
A Sort Inference

Abstract

Algorithm for the Polyadic ~-Calculus

Simon J. Gay*

Department of Computing,

Imperial College of Science,

Technology and Medicine,

180 Queen’s Gate,

London, UK

SW7 2BZ

(sjg3@doc.ic.ac.uk)

In Milner’s polyadic ~-calculus there is a notion of sorts

which is analogous to the notion of types in functional

programming. As a well-typed program applies func-

tions to arguments in a consistent way, a well-sorted pro-

cess uses communication channels in a consistent way.

An open problem is whether there is an algorithm to in-

fer sorts in the z-calculus in the same way that types can

be inferred in functional programming. Here we solve

the problem by presenting an algorithm which infers

the most general sorting for a process in the first-order

calculus, and proving its correctness. The algorithm is

similar in style to those used for Hindley-Milner type

inference in functional languages.

1 Introduction

The benefits of programming with a typed language are

widely accepted. The type of a function or procedure

is the simplest possible form of specification, but nev-

ertheless a very useful one. The type system aids mod-

ular program construction by providing a means of ex-

pressing procedure interface specifications, and compile-

time type checking, which is a standard feature of both

imperative and functional languages, is able to detect

many programming errors. In the realm of functional

programming with polymorphism, type checking is ex-

tended by the provision of type inference: the compiler

is able to (attempt to) infer the most general polymor-

“Researcb supported by an SERC studentship.

Permission to oopy without fee all or pert of this material is

granted provided that the copies are not made or distributed for

direct commercial advantage, the ACM copyright notice and the

title of the publication and its date appear, and notice is given

that copying is by permission of the Association for Computing

Machinery. To copy otherwise, or to republish, requires a fee

and/or specific permission.

ACM-20th PoPL-1 /93-S. C., USA

01993 ACM 0-89791 -561 -5/93 /0001 /0429 . ..$1 .50

phic type of an expression. This relieves the program-

mer of the task of supplying type annotations for all

variables and functions, and helps to ensure that func-

tion definitions reflect any genericity present in the al-

gorithms which they are encoding. From a theoreti-

cal point of view, the analogy between types in func-

tional programming and propositions in intuitionistic

logic (the Curry-Howard isomorphism, also known as

the propositions-as-types paradigm) forms the basis of

the elegant connections between functional programs,

intuitionistic proofs and cartesian closed categories. On

the practical side, type checking is recognised as one of

the most successful applications to date of formal meth-

ods in computer science.

The success of type systems in sequential programming

makes it natural to ask whether there is a similar notion

of types in some given formalism for describing concur-

rent processes, and whether the same kind oft ype check-

ing and type inference can be used to good effect. In

this paper we study this question in the case of one such

formalism, namely Milner’s r-calculus [MPW89, Mi191].

Milner answers the first part of the question by defining

the notions of sort and sorting: a sorting is analogous to

an environment of typed terms in functional program-

ming type inference, and the sort of an agent (process) is

analogous to the type of a function. The second part of

the question is an open problem. We solve this problem

by presenting an algorithm which constructs the most

general (in a sense to be made precise; this is analo-

gous to polymorphism) sorting in which a given agent

can be assigned a sort, and also the sort itself. The

algorithm is in the style of those in widespread use for

Hindley-Milner type inference [Mi178, Hin69] in func-

tional language systems.

In order to make the paper as self-contained as possi-

ble, we begin with an introduction to (or review of) the
r-calculus in Section 2 and describe Milner’s notion of

sorting. Then in Section 3 we give the (slightly differ-

429

ent) definition of sorting to be used in the rest of the

paper, and develop some theory of these sortings. In

Section 4 the sort inference algorithm is presented as

a collection of rules allowing agents to be constructed

along with a suitable sorting, in the same way that

type inference algorithms for functional programming

languages are usually presented. Some examples of the

algorithm in action also appear in this section. Sec-

tion 5 contains the proof that the algorithm constructs

the correct sorting. Finally in Section 6 the algorithm

needed to combine two existing sortings into a sorting

for a compound agent is given in a more concrete form,

which should make it clear that the sort inference algo-

rithm is amenable to implementation.

