
Formal Program Testing

Robert CartWright
Rice University

Abstract

This paper proposes a practical alternative to
program verification -- called formal program
testing -- with similar, but leaa ambitious goala.
Like a program verifier, a formal testing system
takes a program annotated with formal specifica-

tions as input, generates the corresponding verif-
ication conditions, and paases them through a sim-

plifier. After the simplification step, however,

a formal testing system simply evaluates the
verification conditions on a representative set of

test data instead of trying to prove them. Formal
testing providea strong evidence that a program is
correct, but doea not guarantee it. The strength

of the evidence depends on the adequacy of the
test data.

1. Introduction

After more than a decade of vigorous research

on program verification, it ia still not feasible

to prove the correctness of “production’” programs.

Iforeover, program verification has not won

widespread acceptance among programming profes-

sionals as a potential programming tool. Given the

technical limitations of existing verification

systems and the indifference of programmers to the

concept, practical program verification seems lit-

tle closer to reality than it did a decade ago.

There are two fundamental reasons for the

discouraging results of program verification

This research has been supported in part by Na-

tional Science Foundation grant MCS 78-05850.

Permission to copy without fee all or part of this materialism grant-

ed provided that the copies are. not made or distributed for direct

commercial advantage, the ACM copy- right and its date appear,
and notice is given that copying is by permission of the Associa-

tion for Computing Machinery. To copy otherwise, or I.o republ-
ish, requires a fee and/or specific permission.

@ 1981 ACM O-89791 -029 -X/81 /O100-O125$O0.75

research. First, proving that a computer program

is correct ultimately reduces to proving a set of

formal theorems (called verification conditions)

in a first order theory of the program data domain

-- an exceedingly tedious, yet demanding intellec-

tual activity that we do not yet understand how to

automate. Although most verification ayatems

wisely rely on the programmer to guide the genera-

tion of proofs, we still do not how to identify

and reliably mechanize the ““routine”’ arguments

that form the bulk of nearly all formal proofs.

Consequently, the programmer must continually

delve into the tedious details of symbolically

complex, but conceptually simple sub-proofs and

manually complete them. As a result, verifying

non-trivial programs is an arduous process. For

production programs, the burden ia overwhelming.

The second reason for the disappointing per–

formance of program verification systems is lack

of expreasiveness in the specification (assertion)

languages typically used to describe program

behavior. Current systems rely on specification

languages consisting of Boolean program expres-

sions augmented by free variables, quantifiers,
1

and occasional ad hoc extensiona. In essence, the.—

programming language is being used aa its own

specification language. While this approach works

well for some experimental, very high level

languages (e.g. SETL [Schwartz 79], pure LISP

dialects [Boyer and Moore 75,79; Cartwright

76ab]), it doea not make sense in the context of

1
Some systems such as the Stanford PASCAL Ve–

rifier allow the programmer to introduce new
predicates by axiomatizing them. See [von Henke
and Luckham 74, Luckham and Suzuki 79].

125

Permission to make digital or hard copies of part or all of this work or
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior
specific permission and/or a fee.
© 1981 ACM 0-89791-029-X…$5.00

conventional programming languages (e.g. PASCAL ,

C, PL/1, FORTRAN). The data objects and operations

supported by conventional languages are too

machine–oriented to describe computations simply

and abstractly. As a result, conventional

language specifications are often more difficult

to read and to understand than the programs they

purport to document. In these cases, the practi–

cal value of program verification is dubious; it

merely establishes that the programs satisfy

incomprehensible specifications, not that they are

intuitively correct.

In this paper, we develop a practical alter-

native to program verification -– called formal

program testing -- with similar, but less ambi–

tious goals. Like a program verification system,

a formal testing system takes a program annotated

with formal specifications (invariant assertions)

as input, generates the corresponding verification

conditions, and passes them through a simplifier.

