
A FAST AND USUALLY LINEAR ALGORITHM FOR GLOBAL FLOW ANALYSIS+

(Extended Abstract)

by

Susan L. Graham and Mark Wegman
Computer Science Division
University of California

Berkeley, California 94720

S!mN.LY
A new algorithm for global flow analysis on

reducible graphs is presented. The algorithm is
shown to treat a very general class of function
spaces. For a graph of e edges, the algorithm
has a worst case time bound of O(e log,e) func-
tion operations. In programming terms, the number
of operations is shown to be proportional to e +
the number of exit nodes from program loops.
Consequently a restriction to one-entry one-exit
control structures guarantees linearity. It is
shown that by relaxing these time bounds, a yet
wider class of function spaces can be handled.

1. Introduction

In analyzing a computer program for purposes
of code improvement, program verification, or error
diagnosis, it is necessary to be able to trace (at
compile-time) the flow of information through a
program. In connection with code improvement tech-
niques (such as, for example, common subexpression
elimination or moving invariant computation out of
loops), this analysis is called ‘“Global Flow
Analysis”. Until recently the principal systematic
technique for global flow analysis has been the
interval analysis of Cocke and Allen [2,4]. The
time needed to analyze the graphical representation
of a program using this method is at worst propor-
tional to the number of edges in the graph times
the number of nodes. Kennedy [12] extended inter-
val analysis to deal with a wider class of global
flow problems than had previously been handled by
this method.

Hecht and Unman [8] have presented an itera-
tive approach to global flow analysis in which the
analysis can be carried out in time proportional to
the number of edges in the graph times the maximum
“depth” of the graph. (In the worst case the depth
is proportional to the number of nodes in the
graph.) Kildall [14] has proposed and implemented
several eXteIISiOnS to the Iterative method. The
method is investigated further by Kam and Unman in
[11]. Comparisons of the iterative approach with
interval analysis appear both in Hecht and Unman
[8] and in Kennedy [13].

In [20], Unman presents a somewhat compli-
cated algorithm for common sub-expression elimina-

-tion which requires, at worst, time proportional
to e log~e for a graph with e edges. Hecht

‘Research sponsored by National Science Foundation
Grant GJ-43318.

and Unman [7,9] also provide several useful cha-
racterizations of the class of graphs, termed
“reducible flow graphs”, on which interval analysis
can be used.

Global flow analysis is also discussed in Aho
and Unman [1] and Schaefer [17].

In this paper, we present a new algorithm for
global flow analysis which combines a modification
of interval analysis with a modification of the
transformations introduced by Hecht and Unman in
[7] to characterize reducible flow graphs. For a
very general class of information flow problems the
algorithm requires time at worst proportional to
e log e for a flow graph with e edges. A dif-
ferent analysis of the algorithm reveals that the
time is proportional to the number of edges plus
the sum of the number of exits from program loops.
Consequently the algorithm is linear for GOTO-free
programs and very nearly linear for most “well-
structured” programs.

The paper is organized as follows. In the
next section, the basic definitions and results
about program flow graphs are presented. In sec-
tion 3 we introduce the notions of information pro-
pagation problems, fast functions and acceptable
assignments. In section 4 we introduce transfor-
mations T;, T’, and T~. We investigate the use

?of these trans ormations in solving information
propagation problems. Section 5 contains an anal-
ysis of the number of T;, T’,

f and ‘$ ‘transfo-rmations carried out by the a gorlthm on a flow
graph. In section 6 we outline an efficient imple-
mentation of the algorithm which requires time pro-
portional to the number of transformations. Sec-
tion 7 contains further discussion of the method
and possible extensions.

The present paper is in the form of an extend-
ed abstract in which the proofs are omitted or
briefly sketched. A full presentation of these
results will be submitted for publication in a
journal and the results will be contained in the
Ph.D. dissertation of the second author.

2. Basic Notions

A directed * G = (N,E) has a set of
nodes N and a set of * E, where E~NxN.
~is, for all e members of E, e = (u,v)
for some u, v members of N. In this paper we
will assume that all graphs are directed. Am

P= PCIYP1,. ..>P ,~ \zO isasequence of nodes
such that for a 1 1 between O and k-l,

22

Permission to make digital or hard copies of part or all of this work or personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission and/or a fee.
© 1975 ACM 0-12345-678-9…$5.00

(Pj, Pi+l) is an edge. A path P = PO,Pl,. ..,Pk
is a path from p. to pk of length k. For any

iyj such that O<~<j <k, pi is a predecessor
Of pj and pj is–a suc;essor of pi, relative
to p. If j=i+l th~n p. is an immediate
successor Of Pi. A path ? = PO,P1,. . .5P -

[-anode u if for some 1, o~i: ,
pi=U. A path p= Po,pl,. . . ,Pk Passes through an
edge e = (u,v) if for some i, O<i<k, .
pi+l ‘V. An edge (u,v) leaves u–and ent~;;”;.

A-is a path c = po,pl,. ..,pk where

PO=P A trivial -or a @is a cycle whose
k“” —lengt IS 1. Thus, if c is a trivial cycle,

C=po, PI and po=-pl. An edge (po;~l) where

Po = P1 IS termed a looping edge. A graph with no
cycles is acyclic.

A flow graph G = (N,E,no) is a graph with a
distinguished node no in N such that for all v
members of N there exists a path from no to v.

Let G = (N,E,n) be a flow graph. Node x
dominates node y i! and only if every path from
no to y passes through x.

Lemma. Dominance induces a partial ordering
on the nodes of a flow graph.

An interval (I, h) of a flow graph
G : (N,E-a maximal set of nodes I con.
talned In N with a header node h in I such
that for all edges e-v) in E, ifu~I
and v s I then v = h and furthermore all cycles
with nodes only from I pass through h.

Theorem (Cocke and Allen). Every flow graph
can b-tioned into a unique set of intervals
in time proportional to the number of edges.

Let G = (N,E,no) be a flow graph. Let N’
be a set of nodes, each representing an interval of
G and let E’ be a set of edges between nodes of
N’ such that (x,y) is in E’ ifl) x and y
represent different intervals of G and 2) there
exists an edge in E from a node in the interval
represented by x to the header of the node repre-
sented by y. Let n~ be the node representing
the interval containing no. Then G’ = (N’, E’, n~)
is the derived @ of G.