2 The m-Calculus

The r-calculus is a notation for communicating pro-

cesses. As the name suggests, it has a flavour of the

A-calculus in the way terms are constructed. It is sim-

ilar to CCS [Mi189] in that processes can be built up

by adding prefixes, or communication points, to exist-

ing processes, but generalises CCS by allowing the com-

munications resulting from prefixes to send and receive

arbitrary names. For example, adding the prefix x(y) to

a process P forms the process z(y) .P which can receive
a name (referred to as y within P) along a communica-

tion channel called x, and then become P. The notation

for prefixes which output names is similar: ZU.Q out-

puts u along z and becomes Q. The names which can

be transmitted along channels in this way are of the

same nature as the names of the channels themselves,

so that x(y) y(z) .P is a valid construction. This ability

to use names to refer to both channels and data is one

of the key features of the ~-calculus, and is what gives

it much of its power. It allows the effect of transmit-

ting processes along channels to be obtained: instead of

sending a process, it is sufficient to send a name which

can be used to access the process. Processes can be

combined in parallel, which introduces the possibility of

communication just as in CCS: x(y) .P@.Q reduces to

P{u/y} IQ. There is also a + operator which again be-

haves in the manner familiar from CCS: x.P + y.Q can

communicate with an z or a v prefix and become P or

Q accordingly.

The above examples live in the monadic n-calculus; in
moving to the polyadic ~-calculus, which we deal with

in this paper, two further generalisations are made. Any

number of names can appear in the argument of a prefix,

for example X(UVW), and also the addition of a prefix to

a process is broken down into two steps. To form what
we have previously written as z(y) .F’, the first step is to

form the abstraction (Ay)P from the process P, and the

second step is to locate this abstraction at x by form-

ing x.(Ay)P; we can then abbreviate this expression by

a(y) .P to recover the previous notation. Similarly for

outputs: EU.Q is an abbreviation for Z. [u]Q, where the

concretion [u]Q has been co-located at the co-name T.

Abstraction and concretion behave slightly differently

with respect to the binding of names: x is bound in

(Ax)P but free in [z]P. The other way of binding names

is with the restriction operator v. In (vx)P, uses of x

within P are distinct from any external uses; the com-

bination (vx)[z]P gives the effect of a concretion which

binds its arguments.

The last construction to mention is the replication op-

erator. The process !P is equivalent to P\ !P; this allows

processes to be constructed which behave as if defined

by recursive equations.

The preceding discussion describes the standard (first-

order) n-calculus. We will extend the calculus by the

addition of a new atomic process ERROR, which will

be used to represent the kind of run-time error which

sortings are intended to avoid.

The constructions described above are formalised by the

following grammar for agents, in which A4, N are normal

processes, P, Q are processes, F is an abstraction, C a

concretion and A an agent. Also x is an arbitrary name,

and a is an arbitrary name or co-name.

N ::= a. Alolitf+N\ ERRoR

P ::= N I PIQ [!P I (vx)P

F ::= P I (Aa)F I (vx)F

c ::= P I [*]C I (Vz)c

A ::= FIC

In order to describe the benefits of introducing sortings,

we need to discuss the operational semantics of the r-

calculus. First of all, the reduction relation between

processes can be defined most simply if we work not

with raw process terms, but modulo a certain structural

congruence relation. Writing P for the collection of pro-

cesses and MP for the collection of normal processes, we

define s to be the smallest congruence relation over T

which satisfies the properties listed below, The free and

bound names of a process, fn(P) and bn(P), are defined

in the natural way. This is the standard definition of z

for the ~-calculus, extended to cover ERROR.

1.

2.

3.

4.

5.

Processes are identified if they differ only by a

change of bound names (ie a-conversion).

(NP/ -,+, O) is a commutative monoid.

(7/ =,1, O) is a commutative monoid.

!P E P[!P.

If z @fn(P) then (vz)(PIQ) ❑ PI(vz)Q.

430

6.

7.

8.

9.

10.

11.

12.

