
Polymorphic unification and ML typing

Paris C. KaneElakis*
Department of Computer Science

Brown University
Providence, RI 02912

Abstract

We study the complexity of type inference for a core
fragment of ML witch lambda abstraction, function
application, and the polymorphic let declaration.
Our primary technical tool is the unification problem
for a class of “polymorphic” type expressions. This
form of unification, which we call polymorphic un$-
ca-tion, allows us to separate a combinatorial aspect of
type inference from the synta.x of ML programs. Af-
ter observing that ML typing is in DEXPTIME, we
show that polymorphic unification is PSPACE hard.
From this, we prove that recognizing the typable core
ML programs is also PSPACE hard. Our lower bound
stands in contrast to the common belief that typing
ML programs is “efficient,” and to practical experi-
ence which suggests that t,he a.lgorithms commonly
used for this task do not slow compilation substan-
tially.

1 Introduction

A convenient feature of the programming language
ML [GMW79,Mi185] is the way that type inference
is used to eliminate the need for type declarations
[Mi178]. When the programmer enters untyped code,
the compiler responds with the type of the expres-
sion. For example, a programmer may declare the

*The work of this author was supported by: NSF grant
IRI-8617344, ONR grant N00014-S3-K-0146 ARPA Order No.
4786, and an Alfred P. Sloan Fellowship.

tSupported by an NSF PYI Award.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of
the publication and its date appear, and notice is given that copying
is by permission of the Association for Computing Machinery. To
copy otherwise, or to republish, requires a fee and/or specfic
permission.

0 1989 ACMO-89791-294-2/89/0001/0105 $1.50

John C. Mitchelfl
Department of Computer Science

Stanford University
Stanford, CA 94305

identity function by writing let Id = Xx.x. The com-
plier then infers that Id has type t+t, meaning that
the identity maps any type t to itself. If the compiler
cannot find a type for an expression, an error message
is printed. Thus ML programmers receive the bene-
fit of compile-time type checking (early detection of
errors), without the inconvenience of supplying types
explicitly. Since ML typing has proven useful in prac-
tice, the main ideas have also been adopted in other
languages, such as Miranda [Tur85].

To simplify our analysis, we will focus OII core ML
expressions using only lambda abstraction, function
application, and let. Since the main result is a lower
bound, choosing a small fragment of ML makes our
study more widely applicable. The ML type inference
problem is: given a core ML expression h4, find a
type for M if one exists, otherwise return untypable.
Our lower bound will actually apply to the appar-
ently simpler recognition problem: given a core ML
expression M, return typable if M has a type, else
return untypable. It is clear that any algorithm for
the type inference problem also solves the recognition
problem. A useful fact about ML typing is that when
an expression M has a type, there is a principal type
which indicates the form of all other types for M.

The main source of super-polynomial complexity
is the let declaration, which is crucial to ML poly-
morphism. If we declare a function f by saying
let f = . . ., then different occurrences of f within
this scope may be given different types. This is prac-
tically important, since it allows expressions such as

let f = X32.l: in . . . f(3) . . f(trtie) . .

in which a single function is applied to arguments of
several types. Without let, ML type inference can
be done efficiently. Using a linear time unification al-
gorithm (as in [PW78], for example) we can compute
the principle type of any let-free core ML expres-
sion in linear time. Even in this simple case, how-
ever, one must be careful with the representation of

105

type expressions. To achieve linear time, types must

be represented (and printed out) as directed acyclic
graphs, or dags, since the string representation of a
type may be exponentially longer than the given ex-
pression. Dag representations are a common data
structure in unification [F1W78,MM82,DKM84].

With let, we give a straightforward deterministic-
time upper-bound that is exponential in the num-
ber of nested let declarations of the input. How-
ever, the type of an ML program may be doubly-
exponential in its size, when written as a string, or
singly-exponential when represented as a dag. This
causes the usual ML type inference algorithms to
have doubly-exponential worst-case behavior, since
the type is usually printed out as a string. A priori,
it might seem reasonable to look for a more succinct
representation that would allow us to improve upon
the exponential dag algorithm.

In studying the complexity of ML typing, we in-
troduce a class of “polymorphic” type expressions
that allow many types to be written concisely. We
call the unification problem for these extended type
expressions polymorphic unification, and show that
determining the solvability of a polymorphic unifi-
cation problem is PSPACE hard. By representing
hard instances of polymorphic unification within ML
programs, we then show that recognizing the typable
core ML programs is PSPACE hard. It follows that
no polynomial-time algorithm can recognize the ty-
pable programs, unless P=PSPACE. Our results con-
tradict what appears to be a well-known “folk theo-
rem ,” namely, ML typing is linear timel, and stands
in contrast to the perce:ived efficiency of the algo-
rithm in practice. The polymorphic unification proof
uses an encoding of quantified propositional formulas,
while the reduction to typing uses lambda calculus
programming of approximately the same sophistica-
tion as the proof of Turing completeness for untyped
lambda calculus [Bar84]. It remains to close the gap
between our PSPACE lovver bound and the exponen-
tial time upper bound.

