
Tutorial Notes on Partial Evaluation

Charles Consel Olivier Danvy

Pacific Software Research Center Department of Computing and Info. Sciences

Department of Computer Science and Engineering Kansas State University t

Oregon Graduate Institute of Science & Technology* danvyocis.ksu.edu

consel@cse.ogi .edu

Abstract

The last years have witnessed a flurry of new results in the area
of partial evaluation. These tutorial notes survey the field and
present a critical assessment of the state of the art.

1 Introduction

Partial evaluation is a source-to-source program transforma-
tion technique for specializing programs with respect to parts of
their input. In essence, partial evaluation removes layers of inter-

pretation. In the most general sense, an interpreter can be defined
as a program whose control flow is determined by its input data.

As Abelson points out, [43, Foreword], even programs that are
not themselves interpreters have important interpreter-like pieces.

These pieces contain both compile-time and run-time constructs.
Partial evaluation identifies and eliminates the compile-time con-
structs.

1.1 A complete example

We consider a function producing formatted text. Such functions

exist in most programming languages (e.g., format in Lisp and
printf in C). Figure 1 displays a formatting function written in
Scheme [21]. Given a channel, a control string, and a Iist of val-

ues, this-function outputs text in the channel by interpreting the

control string to determine how to format the list of values.

For conciseness, this function handles only three formatting
directives: ‘M, ‘S and ‘%. The first two directives specify that
the corresponding element in the list of values must be printed

as a number or as a string, respectively. The third directive is

interpreted as an end-of-line character. Any other character is

printed verbatim. For simplicity, we assume that the control string
matches the list of values.

Most of the time, format is called with a constant control string.
This situation is ideal for partial evaluation, particularly when
format is called with the same constant control string repeatedly.
Specializing format with respect to this control string enables one
to interpret it only once. The speciahzed function takes a channel

‘19600 N.W. von Neumann Drive, Beaverton, Oregon 97006-1999, USA.
tManhattan, Kansas 66506, USA. part of this work was supported by

NSF under grant CCR9102625.

and a list of values and returns an updated channel. It is built as

a dedicated combination of printing operations. Figure 2 presents
a version of format specialized with respect to the control string
“-~ is not ‘S-%”.

The interpretive overhead of i’orrnet has been entirely removed.
All the operations manipulating the control string have been per-

formed at compile-time. No references to the control string are
left in the residual program. The specialized function only con-
sists of operations manipulating the run-time arguments, i.e., the
channel and the list of values to be formatted.

This example illustrates the essential purpose of partial evalu-
ation: eliminating interpretive overhead — here the interpretation
of the control string.

1.2 Applications

Because of its conceptual simplicity, partial evaluation has been
applied to a wide variety of areas that include compiling and com-

piler generation [31, 34, 39, 58, 68, 70, 73], string and pattern
matching [28, 40, 69, 92, 102], computer graphics [83], numerical

computation [8], circuit simulation [5], and hard real-time systems
[891.. .

Partial evaluation has been studied in the context of a wide
variety of programming languages. In the area of logic program-

ming, partial deduction is the focus of much work [44, 47, 77, 76].
Partial evaluators for imperative languages like Pascal [82] and C

[3] have been developed. In equational languages, partial evalu-
ation have been used to optimize rewriting techniques [101], and

more recently, it has been applied to Lafont’s interaction nets [6].

A broader dwcussion and more detailed references on contem-
porary work in the area of partial evaluation and on applications
of partial evaluation can be found in Jones, Gomard, and Sestoft’s

new book [66].

Overview. This paper is organized as follows. Section 2 presents
the principles and practice of partial evaluation. Section 3 briefly

reviews the state of the art about partial evaluators for Scheme
and imperative languages. Section 4 addresses the problem of

termination. Section 5 analyzes the tradeoff between space and
time when using partial evaluation. Section 6 presents some ap

placations. Section 7 addresses related work. Finally, Appendix A
dwcusses self-application.

2 Principles and Practice of Partial Evaluation

This section first describes the extensional aspects of partial eval-
uation. Then, we present strategies to achieve partial evaluation

and outlines work formalizing these strategies. Finally we discuss
generalized forms of partial evaluation.

493

;;; format: Port * ControlString * List (Value) ‘> port
(define format

(lambda (port control-string values)
(let ([end (string-length control-string)])

(letrec ([traverse
(lambda (port offset values)

(if (= offset end)
port
(case (string-ref control-string off set)

[(#\”) (case (string-ref control-string (+ offset 1))
[(X\ Ii) (traverse (write-number port (car values))

(+ offset 2)
(cdr values))1

[(#\S) (traverse (Write-string port (car values))
(+ offset 2)
(cdr values))1

[(#\%) (traverse (twit e-ne=line port)
(+ offset 2)
values)]

[else (error ‘fomat “illegal control string: ‘S” control-string)])1
[else (let ([new-offset

(traverse port O

; ; ; given Write-string:
. . .,,> write-number:
. . .,,, write-newline:

(letrec ([upto-tilde
(lambda (new-offset)

(cond
[(= new-offset end) nev-offsetl
[(equal? (string-ref control-string ne=-off set) #\-) new-offset]
[else (upto-tilde (+ neu-off set 1))1))1)

(upto-tilde offset))])
(traverse (write-string port (substring control-string offset new-offset))

new-offset
values))])))])

values)))))

Port * String -> Port
Port * Humber -> Port
Port -> Port

Figure 1: A formatting function

; ; ; for any port p and list of tuo values vs,
;;; (format. i p VS) = (format p “-~ is not ‘s-%” vs)

(define format. i
(lrurrbda (port values)

(write-neuline
(write-string

(write-string
(mite-nnrnber port (car values))
‘1 is not “)

(car (cdr values))))))

Figure 2: Specialized version of Figure 1

.1 Partial evaluation: what

iiven a generaJ program and part of its input, we want to spe-

iahze this program with respect to this known information.
Consider a program p and its input i, and say that somehow

re can split i into a static (i.e. known) part s and a dynamic (i.e.

nknown) part d. For example, p might take two arguments, one
f which is a static value, and the other one of which is a dynamic
alue. Given a specializing function S, we can specialize p with
wpect to s:

S(p, (s, .)) = p.

