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Abstract
A notion of dimension in intersection typed λ-calculi is presented.
The dimension of a typed λ-term is given by the minimal norm of
an elaboration (a proof theoretic decoration) necessary for typing
the term at its type, and, intuitively, measures intersection introduc-
tion as a resource.

Bounded-dimensional intersection type calculi are shown to
enjoy subject reduction, since terms can be elaborated in non-
increasing norm under β-reduction. We prove that a multiset in-
terpretation (corresponding to a non-idempotent and non-linear in-
terpretation of intersection) of dimensionality corresponds to the
number of simultaneous constraints required during search for in-
habitants. As a consequence, the inhabitation problem is decidable
in bounded multiset dimension, and it is proven to be EXPSPACE-
complete. This result is a substantial generalization of inhabitation
for the rank 2-fragment, yielding a calculus with decidable inhabi-
tation which is independent of rank.

Our results give rise to a new criterion (dimensional bound) for
subclasses of intersection type calculi with a decidable inhabita-
tion problem, which is orthogonal to previously known criteria,
and which should have immediate applications in synthesis. Ad-
ditionally, we give examples of dimensional analysis of fragments
of the intersection type system, including conservativity over sim-
ple types, rank 2-types, and normal form typings, and we provide
some observations towards dimensional analysis of other systems.
It is suggested (for future work) that our notion of dimension may
have semantic interpretations in terms of of reduction complexity.

Categories and Subject Descriptors F.4.1 [Mathematical Logic
and Formal Languages]: Mathematical Logic

Keywords type system, lambda-calculus, intersection types, non-
idempotence, inhabitation, complexity

1. Introduction
Background. Intersection type systems [2, 10] enjoy a promi-
nent position within the theory of typed λ-calculus [3]. As is well
known, variants of such systems characterize deep semantic prop-
erties of λ-terms, including normalization and solvability proper-
ties [3]. Several applications of intersection type systems in pro-
gramming language theory exist and are generally related to the
capability of intersection types to specify behavioral properties of
programs (application areas include refinement types, abstract in-

terpretation, model checking, object calculi, process types, and syn-
thesis, see [20] for an overview).

As a consequence of the enormous expressive power of intersec-
tion types, standard type theoretic decision problems [3] are unde-
cidable for general intersection type systems, including the problem
of type checking (given a term and a type, does the term have the
type?) and inhabitation (given a type, does there exist a term having
the type?). It is therefore a long-standing topic of interest to inves-
tigate fragments of the system admitting of algorithmic solutions
to important decision problems. Some restrictions have been pro-
posed which lead to decidable type checking or type inference, for
example [8, 21]. As in the cases of application specific changes to
the system mentioned above, such approaches typically work non-
uniformly, by changing the rules of the system in different ways.

The present work was motivated out of a desire to find uniform
principles of bounding the inhabitation problem for λ-calculus
with intersection types: Given a type environment Γ and a type
σ, does there exist a λ-term M such that Γ ` M : σ is derivable
in the intersection type system [2, 10]? This problem is known
to be undecidable, as was shown by Urzyczyn [32]. The main
known result concerning decidable fragments and fine structure of
the problem is given in Urzyczyn’s relatively recent subsequent
analysis in [33] (improving on [23]), where it is shown that the
problem is decidable and EXPSPACE-complete in rank 2, and
undecidable in all ranks k for k ≥ 3 (here referring to Leivant’s
notion of rank [24]). Quite recently, in [29, 30], the inhabitation
problem has been shown to be equivalent to the problem of λ-
definability [26], for which Loader proved undecidability in 1993
(but first published in 2001) [25].

Contribution. In this paper we introduce a concept of dimen-
sionality for intersection type systems, and we apply it to obtain a
new type theoretic principle of bounding of the inhabitation prob-
lem: Given Γ, σ and n > 0, is there a term M such that Γ `n M : σ?
Here, the relation `n denotes typability under dimensional bound n.

We develop the notion of dimension from a proof theoretic anal-
ysis, both in the standard set theoretic system of intersection types
and in a multiset system obtained by a non-idempotent and non-
linear interpretation of intersection. In each case, the dimension of
a term M at type σ and type environment Γ is a proof theoretic
measure of the complexity of intersection needed to type the term
atσ. It is witnessed by an elaboration (a proof theoretic decoration)
of M with minimal norm at Γ and σ, which, intuitively, measures
intersection introduction as a logical resource.

Bounded-dimensional intersection type calculi are shown to
enjoy subject reduction, since terms can be elaborated in non-
increasing norm under β-reduction. It turns out that bounded-
dimensional inhabitation in set theoretic dimension is undecidable.
But we can prove that the multiset interpretation of dimensional-
ity corresponds to the number of simultaneous constraints required
during search for inhabitants, characterizing the exponential space
model (“bus machines”) of [33]. As a consequence, the inhabita-
tion problem is decidable in bounded multiset dimension, and it is
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proven to be EXPSPACE-complete. This result is shown to strictly
subsume inhabitation for the rank 2-fragment, thereby yielding
a substantially generalized calculus with decidable inhabitation
which is independent of rank.

We give examples of dimensional analysis of some well-known
fragments of the intersection type system, including conservativity
over simple types, rank 2-types, and normal form typings, as well as
observations towards dimensional analysis of other systems. These
properties together with subject reduction in non-increasing norm
suggest (for future work) that our notion of dimension ought to have
interpretations in terms of operational semantics, as a proof theo-
retic (probably coarse-grained) measure of reduction complexity.

While we believe the results presented here to be of independent
theoretical interest, they should have immediate applications to
program synthesis based on inhabitation and Wajsberg/Ben-Yelles
style term enumeration [19] in typed λ-calculi, which is currently
being pursued in several lines of work, including [15, 17] which
use intersection types (see these references for recent overviews
of type-based synthesis). More specific comparisons to directly
related technical results in type theory are given in Section 2.

Outline. We outline the main technical development and or-
ganization of the paper. We introduce (Section 3) an elaborated
version of the strict intersection type system [36], where a judge-
ment Γ ` M 7−→ P : σ means that the pure term M has type
σ by the elaboration P. Elaborations P are type-annotated ver-
sions of pure terms, in which each subterm occurrence is decorated
with the set of types assigned to it in the type derivation. In this
set theoretic system, intersection is treated in the standard way as
an associative, commutative, idempotent operator. We then (Sec-
tion 3.2) introduce a corresponding multiset elaboration system,
∆ ` M �=⇒ P : s, where intersections are treated as multisets,
appearing in multiset elaborations P and multiset types s, corre-
sponding to a non-idempotent interpretation of intersection. One
has the property (∆ ` M �=⇒ P : s) ⇒ (∆◦ ` M 7−→ P◦ : s◦), where
( )◦ maps multisets to the underlying sets. The basic idea is now
to equip elaborations with a norm, ‖•‖, such that we can measure
the usage of intersection introduction on the elaboration, where ‖P‖
and ‖P‖ denote the maximal size of decorations in the elaborations.
We can then define the dimension of a term M at Γ and σ as the
smallest number n > 0 such that M has an elaboration at Γ and
σ with norm n. We can consider both set theoretic dimension and
multiset dimension, depending on which elaboration system we use
to measure it, writing Γ `n M : σ and Γ n M : σ to denote typa-
bility in dimension n, referring to the set theoretic and the multiset
dimension, respectively. More precisely, we define Γ n M : σ if
and only if we have

∃∆,P, s. (∆ ` M �=⇒ P : s with Γ = ∆◦ and σ = s◦ and ‖P‖ ≤ n)

The inhabitation problem in bounded (multiset) dimension can be
defined as the decision problem: Given Γ, σ and n > 0, does there
exist a term λ-term M such that Γ n M : σ?

We develop two fundamental results for bounded-dimensional
intersection types. First (Section 4), we prove a quantitative ver-
sion of subject reduction (Theorem 18), showing preservation of
elaboration in bounded dimension under β-reduction:

Γ n M : σ, M �β M′ ⇒ Γ n M′ : σ

(here shown for multiset dimension, analogous property is true in
set theoretic dimension). This result is important for understand-
ing inhabitation in bounded dimension, since it allows inhabitant
search to be restricted to normal forms. Section 5 contains dimen-
sional analysis of subsystems, including conservativity over simple
types, rank 2 types, and normal forms, and some observations on
other systems, including System F. In particular, we prove (Propo-
sition 23) that rank 2-typings are typable in linear dimension, which

is used later to establish the complexity of inhabitation in bounded
multiset dimension, and it implies that inhabitation in bounded di-
mension strictly subsumes rank 2 inhabitation [33], generalizing
across all ranks.

The second main result, developed in Section 6, is sound-
ness and completeness (Theorem 31), with respect to inhabita-
tion in bounded multiset dimension, of inhabitant search by a
bounded tree-width alternating search procedure operating on mul-
tisets of simultaneous inhabitation constraints. As a consequence,
we can prove that inhabitation in bounded multiset dimension is
EXPSPACE-complete (Theorem 34), via a correspondence to bus
machines [33] with linear bounded tape. This result is in con-
trast to bounded-dimensional inhabitation in set theoretic dimen-
sion, which is shown to be undecidable (Theorem 28). Finally, we
record the result (Proposition 35) that inhabitation in linear, non-
idempotent types [5] is NP-complete.

Section 7 concludes, and Section 8 has remarks on future work.
For space reasons some proof details have been left out. They

can be found in [16].

2. Related Work
We make critical use of Urzyczyn’s [33] already mentioned rank-
based analysis of inhabitation in terms of systems of simultane-
ous inhabitation constraints and their connection to the exponen-
tial space-bounded computational model of bus machines. Bus ma-
chines were further used in [28] to show EXPSPACE-completeness
of inhabitation in the fragment of the intersection type system with-
out intersection introduction studied in [22], a system which is in
many ways orthogonal to the dimension-bounded systems intro-
duced here and probably less useful in practice. We give some more
technical details of comparison in Section 5. Bounding principles
applied to combinatory logic in [14, 27] concern depth of types (or-
der, rank) and are fundamentally different from dimensional bound.

In studying quantitative aspects of type derivations based on
a multiset interpretation of intersection our approach is broadly
related to recent work on implicit computational complexity us-
ing principles of (light or soft) linear logic combined with non-
idempotent intersection types, e.g., [4, 11–13]. However, our fo-
cus on inhabitation complexity is quite different from the technical
goals pursued in implicit complexity. Interestingly, the notion of
depth of intersection introduction in [11] is somewhat related to di-
mension as studied by us, yet it is different in detail (focusing on
depth rather than width) and serves different purposes. The most
directly related previous work on non-idempotent systems is the
work of Ronchi Della Rocca et al. [5] on the inhabitation prob-
lem for non-idempotent intersection types, which was shown to be
decidable. A major difference is that our notion of resource is non-
linear. Whereas the non-idempotent systems mentioned above treat
intersection types linearly (in the sense of linear logic), we treat in-
tersection introduction as a resource, but we do not treat intersec-
tion types linearly with respect to the usage of term variables. This
circumstance causes the systems to have quite different properties.
Thus, our notion of multiset dimension is independent of the size
of λ-terms, and, for example, all Church numerals have dimension
1 in our system, whereas these terms require ever growing linear
non-idempotent types (see our discussion in Section 5 for more de-
tails). Logical linearity causes the size of minimally sized inhab-
itants to be polynomially (in fact, linearly) bounded by type size,
and we can show (Proposition 35, Section 6.3) that inhabitation in
the system of [5] is NP-complete (the complexity of the problem
was not considered in [5]), which is in contrast to EXPSPACE-
completeness of inhabitation in bounded dimension studied here.
Further investigation of relations between our notion of dimension
and the aforementioned linear non-idempotent systems and reduc-
tion complexity is an interesting topic for future work.
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3. Elaboration Systems
We introduce elaboration systems, extending the intersection type
system with λ-terms decorated with sets or multisets of types. Such
decorated terms are called elaborations. The goal is to define a
norm ‖•‖ to measure the usage of intersection introduction by mea-
suring the sizes of the decorating sets or multisets on elaborations.
We first consider a set theoretic system (Section 3.1), correspond-
ing to the standard interpretation of intersection as an associative,
commutative, idempotent operator. We then introduce an analo-
gous multiset system (Section 3.2) which corresponds to a non-
idempotent interpretation of intersection. In both cases we define
the notion of norm and use it to define our notions of dimension.
Our presentation of the intersection type system is based on a strat-
ification of intersection types, into strict types and intersections of
such, which is standard [34–36]. Using this representation we can
measure the number of components of an intersection uniquely.