The rest of this paper is organized as follows. Basic
definitions of ML syntax, typing and unification are
given in Section 2. Examples of programs with large
types, and upper bounds, appear in Section 3. Ex-
tended type expressions and PSPACE hardness for
polymorphic unification are presented in Section 4;
PSPACE hardness for M:L typing is discussed in Sec-
tion 5. Concluding remarks appear in Section 6. For
the reader who is not farniliar with ML, typing rules
and an algorithm for computing principal types are
included in an Appendix.

ITo the embarrassment of the second author, the incorrect
“folk theorem” was put in pr.int in [MHSS].

2 ML expressions, types and
unification

2.1 Core ML

The core MT, expressions have the following abstract
syntax

M : : = x 1 MM 1 Ax.M 1 let 2 = M in M,

where z may be any expression variable (c.f- [DM82,
Mi178]). In writing expressions, we will adopt the
usual conventions of lambda calculus. For example,
MNP should be read as ((MN)P), and Ax.MN read
as Xz.(MN).

In Xx.M and let x = N in M, the variable x
becomes bound in M. This leads to the renaming
equivalences

(41 Xz.M = Xy.[y/x]M, y not free in M

(a):!let z = N in M = let y = N in [y/z]M,

y not free in M

where [N/x]M denotes the result of substituting N
for free occurrences of x in M (with renaming of
bound variables to avoid capture, as usual). We say
two expressions are o-equivalent if they differ only in
the names of bound variables, and,generally treat cr-
equivalent expressions as identical. An expression is
closed if all variables are bound.

Reduction is a relation on a-equivalence classes of
ML expressions which resembles symbolic execution.
Reduction is axiomatized by

(PI (Xz.M)N -f+ [N/x]M

(let) let x = N in M 2 [N/z]M

(There are also q-reduction rules, as in [Bar84], but,
they will not be needed in this paper.) Since let x =
M in N and (Az.iV)M both reduce to [M/x]N, these
expression produce the same final value. However,
there are different typing restrictions in ML.

We say M let-reduces to N, and write MZN,
if we can obtain N from h/l by repeatedly apply-
ing rule (let) to subexpressions, and renaming bound
variables. If we can produce N from M using both
(let) and (/3), th en we write M * N. An interest-
ing fact about let-reduction (only) is that it is finite
Church-Rosser. The following proposition is essen-
tially the uniqueness and finiteness of developments
for untyped lambda calculus [Bar84], since every let
in M may be regarded as a “marked” X-redex.

106

Proposition 2.1 Let M be any core ML program.

There is a ukque Let-free program N such that every
maximal sequence of let-reductions starting from M
terminates at N. In particular, there are no infinite
sequences of let-reductions.

If N is a let-free expression obtained from M by
repeated let-reduction, then we say N is a let nor-
mal form of M. By Prop 2.1, let normal forms are
unique.

2.2 Types and typing assertions

The type expressions of core ML have the following
form

u -.- t) UdU ..-

where t may be any type variable. The standard syn-
tactic convention is that + associates to the right.
For example, (T--~T+Q should be read as (g--+(7-4~)).

The type of an expression depends on the types we
assume for its free variables. For this reason, we use
typing assertions of the form r D M : u, where M is
an ML program, u is a type expression, and r is a
type assignment, i.e., a finite set

I? = {2~:u~,-.,x~:u.k}

associating at most one type with each variable x.
The assertion r D M : c may be read, “the expression
M has type g in context I’.”

We say M is typable if there is some provable typing
assertion F D M : c about M. Typing assertions
are proved using the ML inference system, which is
summarized in the Appendix. Since the action of the
ML type checker is more relevant to our lower-bound
proof, the Appendix also includes an equivalent type
inference algorithm.

The provable typing assertions are closed under
substitution. For our purposes, a substitution will be
a function from type variables to type expressions.
A substitution S is applied to a type expression as
usual, and to a type assignment l? by applying S to
every type expression in I’. More specifically,%’ is
the type assignment

sr = {z: s+ (T E r).

A typing statement I” D M : CT’ is an instance of
l? D M : B if there exists a substitution S with

I”>%, anda’=Su.

Proposition 2.2 (Milner 78) If I” D M : u’ is an
instance of a provable typing assertion r D M : u,
then I” D M : u’ is provable.