A flow graph G is reducible if there exists
an integer k~O and a sequence of graphs

~~~!l~~;~~!kan~u~~rth~~ i!=kGO~ .+~k ‘s ‘he ‘ri-is the derived
graph of Gi. A flow @aph whi~h is not reducible
is irreducible. Figure 1 is an example of an irre-
ducible flow graph. The flow graphs in the other
figures in this paper are reducible.

A
o

6
Figure 1. The paradigm irreducible

flow graph

Let G = (N,E,no) be a reducible flow graph. An
edge (x,y) is a frond if y dominates x. A
looping edge is a trivial frond.

The present work is based on the following
two theorems of Hecht and Unman on reducible flow
graphs.

Theorem [Hecht& Unman, 9]. A flow graph
G = (~ is reducible if and only if its edges

t“can be par ltioned into two sets S1, S2 such that
O = (N,S1,no) is a directed acyclic flow graph,
for any e in S , D’ = (N,SIUe},no) is nOt a

directed acyclic flow graph, and for every edge
(x,Y) of S2, y dominates x.

Definition. Let G = (N,E,no) be a flow
qrauh..,

If there exists a node v in N and
e = (v,v) is a looping edge in E then transfor-
mation Tl(G,e) ~ (N,E-{e},no). Thus, T1 elim-
inates loops.

If there exists a node v in N and the only
edge which enters v is e = (u, v) then transfor-
mation T2(G,e) ~ (N-{v},{(x,y)l x,yeN-v and
m (x,y)cE or X=U and (v,y)c E},no). Thus,
transformation T2 eliminates v and replaces all
edges leaving v by path-equivalent edges leaving
u.

Figures 2 and 3 are examples of T1 and T2.

Theorem [Hecht & Unman, 7]. Let G=(N,E,no)
be a flow graph. G is reducible if and only if
there exists a sequence of flow graphs
GO,Gl, . . ..Gk. k>O such that G=GO, G

f
is the

trivial graph, an~ for l<i<k, Gi+l = j(G., e),
for some js{l,2} and ~e~ such that Tj/G,e)
is defined.

It can be shown that the sequence of flow
graphs in the theorem is at least as long as the
sequence of derived graphs for reduction by
intervals.

Figure 2. A T1 transformation

.oiil)on(de

Figure 3. A T2 transformation

23



Lemma. Let G = (N,E,no) be a reducible
flow graph. G contains a nontrivial cycle if and
only if E contains a nontrivial frond.

3. Information Propagation Problems

In order that our global flow analysis tech-
niques be most useful, we wish to demonstrate that
they can be carried out efficiently for various
program flow problems. Rather than presenting a
separate algorithm for each type of code improve-
ment, we characterize the class of problems han-
dled by our algorithm, following, in spirit, the
unifying approach of Kildall [14]. Evidence for
the generality of this class is provided by Fong,
Kam, and Unman [6].

We cannot expect to obtain complete informa-
tion for every kind of code improvement technique
that might seem useful. For example, it is impor-
tant to determine what arithmetic operations are
unaffected by program flow and can therefore be
determined at compile-time. Suppose there is a
statement “A:=B+C;” in a program. If the value of
B is 3 and the value of C is 5, every time this
statement is executed then we would like to replace
the statement with “A:=8;”. However, since even
determining whether a variable equals 1 or O is
undecidable, we cannot detect all such instances.

Consequently, for each program analyzed, we
restrict our attention to a finite set X of
“facts” (for example, A=5, C a power of 2),
whose truth valu~s at any point in the program may
or may not be determinable. With each edge (u,v)
in the program graph is associated a function
which maps the subset of facts true at node u to
the subset of facts true at node v if the con-
trol flow of the program leaves node U along
edge (u,v). The task of our global flow analysis
is then to associate with each node in the graph a
subset of X which will always be true just before
the node is executed at run-time. The association
of sets of “facts” with nodes is termed an
assignment.

Finding a maximal such assignment is at least
as difficult as polynomial complete problems [3].
However we can find substantially faster algorithms
if we restrict ourselves to assignments with the
property that if Xl is the set of facts for node
u, X2 is the set of facts for node V, and f
is the function associated with edge (u,v), then

~~~~~~~~ Wenowmake these notions more

We first define the sets of functions we
consider.

Defi?l{tion. Let X be a set. A function f
mapping subsets of X into subsets of X is said
to b-monotonic if for all xl, X2 subsets of X
such that X1 is contained in X2, then f(Xl)
is contained in f(xz).

The intersection h = fng of two functions
f and g is defined for all subsets Xl of X
by h(xl) = fag.

t
The reader familiar with the program verification
techniques of Hoare [10] and Floyd [5] will find
relationships with that work. We do not explore
those issues here.

The composition h = fog of two functions is
defined for all subsets Xl of X by

h(Xl) = f(g(Xl)).
A set of functions F is an information pro-

-space if 1) F is closed under composi-
tion and Intersection, 2) F is monotonic.

A set of functions F is fast if 1) F is an
information propagation space, ~or all f in F
and all Xl subsets of X, f(xl)nxl gf(f(xl)).

Lemma. The transitive closure of a set of
monotonic functions under composition and intersec-
tion is an information propagation space.

1< i ~: :::::!!p~~~~,!: }~li~f~i;~?l~}~or
!g~Xi)=Xl -{ai}.
t

ret F be the ransltive closure
o the identity function and the fi’s and gi’s un-
der composition and intersection. Since the fi’s
and gi’s are monotonic, F is an information propa-
gation space. All functions in F are of the form
f(X1) = X UX2-X , where X1, X2, and X3 are
subsetso$ X. T?us, forany X~CX
f(f(Xl))=f(Xl) and F is fast. ‘The functions in
F include those using Kills and Gens from many
global flow problems.

For many global flow problems of practical in-
terest, each subset of X can be represented by
a bit vector of length 1X1. Function operations
can then be implemented as Boolean word operations
and are consequently very rapid.

Next we complete our specification of the
class of problems we are considering. Given a flow
graph G = (N,E,n) and an information propagation
space F, ?we wil associate functions of F with
edges in E by a function M from E to F. We
use the notational convention that for any e E E,
fe = M(e). Let P = PO, Pi,. ... Pk be a path. We
extend our notational convention to paths so that
for k>O fp=f(

pk-l,pk)Of(pk-2>pk-3)0” ””0f(0,1)“
If p is the trivial path, then for any Xl ~X,
fp(xl) = xl.

An information ro a ation roblem is a tuple
IP= (G,F,x, ~ where E* how graph,
F is an information propagation space, Xisa
set (the domain of the functions in F), and M
is a mapping E+ F.

Having stated the problem, we are now ready to
define a class of solutions.

A fixed oint for an information
—-Y-”-

propagation}
problem 1P = G,F,X,M) 1s a function FP: N+2
such that for all “n in N, e = (m,n) in E,
FP(n) qfe(FP(m)) and FP(no) = o.*

A ~assi nment to an information propaga-
tion roblem 1P = G F~,~ is a functionS,N:2, +

such that for all paths p = Po,pl,pk
where PO= no then S(pk) ~fp($).

An acce table assi nment man information
ro a ation ~roblem~-F,X,~ is a function

&such that AS isasafe assiQnmentto

1P and for all fixed points FP for IF and for
all n in N, FP(n) ~AS(n).

‘The nota~~;; ;; s N + 2Xdenotes the set of all subsets
of x. and n e N then
S(n) is som~ subse~ of X.’

24

Let K be a set of functions, such that if f
is in K then f is a mapping f: N+2X. We say
f is maximal in K if for all f’ in K either
f’ =f or there exists n in N such that
f(n) ~f’ (n).

Intuitively, given a set of facts true just
before a node is executed, a fixed point for that
node yields a set of facts true upon entry to any
successor of that node. A safe assignment asso-
ciates with each node a set of facts that are prov-
ably true at that point in the program. An accept-
able assignment is safe, and in addition, is at
least as good as a maximal fixed point.