3.1 Set Theoretic System
Untyped λ-terms are ranged over by M, N, P, Q, etc.:

M,N ::= x | (λx.M) | (MN)

Unless otherwise stated we follow notational conventions of [1].
Following the presentation of intersection types in the so-called
strict system of [36, Definition 5.1], referred to here as λS , we strat-
ify intersection types into strict types (A, B, . . .) and strict intersec-
tion types (σ, τ, . . .):

Ts 3 A, B ::= a | σ→ A
Tsi 3 σ, τ ::= A1 ∩ · · · ∩ An

where a, b, . . . range over atoms, and n > 0.1
Set theoretic elaborations are λ-terms decorated with nonempty

finite sets, ranged over by S , of strict types, S = {A1, . . . , An}:

P,Q ::= x[S ] | (λx.P)[S ] | (PQ)[S ]

We let |S | denote the size of the set S . We write decorations
[{A1, . . . , An}] in simplified notation as [A1, . . . , An].

Let dPe denote the untyped term arising from erasing all deco-
rations from P.

Define the operation PtQ on elaborations P,Q with dPe ≡ dQe:

x[S ] t x[S ′] ≡ x[S ∪ S ′]
(λx.P)[S ] t (λx.Q)[S ′] ≡ (λx.P tQ)[S ∪ S ′]
(PQ)[S ] t (P′Q′)[S ′] ≡ ((P t P′)(Q tQ′))[S ∪ S ′]

The set of elaborations of an untyped term M is naturally equipped
with a partial order, denoted v, defined as the least partial order
satisfying:

x[S ] v x[S ′] ⇔ S ⊆ S ′
(λx.P)[S ] v (λx.Q)[S ′] ⇔ S ⊆ S ′ and P v Q
(PQ)[S ] v (P′Q′)[S ′] ⇔ S ⊆ S ′ and P v P′ and Q v Q′

In order to relate elaborations to type derivations we introduce
an elaborated version of the strict intersection type system [36,
Definition 5.1], denoted λS and with derivability relation denoted
`S . A judgement Γ ` M 7−→ P : σ of the elaborated system signifies
that the term M elaborates to P in the environment Γ at σ. Such
an elaboration P of M indicates how the intersection introduction
rule (∩I) has been applied to subterm occurrences of M in order
to obtain a typing of M in the strict intersection type system λS .
We refer to the elaborated system as λ[∩], which is given by the
following rules. Notice that the operation

⊔n
i=1 Pi in the conclusion

of rule (∩I) may cause sets in the decorations of elaborations to

1 Allowing n = 0 would lead to a system comprising of a universal type (the
empty intersection), ω. Doing so would be both possible and algebraically
interesting, but we leave it out here for simplicity.

grow according to the usage of this rule.

Γ, x :
⋂n

i=1 Ai ` x 7−→ x[Ai] : Ai
(var)

Γ, x : σ ` M 7−→ P : A
Γ ` λx.M 7−→ (λx.P)[σ→ A] : σ→ A

(→I)

Γ ` M 7−→ P : σ→ A Γ ` N 7−→ Q : σ
Γ ` (MN) 7−→ (PQ)[A] : A

(→E)

Γ ` M 7−→ Pi : Ai (i = 1 . . . n)
Γ ` M 7−→

⊔n
i=1 Pi :

⋂n
i=1 Ai

(∩I)

It is immediate from the definition of λS [36, Definition 5.1] that
we have

Γ `S M : σ⇔ ∃P. Γ ` M 7−→ P : σ
and this can be taken here as a definition of λS and `S .

Define the max-norm ‖•‖ on elaborations:

‖x[S ]‖ = |S |
‖(λx.P)[S ]‖ = max{‖P‖, |S |}
‖(PQ)[S ]‖ = max{‖P‖, ‖Q‖, |S |}

Lemma 1. For all elaborations P and Q with dPe ≡ dQe we have

1. ‖P‖ > 0
2. ‖P tQ‖ ≤ ‖P‖ + ‖Q‖
3. P v Q⇒ ‖P‖ ≤ ‖Q‖

Definition 2 (λ[∩]
n ). For n > 0 define `n, the bounded-dimensional

relation with dimension n, by setting Γ `n M : σ if and only if

∃P. Γ ` M 7−→ P : σ with ‖P‖ ≤ n

We refer to the bounded-dimensional system with dimension n as
λ[∩]

n .

Clearly, we have

Lemma 3. Γ `S M : σ if and only if Γ `n M : σ for some n > 0.

Definition 4 (Set theoretic dimension). We define the set theoretic
dimension of a term M in λ[∩] at type σ in environment Γ by

dimσ
Γ (M) = min{n | Γ `n M : σ}

and set dimσ
Γ (M) = ∞ if it is not the case that Γ `S M : σ. We write

dimσ for dimσ
∅ .

We consider a few examples of elaborations (notation: we some-
times write a set decoration [A, B, . . .] as a column vector).

Example 5. I ≡ λx.x elaborates at σ ≡ (a→ a) ∩ (b→ b) to

` λx.x 7−→ (λx.x[a, b])
[

a→ a
b→ b

]
: σ

The elaboration arises as

(λx.x[a, b])
[

a→ a
b→ b

]
≡ (λx.x[a])[a→ a] t (λx.x[b])[b→ b]

showing that dimσ(I) = 2.
Let c2 ≡ λ f .λx.( f ( f x)) for which we have the elaboration

` λ f .λx.( f ( f x)) 7−→
(λ f .(λx.( f [A] ( f [A] x[a])[a])[a])[A])[B] : B

for A ≡ a→ a, B = (a→ a)→ a→ a, showing that dimB(c2) = 1.
Let ω ≡ λx.(xx) for which we have the elaboration

` λx.(xx) 7−→ (λx.(x[a→ a] x[a])[a])[A] : A

for A ≡ ((a→ a) ∩ a)→ a, showing that dimA(ω) = 1.
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A slightly more complicated example, which will be useful in
comparing with the multiset system:

Example 6. Let τ ≡ (a → a) ∩ (b → b) and σ ≡ (b → b) ∩ (c →
c) and consider the typing of the term M ≡ x(y(λz.z)) in the
environment Γ = {x : (r ∩ s) → e, y : (τ → r) ∩ (σ → s)}. We
have Γ ` M 7−→ P : e, where

P ≡ (x[(r∩ s)→ e](y
[
τ→ r
σ→ s

]
(λz.z

 a
b
c

)
 a→ a

b→ b
c→ c

)
[

r
s

]
)[e]

which shows that dime
Γ(M) = 3.

3.2 Multiset System
Strict multiset types are ranged over by ϕ, ψ, etc. and multiset types
are ranged over by s, t, etc., which are finite multisets of strict
multiset types, s : Tsm → N0:

Tsm 3 ϕ, ψ ::= a | s→ ϕ
Tm 3 s, t ::= 〈ϕ1, . . . , ϕn〉

where a, b, . . . range over atoms, and n > 0.
Multiset elaborations are λ-terms decorated with nonempty fi-

nite multisets s:

P,Q ::= x〈s〉 | (λx.P)〈s〉 | (PQ)〈s〉

We write s = 〈ϕ1, . . . , ϕn〉 where a member ϕi appears s(ϕ) > 0
times in the unordered list. We write a decoration as 〈ϕ1, . . . , ϕn〉,
as shorthand for 〈s〉.

We let |s| denote the size of the multiset, |s| =
∑
{s(ϕ) |

s(ϕ) > 0}. We define the operation s ∨ s′ by setting (s ∨ s′)(ϕ) =
max{s(ϕ), s′(ϕ)}, and we define multiset union s ] s′ as usual by
(s ] s′)(ϕ) = s(ϕ) + s′(ϕ). Multiset containment is denoted F, with
s F s′ if and only if s(ϕ) ≤ s′(ϕ) for all ϕ.

Let dPe denote the untyped term arising from erasing all deco-
rations from P. Define the operation P|Q on multiset elaborations
P,Q with dPe ≡ dQe:

x〈s〉 | x〈s′〉 ≡ x〈s ] s′〉
(λx.P)〈s〉 | (λx.Q)〈s′〉 ≡ (λx.P | Q)〈s ] s′〉
(PQ)〈s〉 | (P′Q′)〈s′〉 ≡ ((P | P′)(Q | Q′))〈s ] s′〉

The set of multiset elaborations of an untyped term M is natu-
rally equipped with a partial order, denoted E, defined as the least
partial order satisfying:

x〈s〉 E x〈s′〉 ⇔ s F s′
(λx.P)〈s〉 E (λx.Q)〈s′〉 ⇔ s F s′ and P E Q
(PQ)〈s〉 E (P′Q′)〈s′〉 ⇔ s F s′ and P E P′ and Q E Q′

We introduce a multiset-elaborated version of the strict intersec-
tion type system (λS , `S ) in which a judgement ∆ ` M �=⇒ P : s
signifies that the term M elaborates to the multiset elaboration P in
the environment ∆ at s.

The rules of the multiset elaboration type system, referred as
λ〈∩〉, are as follows.

∆, x : 〈ϕ1, . . . , ϕn〉 ` x �=⇒ x〈ϕi〉 : 〈ϕi〉
(var)

∆, x : s ` M �=⇒ P : 〈ϕ〉
∆ ` λx.M �=⇒ (λx.P)〈s→ ϕ〉 : 〈s→ ϕ〉

(→I)

∆ ` M �=⇒ P : 〈s→ ϕ〉 ∆ ` N �=⇒ Q : s
∆ ` (MN) �=⇒ (PQ)〈ϕ〉 : 〈ϕ〉

(→E)

∆ ` M �=⇒ Pi : 〈ϕi〉 (i = 1 . . . n) (?)
∆ ` M �=⇒

�n
i=1 Pi : 〈ϕ1, . . . , ϕn〉

(∩I)

where (?) is the side condition for all free variables x in M:∨
x

(
n�

i=1

Pi) F ∆(x)

Here the expression
∨

x(P) is defined by∨
x

(P) =
∨
{s | x〈s〉 occurs as a subexpression in P}

Informally, the side condition ensures that the environment ∆ as-
sumes at least the maximal intersection type resources that are used
in distinct occurrences of variables x in the elaboration. Notice that
this condition is different from tracking resources linearly (compare
Section 2 and Section 5), and that our management of type environ-
ments is non-linear. As already indicated (Section 1 and Section 2),
we thereby treat intersection introduction as a resource, but not in-
tersection types as such.

