
Parametric Effect Monads and Semantics of Effect Systems

Shin-ya Katsumata

Research Institute for Mathematical Sciences, Kyoto University, Kyoto, Japan

sinya@kurims.kyoto-u.ac.jp

Abstract

We study fundamental properties of a generalisation of monad
called parametric effect monad, and apply it to the interpretation of
general effect systems whose effects have sequential composition
operators. We show that parametric effect monads admit analogues
of the structures and concepts that exist for monads, such as Kleisli
triples, the state monad and the continuation monad, Plotkin and
Power’s algebraic operations, and the categorical ⊤⊤-lifting. We
also show a systematic method to generate both effects and a
parametric effect monad from a monad morphism. Finally, we
introduce two effect systems with explicit and implicit subeffecting,
and discuss their denotational semantics and the soundness of effect
systems.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory—Semantics; F.3.3 [Log-
ics and Meanings of Programs]: Studies of Program Constructs—
Type structure

Keywords algebrac operation; computational effect; effect sys-
tem; lax monoidal functor; monad; parametric effect monad

1. Introduction

Effect system is a type-based approach to statically estimate compu-
tational effects caused by programs. The basic idea of effect system
is to add to each typing judgement Γ ⊢ M : τ an expression e that
estimates the scope of M’s computational effect. The expression e
is called effect. The definition of effects depends on the computa-
tional effect that the programming language supports, and also the
property we would like to know about the computational effect. For
instance,

• Various effect systems and their semantics are studied for the
analysis of memory usage during the execution of programs
[6, 7, 22, 32, 34, 37]. Effects are defined to be sets of atoms
rdρ,wrρ, initρ tagged with regions.

• In [27], an effect system for concurrent ML (an extension of
ML with communication primitives) is designed to analyse
the communication behaviour of programs. There, effects are
expressions of a process calculus.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

POPL ’14, January 22–24, 2014, San Diego, CA, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2544-8/14/01. . . $15.00.
http://dx.doi.org/10.1145/2535838.2535846

• In [13], Kammar and Plotkin designs an effect system that
estimates the set of algebraic operations invoked during the
execution of programs.

Statically estimating properties of computational effects brings
various benefits to the analysis and transformation of programs.
The main purpose of the pioneering work by Lucassen and Gifford
[22] was to design the effect system that assists safe scheduling of
expressions in parallel computing. Since then, many effect systems
have been designed for analysing the behaviour of programs. For
instance, control flow analysis can be concisely captured as an ef-
fect system [28]. The region-based memory management in func-
tional languages is developed based on the idea of effect system
[35]. A series of papers [6–8, 34] study a semantic foundation for
some aggressive program transformations that depend on the result
of effect analysis. Kammar and Plotkin gave a general algebraic ac-
count of the effect-dependent optimisations based on the property
of algebraic theories [13].

In the seminal paper [37, 38], Wadler integrated the effect anno-
tation and Moggi’s monadic interpretation of computational effects
into effect-annotated monadic type T (e, τ). He then posed a ques-
tion: “What is the denotational semantics of the effect-annotated
monadic type?” The main theme of this paper is to propose an an-
swer to this problem.

Semantic Structures for Effect-Annotated Monadic Types An
answer to Wadler’s question consists of 1) a formulation of the
concept of effect, and 2) a mathematical structure corresponding
to the effect-annotated monadic type.

One type of solution formulates effects as join semilattices, and
use the join operator to compute the effect of let expressions. In
this solution, each effect represents a set of events, and an effect-
annotated monadic type T (e, τ) is given to the programs that cause
the computational effects (regarded as events) in e. The typing rule
for let expressions is:

Γ ⊢ M : T (e, τ) Γ, x : τ ⊢ N : T (e′, σ)

Γ ⊢ let x be M in N : T (e ∨ e′, σ).
(1)

This type of solutions captures well the feature of the effect systems
for memory usage analysis in [6, 7, 22, 32, 34, 37]. One of the
earliest solutions of this type is Filliâtre’s generalised monad [10].

However, using the join operator to compute the effect of let
expressions is not always satisfactory. Here are some examples:

1. Let us consider an effect system that estimates exceptions raised
by programs (we ignore exception handlers). We define an ef-
fect to be a set of exceptions. Then effects form a join semilat-
tice by the set union. An instance of the typing rule (1) is the
following derivation:

Γ ⊢ raiseE1
τ : T ({E1}, τ) Γ, x : τ ⊢ raiseE2

σ : T ({E2}, σ)

Γ ⊢ let x be raiseE1
τ in raiseE2

σ : T ({E1} ∪ {E2}, σ)

633

The union of exceptions in the second line is sound, but not
precise, because E2 will never be raised.

2. Let us consider an effect system that estimates output strings
of programs. A natural definition of an effect is thus a set
of strings. Although effects form a join semilattice by the set
union, it is inadequate to use the join operator in the typing rule
(1) to compute the output strings of let expressions. Rather, we
should use the language concatenation {l@l′ | l ∈ e, l′ ∈ e′}.

Problem 1.1 To compute the effect of let expressions, what kind of
a structure shall we assume on effects ?

Problem 1.2 When the structure on effects is given in the answer
to Problem 1.1, what is an appropriate semantic structure for the
effect-annotated monadic type?

Problem 1.3 How do we construct the structures proposed as a
solution to Problem 1.2?

Algebraic Operations with Effects The operations that manipu-
late computational effects, such as raise for exception raising, read
/ write for store access, etc., are important ingredients to make pro-
gramming languages rich and expressive. To represent such opera-
tions in the monadic semantics of programming languages, Plotkin
and Power introduced algebraic operations [30].

Problem 1.4 How do we extend algebraic operations to the seman-
tic structure given as an answer to Problem 1.2?

The Meaning of Delimiting Monads by Effects Wadler pointed
out the essence of effects as follows: “effects delimit the scope of
computational effects” [37, 38]. 1 To elaborate this, suppose that we
have a programming language L with computational effects, and a
denotational semantics of L using a monad T0. An effect system
designed for L introduces an effect-annotated monadic type T (e, τ),
and it is given to the terms whose computational effects is within e.
This suggests that we may see T (e, τ) as a predicate on T0~τ�.

Problem 1.5 How do we denotationally formulate that “effects
delimit the scope of computational effects”?

Another issue is the soundness of effect system. When the effect
system asserts that a program M of a base type b has an effect e,
then we expect that the execution of M causes the computational
effect within the scope denoted by e. We formulate this as follows.
We first specify the scope of computational effects of an effect e
by a predicate S be on T0~b�. Then we consider whether for all
judgements M : T (e, b) in the effect system, we have ~M� ∈ S be.
If this holds, then we say that the effect system is sound with respect
to the specifications of effects.

Problem 1.6 How do we establish the soundness of effect systems
with respect to given specifications of effects?

1.1 Contributions of this Paper

This paper proposes the following solutions to the above problems.
Especially, solutions to Problem 1.3-1.6 are the technical contribu-
tions of this paper.

Solution to Problem 1.1 We postulate that effects form a pre-
ordered monoid. The monoid structure is to compute the effect of
let expressions, and the preorder is to compare the scope of effects.
The typing rule (1) for let expressions is refined to

Γ ⊢ M : T (e, τ) Γ, x : τ ⊢ N : T (e′, σ)

Γ ⊢ let x be M in N : T (e · e′, σ)
. (2)

Actually, this typing rule had already appeared in [3] to sketch the
idea of effect system, but its semantic account was not given there.

1 In this paper, the word “delimit” is irrelevant to the delimited continuation.

Solution to Problem 1.2 Corresponding to the above solution,
for a preordered monoid E = (E,., 1, ·) of effects, we employ the
following triple (plus a strength, which we omit here):

T : E→ [C,C], T1 : Id→ T 1, Te,e′ : T e ◦ T e′ → T (e · e′)

satisfying the axioms of lax monoidal functor as a semantic struc-
ture for interpreting the effect-annotated monadic type. The mor-
phisms T1 and Te,e′ replace the unit and multiplication of monad.
The axioms of monad become the following commuting diagrams:

T e
T1◦T e //

MMMMMMMMM

MMMMMMMMM

T e◦T1

��

T 1 ◦ T e

T1,e

��
T e ◦ T 1

Te,1

// T e

T e ◦ T e′ ◦ T e′′

Te,e′ ◦T e′′

��

T e◦Te′ ,e′′// T e ◦ T (e′ · e′′)

Te,e′ ·e′′

��
T (e · e′) ◦ T e′′

Te·e′ ,e′′

// T (e · e′ · e′′)

Such a structure is called a parametric monad by Melliès [25],
and is introduced as an underlying categorical structure for estab-
lishing a bridge between linear logic and the theory of strong mon-
ads. In this paper, we consider it as a direct counterpart of the effect-
annotated monadic type, and study it from the viewpoint of effect
system. As we focus on the parametric monads whose parameter
categories are preordered monoids of effects, we call them para-
metric effect monads to emphasise the restriction.

We show that there are parametric analogues of the concepts
that exist in the theory of monad, such as Kleisli triples, the state
monad, the continuation monad, algebraic operations [30], and the
categorical ⊤⊤-lifting [14]. This situation suggests that parametric
effect monads are a natural generalisation of monads. Moreover,
preordered monoids and lax monoidal functors are standard con-
cepts in the theory of monoidal category. Therefore, the tools and
results on monoidal categories are available for them (e.g. [24, 25]).

We mention the recent work [33] by Tate, where he introduces
respectively effectors and productors as a solution to Problem 1.1
and 1.2. They are more expressive than parametric effect monads
(see Section 6.1). Yet, the aforementioned features of parametric
effect monad shows that they have rich structures to be studied.

Solution to Problem 1.3 We give a systematic method to con-
struct both a preordered monoid E of effects and a parametric
E-monad on Set from a monad morphism α : T → (S,⊑); its
codomain is a preordered monad [16]. We then extend this con-
struction to domain-theoretic setting. Compared to giving effects
and parametric effect monads by hand, it is relatively easy to give
effect observations. We demonstrate this method with the case
where T is the writer monad, exception monad, free algebra monad
and probabilistic writer monad, deriving parametric effect versions
of these monads.