A typing assertion l? D M : u is principal typing

for M if it is provable, and has every provable typing
assertion for M as an instance. When M is closed, the
principal typing will have an empty type assignment,
and so we say M has a principal type. It was first
shown in [DM82] that every typable ML expression
has a principal typing.

Proposition 2.3 (Damas-Milner 82) If M is ty-

pable, then M has a principal typing.

We will use the phrase length of a typing (or type
expression) for the number of symbols we use to write
the expression down on a piece of paper. It is some-
times useful to write 1~1 for the length of type expres-
sion T, and similarly for core ML expressions. Since
a substitution cannot decrease the length of a typing,
the principal typing of any expression has minimum
length.

2.3 Unification and graph represen-
tation of type expressions

If E is a set of equations between type expressions,
then a substitution S unifies E if Su = ST for ev-
ery equation u = T E E. The unification algorithm
of [Rob651 computes a most general unifying substi-
tution, where S is more general than R if there is a
substitution T with R = To S.

Proposition 2.4 (Robinson 65) Let E be any set

of equations between type expressions. There is an
algorithm UNIFY such that if E is unifiable, then

UNIFY(E) computes a most general unifier. Further-
more, if E is not unifiable, then UNIFY(E) returns
failure.

An important part of the algorithm used to compute
principal typings is the way that unification is used
to combine typing statements about subexpressions.
Specifically, if M: U-V and N: ,Q, then we must unify
u and Q in order to type the application MN.

While most implementations of unification have
slightly higher asymptotic running time, unification
can be done in linear time [MM82,PW78]. To per-
form unification efficiently, it is common to represent
the expressions to be unified (in our case, type ex-
pressions) as directed acyclic graphs (see [AHU83],
for example). A directed acyclic graph (dug) repre-
sentation is like the parse tree of an expression, with
each vertex labeled by an operator or operand (in our
case, + or a type variable). However, repeated subex-
pressions need be represented only once, resulting in
vertices with indegree greater than one. It is easy to
show that a dag of size n may represent an expression

107

of length 2”. Nonetheless,, the time required for uni-
fication is l&ear in the s,ixe of the dags representing
the expressions to be unifed.

3

3.1

Lower bounds on type size
and upper bounds on type
inference

Lambda ternx wit bout “let”

Even without let, expressions may have principal
types of exponential length. In constructing expres-
sions with specific principal types, it is useful to adopt
the abbreviation

(MI)...) M,) ::= h..zMI...Mk

where z is a fresh variable not occurring in any of
the ik?i. This is a common encoding of sequences in
untyped lambda calculus. It is easy to verify that if
kfi has principal type (pi, then the principal type of
the sequence is

Pfl,..., Mk) : (cq- . . . -+U~4)-4

where t is a fresh type va.riable.not occurring in any of
the cri. We will write ~1 x . . . x ‘TL asan abbreviation
for any (cl+ . . . -+uI;+t)-+t with 1 not occurring in
any ui.

Example 3.1 The closed expression

P:: = AT.?. (2,x)

has principal type t-+(t x t). If we apply P lo an
expression M with principal type u, then the applica-

tion PM will be typed by unifying t with u, resulting
in the typing PM : u x u. Thus applying P to a

typable expression doubles the length of its principal

Qw-

By iterating the application of P from Example 3.1
to any typable expression, we can prove the following
proposition.

Proposition 3.2 FOT arbitrarily large n, there exist

let-free closed expressions M of length n whose prin-
cipal types have length 2”tn).

Since the type of an expression may have many
repeated subexpressions, the minimum-size dag rep-
resentation of the type need not be exponential. In
fact, using dag representations of types, we can com-
pute principal typings in linear time. It follows that
the dag size of the principal typing of any let-free
ML expression is linear.

Proposition 3.3 Given a let-free expression M of

lengdh n, there is a linear lime algorithm which com-

putes a dag representing the principal typing of M, if
il exists, and returns untypable otherwise. If it ex-

ists, the principal typing of M has length. 20cn) and
dag size O(n).

3.2 Type size with “let”

Before discussing expressions with large types, it may
be helpful to review the behavior of the ML typing
algorithm on let expressions. To simplify matters,
we will consider let f = M in N with M closed.
Essentially, this expression is typed by first comput-
ing the principal type of M. This type will generally
contain type variables which are used as “place hold-
ers” for arbitrary types. In typing the body N, each
occurrence of f is given a copy of the principal type
of M with all type variables renamed to be different

from those used in every other type. (Something sim-
ilar but slightly more complicated is done when M is
not closed.) Type inference then proceeds as usual,
using different types for different occurrences of f.
Because variables are renamed, the number of type
variables involved in the principal type of an expres-
sion may be exponential. The following example is
due to Mitchell Wand and, independently, to Peter
Buneman.