We define translations between strict intersection types and
multiset types as follows. We assume below that in types of the
form A1 ∩ · · · ∩ An we have Ai , A j for i , j.

a∗ ≡ a
(σ→ A)∗ ≡ 〈σ∗〉 → A∗, if σ = B for some B
(σ→ A)∗ ≡ σ∗ → A∗, otherwise
(A1 ∩ · · · ∩ An)∗ ≡ 〈A1

∗, . . . , An
∗〉

a◦ ≡ a
(s→ ϕ)◦ ≡ s◦ → ϕ◦

〈ϕ1, . . . , ϕn〉
◦

≡ ϕ1
◦ ∩ · · · ∩ ϕn

◦

The translations are lifted pointwise to type environments and to
elaborations in the obvious way.

Clearly, we have

(∆ ` M �=⇒ P : s) ⇒ (∆◦ ` M 7−→ P◦ : s◦)

and
(Γ ` M 7−→ P : σ) ⇒ ∃∆, s,P. ∆ ` M �=⇒ P : s

where ∆◦ = Γ, s◦ = σ,P◦ = P
Define the max-norm ‖•‖ on multiset elaborations:

‖x〈s〉‖ = |s|

‖(λx.P)〈s〉‖ = max{‖P‖, |s|}
‖(PQ)〈s〉‖ = max{‖P‖, ‖Q‖, |s|}

Lemma 7. For multiset elaborations P, Q with dPe ≡ dQe we have

1. ‖P‖ > 0
2. ‖P | Q‖ ≤ ‖P‖ + ‖Q‖
3. P E Q⇒ ‖P‖ ≤ ‖Q‖

We could now define a bounded-dimensional version of the
multiset system in direct analogy with Definition 2 and Defini-
tion 4, using the condition

∃P. ∆ ` M �=⇒ P : s with ‖P‖ ≤ n

While doing so may indeed be interesting, in this paper we wish
to use the multiset system to characterize proof complexity in
the standard set theoretic intersection type system. We therefore
focus on the following concept of dimensional bound, which relates
multiset elaborations to the set theoretic system and allows us to
ascribe multiset dimension to that system.

Definition 8 (λ〈∩〉n ). For n > 0 define n, the bounded multiset-
dimensional relation with dimension n, by setting Γ n M : σ if
and only if

∃∆,P, s. (∆ ` M �=⇒ P : s with Γ = ∆◦ and σ = s◦ and ‖P‖ ≤ n)

We refer to the bounded-dimensional system with dimension n as
λ〈∩〉n .
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Clearly, we have

Lemma 9. Γ `S M : σ if and only if Γ n M : σ for some n > 0.

Definition 10 (Multiset dimension). We define the multiset dimen-
sion of a term M in λ〈∩〉 at type σ in environment Γ by

Dimσ
Γ (M) = min{n | Γ n M : σ}

and set Dimσ
Γ (M) = ∞ if it is not the case that there exists n such

that Γ n M : σ. We write Dimσ for Dimσ
∅ and Dims∆ for Dims

◦

∆◦ .

Example 11. Consider c2 ≡ λ f .λx.( f ( f x)) for which we have the
multiset elaboration

` λ f .λx.( f ( f x)) 7−→
(λ f .(λx.( f 〈ϕ〉 ( f 〈ϕ〉 x〈a〉)〈a〉)〈a〉)〈ϕ〉)〈ψ〉 : 〈ψ〉

for ϕ ≡ 〈a〉 → a, ψ = 〈〈a〉 → a〉 → 〈a〉 → a, showing that
Dim〈ψ〉(c2) = 1. In fact, for every n we have Dim〈ψ〉(cn) = 1. Even
more, every simply typed term evidently has multiset dimension 1
at every one of its simple types.

Consider ω ≡ λx.(xx) with the multiset elaboration

` λx.(xx) 7−→ (λx.(x〈〈a〉 → a〉 x〈a〉)〈a〉)〈ϕ〉 : 〈ϕ〉

for ϕ ≡ 〈〈a〉 → a, a〉 → a, showing that Dim〈ϕ〉(ω) = 1.

It is interesting to compare the following example with Exam-
ple 6. It is also interesting to note (for later) that the typing in this
example exceeds rank 2.

Example 12. Let τ ≡ (a→ a)∩(b→ b), σ ≡ (b→ b)∩(c→ c) and
consider again typing the term M ≡ x(y(λz.z)) in the environment
Γ = {x : (r ∩ s)→ e, y : (τ→ r) ∩ (σ→ s)}. We have

{x : 〈
〈

r
s

〉
→ e〉, y :

〈
τ∗ → r
σ∗ → s

〉
} ` (x(y(λz.z))) �=⇒ P : 〈e〉

where P is the multiset elaboration

(x〈
〈
r
s

〉
→ e〉(y

〈
τ∗ → r
σ∗ → s

〉
(λz.z

〈 a
b
b
c

〉
)
〈 a→ a

b→ b
b→ b
c→ c

〉
)
〈
r
s

〉
)〈e〉

which shows that Dime
Γ(M) = 4.

4. Subject Reduction
We prove subject reduction in detail for multiset elaborations, be-
cause the property is more challenging for this system. The prop-
erty also holds for the set theoretic system by a similar argument,
see [16, Appendix B].

For a λ-term M and variable x with k ≥ 0 free occurrences in
M we write Mx[x1, . . . , xk] to denote the linearization of M with
respect to x, that is, the term arising from replacing each j’th
free occurrence of x in M with a distinct fresh variable x j, for
j = 1 . . . k (in case k = 0, i.e., x does not occur free in M, we have
Mx[x1, . . . , xk] ≡ M). We use the shorthand notation Mx[x j]k

j=1 for
Mx[x1, . . . , xk]. For an elaboration P with k ≥ 0 free occurrences of
variable x we write Px[Q1, . . . ,Qk] for the elaboration which arises
by replacing each j’th subexpression x〈s j〉 by Q j in P, and we use
the shorthand notation Px[Q j]k

j=1. Notice that an elaboration of the
form Px[Q j]k

j=1 can be regarded as the result of filling each j’th hole
with Q j, for j = 1 . . . k, in a multi-hole context containing k holes
in place of the subexpressions x〈s j〉. We will sometimes use the
shorthand notation {x j : s j}

k
j=1 for

⋃k
j=1{x j : s j}.

We outline the main ideas in the following proof of subject
reduction under bounded dimension. We consider a redex R ≡
(λx.M)N with elaboration

R ≡ ((λx.P)〈s→ ϕ〉 Q)〈ϕ〉

such that
∆, x : s ` M �=⇒ P : 〈ϕ〉

and
∆ ` N �=⇒ Q : s

The basic idea is now to analyze elaboration of a substitution
M{x := N} by means of the linearization Mx[x j]k

j=1 of M with
respect to x. We can show that an elaboration Q of N may be
“decomposed” into k smaller elaborations Q j such that we have
Q j E Q for j = 1 . . . k, and such that M{x := N} elaborates to
R′ ≡ Px[Q j]k

j=1, and it can be shown that ‖R′‖ ≤ ‖R‖. The side
condition (?)

∨
x(
�n

i=1 Pi) F ∆(x) in rule (∩I) is used, in the proof
of Lemma 14, to establish that Mx[x j]k

j=1 can be elaborated under
type assumptions x j : s j such that

∨k
j=1 s j F s. This latter condition

is used, in turn, to show substitutivity (Lemma 16) by appealing to
decomposition (Lemma 15): If ∆ ` N �=⇒ Q : s and

∨k
j=1 s j F s

(implying s j F s for all j = 1 . . . k), then using Lemma 15 we
can show ∆ ` N �=⇒ Q j : s j for some Q j with Q j E Q. This
property is exploited to organize a somewhat delicate inductive
proof of substitutivity (Lemma 16) which constitutes the main part
of the subject reduction proof. A basic problem solved there using
the properties above is that elaboration under bounded norm is not
a priori preserved inductively at intersection introduction: From
inductive premises ∆ ` M{x := N} �=⇒ Pi : 〈ϕi〉 with ‖Pi‖ ≤ ‖R‖
we cannot conclude that ‖

�n
i=1 Pi‖ ≤ ‖R‖.

Lemma 13 (Distributivity). For any elaborations Pi,Qi
j (i = 1 . . . n,

j = 1 . . . k) such that dPpe ≡ dPqe and dQp
j e ≡ dQ

q
je for all

p = 1 . . . n, q = 1 . . . n, j = 1 . . . k, and such that x has k free
occurrences in the Pi, one has

n�
i=1

Pi
x[Q

i
j]

k
j=1 ≡ (

n�
i=1

Pi)x[
n�

i=1

Qi
j]

k
j=1

Proof: For k = 1 prove
�

i P
i
x[Qi] ≡ (

�
i P

i)x[
�

i Q
i] by induction

on dP1e. Then proceed by induction on k. �

Lemma 14 (Linearization). Suppose M has k occurrences of the
free variable x, denoted x( j) for j = 1 . . . k, and assume we have
∆, x : s ` M �=⇒ P : t, where the subexpressions x( j)〈s j〉 occur in P
for j = 1 . . . k. Then one has

∆ ∪ {x j : s j}
k
j=1 ` Mx[x j]k

j=1 �=⇒ Px[x j〈s j〉]k
j=1 : t

with
∨k

j=1 s j F s, where the x j are fresh.

Proof: The proof is by induction on the derivation of ∆, x : s `
M �=⇒ P : t. In the case of rule (∩I) the side condition (?) is used
to establish the condition

∨k
j=1 s j F s. More details can be found in

[16, Appendix A]. �

The following lemma is a “quantitative” version of the well-
known fact (see [36, Section 5]) that the rule (∩E) of intersection
elimination (in fact, more generally, the subtyping rule) is admissi-
ble in the strict intersection type system.