Example. Consider the information propagation
problem of Figure 4, letting al stand for “1=0”,
a2 for “Y=5”, and a3 for “Z=5”. Let F be
the transitive closure of the functions in the
range of M under composition and intersection.

Let FP be the maximal fixed point for this
example. Then FP(no) = ~, FP(nl) = 0,
FP(n2) = {al}, FP(n3) = O, FP(n4) = 0, Fp(n5)=@
and Fp(n6) = $.

Let S be a maximal safe assignment. Then
S(no) =$, S(nl) =0, S(n2) = {a }, S(n) ‘$,
S(n4) = $, S(n5) = {a2,a3}, S(n6] =@. 3 -

Both FP and S are acceptable assignments.
The function mapping each node to $ is a fixed
point and a safe assignment, but it is not an
acceptable assignment. Notice that the safe
assignment given above is not a fixed point, since

‘(n5)~f(n4,n5)(S(n4)). It is easily shown that

every fixed point is a safe assignment.

/read(I)\

vread(Z) no
read(Y)

Yes

n2 Z:=5

No

rint(’’No”)
stop ‘5

X = {al,a2,a3}

For any Xl ~X, define M as

‘(no,n~) (Xl) = X1-{al}-{a2}-{a31

‘(n] ,n2)
(Xl)=Xlu{al}

f(n, ,na)(xl) = ‘1

‘“(x,) =Xlu{a3}‘(n~,n4)

‘(n3,n4)
(Xl) =Xlu{a2}

(Xl u{a2} if a3e X1

F

‘(n4,n5)(x,) =

i

Xlu{a3} if a2EX1

xl otherwise

‘(n49n6)(x,) =x]

gure 4. Flow graph and functional mapping
of information propagation problem

In dealing with fast information propagation
spaces, the fact that X is finite is never used
and is therefore inessential in theory although it
can lead to a more efficient implementation. sup-
pose we have an information propagation space all
functions of which map finite sets to finite sets.
Then even if the set X of “facts” is infinite,
only a finite subset are necessary for any flow
graph. Such a finite subset is easily found by the
following technique. Construct an assignment B
to the nodes by the following method: Set
B(no) = 1$1 While B(v) is undefined for some v,
if (u,v) is in E and B(u) is defined, set

B(v) = f(u, v)(B(u)). The set X’ = UNB(U) is

finite and if S is any safe assignment for
IP = (G,F,x,M) then for every USN, S(U) gx’.
Thus for any u, S is a safe assignment for
IP’ = (G,F,X’,M) if and only if S is a safe
assignment for 1P.

4. The Transformations

In section 3 we introduced the notions of an
information propagation problem and an acceptable
assignment for such a problem. In this section and
the next, we develop an algorithm for finding an
acceptable assignment for an information propaga-
tion problem on any reducible flow graph.

In this section we describe three transforma-
tions, T;, T~, and T:, on flow graphs. We show
that given an information propagation problem on a
flow graph, a graph transformed by T;, T~, or T~
has a corresponding information propagation pro-
blem. From an acceptable assignment for the trans-
formed graph we can find an acceptable assignment
for the original graph. If the information propa-
gation space is fast then this process requires at
most three functional operations (application of a
function to an argument, composition of two func-
tions, or intersection of two functions). If the
space is not fast, up to loglX/t compositions of
functions can be required for a T; transforma-
tion, where X is the set of “facts” of the infor-
mation propagation problem.

It follows from these results that if we can
reduce a flow graph to one node using these trans-
formations, then from an acceptable assignment for
the one-node graph we can find an acceptable
assignment for the original graph in time propor-
tional to the number of T;, Ti, and Ti trans-
formations needed. We show in section 5 that the
number of such transformations is 0(1 Ellog IEl)

where IEI is the number of edges in the original
graph, and that the number of T; transformations
is at most IEI. Consequently we can find an
acceptable assignment for an information propaga-
tion space with fast functions in O(lElloglEl)
functional operations and in 0(1 Ello91El
+ \ElloglXl) otherwise.

We now introduce the flow graph transforma”~
tions.

Definition. Let G = (N,E,no) be a flow
graph. If for some v in N there exists an
edge e = (v, v) in E and there exists a unique
u in N-{v} such that (u,v) is in E then

transformation Tj(G,e) = (N,E-{e},no).

‘For any set X, 1X1 denotes the number of ele-
ments in X.

25

Thus T;, when defined, has the same effect
as transformation T1 of Hecht and Unman.

.mfinition. .Let G = (N,E,no) be a flow
graph. If for some v in N there exists a
unique u in N-{v} such that (u,v) is in E
and there exists any e = (v,w) in E, where
v # w, then transformation T~(G,e) = (N’’,E’’,no)
where, if v has no immediate successors other
than w, then N“ = N-{v}, E“ = Eu{(u,w)}
- {(u,v), (v,w)} and otherwise N“ = N,
E“ = EU{(U,W)}-{(V,W)}.

Thus, (v,w) is removed and replaced by
(U,w). If there are then no nontrivial paths from

v is removed from N and (u,v) is removed
~~om E. Given a node v entered by a unique edge
(u,v), transformation T2 of Hecht and Unman
connects u to all immediate successors of v and
discards v and the edge entering v. In con-
trast, each application of transformation T~ con-
nects u to one of the immediate successors of v,
discarding v and the edge entering v only when
the last immediate successor is eliminated.

Be fini*ion. Let G = (N,E,no) be a flow
graph. G is a fan graph if every non-looping edge
1eaves no’

Figure 5. A fan graph

Definition. Let G = (N,E,no) be a fan
graph. If for some v in N, e = (no,!) is the
only edge entering v, then transformation
l~(G,e) = (N-{v},E-{e},no).

Since the node v has no immediate successors,
transformation T~, when defined, has the same
effect as transformation T2 of Hecht and Unman.

We next relate these transformations to ac-
ceptable assignments to information propagation
problems.

Lemma 4.1. Let. IP= (G, F,X, M) be an informa-
tion propagation problem, where G = (N,E,no) and
F is fast. Let G’ = Ti(G,e) be defined for some
e in E. An information propagation problem
1P’ .= (G’, F,x, M’) can be found using only one com-
position of functions and one intersection of func-
tions such that any acceptable assignment to 1P’
is an acceptable assignment to 1P.

e = ?~ht ‘o?;?:Z;V,‘Le l;:
only other edge entering v. Define M’ such that
:’_(;~)e~lM(e’)nM(e)OM(e’) and for all a in

,, M:(a) = M(a). Show that this satisfies
the lemma.

Notice that, unlike the previous lemma, the
next two lemmas do not assume a fast information
propagation space.

Lemma 4.2. Let IP=(G,F,X,M) be an informa-
tion propagation problem, where G=(N,E,no). Let

G’ = T~(G,e) be defined for some e in E. An
information propagation problem 1P’ = (G’,F,X,M’)
can be found using at most one intersection of
functions and one composition of functions such
that by at most one functional application we can
obtain an acceptable assignment to 1P from an
acceptable assignment to 1P’.