[f z # y then (vy)(kc)F s (kE)(vy)F.

[f x # y then (vy)[z]Cs [z](vy)C.

(ME)(vY)A a (vy)(vz)A, (vz)(vz)A s (vz)A.

~ + ERROR s ERROR.

PIERROR z ERROR.

!ERROR ~ ERROR.

(kC)ERROR E ERROR, [Z] ERROR E ERROR,

(VZ)ERROR EZ ERROR.

Now we define the reduction relation + over processes

to be the smallest relation satisfying the following rules.

Comm
(.. -+ F) I(I+3.. +3. C)+FOC

P+P’ P*.P’
Par Res

PIQ ~ P’\Q (?m)P + (VZ)P’

Q=P P4P’ P’EQ’
Struct

Q-+Q’
The term F*C is the pseudo-application of the ab-

straction F to the concretion C. To define it, note

that structural congruence can be used to write abstrac-

tions and concretions in standard forms F = (M)P,

C = (v~)[~Q. If F and C are in this form with ~f@ = 0,

we define F ● C to be (vJ)(P{Z/Z}lQ) if I;l = I;I,

and ERROR otherwise. Thus the ERROR process is used

to represent the result of an attempted communication

in which the sending and receiving processes disagree

about the number of names to be transmitted. The

other possibility would be not to have a reduction in

the case of such a disagreement, so that the result would

be a deadlock. But by introducing ERROR we can iden-

tify precisely the kind of bad behaviour which can be

eliminated by using well-sorted processes, although even

well-sorted processes can deadlock for other reasons.

The aim of introducing sortings is to ensure that names

are used consistently. If two processes x. F and z.C have

been constructed within the discipline of some ambient

sorting then forming the composition x .F IE.C is guar-

anteed to make sense (ie will not reduce to ERROR),

because F and C will have the same number of names

abstracted or concreted out. Furthermore, both pro-

cesses agree about how each name transmitted can be

used, and so ERROR will not appear in any subsequent

reductions. This will be made precise later in the paper.

Milner’s definition of sorting is as follows. We assume

a collection S of subject sorts and for each S E S an

infinite collection of names with subject sort S, written

z : S. An object sort is a sequence of subject sorts; that

is, an element of S*. A sorting over S is a non-empty

partial function ob : S - S* which describes, for any

name x : S, the sort of name-vector it can carry when

used to locate or co-locate an abstraction or concretion.

Given a sorting ob, an agent A respects ob, or is well-

sorted for ob, if it can be assigned an object sort s by the

use of certain rules which ensure that the use of names

in A is compatible with ob. So the condition is that

A : s can be inferred for some object sort s from the

rules

z:S F:ob(S)

x.F : ()

0:()

P:() Q:()

PIQ : ()

x;S F:s

(h)F : (S)AS

z:S C:ob(S)

Z.c : ()

&f:() IV:()

M+ fv:()

P:() A:s

!P : () (vx)A : S

X:s C:s

[X]c : (s)”s

and then s is the (possibly empty) sequence of sorts

of the names over which A is abstracted or concreted.

Each rule is to be read as a deduction of the conclusion

below the line from the hypotheses above the line, in

the manner of sequent calculus.

In the rest of the paper we will describe how these rules

form the basis of a sort inference algorithm.

3 Sortings

From now on we assume that there is a fixed collection

hf of names, which includes all the names used in all

the agents being considered. In the following theory,

everything could be explicitly parameterised over N,

but this seems excessively general. We also assume that

all bound names are distinct from each other and from

all free names; this can be done as a-conversion is part

of the definition of structural congruence. For sortings,

we use

Definition 1 A sorting Z is a pair (1?, ob) consisting of

an equivalence relation R on N and a partial function

ob : N/R - (N/R)*. An object sort in the sorting Z is

an element of (N/R)*.

The idea behind this definition is that the equivalence

classes of R represent the assignment of subject sorts

to names, so that names x and y have the same sub-

ject sort if and only if xRy. Thus we have abandoned

431

the names of the subject sorts, and retained only the

essential information about which names have the same

subject sort. The definition of what it means for an

agent to respect a sorting is essentially the same as in

the previous section, except that we use judgments of

the form Z K Abs A : s to show the sorting being used,

the sort assigned to the agent A, and also the class of

agent into which A falls.