Lemma 15 (Decomposition). Assume ∆ ` M �=⇒ Q : s with
s = s1 ] s2. Then there exist Q1 and Q2 such that the following
conditions hold:

1. ∆ ` M �=⇒ Q1 : s1
2. ∆ ` M �=⇒ Q2 : s2
3. Q1 | Q2 ≡ Q
4. ‖Q‖ ≥ |s| = |s1| + |s2|

Proof: Immediate, by inversion of rule (∩I). �
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Lemma 16 (Substitutivity). Suppose that

∆ ∪ {x j : s j}
k
j=1 ` Mx[x j]k

j=1 �=⇒ Px[x j〈s j〉]k
j=1 : t

and ∆ ` N �=⇒ Q : s with
∨k

j=1 s j F s. Then there exist Q1, . . . ,Qk
such that Q j E Q for j = 1 . . . k and

∆ ` Mx[x j]k
j=1{x j := N}kj=1 �=⇒ Px[Q j]k

j=1 : t

Proof: By induction on the derivation of the judgement

∆ ∪ {x j : s j}
k
j=1 ` Mx[x j]k

j=1 �=⇒ Px[x j〈s j〉]k
j=1 : t

and we proceed by cases over the last rule used. We show only the
case where (∩I) is used last, the remaining cases of the proof can
be found in [16, Appendix A]. So consider an application of (∩I)
with premises

∆ ∪ {x j : s j}
k
j=1 ` Mx[x j]k

j=1 �=⇒ P
i
x[x j〈s

i
j〉]

k
j=1 : 〈ϕi〉 (1)

for i = 1 . . . n, with t = 〈ϕ1, . . . , ϕn〉 and
n�

i=1

Pi
x[x j〈s

i
j〉]

k
j=1 ≡ Px[x j〈s j〉]k

j=1 (2)

It follows from linearity of the x j in Mx[x j]k
j=1 and Pi

x[x j〈s
i
j〉]

k
j=1 that

the assumptions x j : sij suffice, so we can strengthen (1) to:

∆ ∪ {x j : sij}
k
j=1 ` Mx[x j]k

j=1 �=⇒ P
i
x[x j〈s

i
j〉]

k
j=1 : 〈ϕi〉 (3)

for i = 1 . . . n. Lemma 13 implies
n�

i=1

Pi
x[x j〈s

i
j〉]

k
j=1 ≡ (

n�
i=1

Pi)x[x j〈

n⊎
i=1

s
i
j〉]

k
j=1

which together with (2) implies that we have

s j =

n⊎
i=1

s
i
j for j = 1 . . . k (4)

By ∆ ` N �=⇒ Q : s and the assumption
∨k

j=1 s j F s we get
from Lemma 15 together with (4) that we have, for someQi

1, . . . ,Q
i
k

(i = 1 . . . n)

∆ ` N �=⇒ Qi
j : sij with

n�
i=1

Qi
j E Q for j = 1 . . . k (5)

We now apply the induction hypothesis to (3) and (5), which shows
that there exist Ri

j ( j = 1 . . . k, i = 1 . . . n) such that

∆ ` Mx[x j]k
j=1{x j := N}kj=1 �=⇒ P

i
x[R

i
j]

k
j=1 : 〈ϕi〉 (6)

with Ri
j E Q

i
j ( j = 1 . . . k, i = 1 . . . n). It follows that we have

n�
i=1

Ri
j E

n�
i=1

Qi
j

and hence by (5)
n�

i=1

Ri
j E Q for j = 1 . . . k (7)

We apply rule (∩I) to (6) and obtain

∆ ` Mx[x j]k
j=1{x j := N}kj=1 �=⇒

n�
i=1

Pi
x[R

i
j]

k
j=1 : t (8)

Now, by Lemma 13 and (2) we have
n�

i=1

Pi
x[R

i
j]

k
j=1 ≡ (

n�
i=1

Pi)x[
n�

i=1

Ri
j]

k
j=1 ≡ Px[

n�
i=1

Ri
j]

k
j=1 (9)

TakeQ j ≡
�n

i=1 R
i
j for j = 1 . . . k. ThenQ jEQ is true for j = 1 . . . k,

by (7), and the lemma is proven by (8) and (9). �

Lemma 17 (Substitution under non-increasing norm). Assume that
∆, x : s ` M �=⇒ P : t and ∆ ` N �=⇒ Q : s. Then there exists an
elaboration R such that

∆ ` M{x := N} �=⇒ R : t

with ‖R‖ ≤ max{‖P‖, ‖Q‖}.

Proof: Assume that M has k ≥ 0 free occurrences of x. By
Lemma 14 we have

∆ ∪ {x j : s j}
k
j=1 ` Mx[x j]k

j=1 �=⇒ Px[x j〈s j〉]k
j=1 : t

with
∨k

j=1{s j} F s, where the x j are fresh. By Lemma 16 there exist
Q1, . . . ,Qk such that Q j E Q for j = 1 . . . k and

∆ ` Mx[x j]k
j=1{x j := N}kj=1 �=⇒ Px[Q j]k

j=1 : t

Clearly, we have

Mx[x j]k
j=1{x j := N}kj=1 ≡ M{x := N}

and

‖Px[Q j]k
j=1‖ = max{‖P‖,

k
max

j=1
{‖Q j‖}}

SinceQ jEQ for j = 1 . . . k, we have maxk
j=1{‖Q j‖} ≤ ‖Q‖ and hence

max{‖P‖,
k

max
j=1
{‖Q j‖}} ≤ max{‖P‖, ‖Q‖}

which proves the lemma taking R ≡ Px[Q j]k
j=1. �

Theorem 18 (Subject Reduction in bounded dimension). Assume
∆ ` M �=⇒ P : t and M �β M′. Then there exists an elaboration R
such that ∆ ` M′ �=⇒ R : t and ‖R‖ ≤ ‖P‖. In particular, Γ n M : τ
implies Γ n M′ : τ.

Proof: Consider an elaboration P of a redex (λx.P′)N with
P ≡ ((λx.P′)〈s → ϕ〉 Q)〈ϕ〉. We have ‖P‖ = max{‖P′‖, ‖Q‖}.
By Lemma 17, we have an elaboration R of P′{x := N} with
‖R‖ ≤ max{‖P′‖, ‖Q‖}. The details on generalization to reduction in
context are given in [16, Appendix A]. �

Similarly, subject reduction holds for the set theoretic system,
see [16, Appendix B].

Theorem 19 (Subject Reduction in bounded dimension). Assume
Γ ` M 7−→ P : τ and M �β M′. Then there exists an elabora-
tion R such that Γ ` M′ 7−→ R : τ and ‖R‖ ≤ ‖P‖. In particular,
Γ `n M : τ implies Γ `n M′ : τ.

5. Dimensional Analysis
We give a few results that show how dimensionality can be used
to characterize various subsystems of the intersection type system.
We focus on low-complexity systems, namely simple types (Propo-
sition 20), rank 2 typings (Proposition 23), and normal form typings
(Proposition 25). We briefly compare with linear, non-idempotent
systems and indicate how dimension can be compared across sys-
tems with different type languages, using System F as an example.

More specifically, Proposition 20 and Proposition 23 show that
dimensionality can be indicative of logical complexity (subsys-
tems characterized by lower dimensionality). The result on rank
2-typings (Proposition 23) is central. It shows that the rank 2-
fragment is a special case of linear bounded dimensionality, and
it will furthermore be important later for establishing the complex-
ity of bounded-dimensional inhabitation (Theorem 34). The dimen-
sional characterization of normal forms (Proposition 25) indicates
that dimension may be an interesting semantic measure related to
the complexity of β-reduction for λ-terms. Using an “absolute” no-
tion of dimension (quantifying out dependency on types) we can
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compare across systems, exemplified by System F (Example 26).
Finally, a technical tool in our analysis is the notion of leaf-norm
giving a handle on multiset norm which will also be useful for es-
tablishing complexity of bounded-dimensional inhabitation later.

It is easy to see (as illustrated in Example 11) that the simple
typed λ-calculus lives entirely within multiset dimension 1. It is
less obvious what happens if we consider inhabitants of simple
types in the intersection type system. But, using a classical result
on intersection types ([2, Corollary 4.10]), we immediately have:

Proposition 20 (Dimension over simple types). Let Γ be an envi-
ronment consisting of simple types, let σ be a simple type, and let
N be a normal form. Then Γ `S N : σ implies Γ 1 N : σ.

Proof: Suppose Γ `S N : σ with Γ and σ as stated. By the
Conservativity property [2, Corollary 4.10], Γ ` N : σ is derivable
in the simple type system of Curry. Such a typing can obviously be
elaborated at multiset dimension 1. �

We introduce an alternative characterization of the max-norm
over multiset elaborations, which will be very useful throughout the
remainder of this paper. We define the leaf-norm ‖•‖L on multiset
elaborations:

‖x〈s〉‖L = |s|

‖(λx.P)〈s〉‖L = ‖P‖L
‖(P Q)〈s〉‖L = max{‖P‖L, ‖Q‖L}

An elaboration P is called well-typed if ∆ ` M �=⇒ P : s for some
∆, M and s.

Lemma 21. Let P be a well-typed multiset elaboration. If either
P ≡ (λx.Q)〈ϕ1, . . . , ϕn〉 or P ≡ (Q R)〈ϕ1, . . . , ϕn〉, then ‖Q‖ ≥ n.

Proof: If n = 1, the claim is trivially true. Otherwise, by well-
typedness of P, it must be the case that P is typed by (∩I) so that
either P ≡

�n
i=1(λx.Qi)〈ϕi〉 or P ≡

�n
i=1(Qi Ri)〈ϕi〉 for some Qi,Ri

with
�n

i=1 Qi = Q. Since for each subterm x〈s〉 in Qi for i = 1 . . . n
one has ‖x〈s〉‖ ≥ 1, we have ‖Q‖ = ‖

�n
i=1 Qi‖ ≥ n. �

Lemma 22 (Norm equivalence). For any well-typed multiset elab-
oration P one has ‖P‖ = ‖P‖L.

Proof: By induction on dPe.
In case P ≡ x〈s〉, we have ‖P‖ = |s| = ‖P‖L.
In case P ≡ (λx.Q)〈s〉, Lemma 21 shows ‖P‖ = max{‖Q‖, |s|} =

‖Q‖. By definition of ‖•‖L and the induction hypothesis we have
‖P‖L = ‖(λx.Q)〈s〉‖L = ‖Q‖L = ‖Q‖, which shows the claim.

In case P ≡ (Q R)〈s〉, Lemma 21 again shows that ‖P‖ =
max{‖Q‖, ‖R‖, |s|} = max{‖Q‖, ‖R‖}. By the definition of ‖•‖L
and the induction hypothesis, we have ‖P‖L = ‖(Q R)〈s〉‖L =
max{‖Q‖L, ‖R‖L} = max{‖Q‖, ‖R‖}, which shows the claim. �

The analogous property does not hold for set theoretic elaborations.
Consider the elaborations (only some decorations shown):

P1 ≡ (λx.λy.y[b])[a→ b→ b]
P2 ≡ (λx.λy.y[b])[c→ b→ b]
P1 t P2 ≡ (λx.λy.y[b])[a→ b→ b, c→ b→ b]

We have ‖P1 t P2‖ = 2, but ‖P1 t P2‖L = 1 (assuming the leaf
norm ‖•‖L defined on set theoretic elaborations analogously to the
definition above). Hence, the max-norm ‖•‖ remains indispensable
for comparing the two elaboration systems.

The following proposition shows that rank 2 elaborations of nor-
mal forms have dimension linear in the number of components in
the intersection type. It implies that inhabitation in rank 2 interesc-
tion types [33] is subsumed by bounded-dimensional inhabitation
as developed in Section 6 below, and it will be important in our
proof of the complexity of inhabitation (see Theorem 34).

Following Leivant [24] we define the rank, r, of an intersec-
tion type by setting r(σ) = 0 when σ is a simple type, and oth-
erwise r(σ → A) = max{r(σ) + 1, r(A)}, r(A1 ∩ · · · ∩ An) =
max{1, r(A1), . . . , r(An)}. The definition is transferred to multiset
types in the obvious way. The rank of a typing judgement Γ ` M : σ
is r(σ), if all types in Γ are simple and otherwise max{r(Γ)+1, r(σ)}
where r(Γ) is the maximal rank of a type in Γ. This notion is ex-
tended to elaboration judgements in the obvious way.