=&%%W&’‘OrsOmevinN’:etbe the unique edge In
~hich enters v and let e = (v,w), v # w be an
edge in E which leaves v. Let e“ = (u,w) and
let G’ = (N’,E’). Define M’ such that

{

M(e’’)nM(e)0M(e’) if e“EE
M’(e”) =

M(e)OM(e’) otherwise

and for all a in E’ -{e”}, M’(a) = M(a). If
e’$E’, then for any acceptable assignment AS’
to 1P’ let AS(v) = f(u,v)(AS’ (u)). Show that
this satisfies the lemma. ❑

needed to find 1P’ only if IE”I < IEI. Afunc-
tional application is needed to obtain an accept-
able assignment to 1P from an acceptable assign-
ment to 1P’ only if IN’I < INI.

Lemma%?’!”
Follows from construction in proof of

Lema 4.4. Let lP= (G,F,X,M) be an informa-
tion propagation problem, where G=(N,E,no) is a
fan graph. Let G’ =T.j(G, e) be defined for some e
in E. An information propagation problem
1P’ = (G’, F, X, M’) can be found using no function
operations. By one functional application we can
obtain an acceptable assignment to 1P from an
acceptable assignment to 1P’.

Sketch of Proof. For some v in N- {no},
1et Ino’v) be the unique edge in E which enters
v. For all e’ in E-{e}, let M’(e’) = M(e’).
For anv acce!Jtable assignment AS’ to 1P’ let
AS(v) L f(n (Asf(no)j. Show that this satisfies
the lemma.

o >~)

By combining these three lemmas and the
corollary, we get

Theorem 4.1. Let IP=(G,F,X,M) be an informa-
tion propagation problem, where G = (N,E,no) and
F is fast. Let T be the number of T; and Tj
transformations needed to reduce G to a graph
with the single node no. Then we can find an
acceptable assignment to 1P in INI applications
of functions, at most IEl intersections of func-
tions, and T compositions of functions.

Thus for any information propagation problem
1P = (G,F,X,M) where F is fast it remains only
to analyze the number of T;, T?, and Tj trans-
formations necessary to reduce G in order to know
how many function operations are needed to find an

26

acceptable assignment. We do this analysis in the
next section.

In order to find the number of function opera-
tions needed to find an acceptable assicmment if F
is not fast, it suffices, by Lemma 4.2, to examine
the number of operations required for each Ti
transformation and the number of T’ transforma-
tions needed to reduce G. The lat~er issue is
resolved in section 5. We answer the former by the
following lemma.

Lemma 4.5. Let IP=(G,F,X,M) be an informa-
tion propagation problem, where G = (N,E,n) and
X is a finite set. Let G’ = Ti(G,e) be ~efined
for some e in E. An information propagation
problem 1P’ = (G’,F,X,M’) can be found using only
log21Xl+l compositions of functions and two
intersections of functions such that any acceptable
assignment to 1P’ is an acceptable assignment to
1P.

,, fl:+;r:;:r :::e’;;::e’)
e , ,—

f~(Xl) = fe(X1)fi Xl and f~og]xl denotes the
lX1-term composition f:of;o... of; . ❑

5. Reduction of Flow Graphs

In this section we analyze the number of T;,
T~ , and T’

i
transformations necessary to reduce

a flow grap to a graph with one node, if such
reduction is possible. This result combined with
the results from the previous section give us the
number of function operations needed for global
flow analysis.

The study of the number of transformations
proceeds in several stages. We first exhibit an
algorithm for reducing a reducible flow graph
using these transformations. We then prove the
correctness of the algorithm, at the same time
proving certain characteristics of its behavior.
We then give two analyses of the number of trans-
formations carried out by the algorithm. The
first analysis shows that the number of transfor-
mations is at worst 0(lEllog21 El) where E is
the set of edges of the original graph. The
second analysis, while being cruder than the first
SinCe it yields an O(INIIEI) worst case, reveals
that the algorithm is linear or nearly linear on
the graphs for most programs.

The algorithm, which we refer to as Algorithm
A, is written in a higher-level Algol-like lan-
guage. In section 6, we show that the algorithm
can be refined in such a way that the time taken
to find an appropriate sequence of transformations
is proportional to the number of transformations.

The heart of the algorithm is a succession of
calls on a procedure Reduceset. At every call
from label B of the program, Reduceset is passed
a set S of nodes similar to an interval and a
“header” h. The set S differs from an interval
in that 1) a node in the set may have a looping
edge and 2) there is a path from every node to the
header (hence the graph is strongly connected).
Reduceset eliminates all nontrivial cycles pass-
ing through nodes other than the header. At the
final call of Reduceset at label C the entire
graph, now acyclic except possibly for a looping

edge through no is passed to Reduceset and
reduced to a fan graph. The final while loop re-
duces the graph to one node.

Within Reduceset, applicable transformations
on the edges connecting the nodes of S can be
made in arbitrary order. In fact, one need not
even follow a Ti transformation by a T~ trans-
formation as the algorithm indicates. (We have
written the algorithm this way only to aid the
exposition.)

We next state the algorithm. Notice that
Reduceset changes only edges between nodes in S.
However procedure T$ must inspect other edges of
the graph in order to determine whether to delete a
node.

Algorithm A

Procedure T; (E: set of edges; v: node of looping
edge);

begin E:=E-{(v,v)}
end;

Procedure T’ (N: set of nodes; E: set of edges;
5h,v,w: no es of edges (h,v) and (v,w) in E);

begin
E:=EU{(h,w)}-{(v,w)];
if v has no immediate successor in

G=(N,E) then
begin N:=N-{v}; E:=E-{(h,v)}
end;

end;
Procedure Reduceset (S: set of nodes; h: node in S)

begin
while there exists an edge (v,w) in E

with V,WCS, vfw
such that if (u,v)sE then u=h

oru=v
do

begin
choose anv such (v.w);
if (v,v)~E then ’Ti(E~v);
T~(N,E,h,v,w)

end;
end;

Procedure T~ (N: set of nodes;
no,v: nodes of edge (no,v));

begin
E:=E-{(no,v)};
N:=N-{v}

end;

E: set of edges;

begin comment: Main Program;
while G contains a nontrivial frond do

begin
T:={ul(v,u) is a nontrivial frond};
h:=a node in T not dominated by any

other node in T;
S:={vcNlh dominates v and there is a

path p from v to h such that all
nodes on p are dominated by h};

B: Reduceset(S,h)
end;

c: Reduceset(N,nQ);
while N-{no} 1s nonempty do

begin
choose any v in N-{no};
if (v,v)EE then Tj(E,v);

T~(N,E,no,v)
end;

end.

27

In the following example each step is a call to
Reduceset.

Examp h .

a
n

Step 1

Step 2

Step 3

T = {a,b,c,d}
Reduceset is called with S={d,e}, h=d
T~(N,E,d,e,d) replaces edge (e,d) by

edge (djd)

T = {a,b,c}
Reduceset is called with S = {c,d,e}, h=c
T;(E,d) deletes edge (d,d)
Tj(N,E,c,d,e) replaces edge (d,e) by

edge (c,e)
Tj_(N,E,c, e,c) replaces edge (e,c) by

edge (c,c)

T = {a,b]
Reduceset is called with S = {b,c,d,e},

h=b
Ti(E,c) deletes edge (c,c)

T~(N,E,b,c,e) replaces edge (c,e) by
edge (b, e)

Tj(N,E,b,e,b) replaces edge (e,b) by
edge (b$b)

The graph

T = {a}
.,.