Example 3.4 Consider the expression

let x = M in (x,x)

where M is closed with principal type u. The principal

type of this expression is u’ x a”, where u’ and u”
are copies of u with type variables renamed differently
in each case. Thus, unlike (Xo.(z,z))M, not only is
the type twice as long as u, but the type has twice

as many type variables. For this reason, even the
dag representation for the type of Zhe expression with
let is twice as large as the dag representation for the
type of M. By nesting declarations of pairs, we can

produce expressions

W ..- n ..-
let x0 = M in

let x1 = (x0, x0) in
. . .
let 2, = (xn-lrxn-l) in I,

with n nested declarations whose principal types have

20(n) type variables. Consequently, the dag represen-
tations of these types will have 2°C”) vertices.

It is worth mentioning that although the dag rep-
resentation of the principal type for the expression

108

in Example 3.4 has exponential size, other types for
this expression have smaller dag representations. In
particular, consider the instance obtained by apply-
ing a substitution which replaces all type variables
with a single variable t. Since all subexpressions of
the resulting type share the same type variable, this
produces a typing with linear size dag representation.
However, there are other expressions with principal
types that are doubly-exponential when written out
symbolically, and such that the dag representation of
any type must have at least exponential size.

Example 3.5 Recall that the expression P:: =
Xx.(x,x) from Example 3.1 doubles the length of the
principal type of its argument. Consequently, the n-
fold composition of P (with itself) increases the length
of the principal type by 2”. Using nested let ‘s, we
can define the an-fold composition of P using an ex-
pression of length n. This gives us an expression
whose principal type has double-exponential length,
and exponential dag size. Since there is only a sin-
gle type variable in the principal type, any substitution
instance of the principal type also has exponential dag
size. To see how this works, consider the expression
V, defined as follows.

v, ::=
let q = XZ.(X,~) in

let x2 = Xy.xi(xiy) in
. . .
let x n = Xy.x,-l(x,J-ly) in x,(Xt.t)

To write the principal type of this expression sim-
ply, let us use the notation Jnl for the n-ary prod-
uct defined inductively by 4’1: : = r and J”+ll: : =
(Jnl) x (Jnl). It is easy to see that &I has 2°C”)
symbols. By examining the expression V, and tracing
the behavior of the ML typing algorithm, we can see
that x1 = P has principal type t+tr21, and for each
i > 0 the principal type of xi has type t--#“]. Con-
sequently, the principal type of the entire expression
V, is (t+t)[2”l, which has 22”(n) symbols. Since a
dag representation can reduce this by at most one ex-
ponential, the dag size of the principal type is 2n(n).

Proposition 3.6 For arbitrarily large n, there exist
closed expressions of length n whose principal types
have length 2 2n(n’, dag size 2 n(“), and 2n(n) distinct
type variables. Furthermore, every instance of the
principal type must have dag size 2n(n).

3.3 Upper bound with “let”

One way to type a core ML expression is simply to re-
duce to let normal form and then use the linear-time

algorithm of Proposition 3.3. The main reason this
method works properly is tha,t typing is generally pre-
served by let reduction, as described in the following
lemma. The one exception occurs when we reduce an
expression let x = A4 in N where 2 does not occur
free in N. However, this case may be eliminated by
a simple syntactic transformation.

Lemma 3.7 Consider ari expression let x =
M in N and the result [M/X]N of let reduction.
If M is typable or x occurs free in N, then these ex-
pressions have precisely the same typings, and hence
the same principal typing.

Lemma 3.8 A core ML expression of the form
let I = h4 in N has precisely the same types as the
expression let 2 = M in (Xy.N)x, provided y not
free in N. In particular, the two expressions have the
same principal type.

Note that in the second expression let x =
M in (Ay.N)x of Lemma 3.8, the bound variable 2
occurs free in (Xy.N) 2, and so by Lemma 3.7 the prin-
cipal type of this term is preserved by let reduction.

In general, the length of a core ML expression may
increase exponentially as a result of let-reduction.
We can give a more precise description of the increase
by considering the way that let’s occur. To be pre-
cise, we define the let-depth, k’d(M), of M induc-
tively as follows.

Wx) =

kl(MN) = max{&l(M), [d(N))
ed(Xx.M) = !!d(M)
&d(let x = M in N) = 1d(M) + [d(N)}

The depth of let z = M in N is additive since when
we reduce to [M/X] N, expressions nested to depth
cd(M) in M may become nested to depth Cd(M) +
la(N) by substitution into N. In the common special
case that M is let-free, the let-depth of let x =
M in N is 1 t-id(N).