Proposition 23 (Dimension in rank 2). Suppose we can derive the
judgement ∆ ` N �=⇒ P : 〈ϕ1, . . . , ϕn〉 in rank 2 where N is a
normal form, then ‖P‖ = n. In particular, if Γ `S N :

⋂n
i=1 Ai in

rank 2, then Γ n N :
⋂n

i=1 Ai, and if Γ `S N : A in rank 2, then
Γ 1 N : A.

Proof: We first prove the implication

(∆ ` N �=⇒ P : 〈ϕ1, . . . , ϕn〉)⇒ (‖P‖ = n)

by induction on the derivation of ∆ ` N �=⇒ P : 〈ϕ1, . . . , ϕn〉.
In case rule (var) is used, the claim is clear.
In case rule (→I) is the last rule used, as

∆, x : s ` N′ �=⇒ Q : 〈ϕ〉
∆ ` λx.N′ �=⇒ (λx.Q)〈s→ ϕ〉 : 〈s→ ϕ〉

(→I)

induction hypothesis shows that ‖Q‖ = 1, and the claim evidently
follows.

In case rule (∩I) is the last rule used, as

∆ ` M �=⇒ Pi : 〈ϕi〉 (i = 1 . . . n) (?)
∆ ` M �=⇒

�n
i=1 Pi : 〈ϕ1, . . . , ϕn〉

(∩I)

induction hypothesis implies ‖Pi‖ = 1 for i = 1 . . . n, and we
therefore have, by Lemma 7, ‖

�n
i=1 Pi‖ ≤

∑n
i=1 ‖Pi‖ ≤ n. On the

other hand, since ‖Pi‖ ≥ 1, we have ‖Pi‖L ≥ 1, and therefore
evidently ‖

�n
i=1 Pi‖L ≥ n, so (Lemma 22) ‖

�n
i=1 Pi‖ ≥ n which

proves the claim in this case.
In case rule (→E) is the last rule used, we can assume the

following situation, by rank 2 restriction and normal form:

∆ ` x �=⇒ x〈〈ψ1〉 → · · · → 〈ψk〉 → ϕ〉 : 〈〈ψ1〉 → · · · → 〈ψk〉 → ϕ〉

where by rank 2 restriction the ψ j are all simple types for j = 1 . . . k,
and with

∆ ` N j �=⇒ Q j : 〈ψ j〉

for j = 1 . . . k, such that the conclusion elaboration P is given as

∆ ` xN1 . . .Nk �=⇒ ((x〈. . .〉 Q1)〈. . .〉 . . .Qk)〈ϕ〉 : 〈ϕ〉

leaving out a few annotations for readability. By induction we have
‖Q j‖ = 1 for j = 1 . . . k from which it follows that ‖P‖ = 1, showing
the claim. This concludes the inductive proof.

Now suppose that Γ `S N :
⋂n

i=1 Ai in rank 2. Then we have an
elaboration ∆ ` N �=⇒ Q : s in rank 2 with ∆◦ = Γ and s◦ =

⋂n
i=1 Ai

for some Q, ∆ and s. It follows from Lemma 15 that we also have
∆ ` N �=⇒ P : 〈ϕ1, . . . , ϕn〉 for some P and ϕi with ϕi

◦ = Ai, for
i = 1 . . . n. By the property already shown, we have ‖P‖ = n. �

Notice that no comparable property can be shown for rank 3
elaborations, since we can use rank 3 types to pump up dimensions
arbitrarily by creating “chain reactions” among intersection types
at applications of variables, as is illustrated in Example 12.

We can generalize Proposition 23 as follows. A proof can be
found in [16, Appendix C]. Let T , U range over types defined as
follows:

T ::= a | U → T
U ::= a | (

⋂n
i=1 Ti)→ U

Notice that types of the form T,U are not rank-bounded.
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Proposition 24. Let N be a normal form and let Γ consist of as-
sumptions of the form (x :

⋂k
i=1 Ti). If Γ `S N :

⋂n
i=1 Ui, then

Γ n N :
⋂n

i=1 Ui.

Next we show that every normal form can be typed at multiset
dimension 1. The construction in the proof of Proposition 25 is es-
sentially an elaborated version of the construction of the principal
schemes for normal forms given in [9, Definition 8], and hence the
proposition provides a dimensional analysis of the type derivations
for such schemes – they have multiset dimension 1.

Proposition 25 (Dimension of normal forms). For every normal
form N there exist Γ and A such that Γ 1 N : A.

Proof: We show the following property by induction on normal
forms N: For every normal form N there exist ∆, P and ϕ such that
∆ ` N �=⇒ P : 〈ϕ〉 and ‖P‖ = 1. The proposition follows from this
property by taking Γ = ∆◦ and A = ϕ◦.

To prove the property, consider the case where N ≡ x, a variable.
Here we can take ∆ = {x : 〈ϕ〉} for an arbitrary strict type ϕ, and
we have ∆ ` x �=⇒ x〈ϕ〉 : 〈ϕ〉, showing the claim.

In case N ≡ x N1 . . .Nk we have by induction hypothesis
∆ j ` N j �=⇒ P j : 〈ψ j〉 with ‖P j‖ = 1 for some ∆ j and ψ j, for
j = 1 . . . k. Let ∆ = (

⊎k
j=1 ∆ j) ] {x : 〈〈ψ1〉 → · · · → 〈ψk〉 → ϕ〉},

where (∆1 ]∆2)(x) = ∆1(x)]∆2(x) when x ∈ dom(∆1)∩ dom(∆2),
and the elaboration (leaving out some annotations for readability)

P ≡ (x〈〈ψ1〉 → · · · → 〈ψk〉 → ϕ〉 P1 . . . Pk)〈ϕ〉

Then we have ∆ ` N �=⇒ P : 〈ϕ〉. Moreover, we have ‖P‖ =
max{1, ‖P1‖, . . . , ‖Pk‖} = 1, thereby showing the claim.

In case N ≡ λx.N′, we have by induction hypothesis

∆, x : s ` N′ �=⇒ P′ : 〈ψ〉

for some ∆, s, ψ and P′ with ‖P′‖ = 1. Taking P ≡ (λx.P′)〈s → ψ〉
we have ∆ ` λx.N′ �=⇒ P : 〈s → ψ〉. We can take ϕ = s → ψ and
we have ‖P‖ = ‖P′‖ = 1, thereby proving the claim. �

Comparing to type complexity in non-idempotent systems
based on linearity [5], dimensionality is independent of term size,
whereas terms M with n occurrences of a free variable x require the
type of x to be typed with at least n intersection type components in
such systems. For example, the Church numerals cn ≡ λ f .λx.( f n x)
require non-idempotent types [α → α]n → α → α (where [τ]n

denotes τ ∩ · · · ∩ τ with τ appearing n times) of ever growing
size, whereas these terms are all typable in multiset dimension 1
(Proposition 20 and Proposition 25). Further comparison to the
non-idempotent system of [5] is provided by Proposition 35, which
shows that inhabitation in that system is NP-complete. 2

Considering Theorem 18 together with Proposition 25, the con-
clusion appears inescapable that norm and dimension must be sys-
tematically related to the operational semantics of β-reduction in
some way (reduction is non-increasing wrt. norm, and once a nor-
mal form is reached, dimension will have dropped to 1 at some
type). In general, linear systems such as [5] evidently provide much
more fine-grained control over reduction semantics than norm and

2 A few remarks may also be in order to compare with the system without
intersection introduction [22]. In this system, in many ways orthogonal
to the dimension-bounded systems, intersection logic is effectively limited
to subtyping (which we do not consider in this paper), recovering limited
forms of intersection introduction via distributivity σ → (τ1 ∩ τ2) = (σ →
τ1) ∩ (σ → τ2). Inhabitation is EXPSPACE-complete [28] (and without
subtyping PSPACE-complete, in a class with simple types [31]). The system
is less useful in practice, since it cannot assign non-trivial intersection types
to abstractions. For example, λx.x does not have any types of the form
(A→ A) ∩ (B→ B), but only A ∩ B→ A ∩ B. In the presence of subtyping
we can show that there are typings Γ ` M : σ such that multiset dimension
is exponential in the size of Γ and σ.

dimension would provide. Further study of operational interpreta-
tions of dimension is needed but must be left to future work.

We can apply our theory of dimension to other systems than
subsystems of intersection types. To this end, let us define the
notions of absolute set theoretic dimension and absolute multiset
dimension, denoted dim* and Dim* respectively, as

dim*(M) = min{n | ∃Γ.∃σ. Γ `n M : σ}
Dim*(M) = min{n | ∃Γ.∃σ. Γ n M : σ}

Since these notions only depend on the term M, it makes sense
to compare typability in absolute dimension across different type
systems with possibly different type languages. Because the inter-
section type system types exactly the set of strongly normalizing
terms, this idea can be applied to any system having the strong
normalization property. The following example shows a few prop-
erties of System F (polymorphic λ-calculus), in particular, System
F is seen to type terms of arbitrarily high dimension.

Example 26. Consider the termω from Example 5 and Example 11,
and define with I ≡ λx.x the terms ωk(I) (for k ∈ N) by setting
ω1(I) ≡ ω I and ωk+1(I) ≡ ω(ωk(I)). It can be seen that the terms
ωk(I) are typable in System F, and that dim*(ωk(I)) = k + 1 for all
k ∈ N. Moreover, we have Dim*(ωk(I)) = 2k. In particular, (ω I) is
typable at 〈〈a〉 → a〉 in multiset dimension 2 using the elaboration

(ω
〈〈

〈a〉 → a
〈〈a〉 → a〉 → 〈a〉 → a

〉
→ 〈a〉 → a

〉
I
〈

〈a〉 → a
〈〈a〉 → a〉 → 〈a〉 → a

〉
) 〈〈a〉 → a〉

In order to type ω(ωk(I)), two elaborations of the argument ωk(I)
are combined, doubling the dimension according to the underlying
multiset operations.

Let K ≡ λx.λy.x. The term (λxy.y (x I) (x K)) ω is strongly
normalizing but is not typable in System F [18, Thm. 13]. It can be
seen to be typable at

〈〈〈ϕ1〉 → 〈〈ϕ2〉 → ϕ2〉 → a〉 → a〉

in multiset dimension 2, where ϕ1 = 〈a〉 → a, ϕ2 = 〈a〉 → 〈a〉 → a.
Note that the argument x needs to be assigned two different types
of incompatible shapes.

6. Bounded-Dimensional Inhabitation
The bounded-dimensional inhabitation problem in set theoretic di-
mension is the following decision problem INHdim:

• Given an environment Γ, a type σ and a number n > 0: does
there exist a term M such that Γ `n M : σ?

The bounded-dimensional inhabitation problem in multiset di-
mension is the following decision problem INHDim:

• Given an environment Γ, a type σ and a number n > 0: does
there exist M such that Γ n M : σ?

Unfolding definitions, this latter problem means:

• Given an environment Γ, a type σ and a number n > 0: does
there exist M, ∆, s and P such that Γ = ∆◦, σ = s◦, and
∆ ` M �=⇒ P : s with ‖P‖ ≤ n?

We prove that the problem INHDim is EXPSPACE-complete.
The main technical result towards this end is Theorem 31 (Sec-
tion 6.2) which shows that, in effect (spelled out in Theorem 34,
Section 6.3), bounded multiset dimension is a logical correlate of
the linear tape bus machines of [33]. Intuitively, multiset dimen-
sion corresponds to the maximal number of simultaneous inhabita-
tion constraints that need to be processed in an alternating search
procedure for inhabitants.
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Before we turn to the problem INHDim, we show that, perhaps
surprisingly at first glance, dimensional bound does not lead to
a decision procedure3 for the set theoretic system: The problem
INHdim is undecidable (Theorem 28). Let us recall the following
property for the intersection type system.