Reduceset is called with
S = {a,b,c,d,e,f,g,h}, h=a

Tj(E,b) deletes edge (b,b)
T~(N,E,a,b,e) replaces edge (b,e) by

edge (a, e)
T~(N,E,a,e,a) replaces edge (eja) by

edge (a,a), deleting edge (b,e) and
node e

T~(N,E,a,b,c) replaces edge (b,c) by
edge (a,c), deleting edge (a,b) and
node b

T~(N,E,a,c,d) replaces edge (c,d) by
edge (a,d), deleting edge (a,c) and
node c

T~(N,E,a,d,f) replaces edge (d,f) by
edge (a,f)

T~(N,E,a,d,g) replaces edge (d,g) by
edge (a,g)

T~(N,E,a,d,h) replaces edge (d,h) by
edge (a,h), deleting edge (a,d) and
node d

T~(N,E,a,f,a) replaces edge (f,a) by
edge (a,a), deleting edge (a,f) and
node f

T~(N,E,a,g,a) deletes edges (g,a) and
(a,g) and node g

T~(N,E,a,h,a) deletes edges (h,a) and
(a,h) and node h

The final graph is

The next few lemmas are used in proving
Theorem 5.1 and will serve as an outline of that
proof.

It follows from the second theorem of Hecht
and Unman quoted in section 2 that Ti and T:
transform a reducible flow graph to a reducible
flow graph. In Lemma 5.1 we establish the same
result for T~.

Lemma 5.1. Let G = (N,E,no) be a reducible
flow graph such that, for some U, V, w in N,
U+v, V+w, E contains edges e = (v,w) and
e’ = (u,v), where (u,v) is the only edge which
enters v. Then G’ = Tj(G,e) is a reducible
flow graph.

=. Omitted. ❑

The next lemma is used in proving termination
of the algorithm.

Lemma 5.2. Let G = (N, E) be a directed
graph. If every node of G is entered by some
edge which is not a looping edge, then G contains
a non-trivial cycle.

-. Induction on INI.

Corollary 5.3. Let G = (N,E,n) be a flow
graph with no non-trivial cycles. T~en either
N = {n } or there exists x~N, ~fno, such
that ~nn,x) and possibly (x,x) are the onlv
edges entering x.

.

28

Next we establish the properties of the argu-
ments of Reduceset.

Lemma 5.4. Let G = (N,E,n) be a reducible
flow graph with a nonempty set ? = {uEN\ for some
VSN, (v,u) is a nontrivial frond of G}. Let h
be any node in T not dominated by another node in
T. Define S = {vsNI h dominates v and there
exists a path p from v to h such that all nodes of
p are dominated by h}. Let Es = {(x,y)c El
x,y&S}. Then

1) There are no nontrivial fronds in E
which enter nodes in S other than h.

2) There is a path in E from h to every
node in S.

3) G.j = (S,ES,h) is a reducible flow graph.+

E2z.f. Omitted. ❑

The following lemma shows that procedures T;
correspond to transformations ‘

?~d~$that Reduceset hasthedesire~~f;?$on
a flow graph.

Lemma 5.5 (Correctness of Reduceset). Let
G = (~”and Gs = (S,ES,h) be reducible flow
graphs suc~that SCN, Es={(x,y)c El x,ys S}
and no nontrivial frtinds in E enter nodes in S
other than h. After Reduceset(S,h) is carried
out, let N’ be the resulting set of nodes and E’
be the resulting set of edges. Let E~ be the set
of edges (x,y) in E’ such that x and y are
in S. Then

1) Every execution of procedures Ti and T;
satisfies the conditions for transformations Ti
and T’.

2f Ti and T} are called exactly as many
times as the number of edges (x,y) in Es, such
that x+h. (Consequently Reduceset always ter-
minates.)

3) After completion of Reduceset(S,h),
G’ = (N’,E’,no) is a reducible flow graph, all
edges in E$ leave h, E’ contains no new non-
trivial fronds, and lE’1~ IEI.

=. Omitted. ❑

As a consequen~of Lemma 5.5, Algorithm A
could be rewritten so that set T is computed
only once, at the beginning of execution, and
after each call of Reduceset, h is removed
from T.

Having established that Reduceset is cor-
rect, the correctness of Algorithm A easily
follows.

Theorem 5.1. Algorithm A terminates and
reduces any reducible flow graph G = (N,E,no)
to a graph with the single node no.

m. Omitted. ❑

Now we are ready to analyze the number of Ti,
T~ , and T’

f
transformations necessary to reduce a

reducible f ow graph to a single node. We will ob-
tain our bound by choosing a particular ordering on
the edges in executing Reduceset and then showing
that that ordering is unessential. To carry out

‘GS is a region in the sense of [9].

this analysis, we must introduce a few more con-
cepts.

Definitions. A flow graph G = (N,E,~o) is a
tree rooted at no if for every node x In
N-{no] there is exactly one node in E which
enters x. If G = (N,E,nQ) is a tree rooted at
no and G1 = (Nl, El, nl) 1s a tree rooted at nl
such that N1 ~N and El SE, then G1 is a
subtree of G.

Let G = (N,E,nQ) be a flow graph. A~-
ning tree (m @ IS a flow graph G’=(N,E’,no),
E’ CE such that G’ is a tree rooted at n.. A
cro~s-l ink of G is an edge (xjy) of E s~ch
that x does not dominate y and y does not
dominate x. The definition of a frond outside the
domain of reducible graphs is dependent on a parti-
cular spanning tree of a graph. A frond is an edge
(x,y) such that y dominates x in the given
spanning tree. A reverse frond is an edge (x,y)
such that x dominates y. If a graph is reduci-
ble then the fronds are the same no matter which
spanning tree is used.

Let x, y be nodes of a tree such that x
dominates y. Let Uo, Ul, U2,. ... Uk be the path
from x to y in the tree where x= UO,
(There can be only one such path.) The tra;~f~$~
mation cfind(x,) replaces edges

(u2,u),*uk) byedges (x,L11~?1!13),...,
(x,uk?, there~y transforming thetree toanother
tree. The cost of cfind(x,y) is k-1, which is
the number of edges changed.

Paterson [15] states a less general theorem
but his proof supports the following:

Theorem (Paterson’s Theorem). If a tree has
less than or equal to e edges and less than or
equal to e c-finds are performed then the sum of
the costs of the c-finds is no more than O(e loge).

We will show that Algorithm A is equivalent to
performing no more than e c-finds on a spanning
tree of a flow graph G = (N,E,no).

We will obtain a bol~nd on the number of Ti
and T; transformations, by appealing to
Paterson’s theorem. In order to invoke Paterson’s
theorem, which is about trees, we will show how
Algorithm A transforms a spanning tree of a flow
graph as it transforms the graph. For that purpose
we need the following two lemmas.

Lemma 5.6. Let G = (N,E,no) and
Gs = -be reducible flow graphs such that
SCN, Es = {(x,Y)s EI x,ysS}, no nontrivial
frtind of E enters a node of S other than h,
and there is a path in Gs from every node to h.
Then any spanning tree for G contains a subtree
rooted at h which is a spanning tree for Gs.