Lemma 3.9 Let N be the let normal form of an
ML expression M. Then INi = 2°(elogsIMI), where e
is the let-depth of M.

Theorem 3.10 There is an algorithm which decides
whether any given core ML expression M has a prov-
able typing in time 2°(e10g2 I”I), where k! is the let-
depth of M. When M is typable, this algorithm yields
a dag representing the principal typing.

Corollary 3.11 If M is a core ML expression of
length n, then a principal typing of M has length at
most doubly-exponential in n, and dag size 2O(“).

109

Corollary 3.12 If we restrict our attention to ML
expressions with let-depth !, for some fixed -!!, then

we can determine typability, and compute principal
typings, in polynomial tim.e.

4

4.1

Extended t:ype expressions
and polymorphic unification

Extended type expressions

The extended type expressions include a polymorphic
let declaration which resembles the polymorphic let
in ML expressions. Formally, the extended type ex-
pressions are defined as follows.

u : : = t (u+u (let t = u in 0

Perhaps the simplest way to think of let t = (T in r is
as an abbreviation for the expansion [[u/t]]T obtained
by replacing each occurrence oft in r with a different
alphabetic variant of q. More specifically, if 7 has k
occurrences oft, then we choose k alphabetic variants

01,.-e, ck of u such that no type variable appears in
more than one of the expressions ~1, . . . , Uk, T. Then,
we replace the k-t11 occurrence of t in r by uk. For
example, let t = r-+r in -t+t may be underst,ood as
an abbreviation for the expansion

[[r-+]](t+t) = (T’+T’)+(T”--t’T”).

A precise inductive definition requires some “book-
keeping” mechanism to guarantee that all alphabetic
variants use distinct type variables, but is otherwise
straightforward. Note that as described, [[u/t]]r is
only defined up to renamings of type variables. How-
ever, renaming type variables does not effect the
unifiability of expressions (provided distinct variables
are not identified). By Proposition 2.1, adapted to
type expressions, every extended type expression may
be expanded to a let-free ordinary type expression,
unique modulo renamings of type va.riables intro-
duced by expansion. We write expand(u) for any type
expression obtained from u by expanding all let’s.

Since we consider a type expression equivalent to its
expansion, extended type expressions may be viewed
as a technical device for obtaining succinct represen-
tations of ordinary type expressions. However, the
obvious counting argumeut shows that not all ordi-
nary type expressions may be represented succinctly
by extended expressions.

Example 4.1 Recall the following expression from

Example 3.4.

let 20 =: M in
let 21 = (20,2u) in

. . .
let xk = (xk-I, xk-I) in xk

Using extended type expressions, its principal type
may be written as

let to = u in
let tr = to x to in

. . .
let tk = tk-1 x tk-1 in tk

where we assume M has principal type u. The ex-
tended type expression is linear in the size of the ex-
pression (assuming u is linear in the sire of M), but
when we expand all let’s, we obtain the exponential-
size type described in Example 3.4. Because of the
way type variables are renamed in expansion, the ex-
panded type will have exponentially many type vari-
ables.

4.2 Polymorphic unification

Polymorphic unification is the unification problem for
extended type expressions. More precisely, a substi-
tution S nnijes extended type expressions u and r if
S expand(u) = S expand(r).

Theorem 4.2 Given two extended type expressions
u and T, it is PSPACE hard to determine whether u
and I- are unifiable.

Proof Sketch: The proof is by reduction from quan-
tified propositional formulas. We assume we are given
a formula

where Qi, . . . , Q,, are quantifiers V or 3, symbols
PI, . . , P, are propositional variables, and II, is a ma-
trix

of disjuncts of positive and negated variables. In
other words, each Ci has the form

c; E P;,1 v . . V Pi,j V 7Pi,j+l V . . . V 7Pi,l

for some
sequence of propositional variables Pi,l, . . , P;,l. It
is well-known that determining the validity of such
formulas is PSPACE complete [GJ79,SM73].

We will construct extended type expressions u and
r which are unifiable iff 4 is not valid. In this confer-
ence paper we outline the construction when all quan-
tifiers are 3, and defer the details for the V quantifiers
to the final version of the paper.

110

Intuitively, 0 is an extended expression which,
when expanded and viewed as a directed acyclic
graph, looks like a full binary tree of height n, with
distinct subgraphs cri, . . . , ~2” placed at the “leaves.”
(The graph is not a tree since the CY’S will not gener-
ally be trees.) Subgraph pi encodes the truth values
of conjuncts Ci, . . . , C, at the i-th truth assignment
to variables PI, . . . , P,,. More specifically, each ai is
constructed to have 2m leaves, two for each conjunct.
If conjunct Cj is true at the i-th assignment, then
leaves 2j - 1 and 2j of cya will be the same vertex;
otherwise, all leaves are distinct.