Solution to Problem 1.4 We extend algebraic operations to para-
metric effect monads in two ways. One way is to add to the arity of
an algebraic operation an effect e that describes its computational
effect. An extended algebraic operation has a triple (I, J, e) as its
arity, and it is a natural transformation:

αe′ ,K : J ⇒ T e′K → I ⇒ T (e · e′,K)

satisfying certain equational axioms. It bijectively corresponds to a
morphism of type I → T eJ.

However, when using an algebraic operation of the above type,
we have to align the effect of all the arguments to e′. This constraint
decreases the accuracy of the estimation of effects in some situa-
tions. To remedy this problem, we introduce another way to extend
algebraic operations with effects. We allow algebraic operations to
have different effects in their argument positions, and describe their
effect by an effect function ǫ. Then an algebraic operation extended
in this way has a tuple (n, ǫ) as its arity, and it is a certain natural

634

transformation:

αe1 ,··· ,en ,I : T e1I × · · · × T enI → T (ǫ(e1, · · · , en))I.

Solution to Problem 1.5 Our solution takes two steps. First, we
introduce the effect system EFi that is designed as a refinement type
system over Moggi’s computational metalanguage (λML for short).
Each EFi-type τ refines its effect erasure |τ|, which is always a λML-
type. We next give a denotational semantics of EFi in a faithful
functor p : P → C with certain structures. We regard P as a
category of predicates on objects in C, and an object X in P as a
predicate on the object pX in C. We then interpret each refinement
type τ as an object 〈τ〉 in P and its effect erasure as an object ~|τ|�
in C, so that we have p〈τ〉 = ~|τ|�, that is, the denotation of a
refinement type gives a predicate on the denotation of its erasure. To
express that effects delimit the computational effects modelled by a
monad T on C, we interpret effect-annotated types by an parametric
effect monad Ṫ on P such that p(Ṫ (e, X)) = T(pX).

Solution to Problem 1.6 After categorically formulating the ef-
fect soundness, we give a sufficient conditions for the effect system
EFi to be sound with respect to a given specification of effects. This
sufficient condition is natural and applicable to any monad, pre-
ordered monoid of effects, effect specification and algebraic opera-
tion. The proof employs an parametric effect version of categorical
⊤⊤-lifting [14].

Preliminaries

Notation We write l@l′ for the concatenation of two sequences l
and l′. We write 1 for 1) the one-point set {∗}, 2) a terminal object in
a category, and 3) a trivial category whose unique object is ∗. The
disjoint union of sets I1, · · · , In tagged with l1, · · · , ln is denoted by
l1(I1) + · · · + ln(In) .

Category Theory A thin category is the one whose homsets have
cardinality at most 1. Thin small categories are exactly preordered
sets. In this paper, by a bi-CCC we mean a category with chosen
finite products, finite coproducts and exponentials.

We write ωCPO for the category of all ω-complete posets
(which may not contain the least element) and continuous func-
tions between them. We also write Pre for the cartesian monoidal
category of preordered sets and monotone functions between them.

We use • for the vertical composition and ∗ for the horizontal
composition of natural transformations; see [23, Section XII-3] for
these operations. For a natural transformation α and a functor F,
we write α ◦ F for α ∗ idF and F ◦ α for idF ∗ α, respectively.

Monad We use sans-serif capital letters T,S, · · · to denote mon-
ads. Its functor part is referred by Roman capital letters T,S, · · · .
For a monad T = (T, ηT, µT) and a morphism f : I → TJ, by f #T

(or f # if T is obvious from the context) we mean the Kleisli lifting
µT

J ◦T f of f . The monads used in this paper are defined in Table 1.

Computational Metalanguage In this paper, by computational
metalanguage (λML for short) we mean the simply typed lambda
calculus with products, coproducts, monadic types and algebraic
operations; see [26, 30]. The set TypML(B) of λML-types generated
from a set B is defined by the following BNF:

τ ::= b |
∏

(τ, · · · , τ) |
∐

(τ, · · · , τ) | τ⇒ τ | Tτ (b ∈ B).

We specify a λML by a λML-signature ∆ = (B,O, s), where B and
O are sets of base types and operator symbols respectively, and
s : O→ H(GTyp(B)2)+I(N) is a function assigning an arity to each
operator symbol o ∈ O; here GTyp(B) is the subset of TypML(B)
consisting only of base types, product types and coproduct types.
See Section 4 for the distinction on arities. A semantics of λML(∆)
is specified by a λML(∆)-structure: a tuple (C,T, ~−�) where C is a
bi-CCC, T is a strong monad on C and ~−� assigns:

Category Symbol Definition of functor (object part)
Powerset monad / non-empty powerset monad
Set P/P+ PI = 2I , P+I = 2I\{∅}

Writer monad
Set Wr(Σ) Wr(Σ)(I) = Σ∗ × I

Exception monad
Set Ex(E) Ex(E)(I) = Er(E) + Ok(I)
Distribution monad
Set Ds Ds I = { f : I → [0, 1] |

supp(f) : finite,
∑

i∈I f (i) = 1}
Lifting monad
ωCPO L LI = I⊥

Table 1. Definition of Monads

1. an object ~b� ∈ C to each b ∈ B (we extend this to GTyp(B)
using the bi-cartesian structure of C),

2. a (~β�, ~β′�)-ary algebraic operation ~o� for T to each o ∈ O
such that s(o) = H(β, β′), and

3. an n-ary algebraic operation ~o� for T to each o ∈ O such that
s(o) = I(n).

Monoidal category A monoidal category consists of a category
C, an object I ∈ C called the tensor unit, a bifunctor ⊗ ∈ C2 → C

called the tensor product, and natural isomorphisms l, r, a satisfy-
ing coherence axioms; see [23, Section XI-1]. A monoidal category
is strict if l, r, a are all identities. For every category C, the functor
category [C,C] together with the identity functor IdC and the func-
tor composition forms a strict monoidal category [23, Exercise XI-
3.1]. We use this strict monoidal structure as the default one on
[C,C].

A lax monoidal functor (“lax” is dropped in [23, Section XI-
2]) between monoidal categories C,D consists of a functor F :
C → D, a morphism FI : I → FI and a natural transformation
FI,J : FI ⊗ FJ → F(I ⊗ J) satisfying certain conditions. When
FI and FI,J are identities, we replace “lax” with “strict”. We write
LaxMonCAT (resp. StrictMonCAT) for the super-large category
of strict monoidal categories and lax (resp. strict) monoidal functors
between them.

2. Parametric Effect Monads

2.1 Preordered Monoids as Effects

The role of effects in various effect systems is to represent scopes of
computational effects caused by programs. As we stated in Section
1, we adopt the following abstract formalisation of the concept of
effect.

Postulate 2.1 Effects form a preordered monoid.

A preordered monoid is exactly a monoid object in the cartesian
monoidal category Pre; it consists of a preorder (E,.), an element
1 ∈ E and a monotone function (·) : (E,.)2 → (E,.) that
satisfy the axioms of monoid. Below, by e ∼ e′ we mean (e .
e′) ∧ (e′ . e). To save space, by the juxtaposition of e and e′ we
mean e · e′. A partially ordered monoid is a preordered monoid
such that e ∼ e′ ⇐⇒ e = e′. By join semilattice we mean a
partially ordered monoid whose monoid structure is given by the
join operator. We identify preordered monoids and strict monoidal
thin small categories.

2.2 Parametric Effect Monads

We introduce the main subject of this paper, parametric effect
monad.

635

Definition 2.2 Let E be a preordered monoid. A parametric E-
monad on a category C is a lax monoidal functor

T : E→ [C,C].

This is expanded to the following elementary definition:

Definition 2.2-bis Let E = (E, ., 1, ·) be a preordered monoid. A
parametric E-monad consists of the following data.

1. An endofunctor T e : C→ C for every e ∈ E.

2. A natural transformation T (e . e′) : T e→ T e′ for every e . e′.
This satisfies:

T (e . e) = idT e, T (e′ . e′′) • T (e . e′) = T (e . e′′).

3. A natural transformation T1 : Id→ T 1.

4. A natural transformation Te,e′ : T e ◦ T e′ → T (ee′) for every
e, e′ ∈ E.

These data make the following diagrams commute:

T e1 ◦ T e′1

Te1 ,e
′
1 //

T (e1.e2)∗T (e′
1
.e′

2
)

��

T (e1e′1)

T (e1e′
1
.e2e′

2
)

��
T e2 ◦ T e′2 Te2 ,e

′
2

// T (e2e′2)

T e
T1◦T e //

LLLLLLLLL

LLLLLLLLL

T e◦T1

��

T 1 ◦ T e

T1,e

��

T e ◦ T e′ ◦ T e′′

Te,e′ ◦T e′′

��

T e◦Te′ ,e′′// T e ◦ T (e′e′′)

Te,e′e′′

��
T e ◦ T 1

Te,1

// T e T (ee′) ◦ T e′′
Tee′ ,e′′

// T (ee′e′′)

Parametric effect monads can be equivalently presented in the
form of Kleisli triple.

Definition 2.3 Let E = (E,., 1, ·) be a preordered monoid. An
parametric E-Kleisli triple on a category C consists of the follow-
ing data.

1. A functor T − I : E→ C for every I ∈ C.

2. A morphism ηI : I → T 1I for every I ∈ C.

3. A mapping (−)e#e′ : C(I,T e′J) → C(T eI,T (ee′)J) for every
I, J ∈ C and e, e′ ∈ E. We call this mapping Kleisli lifting.

These data satisfy (below f : I → T eJ and g : J → T e′K)

(T (e . e′′)J ◦ f)e′#e′′ = T (e′e . e′e′′)J ◦ f e′#e

f e′#e ◦ T (e′′ . e′)I = T (e′′e . e′e)J ◦ f e′′#e

f 1#e ◦ ηI = f

(ηI)
e#1 = idT eI

(ge#e′ ◦ f)e′′#(ee′) = g(e′′e)#e′ ◦ f e′′#e.

Proposition 2.4 Let E be a preordered monoid. Then parametric
E-monads on a category C bijectively correspond to parametric E
Kleisli triples on C.

Parametric effect monads are yet insufficient to interpret the
typing rule (2). We need tensorial strengths on them so that we
can add an extra parameter to the Kleisli lifting:

(−)e#e′ : C(I × J,T eK)→ C(I × T e′J,T (e′e)K).