A fast simplifier incorporating sophisticated,

computationally efficient decision procedures such

as the Stanford PASCAL Simplifier [Nelson and

Oppen 79] will reduce many verification conditions

to true. After the simplification step, formal

testing systems and formal verification systems

follow divergent pathe. Instead of trying to

prove the remaining verification conditions, a

formal testing system simply tests each one by

evaluating it on a representative set of data

valuea. If no errors are detected, the tested

verification conditions are accepted as true

statements. Formal testing provides strong evi–

dence that a program is correct, but does not

guarantee it. The strength of the evidence

depends on the adequacy of the test data; we will

discuss this issue in depth in Section 6.

2. Specification Languages for Program Testing

Since formal program testing ie applicable

only to formally annotated programs, its viability

as a practical tool depends on the development of

concise, readable specification languages. In

addition, formal program testing imposes a special

constraint on program specifications: all of the

operations appearing in program assertions must be

computable. Otherwise, it is not possible to

evaluate the program verification conditions on

test data values. As a result of this constraint,

specification methods that rely on the axiomatic

definition of abstract operations are not applica-

ble to formal program testing.

As a solution to the specification problem,

we advocate using a separate very high level,

applicative programming language -- including a

constructive abstract data type definition facil-

ity –- as the specification language. The presence

of a data type definition facility is critical

because it allows program specifications to be

written at a high level of abstraction -- omitting

irrelevant, machine-oriented details. To accommo-

date formal testing, abstract data type defini-
.

tions must provide an effective definition~ for

every primitive operation. Axiomatic data type

definitions such as algebraic specifications [Gut-

tag and Horning 78; Goguen 77] do not satisfy this

criterion because they fail to provide algorithms

(either implicitly or explicitly) for evaluating

the primitive operations. In particular, it is

impossible to compute whether or not two data

objects (ground terms) from an axiomatically

defined data domain are equal; the problem is

undecidable.

To support this approach to program specifi-

cation, we have designed a very-high-level pro-

gramming language called TTL, based on the the

TYPED LISP language described in [Cartwright 76].

In comparison with its predecessor, TTL includes a

much richer constructive data type definition

facility and a more comprehensive collection of

built-in types. In addition to “abstract data

types”, all of the machine–oriented data types in

conventional procedural programming languagea such

aa PASCAL, FORTRAN, and ADA are easily defined in

TTL . A description of the salient feature of the

constructive data type definition facility used in

TTL appears in [Cartwright 80].

As a programming language, TTL resembles Pure

LISP generalized to a rich, extensible data

2
If an operation is partial (undefined for some

inputs), the effective definition may diverge on
arguments that lie outside of the domain of the
operation. For example, an effective definition

of integer division must either diverge or return
an error object when given an argument list of the
form (X,o).

126

domain. As in Pure LISP, new operations (other

than primitive operations implicitly defined by

data type definitions) are introduced by recursive

definitions. Since all of the primitive opera-

tions in TTL are continuous, recursive definitions

in TTL are always well-defined. The meaning of a

recursively defined function is the least fixed

point of the corresponding functional.

The semantics of TTL have a natural formali-

zation within conventional first order predicate

logic. A TTL “program’” composed of type defini-

tions and recursive definitions of operations gen–

crates a corresponding first order theory includ-

ing axioms for all of the defined operations. The

domain and functions of the generated theory are

simply the data domain snd the defined operations

of the TTL program. Each recursive type defini-

tion in the program generates a collection of

axioms analogous to Peano-s (first-order) axioms

for the natural numbers. Similarly, each recursive

definition of a TTL operation generates a

corresponding recursion equation. This approach

to formalizing the semantics of applicative pro-

gramming languages ia described in more depth in

[Cartwright and McCarthy 79], and [Cartwright 80].

In contrast to conventional specification

languages, TTL enables the programmer to describe

the program clearly and concisely. In fact, we

believe that formally documenting programs in TTL

is worthwhile even when a formal program testing

system is not available. the behavior a program

and its subparts in formal, yet concise,

3. Specification aa Formal Documentation

A specification language like TTL constitutes

a formal system for documenting programs. As

[Liskov and Berzins 79] have argued, formal

specifications are superior to informal ones in

several respects. First, formal documentation

enables the programmer to describe program

behavior in mathematically precise terms. Every

symbol appearing in a program has a well-defined

mathematical interpretation. Expressing program

documentation in appropriate formal notation

forces the programmer to clarify his explanations.