Definition 2 An agent A respects a sorting Z =

(R, 06), or is well-sorted for X, if for some object sort s

the judgement X 1- AgentA : s can be derived from the

rules in Figure 1.

To show the benefit of working with well-sorted pro-

cesses, we state (but do not prove)

Proposition 1 If X t- Proc P : () and P ~ Q then

Zt-Proc Q : ().

from which, noting that the agent ERROR does not re-

spect any sorting, avoidance of run-time error follows.

Corollary 2 If Z t- Proc P : () then P ~“ ERROR.

Before considering the question of how to infer a sorting

for a given agent, we will develop an algebraic theory

of sortings a little; this can be convenient y expressed

in the language of partial orders. The idea is that sort-

ings form a poset in which moving up the order relation

represents instantiating a sorting by combining certain

subject sorts and extending the domain of definition of

ob.

Definition 3 Let Sort be the set of sortings Z =

(.??, oh), with a partial order defined by Z ~ X’

if and only if R ~ R’ and whenever ob([z]R) =

([ZI]R . . . [LE&), ob’([~]~,) = ([Z1]RI .,. [z&).

It is easy to check that this does define a partial or-

der. Note that R induces an equivalence relation on

each equivalence class of R’, so the classes of R’ are

themselves partitioned into R-classes; these are also the

classes into which R partitions N. Viewing this the

other way round, the picture is of R’ being constructed

by amalgamating some of the R-classes of ~, as long as

this results in ob’ being well-defined when it is induced

by ob in the obvious way.

Note that Sort has a least element, the sorting (=, @),

which we will denote by L as usual.

When inferring sortings, we will need to be able to

combine sortings which have been inferred for two sub-

processes in order to find a sorting for a compound pro-

cess. The new sorting should be an instance of both

previous sortings, and in fact it is clear that we would

like it to be the most general such sorting. So we will

be interested in least upper bounds in Sort. A con-

crete algorithm to construct Xl V Zz will be described

later; in order to make it easier to prove the correctness

of the algorithm, we will now give a characterisation

of the least upper bound of two sortings in terms of a

least fixed point construction. Let xl = (Rl, obl) and

X2 = (Rz, ob2) be sortings for which 21 V 22 exists.

Consider the function F on the poset (EqRel(N’), ~),

defined in Figure 2, where the function STC is the sym-

metric transitive closure and EqRel(iX) is the set of

equivalence relations on a set X. This definition relies

on the existence of xl V Z2 to ensure that when obl [Z]R1

and 0b2 [~]R2 are defined with (z, y) E R, their values are

sequences of the same length. Since F is continuous and

the poset (EqRel(~), ~) has a least element (equality),

we can define a sorting E = (R, ob) by taking R to be

the least fixed point of F, and ob to be induced by its

values on the equivalence classes of RI and R2 (which

are bound to be compatible). We now have

Proof We have xi ~ Z since Ri ~ R and because of

the way in which ob is induced by obi. If E’ = (R’, oh’)

is such that Z1, Z2 ~ I?, then R’ is a fixed point of

F. Hence R ~ R’. Also El, Z2 ~ E’ means that ob’ is

defined on at least those classes for which its definition

can be induced from the obi, and its values there are

those which would be induced. So Z ~ Y. •1

4 The Sort Inference Algorithm

We can now describe the algorithm which constructs

the most general sorting for a given agent, if it exists,

assuming the existence of an algorithm which computes

V or reports that it is undefined. Following the usual

practice in presenting type inference algorithms in func-

tional programming, we give a collection of inference

rules for sorting judgments, similar to those in the def-

inition of well-sortedness, but which build up a sort-

ing as well as constructing an agent. If the judgement

~A h AgentA : s can be deduced from the rules given

below, then the agent A k well-sorted for ~A and EA is

the most general sorting for A. If at any point a com-

putation of V is required which is not defined, then A

does not respect any sorting. The rules are shown in

Figure 3. An important feature of these rules is that

there is exactly one for each construction in the gram-

mar which generates agents. Thus given an agent A,

the construction of ~A is deterministic.

