph ui is con- 
structed as follows. 

u1 ::= 

let tl = Tl+Fl in 
let t2 = tl--+tl in 

. . 
let t, = tn-l+tn-l in t, 

When expa.nded, u1 becomes an expression whose dag 
representation is a binary tree with ‘Veaves” alternat- 
ing between dags for Ti and Fi. For i > 1, we use a 
similar construction, but arrange the nesting of let’s 
so that the pattern of Ti’s and Fi’s differs from all 
other patterns. By arranging the ui’s properly, we 
can obtain an expression u = Ulzify(ui, . . . , uk) that 
encodes an enumeration of all truth assignments to 
the propositional va.riables, and the resulting truth 
values of Cl,. . . , C,,. 

The expression r is constructed by a similar nesting 
of let’s, placing an m-ary AND gate, as in [DKM84], 
at each leaf, so that if all the conjuncts are true at 
any assignment, unification fails. The failure is forced 
by failing a cyclicity test, [PW7S], at the output of 
the AND gate. This concludes the proof sketch in 
the special case that all quantifiers are existential. 

In general, we must construct 7 more carefully so 
that in addition to testing which assignments satisfy 
the matrix, we AND and OR the results of these tests 
properly. The AND and OR .espressions used in this 
construction are both from [DKMS4]. n 

5 Lower bound for ML typing 

Theorem 5.1 It is PSPACE hard to determine 

whether a given core ML expression is typable. 

Proof Sketch: The main idea of the proof is to re- 
trace the proof of Theorem 4.2, showing that all ex- 
tended type expressions may be defined as principal 
types of ML expressions. By this method, we show 
that for any type expressions u and r constructed as 
in the proof of Theorem 4.2, there is a core ML ex- 
pression which is typable iff u a.nd r are unifiable. 
The expressions we use at intermediate steps in the 
proof will have.approximately the same,length as the 
extended expressions for their principal types. How- 
ever, there is one technical complication that should 
be mentioned at the outset. It is well-known that 
only types which resemble propositional tautologies 
can be the types of lambda terms [How80]. There- 
fore, we cannot always construct lambda terms whose 
principal types are precisely the expressions used the 
proof of Theorem 4.2, but must be content with ones 
whose types contain them as subexpressions. 

To give some of the flavor of the construction, we 
describe a lambda term with principal type Ti. Recall 
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that Ti has the form 

where 4 associates to the right. Variables si,j and 
ti,j will be identical in Ti :iff setting Pi = True forces 
clause Ci = True. For each Ti:, we build a lambda 
term Mi of the form 

where Ii’ = /\zl.Av.u and the subexpression Eq(z, y) 

forces variables z and y to have the same type. To 
be concrete, we can take 

Eq(z, y) E x2. qm)(zy), 

since typing this expression forces the types of 2 and 
y to be unified. Note that t.he types of the Eq(xij, yij) 

are irrelevant, since K discards its second argument. 
Once we have constructed i&, and a similar iVi with 
principal type Fi, we can construct a lambda term 
with principal type containing ui using a nested se- 
quence of let’s. The details are omitted. m 

6 Conclusion and future direc- 
tions 

Mimer’s typing algorithm for ML is widely used and 
generally regarded as “efficient.” However, in the 
worst case, it requires doubly-exponential time to 
produce its string output. We have seen that if we no 
longer require printing the type as a string, the algo- 
rithm could be modified to run in exponential time. 
However, recognizing the .typable ML expressions is 
PSPACE hard. Therefore, it is unlikely the algorithm 
could be optimized further, unless P=PSPACE. A re- 
maining technical problem is to close the gap between 
our PSPACE lower bound and the deterministic ex- 
ponential time upper bound. 

Since ML typing appears efficient in practice, it 
seems that worst-case typing problems must occur 
with very low frequency. There are two likely ex- 
planations. The first is that as noted in Corollary 
3.12, ML typing depends primarily on the let-depth 
of terms, as opposed to their length. While programs 
such as the CAML compiler [CCM85] begin with a 
very long sequence of let declarations, it is possi- 
ble that the actual chains of declarations which de- 
pend on each other nontrivially are relatively short. A 
second possibility is that although functions declared 
by let are typically polymorphic, it seems common 
to apply them to non-polymorphic arguments. This 

keeps the number of type varia.bles from growing ex- 
ponentially, and would therefore seem likely to reduce 
the complexity of typing. However, both of these ex- 
planations require further investigation. 