When someone tries to read formally documented

code, he can determine exactly what each program

component is supposed to do by reading the annota-

tion. In contrast, informal specifications writ-

ten in English or other natural language are

inherently imprecise and ambiguous. A good illus-

tration of this phenomenon is the widely ack-

nowledged inadequacy of informal definitions of

programming language semantics.

A second advantage of formal documentation is

that it forces the programmer to use standardized

notation; the documentation must obey formal syn-

tactic rules. A programming language parser can

check that program documentation is well-formed,

just as it checks that program text is syntacti-

cally correct. As a result, many clerical errora

in program documentation that would otherwise go

undetected will be found and corrected.

The advantages of formal documentation, how-

ever, are academic if program specification are

difficult to write and to understand. Unless we

develop and promote concise, very high level

specification languages, the potential benefits of

formal program documentation will go unrealized.

4. A Comparison with Conventional Testing

Methods

Conventional program testing attempta to

establish the reliability of software by the fol-

lowing principle of inductive inference: if the

program works for a representative set of teat

inputs, then it should work in nearly all other

cases. The programmer is responsible for select-

ing the test data and inspecting the output for

each test caae to verify that it is correct. Aa a

tool for validating software, conventional testing

is saddled with several significant liabilities.

First, in the abaence of formal specifications, it

is often impossible to tell whether a particular

program output is correct. For example, how does

one determine whether the output of a compiler is

correct? Without a formal definition of the

source and target languagea (e.g. an abstract

interpreter for each written a formal specifica-

tion language), the whole question of correctness

ia moot. In some cases it may be feaaible for the

programmer to write a test program that verifies

that each test output ia ““correct”. In this caae,

the test program indirectly serves as a formal

127

program specification. Unfortunately, this form

of implicit specification does not constitute a

concise, readable description of program behavior.

A second problem with conventional program

testing is selecting a reprentative set of test

inputs. Recently, [Budd, DeMillo, Lipton, and Say-

ward 80] have developed an ingenious method --

called mutation analysis -- for evaluating the

adequacy of test data. To evaluate the quality of

his test data, the programmer feeds his program

and test data sets to a mutation analyzer, which

generates a large collection of mutant programs

and runs them on all of the test data sets. Each

mutant program is identical to the original except

that it contains a minor syntactic change mimick-

ing a program error. The mutant analyzer exhaus-

tively checks each mutant program on the test data

sets until it produces an output that distin-

guishes it from the original program. Of course,

some mutants may be semantically indistinguishable

from the original program. The programmer must

manually verify that every indistinguishable

mutant is equivalent to the original program. If

not, then the test data are inadequate and the

programmer must devise test cases to distinguish

the mutant from the original. The philosophical

motivation for mutation analysis is that the ori-

ginal program is correct except for a few minor

clerical errors.

Budd, et. al. report excellent results in

detecting program errors when using conventional

testing augmented by mutation analysis. The pri-

mary drawback to mutation analysis is that it

requires large expenditures of programmer and

machine resources. The mutant analyzer must run a

very large collection of mutant programs on the

test data and the programmer must check that

mutants duplicating the original program-s

behavior are in fact semantically equivalent to

the original program.

A final disadvantage of conventional program

testing is that it attacks program correctness on

a global rather than a local basis. A small

change in a single program subroutine necessitates

retesting the entire program. An individual sub–

routine cannot be rigorously tested in isolation

of the subroutines that it calls (directly or

indirectly). Moreover, smaller program building

blocks such as loop bodies usually cannot be

tested as independent units because their input

and output states are too complex for the program-

mer to check reliably.

With the exception of generating representa-

tive test data, formal testing overcomes the pit-

falls of conventional testing. Since it relies on

constructive formal specifications, there is no

question whether a particular test output is
3

correct. Furthermore, since verification condi-

tions correspond to distinct linear paths in a

program, formal testing is inherently local.

Changing one statement in a program only requires

retesting the verification condition for the path

containing the etatement -- assuming that the

specifications for the path remain unchanged.