E+?Q,f. Omitted. ❑

Lema 5.7. Let G = (N,E,no) and
Gs = l-be reducible flow graphs such that
SCN, Es = {(x,Y)c EI x,YsS}, no nontrivial
fr~nd of E enters a node of S other than h,
Gs contains a path from every node in S to h,

contains at least one nontrivial cycle.
~~~ :$= (N, E’,no) be a spanning tree for G.
Then there is some node x in S-{h} such that

29



1) E contains a cross-link or a non-trivial
frond which leaves x and enters a node in S.

2) There is a path U0,ul,112,. ..,Uk in G’
where h = Uo, X = Uk,

3) For O<i~k, n~n~r~~~-l ~fii~k;on~~r;-s”
vial frond in E enters uj.

zzz!f - Omitted. El

We next define a sequence of Tj and T~
transformations called a collapse. It will turn
out that a collapse on a flow graph is equivalent
to a cfind on a spanning tree of the graph. We
then show that we can reduce any reducible flow
graph to a fan graph by a sequence of collapses.

Definition. Let G = (N,E,no) be a flow
graph and let G’ = (N,E’,no) be any spanning tree
for G. Let x. v be nodes in N. X+V. such
that either there-exists a path in’ G’” %~om
x to y or, for some z in N, there exists a
path in G’ from x to z and an edge (z,y) in
E. In either case let uo,LIl, L12,. ..,uk be the
specified path from x to y, where X=UO and
y=uk. The transformation collapse(x,y) 1s a
sequence of applications of T~ and, if necessary
Tj , to the edges (ul,u2),(u2,u3),. ..,(ul,y)y)
which replaces them respectively by (x,u2),(x,u ),
. . . . (X,y). It is defined only if the sequence o+
applications of Tj and T~ is defined.

Lemma 5.8. Let G, Gs, and G’ be defined
as in Lemma 5.7. Then there exists a sequence of
choices of nodes and edges in the while loop of
Reduceset which corresponds to a sequence of
collapses such that each collapse eliminates a
nontrivial frond or a cross-link of G.

E?zQf. Omitted. ❑

Lemma 5.9. Let G = (N,E,no) be a reducible
flow graph. G can be reduced to a graph with no
nontrivial fronds in IEI collapses.

Ex!Q.f. Follows from Lemmas 5.5 and 5.8. ❑

Since collapses on flow graphs correspond to
cfinds on their spanning trees we get

Theorem 5.2. Let G = (N,E,no) be a reduci-
ble flow graph. The number of Tj, T~, and T~
transformations carried out by Algorithm A to
reduce G to a flow graph with the single node no
is no more than INI, 0(1 Ellog,l El), and INI
respectively.

Sketch oj?%oof. It follows from Lemma 5.9,
Paterson’s theorem, and showing the equivalence
of numbers of collapses and numbers of cfinds
that all nontrivial cycles can be eliminated in
0(1 Ellog, lEl) T’ transformations. It follows2from Lemma 5.5 t at this bound holds independent of
the order in which edges are chosen within
Reduceset. It can be shown that a graph with no
nontrivial cycles can be reduced in O(IEI) T~
transformations and at most IN I T$ transforma-
tions. A total of at most lN\ Tj transforma-
tions is needed. ❑

Combining this with the results of section 4
we get

Theorem 5.3. Let 1P = (G,F,x,M) be an
information propagation problem, where G= (N,E,no).
If F is fast. then we can find an acceptable
assignment to ‘1P in INI applications’of func-
tions, at most El intersections of functions.,
and O(lEllogZIE ) compositions of functions. If
F is not fast, then we can find an acceptable
assignment to 1P in INI applications, at most
IE +INI intersections of functions, and
0( Ellog21E\ +INllog21Xl) compositions.

=. Follows from Theorem 4.1, Lemma 4.5
and Theorem 5.2. ❑

We can expect that a typical collection of
program flow graphs will tend to exhibit a more
special set of characteristics than the total set
of reducible flow graphs we have just studied, par-
ticularly in view of the current ideas about well-
structured programs. Consequently we again analyze
the number of transformations of Algorithm A, this
time with respect to programming language issues.

We define two characterizations of iteration
loops in programs. We then show that the number of
T;, T~, and T$ transformations needed to reduce
a reducible flow graph is no more than O(IEI + the
number of exits from program loops). Finally, we
discuss the implications of this result.

Definition. Let G = (N,E,no) be a reducible
flow raph.

7

For each n in N, p-loop(n) =
{VEN n dominates v and there is a nontrivial path
p from v to n containing only nodes dominated by
n}. c-loop(n) = {vcNI n dominates v and there is
a nontrivial path p from v to n containing only
nodes dominated by n and passing through only one
frond}. c-number(n) is the number of nodes in
c-loop(n) which are left by edges which enter
nodes not in p-loop(n) and e-number(n) is the
number of nodes n’ such that n s c-loop(n’) and
n is left by an edge which enters a node not in
p-loop (n’).

Intuitively if non-empty, p-loop(n) corres-
ponds to a program loop starting from the statement
represented by n. Clearly for any node n,
c-loop(n) ~ p-loop(n). If non-empty, c-loop(n)
corresponds to a program loop without its inner
loops that do not pass through n. For any node
n, c-number(n) is the number of exit nodes from
the program loop dominated by n and e-number(n)
is the number of program loops exited from node n.

Figure 6 contains an example illustrating
these concepts.

We obtain the following consequences from
these definitions.

Lema 5.10. Let G = (N, E,no) be a reducible
flow graph. Then ~ c-number(n) = n~Ne-number(n).

ncN

E.Q!2.C”Follows easily from definitions. ❑

Lemna 5.11. Let G = (N,E,no) be a reducible
flow graph. The number of T+ transformations
carried out by Algorithm A to reduce
IEI +n~Nc-number(n).

G is at most

Sketch of Proof. Induction on ~ c-number(n),
ncN

u

30



‘o
a

b

c

d

e

f

9

h

j

p-loop

--

abcdefgh

bcdefg

cdef

def

--

. .

.-

--

.-

e

c-loop
——

--

abcdefgh

bcdefg

cde

def

--

--

--

--

--

Figure 6.

c-number

o

1

3

1

2

0

0

0

0

0

Ixampl e

e-number

o

0

0

0

0

3

2

1

1

0

‘o

-=-0 nl

T
6 ‘k+2>

+
e

.

.

1
0 ‘2k>

‘J

1

‘2k+l

.

.

.

‘3k

(5 ,/

1
‘3k+l

.

.

.

I

Figure 7. Example for Lemma 5.11

31



Since we have shown in Theorem 5.3 that it is
only the number of T~ transformations that can be
non-linear in the size of the flow-graph, Lemma
5.11 provides a convenient measure of the time
needed for global flow analysis for particular
classes of programs, even though, as Figure 7
illustrates, the measure is somewhat
coarse.

Consider the flow graph shown in Figure 7. If
IN I is the number of nodes and IEI is the number
of edges, then IEI < 21NI. However since there
are approximately lN1/4 exit nodes, each from
approximately /N1/4 program 100PS, it follows
from Lemma 5.11 that the number of T~ transforma-
tions needed by Algorithm A is no more than
0( IN12). However, it is easily seen that
Algorithm A performs only O(IEI) transformations
on this graph.

Using notions of graph grammars similar to
those found in [7], we can analyze the forms of
program graphs obtained from various combinations
of programming language control structures.

For example suppose we consider a programming
language containing assignment statements, possi-
bly-nested conditional statements, while state-
ments, repeat-until statements, case statements and
for statements~his is essent~y what is found
in PASCAL [22], omitting gc& statements and proce-
dures.) It can be rather easily shown that for
such a language 1) the number of edges in a program
flow graph is proportional to the number of nodes,
2) every program flow graph is reducible, and