We derive the concept of strong parametric effect monad as follows.
For a category C with finite products, we write [C,C]s for the
category of strong endofunctors and strong natural transformations
between them [18]. We then equip it with the strict monoidal
structure given by the identity functor and the composition of
strong endofunctors.

Definition 2.5 Let C be category with finite products and E be
a preordered monoid. A strong parametric E-monad is a lax
monoidal functor

T : E→ [C,C]s.

We can alternatively define the tensorial strength as a commuta-
tor between a parametric effect monad T and the action of C to
itself; see [25, Section 4]. We note that [Set,Set]s is isomorphic to
[Set,Set], thus there is no difference between parametric E-monads
and strong ones on Set.

2.3 Maps from Parametric Effect Monads to Monads

We introduce a particular type of morphism for parametric effect
monads. This will be used in Section 5.2 to express the situation
that a parametric effect monad specifies predicates on the underly-
ing monad.f

Definition 2.6 Let p : C→ D be a functor, T be a parametric effect
monad on C and S = (S, η, µ) be a monad on D. We say that p maps
T to S if

p(T eX) = S(pX), p((T1)X) = ηpX , p((Te,e′)X) = µpX .

Though we omit the detail, there are other variations of morphism
for parametric effect monads. They are analogues of the morphisms
for monads studied in e.g. [19].

2.4 Examples of Parametric Effect Monads

Example 2.7 (Monads) Parametric effect monads subsume mon-
ads. Let us write 1 for the trivial, one-point preordered monoid.
Then parametric 1-monads on a category C bijectively correspond
to monads on C. This is an instance of the fact that monoids in a
monoidal category V bijectively correspond to lax monoidal func-
tors of type 1→ V.

Example 2.8 (Parametric Writer Monad) This example shows
the writer monad whose output strings are delimited by a given
language. Let Σ be a set of alphabets. We consider the following
partially ordered monoid E of languages over Σ:

E = (P(Σ∗),⊆, {ǫ}, ·) where e · e′ = {l@l′ | l ∈ e, l′ ∈ e′}.

Then the following data:

T eI = e × I, (T1)I(i) = (ǫ, i), (Te,e′)I(l, (l
′, i)) = (l@l′, i)

give a parametric E-monad on Set. Although T inherits the struc-
ture from the writer monad Wr(Σ), each T e is not a monad.

Example 2.9 (Totality Types) This is the semantic analogue of to-
tality types by Nielsen et al. [31]. We consider the partially ordered
monoid E = ({tot, par, bot},≤, tot, ·) whose order and multiplica-
tion are defined as follows:

par

bot

yyyyyy
tot

DDDDDD
x · y =

bot (x = bot ∨ y = bot)
tot (x = tot ∧ y = tot)
par (otherwise)

The functor T : E → [ωCPO, ωCPO] mapping the above Hasse
diagram to the following diagram in [ωCPO, ωCPO]:

L

K1

k⊥

??~~~~~~~
Id

ηL
__???????

{

K1I = 1
(k⊥)I(∗) = ⊥

extends to a parametric E-monad on ωCPO.

We next give parametric effect versions of the state monad and the
continuation monad. For this, we employ a categorical construction

636

called end [23, Section IX-5]. Let E = (E,.) be a preordered set.
The end of a functor F : Eop × E → Set is denoted by

∫

e∈E
F(e, e),

and consists of the tuples α ∈
∏

e∈E F(e, e) such that

∀e, e′ ∈ E . e . e′ ⇒ F(e . e′, e′)(αe′) = F(e, e . e′)(αe).

Example 2.10 (Parametric State Monad) Let E = (E,., 1, ·) be
a preordered monoid and S : E → Set be a (mere) functor. Then
the following end

T eI =

∫

d∈E

S d ⇒ (I × S (de))

extends to a parametric E-monad. This end collects the state trans-
formers that take a state of type S d, and update it to a state of type
S (de). The effect e abstractly represents what state transformers
perform on states. It is added after d because e is the latest action
performed on the state.

Example 2.11 (Parametric Continuation Monad) We continue
using E and S in the above example. The following end:

T eI =

∫

d∈E

(I ⇒ S d)⇒ S (ed)

extends to a parametric E-monad. An element in T eI is a compu-
tation c that takes a continuation k of type I ⇒ S d, and computes
a value in the return type S (ed). The effect e abstractly represents
what c performs on the return type. As continuations are invoked
after the main computation of c, d is added after e.

2.5 Monads Indexed by Join-Semilattices

Let E be a poset. Let us call a functor of type E → Mnd(C)
an E-indexed monad, where Mnd(C) is the category of monads
on C and monad morphisms between them. It is employed to
model the layered structure of computational effects in Filinski’s
multi-monadic meta language M3L [9]. The typing rule for let
expressions in M3L:

Γ ⊢ M : T (e, σ) Γ, x : σ ⊢ N : T (e′, τ) e ≤ e′

Γ ⊢ let x be M in N : T (e′, τ)

is reminiscent to the one in general effect system. Indeed, when E
is a join semilattice, the general typing scheme (2) augmented with
the side condition e ≤ e′ yields the above rule, because T (e∨e′, τ) =
T (e′, τ). We can say more than this syntactic relationship.

Theorem 2.12 Let E be a join semilattice. Then E-indexed monads
bijectively correspond to parametric E-monads.

This theorem is an analogue of [33, Theorem 3], which is stated
within effector / productor framework. Filliâtre’s generalized mon-
ads [10] also determine join-semilattice indexed monads that map
the least element to the identity monad. There are many examples
of monads indexed by join semilattices; see e.g. [13, 33].

3. Parametric Effect Monads via Effect

Observations

We next introduce a construction of both a preordered monoid E
and a parametric E-monad on Set from effect observations. This
construction is based on the following nature of effects.

1. Effects are expressions of an ordered algebra. This point be-
comes clear when moving to an elaborated effect system, such
as the one for behaviour analysis of concurrent ML programs
[27]. There, effects are process algebra expressions ordered by
their behaviour.

We capture an ordered algebra structures on effects by a pre-
ordered monad (S,⊑) on Set [16]. It is a pair of a monad S on

Set and an assignment ⊑ of a preorder ⊑I on SI to each set I
satisfying:

(substitutivity) for every function f : I → SJ, f # is a mono-
tone function of type (SI,⊑I)→ (SJ,⊑J) and

(congruence) for every function f , g : I → SJ, f ⊑J g implies
f # ⊑J g# (here ⊑J is extended to the pointwise order for
functions).

The assignment ⊑ bijectively corresponds to a pointwise Pre-
enrichment on SetS; see [16] for the detail.

2. Effects are abstractions of computational effects. Each effect
abstractly expresses some aspects of actual computational ef-
fects caused by programs.

We capture this situation by considering a monad T that models
programming language’s computational effects, and a monad
morphism α : T → S that observes computational effects and
gives their abstract representations (i.e. effects).

We package the above data into an effect observation.

Definition 3.1 An effect observation of a monad T on Set consists
of the following data:

1. A preordered monad (S,⊑) on Set.

2. A monad morphism α : T→ S.

The notation for an effect observation (of T) is α : T → (S,⊑).

First, from an effect observation we construct a preordered
monoid of effects. Let us write ThS for the algebraic theory cor-
responding to S. We then define an effect to be a ThS-polynomial
in one variable ∗; in other words, an element in S1. Such polyno-
mials carry the canonical monoid structure given by the variable
substitution: the monoid unit 1 is the variable ∗ itself, and the mul-
tiplication · is the substitution e · e′ = e[e′/∗] of e′ into ∗ in e. We
express this monoid structure in terms of S:

Definition 3.2 Let (S,⊑) be a preordered monad on Set. We define
the preordered monoid (S1,⊑1, 1, ·) by

1 = ηS
1 (∗), e · e′ = (λx ∈ 1 . e′)#S (e). (3)

We denote this by S1.

Next, we construct a parametric S1-monad. Let e ∈ S1 be an
effect. We consider the composite function vI = α1◦T!I : TI → S1.
It first extracts the computation part of x ∈ TI by replacing all the
values inside x to ∗ (∈ 1). Then the monad morphism α1 gives
its abstract representation as an effect. We then express that “the
computational effect of x is included in the scope of e” by the
inequality vI(x) ⊑1 e, which we use to delimit TI by effects.

Theorem 3.3 Let α : T → (S,⊑) be an effect observation of a
monad T on Set. We define the following assignment D of sets:

DeI = {x ∈ TI | α1 ◦ T!I(x) ⊑1 e} (e ∈ S1, I ∈ Set)

together with the inclusion function iI : DeI ⊆ T I. Then:

1. The unit ηT
I restricts to a function of type I → D1I.

2. For all function f : I → De′J, (iJ ◦ f)#T restricts to a function
of type DeI → D(ee′)J.

3. The tuple of D, ηT and (f)e#e′ = (i ◦ f)#T is a parametric S1-
Kleisli triple.

When giving an effect system, it is desirable to have the join
operator on effects (apart from a monoid structure), because we
can use it to unify the effects given to different branches of case
expressions. The following examples mainly observe a Set-monad
T that models computational effects by means of another monad S
whose preorder admits the join operator, so that S1 also admits the

637

join operator. In some cases S is given as the extension of T with
the join operator.

Example 3.4 We construct a parametric effect monad that is suit-
able for estimating exceptions raised by programs. There is a dis-
tributive law Ex(E) ◦ P+ → P+ ◦ Ex(E), and from this we obtain an
effect observation of Ex(E):

ηP+ ◦ Ex(E) : Ex(E) → (P+ ◦ Ex(E),⊆).

Definition 3.2 gives the following partially ordered monoid:

(P+(Ex 1),⊆, {Ok(∗)}, ·),

whose monoidal product is given by

e · e′ =

{

e Ok(∗) < e
(e\{Ok(∗)}) ∪ e′ Ok(∗) ∈ e.

The parametric P+(Ex 1)-monad D induced by Theorem 3.3 is

DeI = {Er(a) | Er(a) ∈ e} ∪ {Ok(v) | v ∈ I,Ok(∗) ∈ e}.