Before proving that this algorithm constructs the de-

sired sorting, we will illustrate it with a couple of exam-

432

Zero
II 1- NormProc O : ()

2 t- NormProc M : () Z E NormProc IV : () plus

2 t- NormProc Al+ iV : ()

X h Abs F : ob[cx]~ X } Cone C : ob[a]~
Loc COLOC

Z F NormProc CX,F : () X h NormProc a.C’ : ()

X F NormProc N : ()
Proml

EFProclV:()

Xt-Proc P:() X1- Proc Q:()
Comp

Xl- Proc PIQ : ()

Et- Proc P:() XFProc P:()
Rep Resl

X h Proc !P : () Z 1- Proc (vz)P : ()

XFProc P:()
Promz

ZhProc P:()
Proms

ZFAbs P:() ZFConc.P:()

E1-Abs F:s XbConc C:s
Resz Ress

~ F Abs (vz)F : S X 1-Cone (vz)C : s

XFAbs F:() Z1-Conc C:()
Promq Proms

Z F Agent F : () 2 + Agent C : ()

Figure 1: Rules for sort derivation.

F(R) = STC(R U RI U R2 U {(zi, vi) : 3%, Y.($> y) E R&Oh[z]~, = ([d~,)?=lkob[d~, = ([Y~]&)~sl})

Figure 2: The definition of F : (EqRel(N), ~) a (EqRel(M), ~).

,/

433

Zero
11- NormProc O : ()

X t- NormProc M : () 2’ t- NormProc fV : () plus

Z V Z’ t- NormProc M + IV : ()

(R, Oh)t- Abs F : ob[a]~ ~ocl

(R, ob) t- NormProc CY.F : ()
if [a]R ~ dom(ob)

(R, ob) t Abs F : S
LOC2

(R, ob U {[Q]R H s}) t- NormProc a.F : ()
if [~]R @ dom(ob)

(R, ob) I_ Cone C : ob[a]R ~oLocl

(R, ob) 1- NormProc &.C : ()
if [a]~ E dom(ob)

(R, ob) 1- Cone C : s
COLOC2

(R, ob U {[a]R I--+ s}) 1- NormProc ti.C’ : ()
if [a]R @ dom(ob)

E k NormProc IV : ()
Proml

XFProc IV:()

Et- Proc P:() Z’1-Proc Q:()
Comp

EvE’ 1- Proc P[Q : ()

Z1-Proc P:()
Rep

Z 1- Proc !F’ : ()

N!v Proc F’:()
Promz

Z1-Abs P:()

E1-Abs F:s
Abs

~ \ Abs (kc)~ : ([Z]R)AS

Et- Abs F:s
Res2

Z i- Abs (LM)F : S

Zt-Abs F:()
Promq

Z h Agent F : ()

ZFProc P:()
Resl

2 h Proc (vz)P : ()

xHProc P:()
Proms

Z1-Conc P:()

E1l-Conc C:s
Cone

E h Cone [z]F : ([Z]R)-S

E1-Conc C:s
Ress

E F Cone (vx)C : s

XFConc C:()
Proms

IS b Agent C : ()

Figure 3 Rules for sort inference.

434

pies, one of success and one of failure. Our first example

comes from Milner’s translation of the lazy A-calculus

into the r-calculus. This translation, written as [– ~,

is given by

[z] = (kb)z.[u]o
[ptiiw; : (A?J)U.(AZ)[M]

;U)(VV)([M]VI(VZ) (W.[ZU]OI!Z.[N])).