By definition, running the residual program p~ must yield the

same result as the general program would yield, provided both
terminate:

runp (s, d) = run p. (-, d)

As illustrated in the introduction, p. can run faster than p.
In fact, S is Kleene’s S~-function [74]. This function is com-

putable and thus it can be implemented: the result is what is
called a partial evaluator (hereafter denoted P-E).

run PE (p, (s, J) = S(p, (s, J)

2.2 Partial evaluation: how

Specializing a program with respect to all of its input amounts to
running thk program and producing a constant residual program,
i.e., a program that takes an empty input and produces an already

computed value. Therefore, a partial evaluator must include an

interpreter to perform reductions at specialization-time.
Dually, specializing a program with respect to none of its input

amounts to produce a (possibly simplified) version of this program.
Therefore, a partial evaluator must include a compiler to construct
the residual program. In the common case where the source and

494

the target languages coincide this compiler essentially mimics the
identity function. Otherwise, it is a simple translator [60].

When specializing a program with respect to some known parts
of its input, a partial evaluator corresponds to a non-standard

interpreter: it evaluates the expressions depending on static data
(i.e., data available at specialization-time) and it reproduces the

expressions depending on dynamic data (i. e., data available only
at run-time). A partial evaluator propagates constant values and
folds constant expressions. It also irdines functions by unfolding
calls, and produces specialized functions by residualizing calls. A
monovariant specialize produces at most one specialized function

for every source function. A polyvariant specirdizer can produce
many specialized versions of a source function [18].

2.3 Online vs. offline partial evaluation

Contemporary partial evaluators are divided in two classes: on-
line, monolithic partial evaluators and oflirae, staged partial evalu-
ators. Before Jones’s Mix system, all partial evaluators were online

[7, 55, 79, 99]. Today, both online and offline partial-evaluation
strategies are the subject of active research.

An online partial-evaluator is a non-standard interpreter. The
treatment of each expression is determined on the fly. Online

partial-evaluators in general are very accurate but at the price of
a considerable interpretive overhead,

Most programming languages are not simply implemented with
an interpreter. Instead, their implementation is structured with
a compiler and a run-time system. Implementing partial evalua-
tion makes no exception, and offline partial evaluators are struc-
tured with a preprocessing phase ~ and a processing phase ~.

The preprocessing phase ~ usually includes a binding-time anal-

ysis [68, 88]. Given the binding-time signature of a source pro-
gram (i. e., which part of the input is static and which part is

dynamic), the blndmg-time analyser propagates this information

in the source program, determining for each expression whether it
can be evaluated at compile-time or whether it must be evaluated
at run-time. This binding-time information is then used to guide
the processing phase ~ that performs the specialization proper.
Binding-time analysis 1s necessarily approximate and thus offline

partial-evaluators are usually less accurate than online ones.

Binding-time analysis has been intensively studied in the
framework of abstract interpretation [13, 25, 32, 35, 87] as well
as in the framework of type theory [52, 59, 90, 98, 103]. In offline,

binding-time based partial-evaluators, accurate binding-time in-
formation is critical because it determines the degree of the actual

specialisation. Existing binding-time analyses handle higher-order
functions and data structures. Newer ones are polyvariant.

The binding-time information determines whether an expres-
sion can be evaluated at partial-evaluation time or must be eval-

uated at run-time. In an earlier work, we proposed to stage PE
further by shifting the interpretation of bindh-rg-times from ~ to

~ [24, 29]. This shift substantially simplifies the specialize.

To get the best of both worlds, online and oiliine partial-
evaluation can be combined as follows [11, 107]. Whenever the
exact binding-time property of an expression can be determined,
offline partial evaluation is used. Otherwise, the treatment for
this expression is postponed until specialization-time, when con-

crete values are available. Bondorf’s partial evaluator for term-

rewriting systems uses this strategy [11].

1For example, a conditional expression whose consequent and alternative
branches are not bound at the same time is classified to have the latest
binding-time of its components.

2.4 Formalizing partial evaluation

Much effort is devoted to specifying and proving offliie partial-

evacuation. Gomard defines the denotational semantics of the
specialization process for the J-calculus and proves its correctness

[53]. Launchbury formulates a binding-time analysis for a first-
order applicative language with projections [62, 78]. This line of

work aims at proving the correctness of offline partial-evaluation
with respect to the standard semantics of the source language.
More generally, Consel and Khoo formally define online and of-
fline partial-evaluation for a first-order applicative language [35].

They relate the standard semantics of the language to an online
partial-evaluation semantics. Then they show that binding-time
analysis is an abstraction of the online partial-evaluation seman-
tics. Finally, they derive the specialization semantics from the

binding-time analysis and the online partial evaluation semantics.
The method can be applied to other languages.

2.5 Generalizing specialization

In the traditional presentation of partial evaluation, “specializing
a program with respect to part of its input” is implicitly under-

stood as “given the actual value for some formal parameters of a
program, construct a specialized program with fewer formal pa-
rameters”. This point of view haa been progressively refined over
the years. For example, Launchbury’s partial evaluator is based
on projections [78]. The input of a source program is divided into
a static projection and a dynamic projection.

In their parameterized partial-evaluation, Consel and Khoo ai-
Iow a program to be specialized not only with actual values of its

input, but also with respect to any property of this input [32].
The generalization applies for both online and offline strategies.
Parameterized partial-evaluation haa been implemented at CMU

[22] and at Yale [72] for a first-order subset of ML. Both systems
handle partially-static data. The latter implementation includes

both online and offline partial-evaluation phases.