When all quantifiers are existential, the expression
r depends only on the number of propositional vari-
ables, and the number of conjuncts. When expanded
and viewed as a dag, T also looks like a full binary
tree of height n, with copies of a certain “test” graph
,~3 placed at each “leaf.” Essentially, when we at-
tempt to unify u and 7, the i-th copy of p tests to
see whether CY~ encodes a satisfying assignment for $J.
When some quantifiers are universal, r will include
extra structure to combine the results of these tests.

Since it seems difficult to construct the cy;‘s di-
rectly, we construct the entire type expression u by
unifying n expressions ul, . . , u,, with ui encoding
the dependence of $ on the value of the i-the propo-
sitional va.riable Pi. (A minor technical detail is that
we must actually produce a unification problem that
causes u to be built from 61,. . , u, in the process of
testing for unifiability with 7. However, this is easily
arranged by standard techniques [PW7S,DKMS4] .)

To build ui, we begin with two expressions T; and
Fi. Intuitively, Ti tells what happens to the matrix $
when P; = True, and F; encodes the result of setting
P; = False. In graphical terms, we think of T; as a
root with 2m children, one pair of children for each
conjunct of the propositional formula. If setting Pi =
True guarantees that Cj = True, then children 2j - 1
and 2j of Ti are the same leaf. Otherwise, we let
children 2j - 1 and 2j be distinct. To be more precise,
since we do not have 2m-ary function symbols, we let
Ti have the form

where Si,j = t;,j iff setting Pi = True forces clause
C; = True. The extra variable r is included to sim-
plify a technical problem in the proof of Theorem 5.1,
which follows the structure of this proof. Expression
F; is defined similarly.

Once we have T; and Fi, we construct CT; by a nested
sequence of let’s. For i = 1, the graph ui is con-
structed as follows.

u1 ::=

let tl = Tl+Fl in
let t2 = tl--+tl in

. .
let t, = tn-l+tn-l in t,

When expa.nded, u1 becomes an expression whose dag
representation is a binary tree with ‘Veaves” alternat-
ing between dags for Ti and Fi. For i > 1, we use a
similar construction, but arrange the nesting of let’s
so that the pattern of Ti’s and Fi’s differs from all
other patterns. By arranging the ui’s properly, we
can obtain an expression u = Ulzify(ui, . . . , uk) that
encodes an enumeration of all truth assignments to
the propositional va.riables, and the resulting truth
values of Cl,. . . , C,,.

The expression r is constructed by a similar nesting
of let’s, placing an m-ary AND gate, as in [DKM84],
at each leaf, so that if all the conjuncts are true at
any assignment, unification fails. The failure is forced
by failing a cyclicity test, [PW7S], at the output of
the AND gate. This concludes the proof sketch in
the special case that all quantifiers are existential.

In general, we must construct 7 more carefully so
that in addition to testing which assignments satisfy
the matrix, we AND and OR the results of these tests
properly. The AND and OR .espressions used in this
construction are both from [DKMS4]. n

5 Lower bound for ML typing

Theorem 5.1 It is PSPACE hard to determine

whether a given core ML expression is typable.

Proof Sketch: The main idea of the proof is to re-
trace the proof of Theorem 4.2, showing that all ex-
tended type expressions may be defined as principal
types of ML expressions. By this method, we show
that for any type expressions u and r constructed as
in the proof of Theorem 4.2, there is a core ML ex-
pression which is typable iff u a.nd r are unifiable.
The expressions we use at intermediate steps in the
proof will have.approximately the same,length as the
extended expressions for their principal types. How-
ever, there is one technical complication that should
be mentioned at the outset. It is well-known that
only types which resemble propositional tautologies
can be the types of lambda terms [How80]. There-
fore, we cannot always construct lambda terms whose
principal types are precisely the expressions used the
proof of Theorem 4.2, but must be content with ones
whose types contain them as subexpressions.

To give some of the flavor of the construction, we
describe a lambda term with principal type Ti. Recall

111

that Ti has the form

where 4 associates to the right. Variables si,j and
ti,j will be identical in Ti :iff setting Pi = True forces
clause Ci = True. For each Ti:, we build a lambda
term Mi of the form

where Ii’ = /\zl.Av.u and the subexpression Eq(z, y)

forces variables z and y to have the same type. To
be concrete, we can take

Eq(z, y) E x2. qm)(zy),

since typing this expression forces the types of 2 and
y to be unified. Note that t.he types of the Eq(xij, yij)

are irrelevant, since K discards its second argument.
Once we have constructed i&, and a similar iVi with
principal type Fi, we can construct a lambda term
with principal type containing ui using a nested se-
quence of let’s. The details are omitted. m

6 Conclusion and future direc-
tions

Mimer’s typing algorithm for ML is widely used and
generally regarded as “efficient.” However, in the
worst case, it requires doubly-exponential time to
produce its string output. We have seen that if we no
longer require printing the type as a string, the algo-
rithm could be modified to run in exponential time.
However, recognizing the .typable ML expressions is
PSPACE hard. Therefore, it is unlikely the algorithm
could be optimized further, unless P=PSPACE. A re-
maining technical problem is to close the gap between
our PSPACE lower bound and the deterministic ex-
ponential time upper bound.