This translation respects the sorting which in Milner’s

notation is written aa

{vAR R (ARGS), ARIm ~ (VAR, ARGS)}

and which, in our notation, means that there are two

equivalence classes of names, called VAR and ARGS. We

will not dwell on the details of this translation, but just

have a look at the r-calculus term arising from a simple

case - the identity function. According to the above def-

initions, [Jz.zj = (Jv)v.(Az)(~u)Z. [u]O. The ~-calculus

term contains the names z, u, v; we can describe a sort-

ing by indicating the partitions of x, u, v and the action

of ob, so for example the sorting J_ will be written

{z} +1, {u} ~ 1, {v} ~ J-

where by {z} w J_ we mean that ob is undefined on {z}.

We will omit the undefined instances of ob where this

does not cause confusion. The derivation of the sorting

{x} + ({u}), {u} H -1-, {v} ~ ({z}, {u})

and the assignment of the sort ({v}) to the agent

(~v)v.(kc)(Au)E. [u]O is shown in Figure 4 (uses of the

promotion rules Promn are omitted). This is the most

general sorting respected by this agent; the sorting given

by Milner, when expressed in our notation, is

{z} + ({u, v}), {u, v} + ({z}, {u, v})

(so VAR = {z}, ARGS = {u, v}). We can see that Mil-

ner’s sorting is an instantiation of the one found by our

algorithm. This is not to say that his sorting is not the

most general one appropriate for the translation of the

lazy ~-calculus, but merely demonstrates the fact that a

particular process arising from the translation may not

constrain the use of its names sufficiently to define that

sorting fully.

For an example of the algorithm detecting a badly-

sorted process, consider a.(Xr)7i3.O and d.[u]u.(~z)O. The

first of these receives a name z on a, then sends a

signal on x. The second sends a name u on a, then

receives a name z on u. Thus the two processes do

not use the channel a in compatible ways, because they

make different use of the name transmitted on a. Fig-

ure 5 shows the attempt to infer a sorting respected by

(a.(Az)E.O)[(il. [u]u.(Jz)O). The problem arises when

is necessary to form the join of the sortings

{z} w (), {u} ~ 1, {z} M 1, {a} I+ ({z})

and

{z} ~ L, {u} * ({z}), {z}* J-, {a} w ({u}).

it

Comparing ob{a} in the two sortings shows that the

combined sorting must have an equivalence class con-

taining {z, u}, but looking at ob{z} in the first sorting

and ob{u} in the second shows that the combined sort-

ing must have ob{z, u} = () and ob{z, u} = ([z]), which

is contradictory. Hence the two sortings have no join,

and the process respects no sorting.

5 Correctness of the Algorithm

We now have to demonstrate that ~A is the most gen-

eral sorting respected by A, in a suitable sense. First we

need to know that Sort.4, the set of sortings respected

by A, is closed under instantiation.

Lemma 4 If X E SortA and E ~ ~’ then E’ E SortA.

Proof As usual, let 2 = (R, ob) and Z’ = (R’, oh’).

Given an object sort s = ([zl]R. . . [zn]R), define s’ =

([zl]~l . . . [z&/). From a proof of X 1- A : s we con-

struct a proof of Z’ t A : s’, by induction on the length

of the proof. Consider the possible cases for the last

step of the proof.

● The base case: if it is

Zero
Z F NormProc O : ()

then since ()’ = (),

Zero
Z’ i- NormProc O : ()

is the desired proof.

● If it is
E 1- Abs F : ob([@]R) .

Loc
X h NormProc LY.F : ()

then by induction there is a proof of

X’1- Abs F : {ob([cY]H)}’;

but {ob([a]R)}’ = Ob’([CY]RI), so this is a proof of

2’1- Abs F : ob’([a]~l)

and hence the Loc rule can be used to prove

Z’ 1- NormProc CY.F : ()’.

The case for the rule COLOC is similar.

435

Zero
{x}, {u}, {v} H 11- NormProc 0: () ~onc

{z}, {u}, {0} H J- + Corlc [U]o : ({u}) ~oLoc,

{z} ~ ({u}) 1- NormProc Z.[U]O : () ~b~

{x} w ({u}) F Abs (Au)E.[u]O : ({u})
Abs

{x} = ({u}) ~ Abs (~a)(~u)z.[u]O : ({~}, {u}) .

Figure 4: An example of sort inference.