2.6 The structure of a source program

In general, partial evaluation forces one to be very conscious about
the structure and properties of one’s source programs. Typically, a

program “specializes well” when it processes the static part of the

input independently of the dynamic part. For example, consider
the following two functions:

(lambda (x y z) (lambda (x y z)
(+ (+ x y) z)) (+ x (+ y z)))

Unless the partial evaluator is instructed that addition is associa-

tive, specializing these two functions with respect to their two first

parameters (say, 2 and 3, respectively) does not produce the same
result:

(lambda (z) (lambda (z)
(+ 5 z)) (+ 2 (+ 3 z)))

The first function “specializes better” than the second one because

it processes the static part of the input (i. e., x and y) indepen-
dently of the dynamic part of the input (i.e., z).

Thus some information about the binding-time signature of a

source program (i.e., which part of the input is static and which
part is dynamic) enables one to structure this program to make it

specialize better.

2,7 The structure of a residual program

The residual program obtained by specializing a source program
with respect to some static data is structured like the static data.

495

For example, the control string ‘}-M is not ‘S-%” is built itera-
tively with a formattirw directive for numbers. then a few charac-.
ters, then a formatting” directive for strings, and then a newline.
Correspondingly, the residual program of Figure 2 is built to it-
eratively output a number, then a constant string, then a string,
and then a newline.

This observation makes it easier to read residual programs. In
addition, occurrences of some static data in the residual program
signify that, in the source program, the static data are not pre-
cessed indeDendentlv of the dvnamic data. This leads to st rate-

gies for res{ructurin~ source p~ograms to “improve their blnding-
times” [14, 15, 30].

Independently, one is often surprised to find redundant tests
in one’s residual programs — usually a tell-tale of unexpected

redundancies in the source programs. As such, a partial evzduator
is a useful programming tool.

3 State of the Art

We first review the state of the art of partial evaluators for call-
by-value functional languages such as Scheme [21], and then of
partial evaluators for imperative languages.

3.1 Applicative languages

Weise’s partial evaluator Fuse is an online system and aims at

applying parti~ evaluation to practical problems, such w circuit
simulation [107]. The design of Fuse is distinct from earlier on-

line partial evaluators in that it uses graphs as an intermediate
language andhasa strategy forincreasing sharing in residual pro-
grams [71,94, 95].

Bondorf’s partial evaluator Similix is an offline polyvariant sys-

tem and was explicitly designed to be self-applicable and mostly
automatic, based on a fixed specialization strategy [16]. The sys-

tem handles recursive equations, customizable primitive operators
and global side-effects. It also includes a binding-time debugger

[86]. Since then, it has been extended to handle higher-order func-
tions [13] and more recently partially-static values [15]. Today,

the new version of Similix is based on Henglein’s efficient type-

inference for binding-time analysis [59]. Similix is freely available

and is used as a black box in Harnett and Montenyohl’s investiga-
tion of programming languages [58]. Independently, Gengler and

Rytz have extended the system with a polyvariant binding-time
analysis and with partially static values [48, 96].

Consel’s partial evaluator Schism is an offline polyvariant sys-
tem with a flexible specialization strategy, higher-order functions,

and partially-static values [27]. Both the binding-time analysis
and the specialization are polyvariant. The system includes a

binding-time based programming-environment [36]. Both source
programs and specialized programs are expressed in Scheme, ex-
tended with ML-like datatypes.

3.2 Imperative languages

Partial evaluation of imperative programs has received much at-

tention recently. Meyer developed an online partial evaluator for a
subset of Pascal [82]. Nirkhe and Pugh [89] describe a partial eval-

uator for hard real-time problems where programs are constrained
by the user to keep a tight control over the transformation process.

Andersen reports a self-applicable partial evaluator for a subset of
the C programming language where blndlng-time annotations are

supplied by the user [3].
Partial evaluation of imperative programs is difficult because of

the lack of referential transparency. The program transformation

phase must take into account the notion of state and thus is more

complicated than in a functional setting [54]. Unless imperative
features are encapsulated in some language constructs and so side-
effects are disciplined, it is difficult to reason about the flow of
static data. Duplication of side-effects and aliasing are the main

concerns [1].

4 Termination

Due to its basic strategy — unfolding calls and specializing func-

tions, partial evaluation can loop in two ways: either by unfold-

ing infinitely many function calls or by creating infinitely many

specialized functions. Both problems can be avoided naively by
limiting the number of unfolded calls and the number of special-
ized functions, but often this strategy appears unsatisfactory. In

practice, some programs require much unfolding while they are
traversing static data and some others require many residualiza-
tions. In this section, we review the strategies used in Mix, Similix,

Schism, and Fuse.
In the Mix system, the problem was first treated by inserting

annotations by hand in the source program, to indicate which call
should be unfolded and which should be residualized [67]. Later
on, static analyses were devised to annotate first-order programs
automatically [100].

The use of binding-time analysis enables one to insert more
accurate annotations. The strategy adopted in Sirnilix, for exam-

ple, is very simple and appears to be applicable in most situations
in an automatic way: dynamic conditional-expressions (z’.e., con-

ditional expressions whose test do not evaluate to a static value)
are selected as specialization points and all procedure calls are
unfolded [16].

Schism offers a more flexible annotation strategy: filters, that

can be used both in an online or in an offline strategy [23, 24, 27].
The user can equip each function with a filter, specifying under
which conditions a call to this function should be unfolded and,
if the call needs to be residualized, which parameters should be
used for the specialization of this function. Writing one’s own fil-
ters provides the user with full control over specialization. Filters

can also be generated automatically, based on any strategy. For

example, an analysis corresponding to the strategy of Similix is
available in Schism [27].

As an online partial-evaluator, Fuse keeps a dynamic cache of
program points [107, Section 3]. Specialization naturally termi-
nates when all loops that are unrolled statically terminate or are

broken by a cache hit. Otherwise, an arbitrary bound is needed.