3) there is (at most) one exit node from every pro-
gram loop. Consequently the time required for glo-
bal flow analysis is proportional to the number of
nodes (i.e. roughly to the size of the program).

If we add a halt statement, or any statement
which, effectively causes an exit from the entire
program, such a statement appears in a program
flow graph as a node with no successors. Conse-
quently, it turns out that such nodes cannot affect
the non-linearity of Algorithm A. It is only when
a programming language includes an unrestricted
~, a labelled exit as is found in Bliss [23],
or some equivalent facility to make multiple jumps
out of nested loops that the possibility of non-
linearity occurs. Even for such a language, we can
probably expect, in practice, that the number of
such jumps be reasonably small relative to the size
of the program. Furthermore, their effect on the
complexity of the algorithm is additive rather than
multiplicative.

6. Implementation

We have shown that the number of transforma-
tions to reduce a reducible flow graph is
0(1 E1-log21 E\) where IEI is the number of edges
in the graph and that consequently the number of
function operations for many global flow problems
also has this bound. We have also argued infor-
mally that for actual programs the number of opera-
tions is approximately linear in the size of the
program (i.e. the number of nodes). In order to
argue that the method is indeed of practical
interest, we now indicate how one might implement
the algorithm so that the time required on a ran-
dom access machine for finding the transformations
and doing other “bookkeeping” is on the order of
the number of transformations. Figure 8 summarizes

the data structures used in the implementation.

We will represent the flow graph G = (N, E,no)
by an adjacency structure; namely, with each node
x we will associate an unordered adjacency list of
the nodes y such that (x,Y) is an edge of the
graph. The nodes are numbered from 1 to INI and
can be addressed directly.

The key to an efficient implementation is the
following notion.

Definition. An s-numbering of the nodes of a
graph is an assignment of integers to the nodes
such that for any non-looping edge (x,Y), if
(x,y) is a frond, then s-number(y) < s-number(x)
and, if not, then s-number(x) < s-number(y).

Tarjan [18] gives an algorithm which produces
an s-numbering of the nodes in a graph in time
proportional to the number of edges. He also shows
the usefulness of adjacency structures and s-num-
bering for a variety of graph algorithms. An
s-numbering has the property that for any nodes

x> Y3 if x+y and x dominates y, then
s-number(x) < s-number(y).

The first step in the implementation is to
produce an s-numbering of the nodes. We list the
nodes in their s-number ordering. The ordered
list can be constructed in linear time by a radix
sort, creating an array of pointers to the nodes
and adjacency lists, indexed by s-numbers.

Next we create a reverse adjacency structure
in which each node x points to two lists. The
first is a list of nodes y such that (y,x) is
an edge which is a frond; the second is a list of
nodes y such that (y,x) is an edge which is not
a frond. Thus for each node x, the lists to
which x points indicate the edges entering x.
Since a frond can be determined by the fact that it
goes from a node with a higher s-number to one
with a lower s-number, the reverse adjacency
structure can be created in linear time.

The next step is to find the set S and node
h which are arguments to Reduceset. We scan the
list of nodes in decreasing s-number order. We
let h be the first node encountered which is
entered by a nontrivial frond. This h cannot
dominate any node with an entering frond, since
such a node would have to have a higher s-number.

Having found h, we find the subgraph
C&c\S,ES,h) by what is essentially a depth-first

Recall that for any frond (x,h), x must
be in “S since by definition of frond, h domi-
nates x, and the edge (x,h) provides a path
from x to h. Also, for any node x in S-{h},
any node entering x leaves a node in S. We mark
each node as its membership in S is discovered.
Beginning with h and using the reverse adjacency
structure, after adding a node x to S, we fol-
low one of the edges entering x. If that edge
leaves a node not already in S we add the node to
S and follow one of its edges, otherwise we back-
track and follow another edge from a previously
encountered node. The number of steps in this pro-
cess is the number of edges in the resulting Es>
since each edge is traversed once. Additionally,
an “edge-from-h” bit is associated with each node,
which is set if an edge from h to that node is
traversed. Also, as edges are traversed, construct

32



an adjacency structure for the subgraph Gs.

Next, in time proportional to the number of
edges in Es, we do an s-numbering on the nodes
of s. As before, we list the nodes of S in
order of the new s-numbering. This new list has
the same order as the old list but has no “gaps”
caused by nodes not in S. (The purpose of the new
s-numbering is only to obtain this list. The new
s-numbering can then be discarded. This method of
obtaining the list is in general theoretically
faster than obtaining the sublist of nodes by scan-
ning the original list starting at h.)

Now we are ready to carry out the computation
of Reduceset, by again exploiting the properties
of s-numbering. Since the graph has no fronds
entering nodes of S-{h}, all entering edges of
nodes in S- {h} must leave nodes with smaller
s-numbers. The node h has the smallest s-number
of any node in S. Consequently the node following
h in the new list has entering edges only from h
and possibly itself. If the node has a looping
edge, apply Ti. Then, using the adjacency struc-
ture for the subgraph, apply T’ to all edges
leaving that node. ?At the comp etion of the T~
transformations, the third node of S in the
s-number ordering will have entering edges only
from h and possibly itself. Repeat until all
nodes in S have been processed.

Application of Tj and T; requires changing
edges in the original adjacency structure and the
reverse adjacency structure. By keeping a pointer
from each entry in the adjacency structure for Gs
to the corresponding entry in the original adja-
cency structure, edges are easily deleted. By
checking the edge-from-h bit before adding an edge,
duplicate entries for edges leaving h can be
avoided. If the edge is added, the appropriate
edge-from-h bit is set. Since the reverse adja-
cency structure is not needed during the Reduceset
computation, when a node in S-{h} is processed,
its non-frond reverse adjacency list can be re-
placed immediately by the single entry for h. The
frond reverse adjacency list for h can be re-
placed by the single entry for the looping edge to
h. The adjacency structure for Gs need not be
updated.

Application of Tj or T~ does not change
the s-numbering of the nodes. Since finding each

is done in time proportional to the
;;%%p~f~~gesin Es, itcanbe shown thatthe
time for finding all such subgraphs is proportional
to the number of transformations necessary to re-
move all non-trivial cycles. Once the nontrivial
cycles have been eliminated, the rest of the compu-
tation can be done in a straightforward way by pro-
cessing the remaining nodes in increasing s-number
order. Tile time for the total computation is pro-