Zero
{z}, {a}, {u}, {z}H J-E 0: () *bs

Zero
{z}, {a}, {u}, {z} ~ 11-o: () ~oLoc2 {z}, {a}, {u}, {.z} k+ J_ t- (Az)O : ({z})

{z} H () b E.o : ()
Abs

{u} * {z}!- U.(lz’)o : () ~on:oc’

{z} H () + (Az)z.o : ({x}) {u} * {z} 1-[U]u.(k)o : ({u})

{z} H (), {a} - ({*}) F a.(h)Z.O : () L0c2
COLOC2

{u} H {2}, {a} H ({u}) 1- E.[U]U.(AZ)O : ()
fhmn

e If it is

The sortings in the premises have no join.

Figure 5: Detecting a badly-sorted process.

then by induction there is a proof of

E’FAbs F:s’

which can be extended to a proof of

2’1- Abs (h)F : ([x]~l)-s’

by the Abs rule, and this is the required proof since

([z] B)*s’ = ([2] R,)-S’. The case for the rule Cone is

similar.

All the other cases are trivial since they do not

change the sorting of the agent involved.

•1

Thus instantiation preserves respectability. The most

general sorting respected by A should be the least in-

stantiated sorting in SortA, which means the least ele-

ment of the poset. Before proving this, we should check

that A does respect the sorting ~A, if 2A exists.

Lemma 5 All the sorting judgments appearing in the

algorithm which constructs ~A are valid.

Proof We check

._/u...~

that the rules in the algorithm pre-

serve validity of judgments. There are thr~e essentially

different cases. ,

e The rule Zero is sound because

21- NormProc O : ()

for any sorting E.

● For the rule Plus, observe that since E, Z’ ~ Z V E’,

M and N respect E V 2’, so we have

Z V Z’ F NormProc M : ()

and

X V Z’ F NormProc IV : ()

from which we can deduce

~V~’ F NormProc &f+N : ().

o The rule Locz is sound because (R, ob) G (R, oh’)

and by the same argument as for the previous case.

❑

Corollary 6 If EA is defined then ~A e So?%A.

Finally, we can prove the desired property of EA.

436

Proposition 7 For any agent A, if ~A is defined then

it is the ieast element of SortA.

Proof We show by induction that if A respects 2

and ~’ appears during the construction of 2A, E’ ~ ~;

hence if Z ~ SortA and 2A is defined, ZA ~ Z. There

are essentially three cases to consider.

A respects the sorting 1 which starts the construc-

tion off.

For the rule Plus we have by induction that

Xl, 212 ~ Z, and so xl V Xz ~ 2 since it is the

least upper bound.

For the rule Locz we have by induction that

(Rl, Obl) Q Z. In the proof that A respects Z,

the rule Locz must be used with sorting Z, which

means that ob : [cr]~ H s. If

(obl U {[cYIR,= s})([z]R,) = ([~I]R, . . . [%] R,)

then either

obl([z]~l) = ([~I]R1 . . . [%] RI)

or [$]R1 = [~]Rl. In the first case,

obl([z]R) = ([Z1]R . . . [Zn]R)

since (Rl, obl) ~ 2, and in the second case

.S= ([ZI]R1 . . . [zn]R,) = ob([dd.

Hence

(Rl, obl U {[a]Rl + S}) ~ ~.

❑

Computing Least Upper

Bounds of Sortings

now need to describe the algorithm which given

= (Rl, obl) and Ez = (Rz, obz), calculates Z =

.Z1 V E2 = (R, ob) or reports that it does not exist. The

algorithm is shown in Figure 6. It uses the functions

TC and STC which compute the transitive closure and

symmetric transitive closure of their arguments, respec-

tively.

We now prove the correctness of this algorithm in an

informal way. Of course, as we are now at the stage

of considering real computation, we assume that Af is

finite; the actual set A.f of names used in a given agent

can be determined syntactically.

Lemma 8 Algorithm 1 always terminates.