In general, the treatment of function calls not only determines
the termination of the specialization process, but also has an im-
pact on the size and efficiency of the residual program.

5 Data vs. Code

Using partial evaluation is based on a tradeoff taking more space
for programs and data may produce faster computations while

taking less space for programs and data may produce slower com-

put ations.

5.1 Xphoon

The manual pages documenting Poskanzer and Leres’ program

xphoon illustrate program specialization at its best. Xphoon dis-
plays a picture of the moon and was created by compiling the pro-
gram loading a full-screen bitmap together with a bitmap repre-
senting the moon: experience shows that the specialized program
is both faster than loading a full-screen bitmap and smaller than

the bitmap file representing the moon. So in this case, program
specialization wins both spacewise and time wise.

496

5.2 Pitfalls

The two basic strategies of partial evaluation — unfolding and spe-

cialization — can of course lead to unsatisfactory results, even if
specialization terminates. For example, a program may be overly
specialized and contain many instances of the same piece of code,
just differing with a single constant. At the other end of the spec-

trum, if partial evaluation is too conservative, the residual pro-
gram may contain many occurrences where further specialization

actually would pay OR
Care must also be taken when unfolding function calls to avoid

duplicating computations. This can lead to the specialization of
a linear program into an exponential one [100]. This problem is

met in C with the following macro.

#clef ine inlinedplus (x) = x + x;

Applying inlinedplus, for example, to a function call can make a
linear-time looking code run in exponential time.

6 Some Concrete Applications

This section illustrates how partial evaluation can be used to de-
rive non-t rivial programs. In particular, this method stresses the
fact that non-trivial programs are often instances of simpler ones

[97, Chapter 5].

6.1 Pattern Matching

Let us consider the following string matching problem: does a
string occur within a text? A variety of solutions have been pro-
posed — for example, by Knuth, Morris, & Pratt [75] and by

Boyer & Moore [17] — that essentially solve this problem in lin-
ear time with respect to the size of the string and of the text. It

is now folklore in the partial-evaluation community how to derive
the Knuth, Morris & Pratt method out of the naive, quadratic
program: After a (partial) match, we know that a piece of the dy-
namic input string is identical to (a prefix of) the static pattern.

This means that we can now match the pattern against a shifted
copy of itself, rather than the input string; and the outcome of

such a match can be decided at specialization-time [28].
Rather than rewriting the source program to make it keep a

static track of dynamic values, one can also obtain this residual
program by generalizing the partial evaluator [46, 57, 102]. For

example, let us specialise the following function by letting its first

parameter be 10:

(lambda (S d)

(case d
[(1) (+ S d)]
[(2) (- s d)]

[else d]))

A naive strategy would yield the following residual program.

(lambda (d)
(case d

[(i) (+ 10 d)]
[(2) (- 10 d)]
[else d]))

However, a strategy that keeps a static track of dynamic values

across conditional expressions can do a better job and produce the
following residual program.

(lambda (d)
(case d

[(1) 111
[(2) 81
[else d]))

This simple step is enough to produce residual programs that
traverse the dynamic data linearly [40, 69]. Regarding string

matching, any traversal of the string and the text leads to a spe-
cialized program that is linear over the dynamic string. Thus if
the traversal goes from left to right and the string is static, the

residual program mimics the effect of the Knuth, Morris, & Pratt
string-matching algorithm. If the traversal goes from left to right
and the text is static, the residual program is structured like a
Weiner tree [106] (named a “position tree” by Aho, Hopcroft, and
Unman [2]). If the traversal goes from right to left and the string

is static, the residual program mimics the effect of the Boyer &
Moore string-matching algorithm. In fact, we have observed that

any traversal of the static data leads to a linear residual programz
(which is remarkable considering how much work has been in-
vested to prove the expected linearity of some string-matching
algorithms). Hansen has identified several variations around the
Boyer & Moore string matching algorithm [56]. More recently,
Queinnec and Geffroy have identified several other traversals of
the static data corresponding to other well-known matching algo-
rithms [92].

But even though partial evaluation can be used to generate
linear-time programs, there is no guarantee about the size of these
programs, nor about the time taken by the partial evaluator to
produce them. In particular, it would be surprising that the par-
tial evaluator generates a program mimicking the effect of Knuth,
Morris, & Pratt in time linear to the static string — whereas

Knuth, Morris, & Pratt’s algorithm first constructs a “failure ta-
ble” in time linear to the string, and then traverses the text in

linear time.
So partial evaluation does offer a safe way to remove the inter-

pretive overhead of pattern matching and to construct linear-time
residual programs. However, other insights are necessary to pro-

duce small programs quickly.

6.2 Partial evaluation applied to operating systems

An important trend in operating system development is the re-

structuring of the traditional monolithic operating system kernel
into independent servers running on top of a minimal/micro ker-

nel [50]. This approach results in modular and flexible operating
systems. Also operating systems can be written in high-level pro-

gramming languages like Scheme [64]. However, these advantages

come at a price: microkernel-baeed modular operating systems do

not provide performance comparable to monolithic ones.
With the Synthesis kernel, Pu and his group have shown that

microkernel-based operating systems can be optimized by generat-

ing specirdized kernel routines [91]. Their work demonstrated that
efficiency can be obtained without compromise on modularity and
flexibtity.

Although the Synthesis kernel has been a breakthrough in

microkernel-based operating systems, it is based on an ad-hoc spe-
cialization process and requires the code to be specialized to be
manually annotated. Such a process is tedious and error-prone.

Since microkernel-baaed operating systems can now be written
in high-level programming languages there is no reason why partial
evaluation cannot be used to perform the kind of specializations

performed in the Synthesis kernel.

In [37], Consel, Pu and Walpole describe a research project

aimed at using partiaJ evaluation to derive automatically imple-

mentations of operating system components from generic specifica-
tions. They outline the necessary extensions to partial evaluation
required for this derivation.