Furthermore, when formal testing detects an error,

it is easy to locate because it must occur within

the path producing the erroneous test.

5. Generating Test Data

Automatically choosing a representative set

of test data is a difficult problem that warrants

further study. In many respects, automatic test

data generation resembles automatic theorem prov-

ing. For each program path S with pre-assertion

P, the test data generator must find sets of bind-

ings for the free variables of P and S that

satisfy P. Nevertheless, we believe that automat-

ically generating test data for a program segment

is a more tractable problem than automatically

proving the corresponding verification condition.

Programmers certainly find it much easier to gen-

erate test data than to prove programs correct.

Furthermore, unlike program verifiers, test case

generators do not have to attain a very high level

of competence before they are useful in practice.

When a test generator fails, the programmer can

simply revert to generating the data on his own --

a task he must perform anyway if an automatic sys-

tem in not available.

3
Unless the output assertion involves an embed-

ded, unbounded quantifier. In this case, the for-
mal testing system must resort to testing the out-
put assertion on a representative set of values
for the quantified variable. In practice, embed-
ded, unbounded quantifiers are rarely necessary.

128

One possible approach to generation test data

for a verification condition ie to symbolically

evaluate the condition deferring the binding of

every variable until the last possible moment. At

each predicate forcing a variable binding, the

generator makea a “non-deterministic”’ choice for

the binding from a small aet of heuristically gen-
>

crated values based on the particular predicate.

‘If the variable belongs to inductively defined

type T, then the base cases and first level con-

structions of T are obvious choices for members of

the set. The generation of teat cases proceeds by

backtracking until all possible non-deterministic

choices have been tried (given the generator sets

a small bound on the maximum recursion depth

allowed in evaluating recursively defined predi-

cates and functions in the specification

language).

For verification conditions involving

repeated occurrences of complex expressions, it

may help to generalize the verification condition

(as in the Boyer-Moore theorem prover [Boyer and

Moore 75]) before generating teat values and then

invert the substitutions (if possible) to produce

test values for the original formula. In fact,

much of the analysis that Boyer and Moore perform

to determine their stategy in proving a formula

could be profitably applied to the automatic gen-

eration of test cases. For example, the induction

variable chosen by their analysis probably war-

rants a proportionally larger number of test

values than the other variablee appearing in a

verification condition. Another obvious heuristic

for generating test values is to uae the output

test values from each path as test inputs to sub-

sequent paths.

A sophisticated formal testing system should

do more than generate test data for the program

and check that every test caae satisfiea the

corresponding verification condition. Tt must

also show that the generated data ia sufficiently

diverse to establish that the program is almost

certainly correct. In the next section, we ahow

how to adapt the concept of mutation analysis to

formal program testing.

6. Hutation Analysia in the Context of Formal

Program Testing

To evaluate the adequacy of test data gen-

erated for a particular verification condition, we

simply apply mutation analysis to the correspond-

ing program fragment. Specifically, we apply

mutant operators to the program fragment S produc-

ing a set of program fragments which are identical

to S except for minor clerical errors. We accept

a aet of test data as adequate for path S if for

each mutant S- that is not semantically
4

equivalent to s, it includes an input value that

falsifies the verification condition for S“.

We believe that mutant analysis in the con-

text of formal testing has several potential

advantages over the original scheme proposed by

[Budd et. al. 80]. First, since the analysis is——

local rather than global, the cost of testing

mutants is much lower; only a ehort program frag-

ment containing the mutation is executed rather

than the entire program. Second, conventional

testing in conjunction with mutant analyais will

not necessarily detect a systematic error (such as

a consistent “’off-by-one ‘“ mistake) since no muta-

tion corrects more than a single occurrence of the

error. None of error-correcting mutants will

necessarily behave correctly on a larger class of

inputs than the original program. On the other

hand, in formal testing each program path

corresponding to a verification condition is

independently teeted. If some path contains only

a single occurrence of the systematic error, then
5

mutant analysis will almost surely discover it.

