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Abrtract Support sets turn out to be the key ingredient in 

We provide a scheme for determining which global 
variables are involved when an expression is evaluated 
in a language with higher order constructs and impera 
tive features. The heart of our scheme is a mechanism 
for computing the support of an expression, i.e. the 
set of global variables involved in its evaluation. This 
computation requires knowledge of all the aliases of an 
expression. The inference schemes are presented as ab- 
stract semantic interpretations. We prove the sound- 
ness of our estimates by establishing a correspondence 
between the abstract semantics and the standard se- 
mantics of the programming language. 

determining whether an expression is side effect free 
(pure) or, in general, whether two expressions can be 
evaluated independently. We shall refer to this aa pu- 
rity analysis. We define semantic functions which as- 
sign to expressions their support and alias sets. This 
style of presentation for static analysis was pioneered 
by the Cousots [9,8]. It allows one to present a static 
analysis scheme in a fashion which makes clear the rela- 
tion between the abstract semantics and the standard 
semantics. 

Abstract interpretation provides a general semantic 
framework for justifying schemes for the static infer- 
ence of properties of programs. Such inference is of 

1 Introduction 
use in program optimization, transformation and par- 
tial correctness. The main idea is that static analysis 

We present an abstract semantic interpretation for consists of a scheme for estimating the run-time prop 

computing the support set and alias set for an expres- erties of a program. Such estimations can be under- 

sion. The language we use is a typed higher order func- stood as arising from a semantics, for the underlying 

tional language with a few imperative constructs. programming language, defined on a non-hmfcrd do- 
main of interpretation. The non-standard domain is 
chosen in such a way as to refiect the features of inter- 
est from the actual (or standard) semantics but with 
suitable simplifications so that the semantic maps be- 
come computable. The inference mechanism is then 
viewed as a semantic calculation over the non-standard 
interpretation. The advantage of such a view is that 
the soundness of the inference scheme can be reduced 
to the problem of comparing two semantic definitions 
of the language. 

Abstract interpretation was first introduced in the 
context of imperative programs [7,8,9]. In this setting 
programs are modelled as flowcharts. The standard se- 
mantics is defined in terms of sets of possible states that 
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a program could be in. This is a pointwise extension 
of the normal standard semantic schemes. The collec- 
tion of sets of states forms a complete lattice under the 
usual inclusion ordering. 

In developing the abstract interpretation of applica 
tive programs, Mycroft 114,151 observed that theframe- 
work of Cousot and Cousot was useful only for in- 
ference schemes which were partially correct; termi- 
nation cannot he expressed in their framework. In 
place of the powerset based formulation as used by the 
Cousots, a powerdomain based formulation is neces- 
sary. This view was further developed in by Mishra 
and Keller[l2,13] h w ere the abstract interpretation of 
non-flat “stream” domains was considered. This ap 
proach using powerdomains was put on a firm theoreti- 
cal foundation by Mycroft and Nielson [17,19,20,21,22]. 
One of the problems with the traditional approach to 
abstract interpretation is that the framework is strictly 
first order. 

Several authors have examined the extension to 
higher order languages. In particular, there has been 
a great deal of interest in the problem of strictness 
inference. Here the problem is to determine whether 
functions are strict in their arguments. The tint order 
case was thoroughly studied by Mycroft [15] and by 
Mycroft and Nielson (171. Recently Hudak and Young 
Ill], Clack and Peyton-Jones [6] and Burn, Hankin and 
Abramsky 151, h ave all studied this question in the con- 
text of higher order languages. The idea again has been 
to view strictness analysis as abstract interpretation. 

The theoretical basis of abstract interpretation was 
discussed by Mycroft and Nielson [17] and by Mycroft 
and Jones [IS]. The extension to the higher order case 
has been discussed by several authors [l] [S] (111 all 
of whom examined the particular problem of strictness 
analysis. The soundness of static analysis schemes pre- 
sented in this way boils down to showing that the ab- 
stract semantics and the standard semantics are appra- 
priately related. We shall state a soundness theorem 
for our analysis scheme and give a partial presentation 
of the proof. A complete discussion is available in a 
technical report [ 181. 