2We even proved this property, based on a partial evaluator hke Similix

that is guaranteed not to duplicate residual expressions.

497

7 Related Work

All optimizing compilers include constant propagation and folding

[1]. The need for optimizing compilers to be efficient has moti-
vated Wegman and Zadeck to study this subject on its own [105].

For another example, Deutsch’s interactive program verifier, like
many other theorem provers, includes a simplification phase per-
forming static reductions [41]. Mosses’s compiler generator S1S in-
cludes a phase for compiler-generation time reductions and allows
for compile-time reductions [85]. Appel’s technique of “reopening
closures” explicitly aims at specializing functions at compile-time
[4]. In fact, Lombardi and Raphael’s main tool in their pioneer
work on incremental computation was partial evaluation [79].

The investigations above have one point in common: they use
program trrmsformation as a phase in a larger system. Therefore
this phase needs to be efficient. Alternatively, transforming a pro-
gram can be the main goaJ of a system, and then the emphasis is

put first on understanding what is going on as a preliminary step
to making the transformation efficient [19].

We also observe a new trend in using one of the main techniques
of partial evaluation — polyvariance — in modern compilers [20,

38].

Acknowledgements

We are grateful to Anindya Banerjee, Andrzej FiLinski, John

Hatcliff, Jim Hook, Julia Lawall, Jiirgen Koslowski, Karoline
Malmkj=r, Tim Sheard, and Erik Ruf for commenting earlier ver-
sions of these notes on short notice.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

A. D. Aho, R. Sethi, and J. D. Unman. Compilers: Pr-inci-
ples, Techniques and Tools. Addison-Wesley, 1986.

A. V. Aho, J. E. Hopcroft, and J. D. Unman. The Design and
Analysis of Computer Algorithms. Addison-Wesley, 1974.

L. O. Andersen. Self-applicable C program specialization.

In Consel [26], pages 54-61.

A. W. Appel. Compiling with Continuations. Cambridge

University Press, 1992.

W. Au and D. Weise. Automatic generation of compiler sim-

ulation through program specialization. In IEEE Conference
on Design Automation, pages 205–210, 1991.

Denis Bechet. Partial evaluation of interaction nets. In
WSA’92 [109], pages 331-338.

L. Beckman, A. Haraldsson, O. Oskarsson, and E. San-

dewall. A partial evaluator, and its use as a programming
tool. Artificial Intelligence, 7(4):319–357, 1976.

A. Berlin. Partial evaluation applied to numerical computa-
tion. In ACM Conference on Lisp and Functional Prograrn-

rning, pages 139–150, 1990.

D. Bj@rner, A. P. Ershov, and N. D. Jones, editors. Partial

Evaluation and Mixed Computation. North-Holland, 1988.

C. Biihm. Subduing self-application. In 16th International

Colloquium on Automata, Languages and Programming, vol-
ume 372 of Lecture Notes in Computer Science. Springer-
Verlag, 1989.

A. Bondorf. Towards a self-applicable partial evaluator for
term rewriting systems. In Bj@rner et al. [9].

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

A. Bondorf. Self-Applicable Partial Evaluation. PhD thesis,
University of Copenhagen, DIKU, Copenhagen, Denmark,

1990. DIKU Report 90-17.

A. Bondorf. Automatic autoprojection of higher-order recur-

sive equations. Science of Computer Programming, 17:3–34,
1991.

A. Bondorf. Sirnilix manual, system version 3.0. Technical
Report 91/9, Computer Science Department, University of
Copenhagen, 1991.

A. Bondorf. Improving binding times without explicit CPS-
conversion. In ACM Conference on Lisp and Functional Pro-
gramming, pages 1-10, 1992.

A. Bondorf and O. Danvy. Automatic autoprojection of

recursive equations with global variables and abstract data
types. Science of Computer Programming, 16:151–195, 1991.

R. S. Boyer and J. S. Moore. A fast string searching algo-
rithm. Communications of the ACM, 20(10):62–72, 1976.

M. A. Bulyonkov. Polyvariant mixed computation for ana-
lyzer programs. Acts Informatica, 21:473-484, 1984.

R. M. Burst all and J. Darlington. A transformational sys-
tem for developing recursive programs. Journal of ACM,
24(1):44–67, 1977.

C. Chambers and D, Ungar. Customization: Optimizing
compiler technology for SELF, a dynamically-typed object-
oriented programming language. In ACM SIGPLA N Con-

ference on Programming Language Design and Implementa-

tion, SIGPLAN Notices, Vol. 24, No 7, pages 146–160, 1989.

W. Clinger and J. Rees (editors). Revised4 report on the

algorithmic language Scheme. LISP Pointers, IV(3): 1-55,
July-September 1991.

C. Colby and P. Lee, An implementation of parameterized

partial evaluation. In WSA’91 [108], pages 82-89.

C. Consel. New insights into partial evaluation: the Schism

experiment. In ESOP ’88, 2nd European Symposium on Pro-
gramming, volume 300 of Lecture Notes in Computer Sci-
ence, pages 236–246. Springer-Verlag, 1988.

C. Consel, Analyse de Programmed, Evaluation Partielle et

G4niration de Cornpilateurs. PhD thesis, Universitr5 de Paris
VI, Paris, France, June 1989.

C. Consel. Binding time analysis for higher order untyped

functional languages. In ACM Conference on Lisp and Func-
tional Programming, pages 264–272, 1990.

C. Consel, editor. ACM Workshop on Partial Evaluation
and Semantics-Based Program Manipulation. Research Re-
port 909, Department of Computer Science, Yale University,
1992.

C. Consel. Report on Schism’92. Research report, Pacific
Software Research Center, Oregon Graduate Institute of Sci-

ence and Technology, Beaverton, Oregon, USA, 1992.