Finally, the presence of program annotation

improves the prospects for automatic detection of

equivalent mutants. Determining whether or not a

mutant is equivalent to the original program (or

fragment) is one of the most time-consuming parts

of mutation analysis and a possible source of

error if it is done manually. In the context of

formal program testing, proving that a mutant ia

4A program fragment S“ is semantically

equivalent to the annotated program fragment {P} S

{Q} iff the formulas {P} S- {Q} and {P} S {Q} are
logically equivalent.

If the single occurrence of the systematic er-

ror is the only- error on the path and-the error is
corrected by some mutant operator, then mutant

129

equivalent to the original fragment reduces to

proving that the mutant-s verification condition

is equivalent to the original one. Instead of

proving two large programa are equivalent, the

system only has to prove two program fragments are

equivalent. Of course, even in the latter case,

it is unrealistic to expect that an automatic

detection system will work most of the time, since

the competence of existing automatic theorem

provers is limited.

7. An Extended Example

To illustrate how a formal testing system

based on TTL might work, we present an example

taken from [Luckham and Suzuki 79]. The following

““extended”” PASCAL procedure annotated in TTL main–

tains an event queue -- a linear list of records

each containing a key and count. The procedure

takes an event queue and a key as input, incre-

ments the count field of the record corresponding

to the key in the queue, and moves that record to

the front of the list. If no record corresponding

to the key exists, the procedure creates one at

the front of the list. To eliminate annoying spe-

cial caaes, the list includes header and trailer

records containing no data. For the sake of nota-

tional clarity, we have augmented PASCAL with

Dijkatra-s guarded command control structures.

Specification:

type event_queue = msp[int,int]

function Abatr(head,tail: int): event queue =

global event#claas; (* event#class-ia the *)

(* heap array for *)

(* record type event *)

let first = headt.next;

if first= tail then empty

else {(firstt.key,firstt.count)}

Abstr(firstt.next,tail);

funcc%on Add event(q: event queue,— —
e: int): event queue s

if e Domain(q) then q(e ; q[e~+l)

(* (q - {(e,q[el)})U {(e,q[e]+l)} *)

else qU {(e,l)};

Program:

type ref = ‘tevent;

event = record key: int;

count: int;

next: ref

end

procedure Search(ref : Head, Tail; int : X);

logical var Q:event queue;—
pre : Abstr(Head, Tail): event queue A—

Abstr(Head,Tail) =Q;

post: Abatr(Head,Tail)=Add_event(Q,X) ;

var P,R : ref;

begin

P:=Head;

Tailt.key:=X;

invariant: Abstr(Head, Tail)=Q A

X4 Domain(Abstr(Head, Pt.next))

do Pt.nextt.key#X + P:=Pt.next od;

if Pt.next=Tail +

neu(R);

Rt. next :=Headt.next;

Rt.count:=l;

Rt.key :=X;

Headt.next:=R;

D P~.next #Tail +

R:=Pt.next;

Rt.count:=Rt .count+l;

Pt.next :=Rt.next;

Rt. next :=Headt.next;

Headt.next:=R;

fi

end Search

The data type definitions in the Specification

section preceding the Program do not include the

definitiona either of ‘“built-in” TTL types such as

polymorphic sets and maps or concrete PASCAL types

defined in the program. Every PASCAL type defini–

tion implicitly generates a corresponding TTL type

definition -- formalizing PASCAL data objects and

operations within TTL. The program specification

uses an abstraction function (a concept introduced

by [Hoare 72]) written in TTL to define the

abstract data object (a map from int into int)

corresponding to a low-level event-queue represen-

tation.

If we ignore the issue of termination, the

verification conditions for the program are:

analysis ia guaranteed to find it.