Algorithm 1 To compute the least upper bound of two

sortings, if possible.

procedure lub(l?l, obl, R2, obz,R, ob)

R:= TC(RI U R2)

repeat

1:=0

foreach (x, y) c N2 do

if (c, y) G R

and otq [Z]R1 = ([zi]R1)i’&l

and obz [V]R2 = ([vj]R2)7sI then

if m # n then

fail

else

foreachi=l... ndo

if (q, Vi) @ R then

1 := /u {(zi, yi)}

endif

endfor

endif

endif

endfor

foreach (z, y) c 1 do

R:= STC(R U {(z, y)})

endfor

until 1 = 0

foreach z c N do

if obl[z]~l = ([~i]RI)?el

and obz [Z]R2= ([Yj]RJ~el then

ob([z]R) := ([Zi]R):=l

endif

endfor

end procedure

Figure 6: Computing least upper bounds.

437

Proof The set 1 is used during each pass through N2

to accumulate the extra pairs which need to be added

to R. Each such pair which is found represents a pair

of equivalence classes of R which need to be joined to-

gether. Since there are only finitely many equivalence

classes in TC(R1 U R2) to start with, it must be the case

that after some finite number of passes through N2, no

more pairs will be found on the next pass. When this

happens, 1 = 0 at the end of a pass, and this is the case

in which the algorithm terminates. ❑

Proposition 9 When Algorithm 1 terminates,

(R, Ob) = XI V ~z.

Proof The algorithm is directly computing the least

fixed point of the function F by iteration. The only

difference is that the algorithm makes explicit the fact

that the existing relations RI and RI only need to be

incorporated at the first iteration. •1

A few words about the complexity of the sort inference

algorithm are in order. When computing the most gen-

eral sorting respected by a given agent A, the function V

is calculated s + c times where s and c are the numbers

of occurrences of+ and I in A. As for the complexity of

computing V, if INI = n then computing TC(R1 U Rz)

takes time 0(n3), Combine is called O(n) times, joining

two equivalence classes takes time O(n) and finding the

length of an object sort should take time O(n) with the

result that computing V is 0(n3). The problem with

this analysis is that the length of an object sort cannot

be bounded by n because of the fact that introducing a

name into a concretion does not bind it and so the sort

of a concretion can be arbitrarily long. If the maximum

size of a concretion is m then the time taken to compute

V is 0(n3 +n2m). We can bound S+C, n and m by the

size p of the textual representation of the process; this

gives a bound of 0(p4) on the time taken to calculate

the most general sorting.

7 Conclusions

The idea of sorts in the m-calculus extends the benefits

of typing from a sequential to a concurrent setting, pro-

viding a useful tool in program design. The algorithm

presented in this paper demonstrates that sort check-

ing and sort inference could also be incorporated into

an implementation of the ~-calculus offering the same

support to the programmer as type checking and type

inference do in functional language implementations.

8 Acknowledgements

It should be noted that work in the general area of sort-

ings, including sort inference, has been carried out in-

dependently by David N. Turner (personal communica-

tion); his work is as yet unpublished and, I believe, uses

a rather different approach.

I would like to thank Samson Abramsky, Roy Crole,

Radha Jagadeesan, Hiu Fai Chau and Sebastian Hunt

for their helpful comments and suggestions during the

preparation of this paper; also the anonymous referees

who made some valuable comments.

References

[Hin69]

[Mi178]

[Mi189]

[Mi191]

[MPW89]

J .R. Hindley. The principal type-scheme of

an object in combinatory logic. Transac-

tions of the American Mathematical Society,

146:29-60, 1969.

R. Milner. A theory of type polymorphism

in programming. Journal of Computer and

System Sciences, 17, 1978.

R. Milner. Communication and Concur-

rency. Prentice Hall, 1989.

R. Milner. The polyadic ~-calculus: A tuto-

rial. Technical report, Laboratory for Foun-

dations of Computer Science, Department of

Computer Science, University of Edinburgh,

1991.

R. Milner, J. Parrow, and D. Walker. A cal-

culus of mobile processes. Technical report,

Laboratory for Foundations of Computer Sci-

ence, Department of Computer Science, Uni-

versity of Edinburgh, 1989.

438