C. Consel and O. Danvy. Partial evaluation of pat-
tern matching in strings. Information Processing Letters,
30(2):79-86, 1989.

498

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

C. Consel and O. Danvy. From interpreting to compiling

binding times. In ESOP ‘9o, .9rd European Symposium on
Programming, volume 432 of Lecture Notes in Computer Sci-
ence, pages 88-105. Springer-Verlag, 1990.

C. Consel and 0. Danvy. For a better support of static data
flow. In Hughes [63], pages 496-519.

C. Consel and O. Danvy. Static and dynamic semantics pro-
cessing. In ACM Symposium on Principles of Programming
Languages, pages 14-23, 1991.

C. Consel and S. C. Khoo. Parameterized partial evalua-

tion. Research Report 865, Yale University, New Haven,
Connecticut, USA, 1991. To appear in Transactions on Pro-
gramming Languages and Systems. Extended version of [33].

C. Consel and S. C. Khoo. Parameterized partial evaluation.
In ACM SIGPLAN Conference on Programming Language
Design and Implementation, pages 92-106, 1991.

C. Consel and S. C. Khoo. Semantics-directed generation

of a Prolog compiler. In fd International Symposium on

Programming Language Implementation and Logic Program-
ming, volume 528 of Lecture Notes in Computer Science,

pages 135–146. Springer-Verlag, 1991.

C. Consel and S.C. Khoo. On-line & off-line partial evalu-
ation: Semantic specifications and correctness prootk. Re-
search Report 896, Yale University, New Haven, Connecti-
cut, USA, 1992.

C. Consel and S. Psi. A programming environment for
binding-time based partisJ evaluators. In Consel [26], pages

62-66.

C. Consel, C. Pu, and J. WaJpole. Incremental specializa-

tion: The key to high performance, modularity and portabil-
ityy in operating systems. Research report, Pacific Software

Research Center, Oregon Graduate Institute of Science and
Technology, Beaverton, Oregon, USA, 1992.

K. D. Cooper, M. W. Hall, and K. Kennedy. Procedure
cloning. In Fourth IEEE International Conference on Com-

puter Languages, pages 96-105, 1992.

Pierre Cr6gut. Machines d environnement pour la r%duction
symbolique et 1‘~valuation partielle. PhD thesis, Universit6

Paris VII, 1991.

0. Danvy. Semantics-dhected compilation of non-linear pat-
terns. Information Processing Letters, 37:315-322, March

1991.

L. P. Deutsch. An interactive program verifier. TechnicaJ

Report CSL-73-1, Xerox PARC, May 1973.

A. P. Ershov, D. Bj@rner, Y. Futamura, K. Furukawa,

A. Haraldsson, and W. L. Scherlis, editors. Selected Pa-
pers from the Workshop on Partial Evaluation and Mixed

Computation, volume 6 (2,3) of New Generation Comput-
ing. OH MSHA. LTD. and Springer-Verlag, 1988.

D. P. Friedman, M. Wand, and C. T. Haynes. Essentials

of Programming Languages. MIT Press and McGraw-Hill,
1991.

D. A. Fuller and S. Abramsky. Mixed computation of Prolog.
In Bj@rner et ~. [9].

[45] Y. Futamura. Partial evacuation of computation process -

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

an approach to a compiler-compiler. Systems, Computers,
Controls 2, 5, pages 45-50, 1971.

Y. Futamura and K. Nogi. Generalized partial computation.

In Bj@rner et al. [9].

J. Gallager and M. Codish. Specialisation of Prolog and FCP

programs using abstract interpretation. In Bj@rner et al. [9].

M. Gengler and B. Rytz. A polyvariant binding time analysis

handling partially known vsJues. In WSA’92 [109], pages
322-330.

R. Gliick. Towards multiple self-application. In Hudak and
Jones [61], pages 309-320.

D. Golub, R. Dean, A. Forin, and R. Rashid. Unix as an
application program. In Proceedings of the USENIX Summer
Conference, 1990.

C. K. Gomard. Higher order partial evaluation - HOPE for
the lambda calculus. Master’s thesis, DIKU, University of

Copenhagen, Copenhagen, Denmark, 1989.

C. K. Gomard. Partial type inference for untyped functional

programs. In ACM Conference on Lisp and Functional Pro-
gramming, 1990.

C. K. Gomard. A self-applicable partial evaJuator for the
lambda-calculus: Correctness and pragmatic. ACM Trans-
actions on Programming Languages and Systems, 14(2) :147–
172, 1992.

C. K. Gomard and N.D. Jones. Compiler generation by
partial evaluation: a case study. Structured Programming,

12:123-144, 1991.

M. A. Guzowski. Toward developing a reflexive partial eval-

uator for an interesting subset of Lisp. Master’s thesis, De-
partment of Computer Engineering and Science, Case West-
ern Reserve University, Cleveland, Ohio, 1988.

T. A. Hansen. Transforming a naive pattern matcher into

efficient pattern matchers. Technical report, DAIMI, 1991.

A. Haraldsson. A Program Manipulation System Based on
Partiat Evaluation. PhD thesis, Linkoping University, Swe-
den, 1977. Linkiiping Studies in Science and Technology

Dissertations N“ 14.

S. Harnett and M. Montenyohl. Towards efficient compila-

tion of a dynamic object-oriented language. In Consel [26],

pages 82–89.

F. Henglein. Efficient type inference for higher-order
binding-time analysis. In Hughes [63], pages 448-472.

C. K. Hoist. Language triplets: The AMIX approach. In
Bj@rner et al. [9], pages 167-185.

P. Hudak and N. D. Jones, editors. Partial Evaluation and
Semantics based Program Manipulation. Vol. 26, No 9. ACM

SIGPLAN Notices, 1991.

J. Hughes. Backward analysis of functional programs. In
[42], pages 187-208, 1988.

John Hughes, editor. FPCA ’91, 5*h International Confer-

ence on Functional Programming Languages and Computer
Architecture, number 523 in Lecture Notes in Computer Sci-
ence, 1991.