130

1. ~Head, Tail, P:ref, Q:event_queue

Abstr(Head, Tail): event_queue A

Abstr(Head,Tail) =Q +’

wp(’”P:=Head; Tailt.key:=X”,

X~Domain(Abstr(Head, Pt.next)) A

Abstr(Head, Tail) =Q

)

2. ~Head, Tail, P:ref, Q:event_queue

X@ Domain(Abstr(Head,Pt.next)) A

Abstr(Head, Tail)=Q /l

PT.nextt.key~X +

wp(’”P:=Pt.next””,

X~Domain(Abstr(Head, Pt.next)) A
Abstr(Head, Tail) =Q

)

3. VHead, Tail, P:ref, Q:event_queue

X $Domain(Abstr(Head,Pt.next)) A

Abstr(Head, Tail)=Q /l

Pt.nextt.key=X +

(Pt.next ‘ Tail+’

wp(’’new(R);

Rt. next :=Headt.next;

Rt.count:=l;

Rt.key :=X;

Headt.next:= R“,

Abstr(Head,Tail) =Add_event(Q,X))

)A
(Pt.next # Tail+

wp(’”R:=PT.next;

Rt.count:=Rt .count+l;

Pt. next :=Rt.next;

Rt. next :=Headt.next;

Headt.next:= R“,

Abstr(Head, Tail) =Add_event(Q, X))

)

where “wp(S,R)”’ denotes the weakest pre-condition

of program seqment S and post-assertion R. Each

occurrence of the notation wp(S,R) in the verifi-

cation conditions above is equivalent to a pure

formula R“ where R- is R modified by a substitu-

tion corresponding to the sequence of assignments

s. We prefer ““wp’” notation to explicit substitu-

tions for assignment statements because it is

easier to read. It aleo happens to be a con-

venient form for the purposes of evaluation and

mutation analysis.

Given test values for the universally quanti-

fied variables, a TTL interpreter (supporting PAS-

CAL data objects and operations) clearly could

evaluate the above verification conditions. On

the other hand, automatically generating satisfac-

tory test values is a subtle problem. For exam-

ple, consider the problem of generating test data

for verification condition 1. If we follow the

strategy proposed in section 5, we can easily fall

into an infinite recursion in evaluating

Abstr(Head,Tail) if we happen to bind Headt.next

and Head to the same pointer value and bind Tail

to a different one. Placing a bound on maximum

recursion depth is an obvious ..brute force’. SOIU-

tion to this problem, but it rigidly limits the

complexity of test cases that can be generated.

8. Directions for Forther Work

Since formal program verification is far too

expensive and time-consuming to be practical in

most applications, formal program testing appears

to be a promising, cost-effective alternative.

Nevertheless, the succees of formal testing

depends on the willingness of programmers to docu-

ment their programs with formal specifications.

Unfortunately, the bulk of recent research in for-

mal specifications has concentrated on axiomatic

descriptions of program data and operations -- an

approach that is incompatible with formal testing.

The specification language TTL described in this

paper is a first attempt at developing a specifi–

cation language to support formal testing. We

hope others will study

ject is still in its

significant advances

design are bright.

We are currently

system for PASCAL to

formal testing and the

ication language. We

in a subsequent paper.

9. References

[Boyer and Moore 75]

the problem. Since the sub-

infancy, the prospects for

in specification language

building a formal testing

evaluate the viability of

utility of TTL as a

will report on the

specif-

results

Boyer, R.S., and Moore, J S.; ““Proving

Theorems About LISP Functions,” ~. ~ 22, 1

(Jan. 1975), pp. 129-144.

[Boyer and Moore 79]
Boyer, R.S., and Moore, JS. ~ Computational

131

Logic, Academic Press, New York, 1979.

[Brand 76]

Brand, D.; ‘;Proving Programs Incorrect,”

Proceedings Third International Colloquium on

Automata, Languages and Programming, Edi~

burgh U. Press, Edinbu~h, 1976, pp. 201-227.

[Brand 78]

Brand, D.; “Path Calculus in Program Verifi-

cation,” J. ACM 25(4), pp. 630-651.

[Budd et. al. 80]

Budd, T., R. DeMillo, R. Lipton, and F. Say–

ward; ‘“Theoretical and Empirical Studies on

Using Program Mutation to Test the Functional

Correctness of Programs,”’ Proceedings Seventh
Annual ACM Symposium on Principles of Pro-——
=ng~anguages,’” pp~213-233.— .—

[Cartwright 76a]

Cartwright, R.S.; “User-Defined Data Types as

an Aid to Verifying LISP Programs,”” Proceed-
ings Third International Colloquium on Auto-.—
~,~uages and Programming, Edinburgh U.
Press, Edinburgh~976, pp. 228-256.