We illustrate how effects in P+(Ex 1) and the parametric effect
monad D describes computational effects.

• c1 ∈ D{Ok(∗)}I is a computation that terminates normally,
without raising any exception.
• c2 ∈ D{Er(a),Ok(∗)}I is a computation that either terminates

normally or may raise an exception a, but no other exception
will be raised.
• c3 ∈ D{Er(b), Er(c)}I is a computation that will raise either

an exception b or c, but do nothing else, including normal
termination.

The monoid structure of P+(Ex 1) appropriately captures the fact
that the exception raising cancels the rest of the computation. For
instance, consider the sequential execution of the computation c3

followed by c2. As c3 never terminates normally, we will not ob-
serve the computational effect caused by c2. The monoid multi-
plication of P+(Ex 1) gives the following effect to the sequential
execution c3; c2:

{Er(b), Er(c)} · {Er(a),Ok(∗)} = {Er(b), Er(c)},

which correctly captures the computational effect of c3; c2.

Example 3.5 Generalising the previous example, let Σ be a first-
order single-sorted signature (without equational axioms) and O
be the set of symbols defined in Σ. We write TΣ for the monad
of free-Σ algebra, and aim to design the parametric effect monad
that estimates the occurrences of operators in t ∈ TΣI, and also the
closedness of t.

The monad morphism we use to observe TΣ is the following
| − | : TΣ → P(Op(O) + Var(−)):

|x| = {Var(x)}, |o(t1, · · · , tn)| = {Op(o)} ∪ |t1| ∪ · · · ∪ |tn|

It collects the operator symbols and variables occurring in t. The
partially ordered monoid derived from the effect observation | − | :
TΣ → (P(Op(O) + Var(−)),⊆) is

(P(Op(O) + Var(1)),⊆, {Var(∗)}, ·),

whose multiplication is given by

e · e′ =

{

e Var(∗) < e
(e\{Var(∗)}) ∪ e′ Var(∗) ∈ e.

The parametric P(Op(O)+Var1)-monad D derived by Theorem 3.3
is

DeI = {t ∈ TΣI | |t[∗/i]| ⊆ e}.

We illustrate how this parametric effect monad estimates occur-
rences of operator symbols and closedness of Σ-terms.

• t ∈ D{Op(s),Op(z),Var(∗)}I is a Σ-term consisting of operator
symbols s, z and variables. It may be closed. No other operator
occurs in t.
• t ∈ D{Op(c),Op(f)}I is a closed Σ-term consisting of the

operator symbols f , c only.

Example 3.6 We derive Example 2.8 by Theorem 3.3. We consider
the writer monad Wr(Σ). There is a distributive law Wr(Σ) ◦ P →
P ◦Wr(Σ), and from this we obtain an effect observation of Wr(Σ):

ηP ◦Wr(Σ) : Wr(Σ)→ (P ◦Wr(Σ),⊆)

Definition 3.2 yields the partially ordered monoid of languages
over Σ, and Theorem 3.3 yields the parametric effect monad that
is (isomorphic to) the one in Example 2.8.

Example 3.7 We consider modelling the programming language
that has a character output operator outc and a binary probabilistic
choice operator − ⊕p −, which chooses the left computation with
probability p or the right one with probability 1 − p. We model
these computational effects by the composite monad Ds ◦Wr(Σ) of
the distribution monad and the writer monad.

We first derive a parametric effect monad that estimates output
strings of programs, ignoring their output probability. For this, we
use the monad morphism supp : Ds → P+ that computes the
support of a given distribution:

suppI(d) = {i ∈ I | d(i) , 0}.

By composing the writer monad, we obtain the following effect
observation of Ds ◦Wr(Σ):

supp ◦Wr(Σ) : Ds ◦Wr(Σ)→ (P+ ◦Wr(Σ),⊆).

We apply Theorem 3.3 to this situation. It yields the partially or-
dered monoid of non-empty languages P+(Σ∗) over Σ (c.f. Example
2.8). The parametric P+(Σ∗)-monad is then given as

DeI = {d ∈ Ds(Wr(Σ)(I)) | suppWr(1) ◦ Ds(Wr(Σ)(!I))(d) ⊆ e}

= {d ∈ Ds(Σ∗ × I) | ∀l ∈ Σ∗, i ∈ I . d(l, i) , 0 =⇒ l ∈ e}.

Example 3.8 (Continued from the above example) We next derive
another parametric effect monad that takes it into account the prob-
ability of output strings. Following the pattern of Example 3.4 and
2.8, we extend the (algebraic theory of) distribution monad Ds with
the join operator, then use the embedding of Ds to the extended
monad as an effect observation. The extension of Ds with the join
operator is known to yield the monad that collects convex subsets
of distributions [12, 36], which we explain below.

Let X ⊆ Ds I be a subset of probability distributions over I. The
convex closure of X collects all the probabilistic combinations of
distributions in X:

CX =

∞⋃

n=0

{⊕n

i=1
t(i) · di | t ∈ Ds{1, · · · , n}, d : Xn

}

.

When CX = X, we call X convex. The monad Cv of convex subsets
of distributions then collects all the finitely generated non-empty
convex subsets of Ds I:

Cv I = {CX | ∅ (X ⊆fin Ds I}.

The inclusion relation between convex subsets gives a preorder on
Cv. We write ⊞p,I : (Cv I)2 → Cv I for the probabilistic summation
of two convex subsets:

X ⊞p,I Y = {d ⊕p d′ | d ∈ X, d′ ∈ Y}.

The singleton set function {−}I : Ds I → Cv I is a monad
morphism, hence we obtain an effect observation

{−} ◦Wr(Σ) : Ds ◦Wr(Σ)→ (Cv ◦Wr(Σ),⊆).

638

By applying Theorem 3.3, we obtain the partially ordered monoid
(Cv(Σ∗),⊆, {{ǫ : 1}}, ·), and a parametric Cv(Σ∗)-monad:

DeI = {d ∈ Ds(Σ∗ × I) | {d} ∈ e},

where d ∈ Ds(Σ∗) is the distribution given by d(l) =
∑

i∈I d(l, i).
We see the role of the convexity in effects. Consider the follow-

ing conditional expression.

M = if N then outa() else outb().

This is a deterministic program that outputs either a or b. The
summary of the side effect is thus “M outputs a with probability 1
or b with probability 1”, but it is yet unclear what is the probability
of choosing “then” branch and “else” branch by the conditional
expression. The monad Cv handles this situation by taking the
convex closure:

C({{a : 1}, {b : 1}}) = {{a : p, b : (1 − p)} | p ∈ [0, 1]}

to give the overall probability of the output strings of M.

3.1 Effect Observations in an Order-Enriched Setting

We next give an analogue of Theorem 3.3 in a Pre-enriched cate-
gory C. We assume that C has a terminal object 1, and that C has
chosen comma objects of the following form:

f ↓ j

.π f , j

��

! // 1

j

��
I

f

// J

(4)

An informal way to see the comma object f ↓ j is that it is the
pullback of the inclusion of the downset ↓ j ֒→ J along f .

Below we write C0 for the underlying ordinary (i.e. Set-
enriched) category of C. An effect observation of a monad T on C0

by a Pre-enriched monad S on C is a monad morphism α : T→ S0,
where S0 is the underlying ordinary monad on C0.

Theorem 3.9 Under the above C and an effect observation α :
T → S0, the following E is a preordered monoid, and D is a
parametric E-monad on C0.

E = (C(1,S1), .1,S1, η
S
1 , λ f g . g#S ◦ f)

DeI = (α1 ◦ T!I) ↓ e

Example 3.10 We derive a parametric effect monad whose effects
can capture the behaviour of non-terminating programs. We con-
sider the computational effect of divergence and bell ringing, and
represent it by a monad on ADCPO, the category of algebraic DC-
POs and all continuous functions between them. This category is
Pos-enriched, has a terminal object 1 and has the comma object of
the form (4). It is also closed under the lower powerdomain con-
struction (see e.g. [1]).

We use the lazy counter monad, which is denoted by B in this
example, to represent divergence and bell ringing. The ADCPO
BI is given as the least solution of the recursive domain equation
X ≃ (I + X)⊥, and its Hasse diagram is depicted below (in the
diagram, i ranges over I, and x→ y means x ≤ y):

BI = µY.(I + Y)⊥

(0, i) (1, i) (2, i) · · ·

0⊥ //

OO

1⊥ //

OO

2⊥ //

OO

· · · // ∞⊥

Each element in BI denotes a phenomenon that may happen by
executing a program.

• An element x⊥ (x ∈ N) stands for the phenomenon that “the
program rings the bell x times and it is still running”.

• The element∞⊥ stands for the phenomenon that “x⊥ holds for
all x ∈ N”. Thus the program rings the bell forever.
• The element (x, i) stands for the phenomenon that “the program

rings the bell x times, then it terminates and returns a value i”.
Especially, when I = 1, the element (x, ∗) stands for that “the
program rings the bell x times and terminates”.

The order ≤ on these elements captures the implication relation
between corresponding phenomena.

• The order (x, i) ≥ x⊥ reflects that if a program terminates after
ringing the bell x times, then the program is indeed running
right after the x-th bell.
• The order x⊥ ≥ (x − 1)⊥ reflects that if the phenomenon x⊥

happens then (x − 1)⊥ also happens before the x-th bell.
• The phenomenon 0⊥ always happens for any program because

there is a silent moment right after the program starts. Thus 0⊥
is the least element.

We next consider the composite functor Pl ◦ B, where Pl is the
lower powerdomain construction. The composite extends to a Pos-
(i.e. locally monotone) monad over the Pos-category ADCPO. We
then obtain a monad morphism

ηpl ◦ B : B→ Pl ◦ B,

to which we can apply Theorem 3.9.
The carrier set of the partially ordered monoid Pl(B1) given by

Theorem 3.9 is isomorphic to the full-sub poset C of (N ∪ {∞},≤
)× (P(N),⊆) consisting of pairs (k, X) such that

⊔

X ≤ k. Each pair
(k, X) encodes the following subset of B1 (below ↓ x denotes the
downset of x):

Φ(k, X) =↓ (k⊥) ∪
⋃

x∈X

↓ (x, ∗),

and an effect (k, X) means that one of the phenomena in Φ(k, X)
happens. We note that (k, ∅) ∈ C expresses the behaviour of pro-
grams that never terminate.