499

[64] S. Jagannathan and J. Philbin. A foundation for an efficient
multi-threaded Scheme system. In ACM Conference on Lisp
and Functional Programming, pages 345–357, 1992.

[65] N. D. Jones. Partial evaluation, self-application and types.
In 17th Inter-national Colloquium on Automata, Languages
and Programming, volume 443 of Lecture Notes in Computer
Science, pages 639–659. Springer-Verlag, 1990.

[66] N.D. Jones, C. K. Gomard, and P. Sestoft. Partial EvaL
uation and Automatac Program Generation. Prentice-Hall
International, 1993. To appear.

[67] N. D. Jones, P. Sestoft, and H. S@ndergaard. Anexperiment
in partizd evahation: the generation of a compiler genera-

tor. In J.-P. Jouannaud, editor, Rewriting Techniques and

Applications, Dijon, France, volume 202 of Lecture Notes in
Computer Science, pages 124-140. Springer-Verlag, 1985.

[68] N. D. Jones, P. Sestoft, and H. S@ndergaard. Mix: a self-
applicable partial evaluator for experiments in compiler gen-
eration. LISP and Symbolic Computation, 2(1):9–50, 1989.

[69] J. J@rgensen. Generating a pattern matching compiler by

partial evaluation. In Simon L. Peyton Jones, Guy Hutton,
and Carsten Kehler Hoist, editors, Functional Programming,

Glasgow 1990, pages 177-195. Springer-Verlag, 1991.

[70] J. Jorgensen. Generating a compiler for a lazy language

by partial evaluation. In ACM Symposium on Principles O}
Programming Languages, pages 258-268, 1992.

[71] M. Katz and D. Weise. Towards a new perspective on partial
evaluation. In Consel [26], pages 29–37.

[72] S. C. Khoo. Parametrized Partial Evaluation: Theory and
Practice. PhD thesis, Yale University, 1992. Forthcoming.

[73] S. C, Khoo and R. S. Sundaresh. Compiling inheritance

using partial evaluation. In Hudak and Jones [61], pages

211-222.

[74] S. C. Kleene. Introduction to Metamathematics. Van Nos-
trand, 1952.

[75] D. E. Knuth, J. H. Morris, and V. R. Pratt. Fast pattern

matching in strings. SIAM, 6(2):323–350, 1977.

[76] H. J, Komorowski. Partial evacuation as a means for infer-
encing data structures in an applicative language: A theory

and implementation in the case of Prolog. In ACM Sympo-
sium on Principles of Programming Languages, 1982.

[77] A. Lakhotia and L. Sterling. ProMiX: A Prolog partial eval-
uation system. In L. Sterling, editor, The Practice of Prolog,

chapter 5, pages 137–179. MIT Press, 1991.

[78] J. Launchbury. Projection Factorisation in Partial Evalua-
tion. PhD thesis, Department of Computing Science, Uni-
versity of Glasgow, Scotland, 1990.

[79] L. A. Lombardi and B. Raphael. Lisp as the language for an

incremental computer. In E. C. Berkeley and D. G. Bobrow,

editors, The Programming Language Lisp: Its Operation and
Apgdications, pages 204-219. MIT Press, Cambridge, Mas-
sachusetts, 1964.

[80] K. Malmkjrer. On static properties of specialized programs.
In WSA’91 [108], pages 234-241.

[81] K, Malmkjzer. Predicting properties of residual programs.
In Consel [26], pages 8–13.

[82] U. Meyer. Techniques for partisJ evaluation of imperative
languages. In Hudak and Jones [61], pages 94-105.

[83] T. Mogensen. The application of partial evaluation to ray-
tracing. Master’s thesis, University of Copenhagen, DIKU,
Copenhagen, Denmark, 1986.

[84] T. Mogensen. Binding Time Aspects of Partial Evaluation.

PhD thesis, University of Copenhagen, DIKU, Copenhagen,
Denmark, 1989.

[85] P. Mosses. S1S - Semantics Implementation System, refer-
ence manual and user guide. University of Aarhus, Aarhus,

Denmark, 1979. Version 1.0.

[86] C. Mossin. Similix binding time debugger manual. Technical
report, University of Copenhagen, Copenhagen, Denmark,
1991.

[87] F. Nielson and H. R. Nielson. Two-Level Functional Lan-
guages. Cambridge University Press, 1992.

[88] H. R. Nielson and F. Nielson. Automatic binding time analy-
sis for a typed A-calculus. In ACM Symposium on Principles

of Programming Languages, pages 98–106, 1988.

[89] V. Nirkhe and W. Pugh. PartiaJ evaluation of high-level imp-
erative program languages with applications in hard real-
time systems. In ACM Symposium on Principles of Pro-

gramming Languages, pages 269–280, 1992.

[90] J. Palsberg and M. I. Schwartzbach. Binding time analy-
sis: Abstract interpretation versus type inference. Technical
report, DAIMI, 1992.

[91] C. Pu, H. Massalin, and J. Ioannidis. The Synthesis kernel.
ACM Computing Systems, 1(1):11-32, 1988.

[92] C. Queinnec and J. M. Geffroy. Partial evaluation applied to

pattern matching with intelligent backtracking. In WSA’92

[109], pages 109-117.

[93] E. Ruf. Topics in Online Partial Evaluation. PhD thesis,
Department of Computer Science, Stanford University, 1993.

(in preparation).

[94] E. Ruf and D. Weise. Using types to avoid redundant spe-
cialization. In Hudak and Jones [61], pages 321–333.

[95] E. Ruf and D. Weise. Improving the accuracy of higher-
order specialization using control flow analysis. In Consel

[26], pages 67-74.

[96] B. Rytz and M. Gengler. A polyvariant binding time anal-

ysis. In Consel [26], pages 21–28.