Since ML typing appears efficient in practice, it
seems that worst-case typing problems must occur
with very low frequency. There are two likely ex-
planations. The first is that as noted in Corollary
3.12, ML typing depends primarily on the let-depth
of terms, as opposed to their length. While programs
such as the CAML compiler [CCM85] begin with a
very long sequence of let declarations, it is possi-
ble that the actual chains of declarations which de-
pend on each other nontrivially are relatively short. A
second possibility is that although functions declared
by let are typically polymorphic, it seems common
to apply them to non-polymorphic arguments. This

keeps the number of type varia.bles from growing ex-
ponentially, and would therefore seem likely to reduce
the complexity of typing. However, both of these ex-
planations require further investigation.

One promising direction for further work is to ap-
ply the polymorphic unification technique described
here to the related typing problems described in
[GR88,HenSS,KTUSS,Lei83,MitSS]. Since polymor-
phic unification is independent of ML syntax, we hope
that this formula.tion will be useful in deriving addi-
tional lower bounds.

Acknowledgements: We are grateful to Mitchell
Wand and Peter Buneman for pointing out a number
of interesting examples, and thank Gerard Huet and
David MacQueen for discussions regarding the rele-
vance of our lower bound to ML practice. The first
author would also like to thank Ken Perry for many
helpful discussions, and acknowledge the support of
the IBM T.J. Watson Research Center.

References

[ANUS31

[Bar841

[CCMvlsS]

[CF58]

[DKMS4]

[DM82]

[GJ79]

A.V. Aho, J.E. Hopcroft, and J .D. Ull-
man. Data Structures and Algorithms.

Addison-Wesley, 19S3.

H.P. Barendregt. The Lambda Calculus:
Its Sylltax and Semantics. North Holland,
1954.

G. Cousineau, P.L. Curien, and M.
Mauny. The categorical abstract ma-
chine. In IFIP Int’l Conf. on Func-
tional Programming and Computer Archi-

tecture, Nancy, Lecture Notes in Com-
puter Science 201, Springer-Verlag, New
York, 1985.

H.B Curry and R. Feys. Combinatory
Logic I. North-Holland, 1955.

C. Dwork, P. Kanellakis, and J.C.
Mitchell. On the sequential’nature of uni-
fication. J. of Logic Programming, 1:35-
50, 1984.

L. Damas and R. Milner. Principal
type schemes for functional programs. In
9-th ACM Symposium on Principles of
Programming Languages, pages 207-212,
1982.

M.R. Garey and D.S. Johnson. Computers
and In-tractability: A Guide to the Theory

112

of NP-Completeness. W.H. Freeman and
co., 1979.

[GMW79] M.J. Gordon, R. Milner, and C.P.
Wadsworth. Edinburgh LCF. Volume 78
of Lecture Notes in Computer Science,
Springer-Verlag, 1979.

[GR88]

[Hen8S]

[HowSO]

[KTU88]

[Lei83]

[MHS8]

[Mi178]

[MilS5]

[MitSS]

[MM821

P. Giannini and S. Ronchi Della Rocca.
Characterization of typings in polymor-
phic type discipline. In Proc. IEEE Symp.
on Logic in Computer Science, pages Gl-
71, July 1988.

F. Henglein. Type inference and semi-
unification. In Proc. ACM Symp. Lisp
and Functional Programming Languages,

pages 184-197, July 1988.

W. Howard. The formulas-as-types notion
of construction. In To II. B. Curry: Essays
on Combinatory Logic, Lambda-Calculus

and Formalism, pages 479-490, Academic
Press, 1980.

A.J. Kfoury, J. Tiuryn, and P. Urzy-
czyn. A’ proper extension of ml with ef-
fective type assignment. In l5-th ACM
Symp. Principles of Programming Lan-

guages, pages 58-69, 1988.

D. Leivant. Polymorphic type inference.
In Proc. IO-t11 ACM Symp. on Principles

of Programming Languages, pages SS-98,
1983.

J.C. Mitchell and R. Harper. The essence
of ML. In Proc. 15-G ACM Symp.
on Principles of Programming Languages,
pages 28-46, January 1988.