The unit of E is (0, {0}), and the multiplication is

(k, X) · (l,Y) =

k ⊔

⊔

x∈X

(x + l)

 , {x + y | x ∈ X, y ∈ Y}

 .

We especially have (k, ∅)·(l,Y) = (k, ∅), corresponding to that when
the first expression of the sequential composition never terminates,
the second expression will never be executed, thus its effect will be
discarded.

The parametric Pl(B1)-monad by Theorem 3.9 is the following.
With the helper function ϕ : BI → Pl(B1) defined by:

ϕ(x, i) = (x, {x}), ϕ(x⊥) = (x, ∅)

the parametric Pl(B1)-monad D is given by

DeI = {x ∈ BI | ϕ(x) ∈ Φ(e)}.

4. Algebraic Operations for Parametric Effect

Monads

We extend Plotkin and Power’s algebraic operations introduced in
[30] to strong parametric effect monads. A straightforward exten-
sion is the following:

Definition 4.1 Let E be a preordered monoid and T be an strong
parametric E-monad on a CCC C. For I, J ∈ C and e ∈ E, an
(I, J, e)-ary algebraic operation for T is a family of morphisms
ae′ ,K : J ⇒ T e′K → I ⇒ T (ee′)K, natural on e′, such that for

639

any f : L × K → T e′′M, the following square commute:

L × (J ⇒ T e′K)

L×ae,K ��

c // J ⇒ (L × T e′K)
J⇒ f #

// J ⇒ T (e′e′′)M

ae,M��
L × (I ⇒ T (ee′)K)

c
// I ⇒ (L × T (ee′)K)

I⇒ f #

// I ⇒ T (ee′e′′)M

For n ∈ N and e ∈ E, an (n, e)-ary algebraic operation is similarly
defined by replacing J ⇒ − with (−)n and I ⇒ − with Id in the
above diagram.

An easy calculation shows that (I, J, e)-ary algebraic operations for
T bijectively correspond to morphisms of type I → T eJ. This is an
analogue of the correspondence between algebraic operations and
generic effects stated in [30].

4.1 Algebraic Operations with Different Effect Arguments

The above extension of algebraic operations is natural, but not
satisfactory in some situations. The reason is twofold: 1) a single
effect e may not be precise enough to capture the effect of an
algebraic operation, and 2) the arguments of an algebraic operation
has to have the same effect.

Let us see these problems with the parametric Cv(Σ∗)-monad
D over the distribution monad Ds in Example 3.8. We consider
restricting the domain and the codomain of ⊕p to obtain a (2, e′)-ary
algebraic operation for D. Following Definition 4.1, it is a certain
family of functions of the following type:

⊕p,I : DeI × DeI → D(e′e)I.

What is an appropriate choice for e′? Actually 1 = {{ǫ : 1}} is
the the best. Since the choice operator itself does not output any
string, if e′ contains some output strings with non-zero probability,
then it introduces garbage to the estimation of output strings. We
then realise that the effect 1 does not describe the behaviour of the
computational effect ⊕p.

Even if we accept e′ = 1, we have another unsatisfactory point
in using the algebraic operation of the above type. When supplying
two computations c1 ∈ De1I and c2 ∈ De2I having different
effects to ⊕p,I , we first need to align their effects to, for example,
c1, c2 ∈ D(e1 ∨ e2)I. Then the probabilistic choice of them yields
the computation c1 ⊕p,I c2 ∈ D(e1 ∨ e2)I, but this is too rough;
for instance even when p = 0 (i.e. discarding the left argument) the
effect of the left computation survives after the probabilistic choice.

Our solution to these problems is to allow the effects in the
argument position of algebraic operations to be different with each
other. For instance, in the context of Example 3.8, we give the
following domain and codomain to ⊕p:

(⊕p)e1 ,e2 ,I : De1I × De2I → D(e1 ⊞p,Σ∗ e2)I (5)

so that the effect can say more precisely how argument effects are
processed by the algebraic operation. We formalise this idea below.

Definition 4.2 Let E = (E,., 1, ·) be a preordered monoid and T be
an strong parametric E-monad on a category Cwith finite products.

1. An n-ary effect function on E is a functor ǫ : En → E such that

ǫ(e1, · · · , en) · e′ = ǫ(e1e′, · · · , ene′).

Below we abbreviate the sequence e1e′, · · · , ene′ to ~ee′.

2. Let ǫ be an n-ary effect function on E. An (n, ǫ)-ary algebraic
operation for T is a family of morphisms

ae1 ,··· ,en ,I : T e1I × · · · × T enI → T (ǫ(e1, · · · , en))I,

which is natural on e1, · · · , en ∈ E, such that for any f : K× I →
T e′J, the following diagram commute:

K ×
∏

T eiI
〈K×πi〉

n
i=1 //

K×a~e,I

��

∏

(K × T eiI)

∏

f ei#e′

// ∏T (eie
′)J

a~ee′ ,I

��
K × T (ǫ(~e))I

f ǫ(~e)#e′
// T (ǫ(~e)e′)J T (ǫ(~ee′))J

In the above diagram, f e#e′ : K × T eI → T (ee′)J is the
parametrised Kleisli lifting of f using the strength of T .

Currently, it is not clear how to extend the arity in the above
definition to arbitrary objects in C. This technical limitation also
affects the design of effect systems in Section 5; there, algebraic
operations in effect systems are classified into two groups, one
corresponding to Definition 4.1 and the other corresponding to the
above definition.

We gave a construction of the parametric effect monad D from
an effect observation α : T→ (S,⊑) in Theorem 3.3. We next show
that every n-ary algebraic operation a for T can be restricted to an
(n, ǫ)-ary algebraic operation for D, where ǫ is constructed from a
and α. Recall that the monad morphism α maps the n-ary algebraic
operation a for T to the one for S. We denote it by α(a).

Theorem 4.3 Let α : T → (S,⊑) be an effect observation of a
monad T on Set, and a be an n-ary algebraic operation for T. We
write D for the parametric effect monad derived from the effect
observation α by Theorem 3.3.

1. Function α(a)1 : (S1)n → S1 is an n-ary effect function on S1.

2. Each aI restricts to a function of the following type:

aI : De1I × · · ·DenI → D(α(a)1(e1, · · · , en))I,

and this is an (n, α(a)1)-ary algebraic operation for D.

Example 4.4 (Continued from Example 3.8) From Theorem 4.3,
the binary algebraic operation ⊕p for Ds ◦ Wr restricts to an
(2,⊞p,Σ∗)-ary algebraic operation for the parametric effect monad
in Example 3.8.

Example 4.5 Let Σ be a first-order single-sorted signature (without
equational axioms) and TΣ be the monad of free Σ-algebra. There
always exists a distributive law TΣ ◦P → P ◦ TΣ, and we obtain the
effect observation

η : TΣ → (P ◦ TΣ,⊆).

Definition 3.2 applied to this situation yields the preordered monoid
P(TΣ(1)). The parametric P(TΣ(1))-monad D of Theorem 3.3 is

DeI = {t ∈ TΣI | t[∗/i]i∈I ∈ e}.

Each term t ∈ TΣ{1, · · · , n} gives the following n-ary algebraic
operation at for TΣ:

(at)I(t1, .., tn) = t[ti/i]
n
i=1.

Theorem 4.3 associates to this algebraic operation the following
effect function on P(TΣ(1)):

α(at)1(e1, · · · , en) = {t[ti/i]
n
i=1 | ti ∈ ei}

and at restricts to the following (n, α(at)1)-ary algebraic operation
for D:

(at)I : De1I × · · · × DenI → D{t[ti/i]
n
i=1 | ti ∈ ei}I.

640

5. EFe/EFi: Simply-Typed Monomorphic Effect

Systems with Effect Subtyping

We introduce two simply typed monomorphic effect systems, EFe
and EFi. These two systems differ in handling effect subtyping.
Both styles are adopted in many works. For instance,

• The calculus EFe adopts explicit subeffecting by effect coercion
operators T e.e′ . This language is close to the one considered
in Fillinski’s M3L [9], where the point we can up-cast effect-
annotated types is limited to let expressions. Another example
of the effect system that adopts explicit subeffecting is [13].

• The calculus EFi adopts implicit subeffecting. Subjects of EFi
judgements are λML-terms, and the subeffecting rule does not
change subjects of judgements. Each type of EFi is a refinement
of its underlying λML-type. See e.g. [4, 8].

These systems are specified by an EF-signature. We define the set
GTyp(B) of ground types generated from B by the following BNF:

GTyp(B) ∋ β ::= b |
∏

(β, · · · , β) |
∐

(β, · · · , β) (b ∈ B).

We write 1 for
∏

() and n for
∐

(

n
︷ ︸︸ ︷

1, · · · , 1).

Definition 5.1 An EF-signature Σ consists of the following data:

1. A preordered monoid E = (E,., 1, ·).

2. A set B of base types.

3. A set O of symbols for algebraic operations.

4. A function giving arities to algebraic operation symbols:

s : O → H(GTyp(B)2 × E)

+ I{(n, ǫ) | n ∈ N, ǫ : n-ary effect function on E}.

The arity H(β, β′, e) and I(n, ǫ) are given to the algebraic oper-
ations in the style of Definition 4.1 and 4.2, respectively. Every
EF-signature Σ = (E, B,O, s) determines an λML-signature Σ0 =

(B,O, s′) by discarding the effect information from s.
Throughout this section, we use a fixed EF-signature Σ =

(E, B,O, s) with E = (E,., 1, ·). Both calculi EFe(Σ) and EFi(Σ)
share the same set TypEF(Σ) of types defined as follows:

TypEF(Σ) ∋ τ ::= b |
∏

(τ, · · · , τ) |
∐

(τ, · · · , τ) | τ⇒ τ | T (e, τ)

(b ∈ B, e ∈ E).

We define the erasure function | − | : TypEF(Σ) → TypML(Σ0) by
the one that recursively replaces T (e, τ) by T |τ|. We extend | − | to
typing contexts in the canonical way.