One promising direction for further work is to ap- 
ply the polymorphic unification technique described 
here to the related typing problems described in 
[GR88,HenSS,KTUSS,Lei83,MitSS]. Since polymor- 
phic unification is independent of ML syntax, we hope 
that this formula.tion will be useful in deriving addi- 
tional lower bounds. 
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Appendix. Type inference rules 
and algorithm 

We summarize an inference system and typing algo- 
rit,hm for core ML. Both atre based on [DM82,Mi178], 
but presented in a manner which simplifies our anal- 
ysis. Typing assertions a.bout core ML expressions 
without let may be proved using the following ax- 
iom and inference rules. 

(app) 
rbhf:F+T, rbN:U 

rbhfN:T 

(add hw) 
rbhf:C7 

r,X:TbM:o' 
2 not in r 

These rules are often called the Curry Iyping rules, 
after H.B Curry [CF58]. 

Typing with let may be characterized by adding 
the. following inference rule, which uses substitution 
to capture the polymorphism of let. 

(let> 
~DM:U, rp[hp$v:r 

rDletz=MinN:r 

If we ignore the hypothesis about M, then this rule 
allows us to type let x I= M in N by typing the 
result [M/z]N of let reduction. Polymorphism arises 
from the possibility of inferring different types for the 
different occurrences of M. The assumption about 
M in this rule is included to cover the special case 
when x does not appear in N. In general, the ML 
type checker only accepts let x = M in N if M is 
well-typed. When z occurs in N, it suffices to find a 
type for [M/x:]N. But when x does not occur in N, 
we need the additional condition in the antecedent of 
the rule. 

The algorithm PT given below in Figure 1 com- 
putes a principal typing for any typable ML term. 
The algorithm has two arguments, a term to be typed, 
and an environment mapping variables to typing as- 
sertions. The purpose of the environment is to han- 
dle let-bound variables. The algorithm is written 
using an applicative, pattern-matching notation re- 
sembling the programming language Standard ML. 
It is assumed that t.he inpu.t to PT is a program with 
all bound variables renamed to be distinct, an oper- 
ation tha.t is commonly done in lexical analysis prior 
to parsing. 

Algorithm PT may fair in the application or let 
case if the call to UNIFY fails. We can prove that if 

PT(M,@:) succeeds, then it produces a provable typ- 
ing for M. 

Theorem 6.1 If PT(M,0) = I? D M : r, then I? D 

M : r is a provable typing statement. 

It follows, by Proposition 2.2, that every instance 
of PT(M,0) is p rovable. Conversely, every provable 
typing for M is an instance of PT(M, 0). 

Theorem 6.2 Suppose I’ b M : r is a provable typ- 

ing. Then PT(M, 0) succeeds and produces a typing 

with r b M : r as an instance. 
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PT(x,A) =ifA(z)=rDM:athenrDz:o 
else (2:t) D 2 :t 

PT(MN,A) = 
let 

I'I~M:~=PT(M,A) 
I’2~N:zPT(N,A), 

with type variables renamed to be disjoint from those in PT(M, A) 
s= UAvFY({a=~) 2: (Y E rl and 2: p E rz } u {g = 7-t)) 

where t is a fresh type variable 
in 

PT(Ax.M, A) = 
ktrDbf:T=PT(ibf,A) 
in 

if 2: u E r for some d 
thenr- {~:u}DAx.M:cJ-+T 
eke r D AX.M : 2-T 

where s is a fresh type variable 

PT(let x = M in N, A) = 
letrl~M:a=PT(M,A) 

A'=AU{xt+I'lDM:r} 
r2DN:T=qN,A’) 

S= UNIFY({CX=P 1 y:cuE:l?I andy:pEI’z}) 
in srI Usr, D let 2 = M in N :ST 

Figure 1: Algorithm PT to compute principal typing. 
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