portional to the total number of transformations.

The implementation just described illustrates
that our global flow analysis algorithm can be
realized on a random access machine within the
theoretical time bound. However, we make no claims
that what we have described is in any sense the
best implementation. In particular one is likely,
in practice, to put an upper bound on the size of a
graph to be analyzed. In light of such a bound,
and the empirical characteristics of flow graphs
for actual programs, other realizations might well
be more efficient. In addition, we have made no

attempt to save space, instead creating new doubly-
linked lists atwill.

Data structures include:

An array containing a record for each node with
fields for

1) pointer to doubly-linked adjacency list
2) pointer to each linked reverse adjacency

list
3) s-number
4) “membership-in-S” bit
5) “edge-from-h” bit
6) pointer to linked adjacency list for sub-

graph Gs

An array containing nodes of G ordered by
s-number.

An array containing nodes of Gs ordered by
s-number.

Auxiliary stacks and temporaries, adjacency lists,
et al.

Figure 8. Data representation
for implementation

7. Discussion

We have presented a global flow analysis
algorithm for reducible flow graphs and have ana-
lyzed its time complexity in number of function
operations both in general and for special classes
of program flow graphs.

The algorithm presented here is a major modi-
fication and generalization of interval analysis.
Like interval analysis, the algorithm works only on
reducible graphs and requires composition and
intersection of functions. The iteration approach
to global flow analysis works on all graphs and
requires only functional application. However,
almost all programs written yield reducible graphs,
and reducibility has been proposed as a necessary
condition for a “well-formed” or structured pro-
gram [16]. In practice, all functions tradition-
ally used in code optimization have been as easy to
compose and intersect as they were to apply.

It should be noted that Algorithm A is easily
modified to incorporate a test for reducibility of
any flow graph. We are presently extending the
algorithm to include irreducible graphs by relaxing
the unique-entering-edge condition for T). The
complexity appears to be favorable compared with
the node-splitting techniques for achieving
reducibility.

For a flow graph G = (N,E,no), both of the
previously known methods have a worst case time of
O(IEI. INI) function operations. Their worst cases
occur in loops which are nested deeply. The me-
thods are often linear in practice because nesting
level is almost independent of the length of the
program. However, the nesting level, typically
about 3, appears as a multiplicative factor (this
is an oversimplification in the case of interval
analysis). This increases the running time by a
factor of 3. This does not occur in our algorithm.
We expect that the running time of our algorithm
will usually be significantly less than the running
time of the previously known algorithms.

33



We have expressed our class of global flow
problems as information propagation problems for
sets of “facts”. We could instead have used the
more general bounded lattice-theoretic framework.
The distributive law frequently required would be
replaced by the weaker monotonicity requirement.
We used the set formulation for ease of understand-
ing by the reader. After analyzing the algorithm
for fast functions, we indicated how to extend the
algorithm to non-fast functions and then to infi-
nite sets together with an information propagation
space of functions which map finite sets to finite
sets.

Our algorithm is easily generalized to handle
global flow problems such as live-dead analysis for
which one analyzes the reverse of the flow graph.
We are also studying methods for increased computa-
tional efficiency. For many programming languages,
such as the PASCAL subset mentioned in section 5,
program loops can be analyzed before the entire
program has been scanned. Consequently we can in-
corporate composition and intersection operations
of global flow analysis in the parsing “semantics”,
leaving only a stack of function applications to be
carried out after parsing is completed. For large
programs, this technique can reduce the use of
secondary storage for intermediate results during
compilation. All of the above-mentioned extensions
will be included in [21].

References

[1] Aho, A.V. and Unman, J.D., The Theory of
Parsing, Translation and Compiling, Vol. II
Compiling, Prentice-Hall, Englewood Cliffs,
N. J., 1973.

[2] Allen, F. E., “Control Flow Analysis,” SIGPLAN
Notices, Vol. 5, No. 7, July 1970, pp. 1-19.

[3] Angluin, D., Private communication, July 1974.

[4] Cocke, J., “Global Common Subexpression
Elimination,” SIGPLAN Notices, Vol. 5,
No. 7, July 1970, pp. 20-24.

[5] Floyd, R.W., “Assigning Meanings to Programs;’
Proceedings American Mathematical Society
Symposia in Applied Mathematics, Vol. 19,
1967, pp. 19-32.

[6] Fong, A., Kam, J. and Unman, J.O., “Appli-
cations of Lattice Algebra to Loop Optimi-
zation,” in these Proceedings.

[7] Hecht, M.S. and Unman, J. D., “FlowGraph
Reducibil ity, ” SIAM Journal of Computing,
Vol. 1, No. 2, June 1972, pp. 188-202.

[8] Hecht, M.S. and Unman, J.D., “Analysis of a
Simple Algorithm for Global Flow Problems,”
Proceedings ACM Symposium on Principles of

Programming Languages, October 1973,
pp. 207-217.

[9] Hecht, M.S. and Unman, J.D., “Characteriza-
tions of Reducible Flow Graphs,” Journal of
the ACM, Vol. 21, No. 3, July 1974,
pp. 367-375.

[11] Kam, J. and Unman, J.D., “Global Optimization
Problems and Iterative Algorithms,” TR-146,
Department of Electrical Engineering,
Princeton University, January 1974.

[12] Kennedy, K., “A Global Flow Analysis
Algorithm,” International Journal of Compu-
ter Mathematics, Vol. 3, December 1971,
pp. 5-15.

[13] Kennedy, K., “A Comparison of Algorithms for
Global Data Flow Analysis,” Rice Technical
Report 476-093-1, Rice University, February
1974.

[14] Kildall, G. A., “A Unified Approach to Global
Program Optimization,” Proceedings ACM
Symposium on Principles of Programming Lan-
guages, October 1973, pp. 194-206.

[15] Paterson, M., unpublished memorandum,
University of Warwick, Coventry, England,
April 1972. See also [19].

[16] Peterson, W., Kasami, T. and Tokura, N., “On
the Ca~abilities of While. Re~eat. and Exit
Statements,” Communications of the ACM,
Vol. 16, No. 8, August 1973, pp. 503-512.

[17] Schaefer, M., A Mathematical Theory of Global
Program Optimization, Prentice-Hall, Engle-
wood Cliffs, N.J., 1973.

[18] Tarjan, R. E., ‘“Depth-first Search and Linear
Graph Algorithms,” SIAM Journal of Computin~
Vol. 1, No. 2, September 1972, pp. 146-160.

[19] Tarjan, R.E., “Efficiency of a Good But Not
Linear Set Union Algorithm,” to appear in
Journal of the ACM.

[20] Unman, J. D., “Fast Algorithms for the Elim-
ination of Common Subexpressions, Acts
Informatica, Vol. 2, No. 3, December 1973,
pp. 191-213.

[21] Wegman, M., Ph.D. Dissertation, in progress.

[22] Wirth, N., “The Programming Language PASCAL,”
Acts Informatica, Vol. 1, No. 1, 1971,
pp. 35-63.

[23] Wulf, W.A., “A Case Against the GOTO,” SIGPLAN
Notices, Vol. 7, No. 11, November 1972,
pp. 63-69.

[10] Hoare, C.A.R., “An Axiomatic Basis for Compu-
ter Programming, ” Communications of the ACM,
Vol. 12, No. 10, October 1969, pp. 576-583.

34