R. Milner. A theory of type polymorphism
in programming. JCSS, 17, 1978. pages
348-375.

R. Milner. The Standard ML core lan-
guage. Polymorphism, 2(2), 1955. 25
pages. An earlier version appeared in Proc.
1984 ACM Symp. on Lisp and Functional
Programming.

J.C. Mitchell. Polymorphic type inference
and containment. Information and Com-
putation, 76(2/3), 1988.

A. Martelli and U. Montanari. An effi-
cient unification algorithm. A CM Trans.
on Prog. Lang. and Systems, 4(2), Feb.
1982.

[PW78]

[Rob651

[SM73]

[TurS5]

M.S. Paterson and M.N. Wegman. Linear
unification. JCSS, 16, 1978. pages 15%
167.

J .A. Robinson. A machine oriented logic
based on the resolution principle. JACM,

12(1):23-41, 1965.

L.J. Stockmeyer and A.R. Meyer. Word
problems requiring exponential time. In
Proc. 5-th ACMSymp. on Theory of Com-

puting, pages l-9, Association for Com-
puting Machinery, New York, 1973.

D.A. Turner. Miranda: a non-strict func-
tional language with polymorphic types.
In IFIP Int’l Conf. on Functional Pro-
gramming and Computer Architecture,

Nancy, Lecture Notes in Computer Sci-

ence 201, Springer-Verla,g, New York,
1985.

113

Appendix. Type inference rules
and algorithm

We summarize an inference system and typing algo-
rit,hm for core ML. Both atre based on [DM82,Mi178],
but presented in a manner which simplifies our anal-
ysis. Typing assertions a.bout core ML expressions
without let may be proved using the following ax-
iom and inference rules.

(app)
rbhf:F+T, rbN:U

rbhfN:T

(add hw)
rbhf:C7

r,X:TbM:o'
2 not in r

These rules are often called the Curry Iyping rules,
after H.B Curry [CF58].

Typing with let may be characterized by adding
the. following inference rule, which uses substitution
to capture the polymorphism of let.

(let>
~DM:U, rp[hp$v:r

rDletz=MinN:r

If we ignore the hypothesis about M, then this rule
allows us to type let x I= M in N by typing the
result [M/z]N of let reduction. Polymorphism arises
from the possibility of inferring different types for the
different occurrences of M. The assumption about
M in this rule is included to cover the special case
when x does not appear in N. In general, the ML
type checker only accepts let x = M in N if M is
well-typed. When z occurs in N, it suffices to find a
type for [M/x:]N. But when x does not occur in N,
we need the additional condition in the antecedent of
the rule.

The algorithm PT given below in Figure 1 com-
putes a principal typing for any typable ML term.
The algorithm has two arguments, a term to be typed,
and an environment mapping variables to typing as-
sertions. The purpose of the environment is to han-
dle let-bound variables. The algorithm is written
using an applicative, pattern-matching notation re-
sembling the programming language Standard ML.
It is assumed that t.he inpu.t to PT is a program with
all bound variables renamed to be distinct, an oper-
ation tha.t is commonly done in lexical analysis prior
to parsing.

Algorithm PT may fair in the application or let
case if the call to UNIFY fails. We can prove that if

PT(M,@:) succeeds, then it produces a provable typ-
ing for M.

Theorem 6.1 If PT(M,0) = I? D M : r, then I? D

M : r is a provable typing statement.

It follows, by Proposition 2.2, that every instance
of PT(M,0) is p rovable. Conversely, every provable
typing for M is an instance of PT(M, 0).

Theorem 6.2 Suppose I’ b M : r is a provable typ-

ing. Then PT(M, 0) succeeds and produces a typing

with r b M : r as an instance.

114

PT(x,A) =ifA(z)=rDM:athenrDz:o
else (2:t) D 2 :t

PT(MN,A) =
let

I'I~M:~=PT(M,A)
I’2~N:zPT(N,A),

with type variables renamed to be disjoint from those in PT(M, A)
s= UAvFY({a=~) 2: (Y E rl and 2: p E rz } u {g = 7-t))

where t is a fresh type variable
in

PT(Ax.M, A) =
ktrDbf:T=PT(ibf,A)
in

if 2: u E r for some d
thenr- {~:u}DAx.M:cJ-+T
eke r D AX.M : 2-T

where s is a fresh type variable

PT(let x = M in N, A) =
letrl~M:a=PT(M,A)

A'=AU{xt+I'lDM:r}
r2DN:T=qN,A’)

S= UNIFY({CX=P 1 y:cuE:l?I andy:pEI’z})
in srI Usr, D let 2 = M in N :ST

Figure 1: Algorithm PT to compute principal typing.

115