5.1 Explicit Subeffecting Calculus EFe(Σ)

The calculus EFe(Σ) extends the simply typed lambda calculus with
products and coproducts with the following raw terms:

[M], lete,e
′

xτ be M in N, T e.e′ M, o(M), o(M, · · · ,M)

The first two are parametric analogues of pure-computation con-
structors and let expressions in λML. The third one is the (effect)
coercion operator. The last two are the syntax for algebraic opera-
tions.

The typing rules are displayed in Figure 1. The equational the-
ory of EFe(Σ) extends the βη-equational theory for the simply typed
lambda calculus with products and coproducts by the equational ax-
ioms displayed in Figure 2. The axioms (6) and (7) guarantee the
functoriality of T (−, τ). The axioms (8)-(12) are a syntax represen-
tation of the axioms of parametric effect Kleisli triple (Definition
2.3). The axioms (13) and (14) guarantee that each o ∈ O behave
as an algebraic operation for T . The axiom (13) is for the symbol
o ∈ O such that s(o) = H(β, β′, e), while (14) is for o ∈ O such that
s(o) = I(n, ǫ).

The semantics of EFe(Σ) is specified by an EFe(Σ)-structure.

Definition 5.2 An EFe(Σ)-structure consists of the following data.

1. A bi-CCC C and an strong parametric E-monad T on C.

2. An object ~b� ∈ C for each b ∈ B. We extend this assignment
of C-objects to base types to ground types GTyp(B) (see Pre-
liminaries section) using the bi-cartesian structure on C in the
canonical way.

3. A (~β�, ~β′�, e)-ary algebraic operation ~o� for T , for each
o ∈ O such that s(o) = H(β, β′, e).

4. An (n, ǫ)-ary algebraic operation ~o� for T , for each o ∈ O such
that s(o) = I(n, ǫ).

Interpretations of EFe(Σ)-types and terms are straightforward.

Theorem 5.3 Let (C,T, ~−�) be an EFe(Σ)-structure. For every
EFe(Σ)-judgements Γ ⊢ M,N : τ, if M = N holds in the equational
theory of EFe(Σ), then we have ~M� = ~N�.

5.2 Implicit Subeffecting Calculus EFi(Σ)

The implicit subeffecting calculus EFi(Σ) is designed to be a re-
finement type system for the computational metalanguage λML(Σ0).
The subject M of an EFi(Σ)-judgement Γ ⊢ M : τ is an λML(Σ0)-
term. Thus raw terms do not contain coercion operators T e.e′ , and
effect annotations on let expressions are removed. Variable binders
are also annotated with λML(Σ0)-types instead of EFi(Σ)-types.

Proposition 5.4 If Γ ⊢ M : τ then |Γ| ⊢ML M : |τ|.

We move to the semantics of EFi(Σ). The basic idea of refine-
ment type is that each refinement type τ specifies a certain part, or
a predicate, of its underlying type |τ|. To model this idea, we em-
ploy a categorical setting that provides the concept of predicate on
objects in a category.

A simple setting to talk about predicates on objects in a category
C is to consider a faithful functor p : P→ C. We then regard:

• P as the category of predicates on objects in C,

• pX = I as “X ∈ P is a predicate over I ∈ C”,

• p(ḟ : X → Y) = f : I → J as “ f -image of X is included by Y”,
and the morphism ḟ as the unique witness of this statement.

Below, for objects X,Y ∈ P and a morphism f : pX → pY in
C, by f : X →̇ Y we mean the statement “there exists a unique
ḟ : X → Y in P such that p ḟ = f ”. From the above viewpoint,
idI : X →̇ Y corresponds to “X implies Y” for predicates X,Y over
I ∈ C. Thus the category consisting of objects X such that pX = I

and morphisms ḟ such that p(ḟ) = idI may be seen as the preorder
of predicates on I. We name this category PI , and call it the fibre
category over I.

Besides, there are products, coproducts, arrow types and effect-
annotated monadic types on refinement types; we thus assume that
P is a bi-CCC, and that a parametric effect monad Ṫ is given on
P. The introduction and elimination of these type structures are
synchronised with those of the underlying λML-types. We capture
this situation by that p strictly preserves the bi-CC structure on P,
and maps Ṫ to T (see Definition 2.6). The following two definitions
summarises the above discussion.

Definition 5.5 Let ∆ be a λML-signature. An λML(∆)-structure with
predicates consists of the following data.

1. A λML(∆)-structure (C,T, ~−�).

2. A bi-CCC P. We denote the bi-CC structure with a dot, like
×̇, +̇, ⇒̇, π̇, · · · .

3. A faithful functor p : P → C such that p strictly preserves the
bi-CC structure, and each PI has the largest element ⊤I .

641

The common typing rules for EFe(Σ) and EFi(Σ) (in EFi(Σ) the type annotation xτ at a variable binder is replaced by x|τ|)

Γ ⊢ Mi : τi 1 ≤ i ≤ n

Γ ⊢ 〈M1, · · · ,Mn〉 :
∏

(τ1, · · · , τn)

Γ ⊢ M :
∏

(τ1, · · · , τn) 1 ≤ i ≤ n

Γ ⊢ πi M : τi

Γ ⊢ M : τi 1 ≤ i ≤ n

Γ ⊢ ιi M :
∐

(τ1, · · · , τn)

Γ ⊢ M :
∐

(τ1, · · · , τn) Γ, xi : τi ⊢ Mi : τ 1 ≤ i ≤ n

Γ ⊢ case M with ι1 x
τ1
1
. M1, · · · , ιn x

τn
n . Mn : τ

Γ, x : τ ⊢ M : τ′

Γ ⊢ λxτ . M : τ⇒ τ′
Γ ⊢ M : τ⇒ τ′ Γ ⊢ N : τ

Γ ⊢ MN : τ′

Γ ⊢ M : β′ ⇒ T (e′, τ) s(o) = H(β, β′, e)

Γ ⊢ o(M) : β⇒ T (ee′, τ)

Γ ⊢ M1 : T (e1, τ) · · · Γ ⊢ Mn : T (en, τ) s(o) = I(n, ǫ)

Γ ⊢ o(M1, · · · ,Mn) : T (ǫ(e1, · · · , en), τ) Γ ⊢ [M] : T (1, τ)

Typing rules specific to EFe(Σ)

Γ ⊢ M : T (e, τ) e ≤ e′

Γ ⊢ T e≤e′ M : T (e′, τ)

Γ ⊢ M : T (e, τ) Γ, x : τ ⊢ N : T (e′, τ′)

Γ ⊢ lete,e
′

xτ be M in N : T (e · e′, τ′)

Typing rules specific to EFi(Σ)

Γ ⊢ M : T (e, τ) e ≤ e′

Γ ⊢ M : T (e′, τ)

Γ ⊢ M : T (e, τ) Γ, x : τ ⊢ N : T (e′, τ′)

Γ ⊢ let x|τ| be M in N : T (e · e′, τ′)

Figure 1. Typing Rules of EFe(Σ) and EFi(Σ)

T e.e M = M (6)

T e′.e′′ (T e.e′ M) = T e.e′′ M (7)

lete
′,e′′ xτ be T e.e′ M in N = T ee′′.e′e′′ (lete,e

′′

xτ be M in N) (8)

lete
′′ ,e′ xτ be M in T e.e′ N = T e′′e.e′′e′ (lete

′′ ,e xτ be M in N) (9)

let1,e xτ be [M] in N = N[M/x] (10)

lete,1 xτ be M in [x] = M (11)

lete,e
′e′′ xτ be M in lete

′ ,e′′ yσ be N in L = letee′ ,e′′ yσ be (lete,e
′

xτ be M in N) in L (12)

letee′ ,e′′ xτ be o(M) N in L = o(λyβ . lete
′ ,e′′ xτ be M y in L) N (s(o) = H(β, β′, e)) (13)

letǫ(e1 ,··· ,en),e′ xτ be o(M1, · · · ,Mn) in N = o(lete1 ,e
′

xτ be M1 in N, · · · , leten ,e
′

xτ be Mn in N) (s(o) = I(n, ǫ)) (14)

Figure 2. Equational Axioms for EFe(Σ)

The notation for a λML(∆)-structure with predicates is p : P →
(C,T, ~−�).

We note that the largest element ⊤I in the fibre PI corresponds to I
itself in P, or the predicate true.

Definition 5.6 An EFi(Σ)-structure is a pair of a λML(Σ0)-structure
p : P → (C,T, ~−�) with predicates and a strong parametric E-
monad Ṫ on P such that

1. The functor p maps Ṫ to T (see Definition 2.6).

2. For each o ∈ O such that s(o) = H(β, β′, e), the (~β�, ~β′�)-ary
algebraic operation ~o� for T satisfies: for all e′ ∈ E, X ∈ P,

~o�pX : ⊤~β′� ⇒̇ Ṫ e′X →̇ ⊤~β� ⇒̇ Ṫ (ee′)X.

3. For each o ∈ O such that s(o) = I(n, ǫ), the n-ary algebraic
operation ~o� for T satisfies: for all e1, · · · , en ∈ E,X ∈ P,

~o�pX : Ṫ e1X ×̇ · · · ×̇ Ṫ enX →̇ Ṫ (ǫ(e1, · · · , en))X.

The notation for an EFi(Σ)-structure is p : (P, Ṫ)→ (C,T, ~−�).

Given an EFi(Σ)-structure p : (P, Ṫ) → (C,T, ~−�), we interpret
the calculus EFi(Σ) as follows. We interpret each type τ ∈ TypEF(Σ)

by an object 〈τ〉 ∈ P:

〈b〉 = ⊤~b�

〈
∏

(τ1, · · · , τn)〉 = ˙∏(〈τ1〉, · · · , 〈τn〉)

〈
∐

(τ1, · · · , τn)〉 = ˙∐(〈τ1〉, · · · , 〈τn〉)

〈τ⇒ τ′〉 = 〈τ〉 ⇒̇ 〈τ′〉

〈T eτ〉 = Ṫ e〈τ〉.

We have p〈τ〉 = ~|τ|�, thus refinement types are indeed interpreted
by a predicate over ~|τ|�. We then show that the interpretation of the
underlying λML(Σ0)-judgement of an EFi(Σ)-judgement respects
the predicates given by refinement types.