Lemma 27 (Subformula property, [2] Lemma 4.5). Let N be a λ-
term in normal form. If Γ ` N 7−→ P : σ, then there exists a
derivation of this judgement in which every type is a subformula of
σ or of some type appearing in Γ.

Theorem 28. The problem INHdim is undecidable.

Proof: We have Γ `S M : σ if and only if Γ ` M 7−→ P : σ
for some n and some P with ‖P‖ ≤ n. By strong normalization
[10] and subject reduction of λ[∩] (Theorem 19), it is sufficient to
consider inhabitation by normal forms. By the subformula property
(Lemma 27) it is sufficient to consider inhabitation by normal form
terms with typing derivations all of whose formulae are subformu-
lae of the input types in Γ or σ. Because there are at most N distinct
subformulae for an input (Γ, σ) of size N, it is sufficient to consider
inhabitation in λ[∩]

N . The theorem now follows from the undecid-
ability of the inhabitation problem for intersection types [32]. �

We describe a decision procedure, called A〈d〉 below, for the
problem INHDim bounded in multiset dimension with parameter
d. In Section 6.2 we prove soundness and completeness of A〈d〉.
Section 6.3 contains the proof of EXPSPACE-completeness. The
lower bound uses bus machines [33] together with Proposition 23.
We conclude by recording, for comparison, that inhabitation in
linear non-idempotent types [5] is NP-complete.

6.1 Decision Procedure A〈d〉

The decision procedure A〈d〉 will be developed starting from a semi-
decision procedure, called I〈•〉, which will then be bounded with a
parameter d, resulting in a procedure called I〈d〉. Finally, we will
further modify procedure I〈d〉 to obtain procedure A〈d〉.

6.1.1 Procedure I〈•〉

The following Wajsberg/Ben-Yelles style procedure ([6, 33]) is an
adaptation of Urzyczyn’s semi-decision procedure for inhabitation
in the intersection type system [2]. In our formulation we special-
ize the procedure of Urzyczyn [33] to strict intersection types for
the strict intersection type system. Furthermore, we add comments
to the procedure, under the heading “Induced elaboration”, to in-
dicate how runs of the procedure induce elaborations. Finally, we
formulate the procedure as processing multisets of simultaneous in-
habitation constraints (rather than sets of such).

The procedure is alternating [7] and transforms multisets of
simultaneous constraints of the form

〈Γ1 ` X : A1, . . . ,Γn ` X : An〉

where the type environments Γ1, . . . ,Γn have the same domain, and
X denotes an unknown inhabitant. Such multisets of constraints are
also referred to as configurations of procedure I〈•〉 and are ranged
over by C. We sometimes write configurations as

〈Γ1 `? : A1, . . . ,Γn `? : An〉

Whenever such a multiset of simultaneous constraints is processed
by the procedure, the procedure searches for a single solution to all
the constraints, i.e., a normal-form λ-term X ≡ N such that

Γ1 ` N : A1, . . . ,Γn ` N : An

3 For the sake of completeness we note here that neither does limiting the
arity of the intersection type operator – it is easy to see that the constructions
of undecidability in [33] remain effective under such restriction.

The procedure nondeterministically guesses a normal solution X
by repeatedly transforming configurations, choosing one of the
following two steps in which parts of the solution are constructed.
The process continues until the current constraint system is in a
trivially solvable form (step 2 below). At each step, a configuration
C is transformed to another configuration C′, and the steps of
the procedure thereby determine a transformation relation among
configurations denoted C 7→ C′. The transformation steps are as
follows.

1. If every Ai is a function type, Ai ≡ σi → Bi, then a possible
guess isX ≡ λx.Y, and provided (i) there is no variable y having
type σi in every Γi we transform the constraint system into

〈Γ1, x : σ1 ` Y : B1, . . . ,Γn, x : σn ` Y : Bn〉

otherwise (ii) we can identify the variables x and y and keep the
Γi unchanged.

Induced elaboration: Assuming (i) that a solutionY ≡ N to
the transformed system elaborates to ∆i, x : si ` N �=⇒ Pi :
〈ϕi〉, for i = 1 . . . n, a solution X ≡ λx.N elaborates to

∆i ` λx.N �=⇒ (λx.Pi)〈si → ϕi〉 : 〈si → ϕi〉

Assuming (ii) that a solution Y ≡ N to the transformed
system elaborates to ∆i ` N �=⇒ Pi : 〈ϕi〉, i = 1 . . . n, a
solution X ≡ λy.N elaborates to

∆i ` λy.N �=⇒ (λy.Pi)〈si → ϕi〉 : 〈si → ϕi〉

2. If for some variable x and number k we have

Γi ` x : σ1
i → · · · → σk

i → Ai

for each i = 1 . . . n, then we may guess that X ≡ xY1 · · · Yk and
consider k systems C j for j = 1 . . . k, where C j is given by the
following configuration, assuming σ

j
i ≡
⋂mi j

q=1 Bi j
q , i = 1 . . . n,

j = 1 . . . k,

〈Γ1 ` Y
j : B1 j

1 , . . . ,Γ1 ` Y
j : B1 j

m1 j ,

. . . ,Γn ` Y
j : Bn j

1 , . . . ,Γn ` Y
j : Bn j

mn j 〉

Each of these k systems C j ( j = 1 . . . k) must now be solved
independently in parallel (universal transition [7]). If k = 0,
then X ≡ x is a solution and the procedure accepts.

Induced elaboration: If k = 0, we have the elaboration

{x : 〈Ai
∗〉} ` x �=⇒ x〈Ai

∗〉 : 〈Ai
∗〉

Otherwise, assuming that solutions for Y j ≡ N j to the
transformed systems elaborate to

∆i j ` N j �=⇒ Pi j
q : 〈ψi j

q 〉

for i = 1 . . . n, j = 1 . . . k, q = 1 . . .mi j, we have elaborations
(eliding some annotations for readability) for i = 1 . . . n:

∆′i ` xN1 · · ·Nk �=⇒ Ri : 〈Ai
∗〉

where Ri ≡ (x〈s′i〉 Q
i1 · · ·Qik)〈Ai

∗〉 with Qi j ≡
�mi j

q=1 P
i j
q ,

s′i ≡ s
i1 → · · · → sik → Ai

∗, si j ≡
⊎mi j

q=1〈ψ
i j
q 〉, ∆′i ≡

(
⊎k

j=1 ∆i j) ] {x : s′i }, where (∆1 ] ∆2)(x) = ∆1(x) ] ∆2(x)
when x ∈ dom(∆1) ∩ dom(∆2), for i = 1 . . . n, j = 1 . . . k.

The degree of a configuration C of procedure I〈•〉 is given by
its length, i.e., the multiset size of C.

The set of possible runs of procedure I〈•〉 is given by the set of
possible configuration transformation sequences of the procedure.
The set of runs of the procedure when started from a configuration
C determines a set of computation trees, denoted TI

C
, as follows.

The elements of TI
C

are labeled trees with labels drawn from the
set of configurations reachable from C. A tree t ∈ TI

C
is determined
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by a run as follows. The root of t is labeled C. There is an edge in
t from a node labeled C1 to a node labeled C2, denoted C1 7→λx C2,
if the run transforms C1 into C2 by step 1 adding the variable x
to the environments. There are edges in t from a node labeled
C1 to nodes labeled C j

2 for j = 1 . . . k, denoted C1 7→
j
@x C

j
2, if

the run transforms C1 into the C j
2 in step 2 by choosing variable

x and making the universal transitions to C j
2 for j = 1 . . . k. A

computation tree t ∈ T I
C

is accepting if and only if all leaves of
t are labeled with accepting configurations according to step 2 of
procedure I〈•〉. Clearly, an accepting tree t ∈ TI

C
is isomorphic to

a normal inhabitant of the strict intersection type system.

6.1.2 Procedure I〈d〉

For every number d > 0 we obtain procedure I〈d〉 from procedure
I〈•〉 by rejecting whenever a configuration C is reached with degree
exceeding the parameter d. That is, procedure I〈d〉 rejects at step 1,
if n > d, and it rejects at step 2 if

∑n
i=1 mi j > d for any j = 1 . . . k.

The notion of an accepting computation tree can evidently be
applied to procedure I〈d〉 as well, by adjusting for the restricted
acceptance conditions of that procedure.

6.1.3 Procedure A〈d〉

For every d > 0 the decision procedure A〈d〉 is obtained from proce-
dure I〈d〉 by rejecting on repeating configurations along all paths of
the computation tree of I〈d〉. Procedure A〈d〉 can evidently be ob-
tained from procedure I〈d〉 by storing the configurations reached
along the computation trees of I〈d〉 and rejecting whenever a con-
figuration is reached which has been reached previously along a
computation path.

Notation: In the sequel we write I〈d〉(C) and A〈d〉(C) to indicate
runs of the procedures starting from configuration C.

6.2 Soundness and Completeness
Analogously to the semi-decision procedure of [33] it should be
clear that procedure I〈•〉 is sound and complete for the strict inter-
section type system, in the following sense:

• (Soundness of I〈•〉) Let C = 〈Γ `? : A1, . . . ,Γ `? : An〉. Every
accepting computation tree in TI

C
is isomorphic to a normal

inhabitant N such that Γ `S N :
⋂n

i=1 An.
• (Completeness of I〈•〉) Whenever Γ `S M :

⋂n
i=1 Ai, there

exists a normal inhabitant N such that Γ `S N :
⋂n

i=1 Ai and
N is isomorphic to an accepting tree in T I

C
for C = 〈Γ `? :

A1, . . . ,Γ `? : An〉.

The corresponding soundness and completeness properties for pro-
cedure I〈d〉 with respect to bounded-dimensional inhabitation are
the following:

• (Soundness of I〈d〉). If I〈d〉(C) succeeds with C = 〈Γ `? :
A1, . . . ,Γ `? : An〉, then Γ d M :

⋂n
i=1 Ai for some M.

• (Completeness of I〈d〉). Whenever Γ d M :
⋂n

i=1 Ai for some
M, then I〈d〉(C) succeeds with C = 〈Γ `? : A1, . . . ,Γ `? : An〉.

However, soundness and completeness for procedure I〈d〉 with
respect to d-bounded inhabitation does not follow automatically
from soundness and completeness of procedure I〈•〉. The obsta-
cle with respect to completeness is that procedure I〈•〉 does not
produce all normal forms (it is not an exhaustive inhabitant enu-
merator or recognizer), due to restrictions needed to ensure termi-
nation. First, in step 1, the procedure collapses variables having the
same types in all of the Γi. Second, in step 2, the procedure does
not unfold the computation tree any further in the acceptance case
where k = 0 (a variable is chosen as inhabitant, which becomes a
leaf of the computation tree). As a consequence, even though there
might be a tree in TI

C
isomorphic to some normal inhabitant N at

Γ and σ, the procedure might conceivably not be able to recognize
the existence of any normal form in dimension d, although such
an inhabitant exists. We therefore need to establish that, effectively,
procedure I〈•〉 always has accepting trees at minimal norm d, for
which inhabitants exist, and, furthermore, that such trees are also
accepted by procedure I〈d〉. We note that such considerations are
not standard in the literature on inhabitation. For example, many
inhabitation procedures are regulated to search only for η-long nor-
mal forms (see [19]), which makes inhabitant search slightly more
deterministic than ours, since choices between step 1 and step 2 be-
come determined by the goal types. However, this does not work in
our setting, because dimension is not invariant under η-expansion.
Consider Γ = { f : (a ∩ b) → c} with the goal Γ `? : (a ∩ b) → c.
One inhabitant is the term f itself, at dimension 1. Another is the
η-expanded term λx. f x. But this term only elaborates at dimension
2 to (λx.( f 〈〈a, b〉 → c〉 x〈a, b〉)〈c〉)〈〈a, b〉 → c〉.