[Cartwright 76bl

Car~wright~ R.S.; ~ Practical Formal Semantic
Definition and Verification System for TYPED—— ——
~, Sta~rd Artificial Intelligence
Laboratory Memo AIM-296, Stanford University,
1976.

[Cartwright 80]

Cartwright, R.S.; “A Constructive Alternative

to Axiomatic Data Type Definitions,” Proceed-

ings of 1980 LISP Conference, Stanford—.
Univers~ty, August 1980, pp. 46-55.

[Earley 73]

Earley, J.; “’High Level Operations in
Automatic Programming ,“ Computer Science

Department, Technical Report 22, University
of California, Berkeley, 1973.

[Earley 74]

Earley, J.; “High Level Iterators and a
Method for Automatically Designing Data

Structure Representation ,“ Electronics

Research Laboratory, Memorandum No. ERL-M425,

University of California, Berkeley, 1974.

[Gerhart 75]

Gerhart, S.L.; “Correctness Preserving Pro-

gram Transformations”’, Proceedings of the.—
Second ACM Symposium on Principles of Pro-
=ng~ang.ages, PP.—54-66.

——

[Goguen 77]
Goguen, J., Thatcher, J., Wagner, E., and
Wright, J.; “Initial Algebra Semantics and
Continuous Algebras,” JACM 24, pp. 68–95.——

[Guttag and Horning 78]
Guttag, J.V. and JJ. Horning; “The Algebraic

Specification of Abstract Data Typea,” Acts
Informatica ~, pp. 27–52.

[Hoare 75]

Hoare, C.A.R. “Recursive Data Structures,’”
International Journal of Computer and Infor-
mation Science~pp~105-132. ‘——~—

[Igarashi, London and Luckham 75]

Igarashi, S., London; R.L., and Luckham,
D.C.; “Automatic Program Verification I: Log-

ical Basis and Its Implementation,” Acts
Informatica 4_, pp. 145-182.

[Kennedy and Schwartz 75]

Kennedy, K. and Schwartz, J.T. “An Introduc-

tion to the Set Theoretical Language SETL,”
and Math. with Applications -1—— —

ti97%’:p: 97-119.
.

[Liskov and Zillea 75]

Liskov, B. and S. Zilles; “Specification
Techniques for Data Abstractions,”’ IEEE Tran-——
sactiona on Software Engineering, Vol. SE-1,
pp. 7-19.—

[Liskov and Berzins 80]
Liskov, B. and V. Berzins; “An Appraisal of

Program Specifications,” in Research Direc-

tions in Software Technology, P. Wegner——
(cd.), MIT Press, pp. 276-302.

[Luckham and Suzuki 79]
Luckham, D.C., and Suzuki, N.; “Verification

of Array, Record, and Pointer Operations in

Pascal,” TOPLAS 1 (1979), pp. 226-244.— —

[McCarthy 63]
McCarthy, J.; “A Basis for a Mathematical
Theory of Computation,” in Computer Program–
ming and Formal Systems, Braffort and Hirsch-—— — —
berg, eds., North-Holland, 1963.

[Nelson and Oppen 79]

Nelson, G. and D. Oppen: “’Simplification by
Cooperating Decision- Procedure~,” ACM TOPLAS

1(2), pp. 245-257.
——

——

[Schwartz 79]

Schwartz, J.; Personal communication.

[Warren and Pereira 77]
Warren, D. and Pereira, L.; ‘“PROLOG: The

Language and Its Implementation Compared with

LISP,” Proceedings of the ACM Symposium on—— —
Art. Intel. and Prog. Lang., SIGART/SIGPLAN—— — —— ——

[von Henke and Luckham 74]

von Henke, F. and D.C. Luckham; “Automatic
Program Verification III: A Methodology for
Verifying Programs,” Stanford Artificial

Intelligence Project Memo AIM-223.

[Hoare 72]

Hoare, C.A.R.; “Proofs of Correctness of Data
Representation ,’” Acts Informatica~, 271-281.

132