Theorem 5.7 Let p : (P, Ṫ) → (C,T, ~−�) be an EFi(Σ)-structure.
For all EFi(Σ)-judgements x : τ1, · · · , xn : τn ⊢ M : τ, the
interpretation of the λML(Σ0)-judgement x : |τ1|, · · · , xn : |τn | ⊢ M :
|τ| (which is derivable by Proposition 5.4) in the λML(Σ0)-structure
(C,T, ~−�) satisfies:

~M� : 〈τ1〉 ×̇ · · · ×̇ 〈τn〉 →̇ 〈τ〉.

5.3 Soundness of EFi to Effect Specifications

We next discuss the soundness of EFi with respect to effect spec-
ifications. Recall that the primary purpose of effect system is to
statically estimate computational effects caused by programs. To
show the soundness of the estimation, we first need to specify the

642

meaning, that is, the scope of computational effects, of each effect.
Then the soundness of an effect system is that for every program M
having an effect e, the computational effect of M is included in the
scope assigned to e.

In our semantic framework, this discussion is roughly formu-
lated as follows. Let p : P → (C,T, ~−�) be a λML(Σ0)-structure
with predicates. We specify the meaning of each effect e as a P-
object S be above T~b�; here b is a base type. We then say that
EFi(Σ) is sound with respect to the specification S of effects if for
all judgements M : T (e, b) in EFi, ~M� ∈ S be. We actually allow
certain type of free variables to occur in M.

Definition 5.8 Let p : P → (C,T, ~−�) be a λML(Σ0)-structure
with predicates. An effect specification of Σ in p is just a family
of functors (i.e. monotone mappings) {S b : E→ PT~b�}b∈B.

Definition 5.9 Let p : P→ (C,T, ~−�) be a λML(Σ0)-structure with
predicates and S be an effect specification of Σ in p. We say that
EFi(Σ) is:

1. rank-0 sound with respect to S if for all EFi(Σ)-judgements

x1 : b1, · · · , xn : bn ⊢ M : T (e, b),

the interpretation ~M� of its λML(Σ0)-judgement in (C,T, ~−�)
satisfies

~M� : ⊤~b1�
×̇ · · · ×̇ ⊤~bn� →̇ S be.

2. rank-1 sound with respect to S if for all EFi(Σ)-judgements

x1 : β1 ⇒ T (e1, b1), · · · , xn : βn ⇒ T (en, bn) ⊢ M : β⇒ T (e, b),

the interpretation ~M� of its λML(Σ0)-judgement satisfies

~M� : ˙∏n

i=1(⊤~βi� ⇒̇ S bi
ei) →̇ (⊤~β� ⇒̇ S be).

Below, by imposing a mild condition on the faithful functor
p : P → C of a λML-structure with predicates, we show that the
soundness of EFi is derivable from (a combination of) the following
closure properties on effect specifications.

Definition 5.10 (Continued from Definition 5.8) We say that:

• S is closed under algebraic operations in Σ if it satisfies the
following two sub-conditions:
A) For each o ∈ O such that s(o) = H(β, β′, e), the (~β�, ~β′�)-
ary algebraic operation ~o� for T satisfies: for all e′ ∈ E, b ∈ B,

~o�~b� : ⊤~β′� ⇒̇ S be′ →̇ ⊤~β� ⇒̇ S b(ee′).

B) For each o ∈ O such that s(o) = I(n, ǫ), the n-ary algebraic
operation ~o� for T satisfies: for all e1, · · · , en ∈ E, b ∈ B,

~o�~b� : ˙∏n

i=1S bei →̇ S b(ǫ(e1, · · · , en)).

• S contains values if for all b ∈ B, η~b� : ⊤~b� →̇ S b1.
• S is closed under lifting if the unit

σT,R
I

: TI → (I ⇒ TR)⇒ TR

of the continuation monad transformer [5] satisfies: for all
e, e′ ∈ E, b, b′ ∈ B,

σT,~b′�
~b�

: S be →̇ (⊤~b� ⇒̇ S b′e
′) ⇒̇ S b′ (ee′).

The condition we impose on p is that: p is a fibration with fibred
small products. Such fibrations are often used in the categorical
formulation of logical relations; see [11, 15]. Under this condition,
we can construct a strong parametric E-monad on P from effect
specifications. It is a variation of the categorical ⊤⊤-lifting in [14].

The construction proceeds as follows. Let p : P → (C,T, ~−�)
be a λML(Σ0)-structure with predicates such that p : P → C is
a fibration with fibred small products. Also, let S be an effect
specification of Σ in p. For each X ∈ P, we first define an auxiliary

P-object Ṫ e′,beX (e, e′ ∈ E, b ∈ B) by the following inverse image
in the fibration p:

Ṫ e′,beX // (X ⇒̇ S be′) ⇒̇ S b(ee′) P

p

��
T(pX)

σ
T,~b�
pX

// (pX ⇒ T~b�)⇒ T~b� C

(see also Example 2.11). We then define Ṫ S eX to be the following
small product (i.e. meet) in the fibre category PT(pX):

Ṫ S eX =
∧

e′∈E,b∈B

Ṫ e′,beX.

Theorem 5.11 Let p : P → (C,T, ~−�) be a λML(Σ0)-structure
with predicates such that p is a fibration with fibred small products.
Also, let S be an effect specification of Σ in p.

1. Ṫ S is a strong parametric E-monad on P, and p maps Ṫ S to T.

2. If S is closed under algebraic operations, then we have an
EFi(Σ)-structure p : (P, Ṫ S)→ (C,T, ~−�).

3. If S is closed under algebraic operations and contains values,
then EFi(Σ) is rank-0 sound with respect to S .

4. S is closed under algebraic operations, contains values and is
closed under lifting if and only if EFi(Σ) is rank-1 sound with
respect to S .

Theorem 5.11-3 is a parametric analogue of [15, Theorem 7].

Example 5.12 Let ∆ = (B,O, s) be a λML-signature, (Set,T, ~−�)
be a λML(∆)-structure and α : T → (S,⊑) be an effect observa-
tion. We assume that ∆ contains only natural number-ary algebraic
operations. The subobject fibration p : Sub(Set) → Set (see[11,
Chapter 0]) provides the data 2 and 3 of Definition 5.5, and has fi-
bred small products. Therefore p : Sub(Set) → (Set,T, ~−�) is a
λML(∆)-structure with predicates.

We next derive an EF-signature Σ∆ = (S1, B,O, s′) where s′ is
defined by

s′(o) = (n, α(~o�)1) (s(o) = I(n)).

This s′ assigns the effect function to each operator symbol in O by
Theorem 4.3-1.

We give an effect specification S of Σ∆ in p by means of
the parametric effect monad D derived by Theorem 3.3: S be =
(De~b� ⊆ T~b�). This is closed under algebraic operations in Σ∆
thanks to Theorem 4.3-2, and moreover S contains values and is
closed under lifting because D is a parametric effect monad. By
Theorem 5.11-4, EFi(Σ) is rank-1 sound with respect to S , that is,
for every EFi(Σ∆)-judgement

x1 : β1 ⇒ T (e1, b1), · · · , xn : βn ⇒ T (en, bn) ⊢ M : β⇒ T (e, b),

the interpretation ~M� of its λML(∆)-judgement in (Set,T, ~−�)
satisfies: for all functions fi : ~βi� → Dei~bi� and x ∈ ~β′�, we
have

~M�{x1 : f1, · · · , xn : fn}(x) ∈ De′~b′�.

6. Related Work

6.1 Effectors and Productors

Tate introduced a semantic structure called effectors and productors
in [33] as a solution to Problem 1.1 and 1.2. Through a characteri-
sation of effectors / productors in terms of multicategory theory, we
show that parametric effect monads are productors on total princi-
palled effectoids. A good reference for multicategory theory is [20].

Let us write MultCAT for the (super-large) category of multi-
categories and maps between them. There is an adjunction relating

643

multicategories and strict monoidal categories [20, Section 2.3]:

StrictMonCAT
U //
⊤ MultCAT
F

oo

The right adjoint U maps a strict monoidal category (C, I,⊗) to its
underlying multicategory UC [20, Example 2.1.3]. It has the same
objects as C, and its homsets are defined by

(UC)([I1, · · · , In], J) = C(I1 ⊗ · · · ⊗ In, J).

The functor U preserves thinness. We also mention a relationship
between lax monoidal functors and maps for multicategories, stated
as Example 2.1.10 in [20]. For each strict monoidal category B and
D, we have the following bijection:

LaxMonCAT(B,D) ≃ MultCAT(UB,UD). (15)

We omit the definition of effectors and productors; see [33, Sec-
tion 5 & 6]. We give the following multicategorical characterisation
of effectors and productors:

Theorem 6.1 1. [33, Section 9] Effectors bijectively correspond
to thin small multicategories. (Below we identify these two
concepts.)

2. Let F be an effector. Then F-productors bijectively correspond
to maps (for multicategories) of type F→ U[C,C].

For a preordered monoid E, UE is an effector called total prin-
cipalled effectoid [33, Section 9]. The following proposition is a
consequence of (15):

Proposition 6.2 Let E be a preordered monoid. Then paramet-
ric E-monads on a category C bijectively correspond to UE-
productors on C.

We end this section with the discussion about the unification
of productors and parametric effect monads. Let F be an effec-
tor. Using the adjunction F ⊣ U and the inclusion of categories
StrictMonCAT ⊆ LaxMonCAT, we obtain

MultiCAT(F,U[C,C]) ≃ StrictMonCAT(FF, [C,C])

⊆ LaxMonCAT(FF, [C,C]).

We note that FF is not thin in general. This suggests that productors
can be encoded by general parametric monads [25].

6.2 Actions of Monoidal Categories

Parametric effect monads are an instance of the broader concept
of action of monoidal categories. Depending on the degree of the
preservation of monoidal structure, there are several variations of
this concept, each of which corresponds to strong, lax and oplax
monoidal functors of typeM→ [C,C].

In mathematics, a category equipped with a strong action of a
monoidal category is sometimes called an actegory (not a typo!),
and studied in e.g. [17]. In Levy’s call-by-push-value, a strong
action of a category with finite products is used as a part of a CBPV
value / producer model [21].