The following is the main lemma for soundness.

Lemma 29. Assume procedure I〈d〉(C) accepts from configuration
C = 〈Γ1 `? : A1, . . . ,Γn `? : An〉 with induced elaborations
∆1 ` M �=⇒ P1 : 〈ϕ1〉, . . . ,∆n ` M �=⇒ Pn : 〈ϕn〉. Then one
has

1. ∆i ` M �=⇒ Pi : 〈ϕi〉 is derivable for i = 1 . . . n
2. ∆i

◦
⊆ Γi and ϕi

◦ = Ai for i = 1 . . . n
3. ‖
�n

i=1 Pi‖L ≤ d

Proof: By induction on the depth of the computation tree of an
accepting run of I〈d〉(C).

In case the procedure accepts with k = 0 in step 2, the claim is
obviously true.

In case the procedure accepts with k > 0 in step 2, we have by
induction hypothesis solutionsY j ≡ N j with derivable elaborations

∆i ` N j �=⇒ Pi j
q : 〈ψi j

q 〉

with ∆i
◦
⊆ Γi and (ψi j

q )
◦

= Bi j
q for i = 1 . . . n, j = 1 . . . k, and such

that

‖

n�
i=1

mi j�
q=1

Pi j
q ‖L ≤ d (10)

for j = 1 . . . k. It is easy to check that claims 1 and 2 follow for the
corresponding elaborations

∆′i ` x N1 · · ·Nk �=⇒ Ri : 〈Ai
∗〉

for i = 1 . . . n. For claim 3, we observe�n
i=1 Ri ≡�n
i=1(x〈s′i〉 Q

i1 · · ·Qik)〈Ai
∗〉 ≡

(x〈
⊎n

i=1 s
′
i〉
�n

i=1 Q
i1 · · ·
�n

i=1 Q
ik)〈
⊎n

i=1〈Ai
∗〉〉

where Qi j ≡
�mi j

q=1 P
i j
q . So we have

‖

n�
i=1

Ri‖L =
k

max
j=1
{‖

n�
i=1

Qi j‖L} ≤ d

using (10), thereby proving claim 3.
In case the procedure accepts in step 1(i), we have by induction

hypothesis a solution Y ≡ N with derivable elaborations

∆i, x : si ` N �=⇒ Pi : 〈ϕi〉

for i = 1 . . . n, with (∆i, x : si)◦ ⊆ Γi, x : σi and (si → ϕi)◦ = σi →

Bi. It follows that

∆i ` λx.N �=⇒ (λx.Pi)〈si → ϕi〉 : 〈si → ϕi〉

is derivable for i = 1 . . . n, from which claims 1 and 2 are seen to
hold. For claim 3, we have by induction hypothesis ‖

�n
i=1 Pi‖L ≤ d,
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and therefore

‖

n�
i=1

(λx.Pi)〈si → ϕi〉‖L = ‖

n�
i=1

Pi‖L ≤ d

thereby proving claim 3.
In case the procedure accepts in step 1(ii), we have by induction

hypothesis a solution Y ≡ N with derivable elaborations

∆i ` N �=⇒ Pi : 〈ϕi〉

for i = 1 . . . n, with ∆i
◦
⊆ Γi and (si → ϕi)◦ = σi → Bi. It follows

that

∆i ` λy.N �=⇒ (λy.Pi)〈si → ϕi〉 : 〈si → ϕi〉

is derivable for i = 1 . . . n, from which claims 1 and 2 are seen to
hold. For claim 3, we have by induction hypothesis ‖

�n
i=1 Pi‖L ≤ d,

and therefore

‖

n�
i=1

(λy.Pi)〈si → ϕi〉‖L = ‖

n�
i=1

Pi‖L ≤ d

thereby proving claim 3. �

The following is the main lemma for completeness.

Lemma 30. Suppose ∆i ` N �=⇒ Pi : 〈ϕi〉 for i = 1 . . . n with
‖
�n

i=1 Pi‖ ≤ d, where N is a normal form. Then I〈d〉(C) accepts
with

C = 〈∆1
◦
`? : ϕ1

◦, . . . ,∆n
◦
`? : ϕn

◦〉

Proof: By induction on N.
Notice that ‖

�n
i=1 Pi‖ ≤ d implies n ≤ d.

In case N ≡ x we have ∆i ` x �=⇒ x〈ϕi〉 : 〈ϕi〉 with (x : si) ∈ ∆i
such that si(ϕi) > 0. It evidently follows that I〈•〉 accepts in step 2
(case k = 0) from C, and since n ≤ d, so does I〈d〉.

In case N ≡ λx.N′ we must have

∆i, x : si ` N′ �=⇒ P′i : 〈ψi〉

where ϕi = si → ψi for i = 1 . . . n. Because ‖
�n

i=1 Pi‖L =
‖
�n

i=1 P
′
i‖ ≤ d, induction hypothesis applies and shows that I〈d〉

accepts from configuration C′ where

C′ = 〈(∆1, x : s1)◦ `? : ψ1
◦, . . . , (∆n, x : sn)◦ `? : ψn

◦〉

There are two cases. In case (i) where there is no other variable y
such that (y : si◦) ∈ ∆i

◦ for all i = 1 . . . n, the claim follows easily
from induction hypothesis. In case (ii) where there is a variable y
such that (y : si◦) ∈ ∆i

◦ for all i = 1 . . . n, we note that acceptance
from C′ implies acceptance from C′′ where

C′′ = 〈∆1
◦
`? : ψ1

◦, . . . ,∆n
◦
`? : ψn

◦〉

because we can always use y : si◦ in lieu of x : si◦, thereby showing
the claim.

In case N ≡ x N1 · · ·Nk we must have

∆i ` x �=⇒ x〈s1i → · · · → s
k
i → ϕi〉 : 〈s1i → · · · → s

k
i → ϕi〉

for i = 1 . . . n with

∆i ` N j �=⇒ Q
j
i : s j

i

for j = 1 . . . k and such that Pi ≡ x〈. . .〉 Q1
i . . .Q

k
i (leaving out some

annotations for readability). Because we have ‖
�n

i=1 Pi‖L ≤ d, it
follows that we also have ‖

�n
i=1 Q

j
i ‖ ≤ d for j = 1 . . . k. Writing

s
j
i = 〈ϕ1

i j, . . . , ϕ
mi j
i j 〉, it follows from Lemma 15 together with ∆i `

N j �=⇒ Q
j
i : s j

i for i = 1 . . . n and ‖
�n

i=1 Q
j
i ‖ ≤ d that we have

n∑
i=1

|s
j
i | =

n∑
i=1

mi j ≤ ‖

n�
i=1

Q j
i ‖ ≤ d for all j = 1 . . . k

By
∑n

i=1 mi j ≤ d for all j = 1 . . . k induction hypothesis applies
and shows that I〈d〉 accepts from each of the configurations C j, for
j = 1 . . . k, where C j is the configuration

〈∆1
◦
`? : (ϕ1

1 j)
◦
, . . . ,∆1

◦
`? : (ϕ

m1 j
1 j )

◦
,

. . . ,∆n
◦
`? : (ϕ1

n j)
◦
, . . . ,∆n

◦
`? : (ϕmn j

n j )
◦
〉

The claim now follows by universal transition in step 2 of I〈d〉. �

Theorem 31 (Soundness and completeness of A〈d〉). Procedure
A〈d〉 is sound and complete for inhabitation in bounded multiset
dimension:

1. Soundness. If A〈d〉(C) succeeds with C = 〈Γ `? : A1, . . . ,Γ `? :
An〉, then Γ d M :

⋂n
i=1 Ai for some M.

2. Completeness. Whenever Γ d M :
⋂n

i=1 Ai for some M, then
A〈d〉(C) succeeds with C = 〈Γ `? : A1, . . . ,Γ `? : An〉.

Proof: We first show that procedure I〈d〉 is sound and complete for
inhabitation in bounded multiset dimension, in the following sense:

1. Soundness. If I〈d〉(C) succeeds with C = 〈Γ `? : A1, . . . ,Γ `? :
An〉, then Γ d M :

⋂n
i=1 Ai for some M.

2. Completeness. Whenever Γ d M :
⋂n

i=1 Ai for some M, then
I〈d〉(C) succeeds with C = 〈Γ `? : A1, . . . ,Γ `? : An〉.

Soundness is clear from Lemma 29 together with Lemma 22. To
prove completeness, suppose Γ d M :

⋂n
i=1 Ai for some M. By nor-

malization together with subject reduction in bounded dimension
(Theorem 18), there is a normal form N such that ∆ ` N �=⇒ P : s
with ∆◦ = Γ, s◦ =

⋂n
i=1 Ai and ‖P‖ ≤ d. It follows that for some

Pi and ϕi we have ∆ ` N �=⇒ Pi : 〈ϕi〉 with ϕi
◦ = Ai and

‖
�n

i=1 Pi‖ ≤ d. Lemma 30 then shows that I〈d〉 accepts from con-
figuration C = 〈Γ `? : A1, . . . ,Γ `? : An〉.

We can now prove soundness and completeness of A〈d〉.
Soundness. Assume A〈d〉(C) succeeds with C = 〈Γ `? :

A1, . . . ,Γ `? : An〉. Then obviously I〈d〉(C) succeeds. By sound-
ness of procedure I〈d〉, we have Γ d M :

⋂n
i=1 Ai for some M.

Completeness. Follows immediately from completeness of pro-
cedure I〈d〉, since any accepting tree of procedure I〈d〉 with possi-
ble repetitions of configurations can obviously be shortened to an
accepting tree (without repetitions) of A〈d〉. �

6.3 Complexity of Bounded-Dimensional Inhabitation
By soundness and completeness (Theorem 31) together with sub-
sumption of rank 2-bounded inhabitation (Proposition 23), we are
now in a position to prove exponential space completeness of in-
habitation in bounded multiset dimension, using the analysis of
rank 2-bounded inhabitation by Urzyczyn.

For each d > 0 let INHDim〈d〉 denote the decision problem:

• Given Γ and σ, does there exist M such that Γ d M : σ?

The following upper bound argument is analogous to the expo-
nential space upper bound argument for rank 2-bounded inhabita-
tion given in [33].

Proposition 32. For each d > 0, procedure A〈d〉 decides the prob-
lem INHDim〈d〉 in ATIME(N2d) where N denotes the size of the
input Γ and σ.

Proof: By Theorem 31, procedure A〈d〉 is a semi-decision proce-
dure for INHDim(d). We now show that procedure A〈d〉 is indeed a
decision procedure operating within ATIME(N2d).