[97] W. L. Scherlis. Expression Procedure. and Program Deriva-
tion. PhD thesis, Department of Computer Science, Stanford
University, 1980. Report No. STAN-CS-80-818.

[98] D.A. Schmidt. Static properties of partial evaluation. In
Bj@rner et sJ. [9], pages 465-483.

[99] R. Schooler. Partial evaluation as a means of language ex-
tensibility. Master’s thesis, M.I.T. (LCS), Massachusetts,
U.S.A, 1984. TR-324.

[100] P. Sestoft, Automatic call unfolding in a partial evaluator.

In Bj@rner et al. [9].

500

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

D. Sherman, R. Strandh, and I. Durand. Optimization of
equational programs using partial evaluation. In Hudak and

Jones [61], pages 72-82.

D. A. Smith. Partial evaluation of pattern matching in CLP

domains. In Hudak and Jones [61], pages 62-71.

K. L. Solberg, H. R. Nielson, and F. Nielson. Inference
systems for binding time analysis. In W SA’92 [109], pages

247–254.

R. S. Sundaresh and P. Hudak. Incremental computation
via partial evaluation. In ACM Symposium on Principles of
Programming Languages, pages 1-13, 1991.

M. N. Wegman and F. K. Zadeck. Constant propagation
with conditional branches. ACM Transactions on Program-

ming Languages and Systems, 3(2):181-210, 1991.

P. Weiner. Linear pattern matching algorithms. In l~thAn-
nual Sgmposium on Switching and Automata Theory, pages
1-11, 1973.

D. Weise, R. Conybeare, E. Ruf, and S. Seligman. Auto-
matic online partial evaluation. In Hughes [63], pages 165-

191.

Workshop on Static Analysis, volume 74 of Bigr-e Journal.
IRISA, Rennes, France, 1991.

Workshop on Static Analysis, volume 81-82 of Bigre Journal.— —
lktlSA, Rennes, France, 1992.

A Optimizing Partial Evaluation: Self-Application

A.1 Self-application: what

Often, we need to specialize a program p with respect to many

different values. Then we are in the situation of running PE several
times on p. But PE is just another program that we need to run

several times when a part of its input (p) does not change.
Partial evaluation tells us that a faster way to do th~ is first

to produce a version of PE specialized with p (removing the inter-
pretive overhead of PE) and then to run this version instead:

run PE (PE, (p, .)) = PEP

By definition of program specialization, running the residual pro-

gram on s should yield the same result as PE would yield:

run PE (p, (s, .)) = run PEP (s, .)

Because PEP is obtained by specializing the specialize, this boot-
strapping process is called “self-application”.3

For example, we might need to specialize the program format of
the introduction with respect to many different control strings so,

31, . . . Instead of running the general-purpose partial-evaluator on

the same program format, we can build a specialiser dedicated to
format (i. e., a program that only knows how to specialize format)

first, and then run it as many times as needed on the different
values:

run PE (PE, (format, -)) = PEforBat

run PEfornat (-, SO,.) = forrnat~o

run PEf Omat (., S1, .) = f ormat.l

In practice, PEformat is quite small. Most of this program co-
incides with what a programmer would write by hand. The rest

includes more specific features of the specialize.

Partial evaluation can improve performance even further. Sup-

pose that several programs need to be specialized repeatedly with
respect to many different static values. We already know how to

optimize the specialization of one program p with many static val-
ues. This optimization requires us to specialize PE several times
with respect to many different programs p. In other terms, we

need to run a program (PE) several times when a part of its input

(PE) does not change, which is clearly inefficient. The remedy to
this inefficiency is of course to specialize PE with respect to PE
first, and then to use the residual program PEPE to transform a
source program p into a specialize PEP dedicated to specializing

p — without interpretive overhead.
Since these optimizations are independent of the actual pro-

gram p, they are applicable to any kind of source programs. For
example, when the source program p is the interpreter for a pro-
gramming language, these optimizations are known aa the “Fu-
t amura projections” [45]. In this case, PEP has the functionality

of a compiler and PEPE of a compiler generator. Sundaresh and
Hudak point out that when p is an incremental interpreter, then
PEP has the functionality of an ‘incrementalizer” [104].

Self-application is an elegant idea in principle, and was at the
basic motivation for Jones’s Mix project [68] and for much of the
work carried out at DIKU [12, 51, 84]. For example, Malmkjzer

analyzes dedicated specializes PEP to predict generic properties
of specialized versions of p [80, 81].

A.2 Self-application: how

In a partial evaluator, the static part of the input is the source
program and the dynamic part of the input is the input to the

source program. To make the partial evaluator “specialize bet-
ter” (i. e., to make it more suitable for specialization), one should

ensure that the source program is processed aa independently as
possible of its input.

During their PhD studies, Consel, Ruf, and Gluck have
structured a partial evaluator along these lines to improve self-

amlication [’2s, 49, 93]. This work aims at obtaining dedicated
specializes that are both reasonably small and reasonably effec-

tive.

In his Mix project [68], Jones proposed a Gordian solution and

stages PE explicitly into a static phase PE and a dynamic phase

U. This staging leads one to reformulate partial evaluation as

follows:

run PE (p, (s, -)) = run~ ((run ~p), (s, -))

In particular, self-application is reformulated as follows:

run PE (PE, (p, -)) = run m ((run ~~fl),
((run PE p), .))

In practice, ~ takes a second parameter, usually the binding-
time signature of the first parameter.

Jones’s staging effectively eliminates the problem of self-

application by ensuring that dedicated specializes are only built

out of the run-time part of PE (since they are specialized instances
of @ and that source programs are processed statically (since

they are passed to ~ beforehand).

3The term “self-application” is confusing because the partial evaluator

simply processes a copy of itself, just ss there are C compilers written in

C. So in particular there is no danger of paradox or untypa~ility as in the

A-calculus [10, 65].

501