Parametric effect monads are exactly lax actions of preordered
monoids. Lax actions of general monoidal categories are called
parametric monads in [25] and negativeM-categories in [24]. They
are introduced to give a unified account of the tensorial strength
of the continuation monad and the weak distributive law in linear
logic. The categorical analysis of parametric monads in [24, 25]
are readily applicable to parametric effect monads. Especially, the
concept of commutator for parametric monads in [25] will provide
a method to synthesise parametric effect monads, hence effect sys-
tems as well. Compared to [24, 25], this paper provides new exam-
ples and constructions of parametric (effect) monads arising from
the study of a semantics of effect system. We note that parametric

effect Kleisli triples and the parametric state / continuation monad
can be defined for general monoidal categories.

Recently, Petricek et al. study oplax actions of monoids to
categories under the name indexed comonad [29, Definition 2].
Although they are the dual of parametric effect monads, the spirit of
their work is very close to this work. It is interesting to see whether
we can dualise the construction of parametric effect monads using
effect observations.

We finally mention a possible generalisation of parametric (ef-
fect) monads. A monoidal category M and a lax monoidal functor
of typeM→ [C,C] bijectively corresponds to the one-object bicat-
egory BM and a lax functor of type BM → B[C,C], respectively.
This shift to the bicategory theory suggests us to take a bicategory
E and a lax functor of type E → B[C,C] as a generalisation of
the monoid structure on effects and the parametric effect monad.
An effect is now a 1-cell e : X → Y in E, and a parametric effect
monad is indexed by the domain and codomain of e, like TX,Y (e).
A future work is to examine whether we can extend the techniques
developed in this paper to bicategorical parametric monads.

6.3 Parameterised Moands

Atkey’s parameterised monads [2] are another generalisation of
monads. They seem to be fundamentally different from parametric
effect monads. To exhibit this difference, we recall that one-object
[C,C]-enriched categories are monads on C. Thus [C,C]-enriched
categories are a generalisation of monads; they correspond to dis-
cretely parameterised monads. Parameterised monads are a further
generalisation of such enriched categories. Tate shows an encoding
of preorder-parameterised monads as productors [33, Section 7].
At this moment we do not know if it is possible to directly encode
parameterised monads as parametric effect monads.

6.4 Denotational Semantics of Effect Systems

The implicit subeffecting system and its denotational semantics are
used in the study of effect-dependent program optimisation [4, 6–
8]. The semantic framework we introduced in Definition 5.5 and 5.6
is influenced by these works, which use PER-like categories as the
categories of predicates. They manually construct the denotation of
effect-annotated monadic types on the category of predicates, while
in this paper we give a mechanical method to construct parametric
effect monads by a variant of the semantic ⊤⊤-lifting.

7. Conclusion

Under the formulation of preordered monoids as a structure on ef-
fects and parametric effect monads as a semantic structure for the
effect-annotated monadic type, we studied their properties, con-
structions and applications to the semantics of effect systems. Para-
metric effect monads admit various analogues of the structures that
exist in the theory of monad. We gave a construction of parametric
effect monads from effect observations, and semantics of implicit
subeffecting calculus EFi. We then discussed the soundness of EFi
with respect to a given specification of effects.

A future work is to extend the arity of Definition 4.2 to arbitrary
objects so that we can handle fresh name creations and local stores.
It is also interesting to extend the construction in Theorem 3.3 to
the one over a general category C.

Acknowledgment

Thanks to Masahito Hasegawa, Susumu Nishimura, Paul-André
Melliès, Marco Gaboardi and anonymous reviewers for their help-
ful comments and suggestions on this paper. Additionally, thanks to
Kohei Suenaga for an insightful discussion in Tanakaya. This work
was supported by JSPS KAKENHI Grant Number 24700012.

644

References

[1] R. M. Amadio and P.-L. Curien. Domains and lambda-calculi. Cam-
bridge University Press, New York, NY, USA, 1998.

[2] R. Atkey. Parameterised notions of computation. J. Funct. Program.,
19(3-4):335–376, 2009.

[3] G. Barthe, P. Dybjer, L. Pinto, and J. Saraiva, editors. Applied Seman-

tics, International Summer School, APPSEM 2000, Caminha, Portu-
gal, September 9-15, 2000, Advanced Lectures, volume 2395 of LNCS.
Springer, 2002.

[4] N. Benton and P. Buchlovsky. Semantics of an effect analysis for
exceptions. In Proceedings of 2007 ACM SIGPLAN International
Workshop on Types in Languages Design and Implementation, pages
15–26. ACM, 2007.

[5] N. Benton, J. Hughes, and E. Moggi. Monads and effects. In Barthe
et al. [3], pages 42–122.

[6] N. Benton, A. Kennedy, L. Beringer, and M. Hofmann. Relational
semantics for effect-based program transformations with dynamic al-
location. In Proceedings of the 9th International ACM SIGPLAN

Conference on Principles and Practice of Declarative Programming,
pages 87–96. ACM, 2007.

[7] N. Benton, A. Kennedy, L. Beringer, and M. Hofmann. Relational se-
mantics for effect-based program transformations: higher-order store.
In Proceedings of the 11th International ACM SIGPLAN Conference

on Principles and Practice of Declarative Programming, pages 301–
312. ACM, 2009.

[8] N. Benton, A. Kennedy, M. Hofmann, and L. Beringer. Reading,
writing and relations. In Programming Languages and Systems, 4th
Asian Symposium, APLAS 2006, Proceedings, volume 4279 of LNCS,
pages 114–130. Springer, 2006.

[9] A. Filinski. Representing layered monads. In Proc. POPL 1999, pages
175–188, 1999.

[10] J.-C. Filliâtre. A theory of monads parameterized by effects. Research
Report 1367, LRI, Université Paris Sud, November 1999.

[11] B. Jacobs. Categorical Logic and Type Theory. Elsevier, 1999.

[12] B. Jacobs. Coalgebraic trace semantics for combined possibilitis-
tic and probabilistic systems. Electr. Notes Theor. Comput. Sci.,
203(5):131–152, 2008.

[13] O. Kammar and G. D. Plotkin. Algebraic foundations for effect-
dependent optimisations. In Proceedings of the 39th ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages, pages
349–360. ACM, 2012.

[14] S. Katsumata. A semantic formulation of ⊤⊤-lifting and logical
predicates for computational metalanguage. In Proc. CSL ’05, volume
3634 of LNCS, pages 87–102. Springer, 2005.

[15] S. Katsumata. Relating computational effects by ⊤⊤-lifting. Inf.

Comput., 222:228–246, 2013.

[16] S. Katsumata and T. Sato. Preorders on monads and coalgebraic
simulations. In Foundations of Software Science and Computation

Structures - 16th International Conference, Proceedings, volume 7794
of LNCS, pages 145–160. Springer, 2013.

[17] G.M. Kelly and G. Janelidze. A note on actions of a monoidal
category. Theory and Applications of Categories, 9(4):61–91, 2001.

[18] A. Kock. Strong functors and monoidal monads. Archiv der Mathe-

matik, 23(1):113–120, 1972.

[19] S. Lack and R. Street. The formal theory of monads ii. Journal of

Pure and Applied Algebra, 175(1-3):243 – 265, 2002.

[20] T. Leinster. Higher Operads, Higher Categories. London Mathemati-
cal Society Lecture Note Series. Cambridge University Press, 2004.

[21] P. B. Levy. Call-by-Push-Value A Functiona/Imperative Synthesis.
Springer, 2004.

[22] J. M. Lucassen and D. K. Gifford. Polymorphic effect systems. In
Proceedings of the 15th ACM SIGPLAN-SIGACT symposium on Prin-

ciples of programming languages, pages 47–57. ACM, 1988.

[23] S. MacLane. Categories for the Working Mathematician (Second
Edition), volume 5 of Graduate Texts in Mathematics. Springer, 1998.

[24] P.-A. Mellies. Parametric monads and enriched adjunctions.
Manuscript.

[25] P.-A. Mellies. The parametric continuation monad. Mathematical

Structures in Computer Science, Festschrift in honor of Corrado Böhm
for his 90th birthday, 2013.

[26] E. Moggi. Notions of computation and monads. Inf. Comput.,
93(1):55–92, 1991.

[27] F. Nielson and H. R. Nielson. From CML to its process algebra. Theor.
Comput. Sci., 155:179–219, February 1996.

[28] F. Nielson, H. R. Nielson, and C. Hankin. Principles of program

analysis (2. corr. print). Springer, 2005.

[29] T. Petricek, D. A. Orchard, and A. Mycroft. Coeffects: Unified
static analysis of context-dependence. In Automata, Languages, and

Programming - 40th International Colloquium, Proceedings, volume
7966 of LNCS, pages 385–397. Springer, 2013.

[30] G. Plotkin and J. Power. Algebraic operations and generic effects.
Applied Categorical Structures, 11(1):69–94, 2003.

[31] L. Solberg, H. R. Nielson, and F. Nielson. Strictness and totality
analysis. In Static Analysis, volume 864 of LNCS, pages 408–422.
Springer Berlin Heidelberg, 1994.

[32] J.-P. Talpin and P. Jouvelot. The type and effect discipline. Inf.
Comput., 111(2):245–296, 1994.

[33] R. Tate. The sequential semantics of producer effect systems. In
The 40th Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, pages 15–26. ACM, 2013.

[34] J. Thamsborg and L. Birkedal. A kripke logical relation for effect-
based program transformations. In Proceeding of the 16th ACM SIG-
PLAN International Conference on Functional Programming, pages
445–456. ACM, 2011.

[35] M. Tofte and J.-P. Talpin. Implementation of the typed call-by-value
lambda-calculus using a stack of regions. In Proceedings of the 21st

ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages, pages 188–201, 1994.

[36] D. Varacca and G. Winskel. Distributing probability over non-
determinism. Mathematical Structures in Computer Science,
16(1):87–113, 2006.

[37] P. Wadler. The marriage of effects and monads. In Proceedings
of the third ACM SIGPLAN International Conference on Functional

Programming (ICFP ’98), pages 63–74. ACM, 1998.

[38] P. Wadler and P. Thiemann. The marriage of effects and monads. ACM
Trans. Comput. Log., 4(1):1–32, 2003.

645