Consider the possible distinct configurations of maximal degree
d, of the form 〈Γ1 `? : A1, . . . ,Γd `? : Ad〉, of procedure A〈d〉.
Because there are at most N distinct subterms of types in the input Γ
and σ, and no two variables are assigned the same type in all the Γi,
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there are at most Nd distinct assignments of types 〈σ1, . . . , σd〉 to a
variable x in 〈Γ1, . . . ,Γd〉. The right-hand sides Ai are all subterms
of types in the input Γ and σ, hence each right-hand side type
can be chosen in at most N ways. Therefore, there are at most Nd

possible distinct right-hand side vectors of length d. Consider the
(by definition, non-repeating) sequences of configurations along
any single path in the computation tree of a run of procedure A〈d〉.
After at most Nd consecutive steps, a new variable must be added
to the Γi to avoid repetition. Since there are at most Nd distinct
possible assignments of types to a variable, adding a new variable
to the Γi can be done at most Nd times avoiding repetition. It
follows that the length of paths of non-repeating configurations in
the computation tree is bounded by Nd × Nd = N2d. �

Notice that, by Proposition 32, we have decidability in PSPACE
(alternating polynomial time) of inhabitation bounded in any fixed
dimension d. Generally, bounding dimension by any computable
function f (N) yields an upper space bound for inhabitation expo-
nential in f (N).

We turn to the lower bound, which will be by reduction from
rank 2-inhabitation [33], via Proposition 23. But first we must es-
tablish the following proposition, which is prima facie non-obvious
due to worst-case exponential blow-up in type size when presenting
general intersection types as equivalent strict types in λS .

Proposition 33. Rank 2 inhabitation in λS is EXPSPACE-hard.

Proof: In [33] Urzyczyn proved EXPSPACE-hardness for the halt-
ing problem for so-called bus machines by reduction from alter-
nating exponential time Turing-machines. Then, the halting prob-
lem for bus machines is reduced to rank 2 inhabitation in [33,
Lemma 5]. In particular, it is shown that the following problem is
EXPSPACE-hard. Given type constants ai and type environments
Γ1, . . . ,Γn such that D := dom(Γ1) = . . . = dom(Γn) and such that
for each x ∈ D, Γi(x) is either a simple type or an intersection of
simple types (i.e. normalized intersection type of rank 1), is there a
term M such that Γi ` M : ai for i = 1 . . . n? Note that all occurring
types are strict. The claim follows, since the above problem has a
solution iff there exists a term M′ such that

` M′ :
n⋂

i=1

(Γi(x1)→ . . .→ Γi(xm)→ ai)

�

Theorem 34. The problem INHDim is EXPSPACE-complete.

Proof: Upper bound. By Proposition 32.
Lower bound. By reduction of rank 2-inhabitation in λS to

INHDim. Consider a rank 2 instance Γ `S ? : σ of the inhabitation
problem for λS , and let n denote the size of the input Γ and σ. By
Proposition 23, we have

∃M. Γ `S M : σ⇔ ∃N. Γ n N : σ

Proposition 33 thereby proves the claim. �

We end the paper by recording the following proposition on the
complexity of inhabitation in the non-idempotent system of [5].
The proof can be found in [16, Appendix D]. The inhabitation prob-
lem in [5] was shown there to be decidable, but complexity was not
addressed. The determination of the complexity puts a complexity-
theoretic marker (NP vs. EXPSPACE) on the difference between
linear, non-idempotent intersection types and the non-linear notion
of multiset dimension, as discussed in Section 2 and Section 5. The
proof of the NP upper bound is based on the observation that type
size imposes a linear bound on the size of minimal inhabitants.

Proposition 35. The inhabitation problem for non-idempotent in-
tersection types in [5] is NP-complete.

7. Conclusion
We have presented a new notion of dimensionality for the intersec-
tion type system based on the idea of elaborations equipped with a
norm, and we have applied this concept to obtain a uniform princi-
ple for bounding the inhabitation problem with intersection types.
We have shown that a multiset interpretation of dimensionality cor-
responds to the width of simultaneous multiset systems of con-
straints employed by a sound and complete search procedure for
inhabitants. Our main technical result is EXPSPACE-completeness
of inhabitation in bounded multiset dimension, and we have shown
that this result strictly subsumes the rank 2-bounded fragment,
leading to a substantial generalization which is independent of rank
or functional order. We believe that the notions of dimension and
norm introduced here capture an intuitive idea of “logical width”
of intersection types regarded as logical feature vectors.

8. Future Work
We foresee at least three lines of further work which should be im-
mediately enabled by the results presented here. One is the appli-
cation of our results to synthesis based on inhabitation. We believe
that dimensional bound is natural for many applications in this area.
If we consider an intersection type as a logical feature vector, it is
reasonable to assume that a priori bounds on set theoretic dimen-
sionality can be given relative to the semantics of the application
area. This is, for example, rather obvious for applications where
intersection types are used to directly express semantic properties,
such as are considered in [15, 17] or can be found in abstract inter-
pretation or type refinement. As we have seen, bounding set theo-
retic dimensionality is not sufficient for decidability, but our notion
of norm could allow us to understand how multiset dimensional
bound approximates “semantic truth” with respect to inhabitation.

The second area (also discussed in Section 2 and Section 5) is
concerned with the connection between our notion of dimension-
ality and operational (reduction) semantics, and with the relation
to systems using concepts of linear logic. In the light of Section 5,
it seems reasonable to conjecture that the notions of norm and di-
mensionality considered here should be systematically related to
both topics, and although some observations have been made in
the paper, much remains to be clarified. We have also given some
results and observations concerning dimensional analysis of other
systems, but the deeper meaning of dimension and norm as mea-
sures of logical strength should be further investigated. Finally (as
also suggested by one of our reviewers), it would be interesting to
investigate model theory for the multiset system.

The third area concerns more specific technical questions. Im-
mediate open problems are: Is typability decidable in bounded mul-
tiset dimension? Is the problem decidable in bounded set theoretic
dimension? It should be noted here by comparison that the sys-
tem of [5] has a decidable inhabitation problem but an undecidable
typability problem. We also briefly touched on the impact of sub-
typing (Section 5) which is not considered in detail here.

Acknowledgements
We are grateful to Paweł Urzyczyn and his group in Warsaw for nu-
merous discussions concerning type theory and inhabitation prob-
lems, and we are obviously deeply indebted to his magnificent pa-
per [33], sine qua non. We are grateful to Mariangiola Dezani, Si-
mona Ronchi Della Rocca, Mario Coppo and the Torino λ-calculus
group for many delightful discussions on intersection types, both
idempotent and not. Finally, we extend our gratitude to our anony-
mous reviewers for their comments, which influenced the final ver-
sion of the paper.

664



References
[1] H. P. Barendregt. The Lambda Calculus. Its Syntax and Semantics.

Studies in Logic and the Foundations of Mathematics, 2nd Edition.
Elsevier Science Publishers, 1984. doi: 10.2307/2274112.

[2] H. P. Barendregt, M. Coppo, and M. Dezani-Ciancaglini. A Filter
Lambda Model and the Completeness of Type Assignment. Journal
of Symbolic Logic, 48(4):931–940, 1983. doi: 10.2307/2273659.

[3] H. P. Barendregt, W. Dekkers, and R. Statman. Lambda Calculus
with Types. Perspectives in Logic, Cambridge University Press, 2013.
ISBN 978-0-521-76614-2.

[4] A. Bernadet and S. Graham-Lengrand. Non-Idempotent Intersection
Types and Strong Normalization. Logical Methods in Computer
Science, 9(4:3):1 – 46, 2013. doi: 10.2168/LMCS-9(4:3)2013.

[5] A. Bucciareli, D. Kesner, and S. Ronchi Della Rocca. The inhabitation
problem for non-idempotent intersection types. In TCS 2014,
Proceedings of 8th IFIP TC 1/WG 2.2 International Conference
on Theoretical Computer Science, Rome, Italy, September 1-3, 2014.
Springer, 2014. doi: 10.1007/978-3-662-44602-7 26.

[6] M. W. Bunder. The inhabitation problem for intersection types.
J. Harland and P. Manyem, editors, Computing: The Australasian
Theory Symposium, volume 77 of Conferences in Research and
Practice in Information Technology, Australian Computer Society,
pages 7 – 14, 2008.

[7] A. K. Chandra, D. C. Kozen, and L. J. Stockmeyer. Alternation. Jour-
nal of the ACM, 28(1):114–133, 1981. doi: 10.1145/322234.322243.

[8] M. Coppo and P. Giannini. Principal types and unification for a
simple intersection type system. Information and Computation, 122
(1):70–96, 1995. doi: 10.1006/inco.1995.1141.

[9] M. Coppo, M. Dezani-Ciancaglini, and B. Venneri. Principal
Type Schemes and Lambda-Calculus Semantics, pages 480–490.
Accademic Press, London, 1980. Ed.: R. Hindley and J. Seldin.

[10] M. Coppo, M. Dezani-Ciancaglini, and B. Venneri. Functional
Characters of Solvable Terms. Zeitschrift für mathematische Logik
und Grundlagen der Mathematik, pages 45–58, 1981.

[11] E. De Benedetti and S. Ronchi Della Rocca. Call-by-value, elementary
time and intersection types. In FOPARA 2015, Foundational and
Practical Aspects of Resource Analysis - 4th International Workshop,
London, UK, April 11 2015, Revised Selected Papers, pages 40–59.
Springer LNCS 9964, 2016. doi: 10.1007/978-3-319-46559-3 3.

[12] E. De Benedetti and S. Ronchi Della Rocca. A type assignment
for λ-calculus complete both for FPTIME and strong normaliza-
tion. Information and Computation, 248:195–214, 2016. doi:
10.1016/j.ic.2015.12.012.

[13] D. de Carvalho. Execution time of lambda-terms via denotational
semantics and intersection types. CoRR, abs/0905.4251, 2009. URL
http://arxiv.org/abs/0905.4251.
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[15] B. Düdder, M. Martens, and J. Rehof. Staged Composition
Synthesis. In ESOP 2014, Proceedings of European Symposium
on Programming, Grenoble, France 2014, volume 8410 of LNCS,
pages 67–86. Springer, 2014.

[16] A. Dudenhefner and J. Rehof. Intersection Type Calculi
of Bounded Dimension (Extended Version). Technical Re-
port 857, Faculty of Computer Science (TU Dortmund), 2016.
http://www-seal.cs.tu-dortmund.de/seal/downloads/
research/cls/TR857-DIM.pdf.

[17] J. Frankle, P. Osera, D. Walker, and S. Zdancewic. Example-directed
synthesis: a type-theoretic interpretation. In POPL 2016, Proceedings
of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, St. Petersburg, FL, USA, January 20 -
22, 2016, pages 802–815, 2016. doi: 10.1145/2837614.2837629.

[18] P. Giannini and S. Ronchi Della Rocca. Characterization of
typings in polymorphic type discipline. In LICS 1988, Proceedings
of the Third Annual Symposium on Logic in Computer Science,

Edinburgh, Scotland, UK, July 5-8, 1988, pages 61–70, 1988. doi:
10.1109/LICS.1988.5101.

[19] J. R. Hindley. Basic Simple Type Theory. Cambridge Tracts in
Theoretical Computer Science, vol. 42, Cambridge University Press,
2008.
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