2 Purity of Expreaalonr 

An expression is said to be pure if its evaluation is 
independent of the values of any global variables. The 
notion of global variable is relative to a given expres- 
sion so a pure expression may contain impure subex- 
pressions. An example of this is new z : int in z + 3. 
Unfortunately, the reverse situation can also arise; an 
impure expression may be built up out of pure subex- 

pressions. A lambda abstraction is always pure be- 
cause any potential effects occur only during applica- 
tion. Thus an expression like .4z : inl. g +- z would 
be pure. The main problem with purity determination 
in a higher order language is that we need to main- 
tain enough information so that we can tell whether 
a particular application is pure. This may depend on 
the arguments, for example in Xf : int + int. Xg : 
int + int. Ai : inf. If odd(i) then / else g we have 
a function taking functional arguments and returning 
a functional result. The result may or may not yield 
impure applications depending on the functional argu- 
ments / and g. Not ail applications of a function with 
side effects produce impure expressions. As soon as the 
global variables involved in the side effect are captured 
by their enclosing declarations, the resulting expression 
is pure. This is the case with 

new 2 : inl In let / = Xy : ref int. y + 3 in f(z) 

Thus the data-flow analyses for purity’ which suffice for 
first order languages would be inadequate to the task 

at hand [3] [2] 1231 14). 
In order for our scheme to deem an expression im- 

pure only when global variables are affected we need 
to compute the set of global variables actually read or 
written into during evaluation of that expression. Con- 
sider the following two expressions: 

new 2 : int in z + 1 

new 2 : int in y t 1 

The first expression is not impure whereas the second 
one is. The two expressions are structurally very simi- 
lar. If we hope to distinguish between these two cases 
we must actually know which variables are being af- 
fected by subexpressions, not just that the subexpres- 
sions do affect a variable. We shall call the set of global 
variables which are affected by or whose values afiect 
the evaluation of an expression the support of that ex- 
pression. An expression is pure when its support set is 
empty. 

3 The Language and Its Semantlcr 

The language that we use is an ordinary typed func- 
tional language. We add three imperative features: an 
assignment statement written el + e2, a dereferencing 
construct et and static allocation performed with the 
new construct. A variable denotes a storage location; 
thus to denote the value associated with the variable 
we need to use the dereferencing construct. An expres- 
sion can evaluate to a variable rather than to the value 
associated with the variable as in lf true then z elre y. 
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This is the abstract syntax for the language: 

e =2 
let 2 = el he2 

letrec I1 = Xzl : Tl.el , . . . , 
rn = AZ, : T,,.e,, in e 

if el then e2 elre e3 
h:T.e 
el (et) 
ncwz:Tine 
el ; e2 

el + e2 
et 

There are some constraints on the language: we have 
only simple types, functions are not storable items, 
and at most one level of reference or dereference is al- 
lowed. These restrictions can enforced by typecheck- 
ing, and were chosen to simplify the abstract interpre- 
tation. Furthermore, we insist that l-values cannot be 
exported outside their scope. This property can be 
detected statically by the methods developed here. 

The Store 

We will use the normal store mechanism and inter- 
pret an expression as being impure if its denotational 
semantics involves a reference to the store. This is a 
delicate issue. At first it may appear that we are taking 
the denotational semantics as indicative of the opera- 
tional semantics. After all purity appears to be a very 
operational concept. Note, however, that we are claim- 
ing only that we can tell whether an expression is pure. 
If our approximate analysis says that an expression is 
not pure it only means that the expression may or may 
not be pure. Whether an expression doea have a pure 
version is indeed a property that can be reflected in the 
denotational semantics. If we were claiming to make a 
precise analysis of purity and impurity then we would 
be forced to use an operational formulation. 

The way we model the store is particularly impor- 
tant since the crux of our analysis is the determination 
of which expressions actually affect the store or depend 
on the store. It is in fact usual to find that the deno- 
tational definition of a programming language includes 
a model of the store and of storage management. In 
our case the abstract interpretation is insensitive to the 
storage allocation policy and the relationship between 
the standard semantics and the abstract interpretation 
will hold regardless of the storage management policy. 
Thus the proof of our soundness theorem requires min- 
imal assumptions about the store. 

Part of a store can be viewed as a finite function 
from locations to values. We will need a notation to 

express the restriction of that function to a subset of 
the locations. 

rtore 1s where S E Lot 

We will also allow S E P(Id), a subset of the variables 
already allocated when we use the restriction notation 
for stores. 

Given a store, Allocate returns a store and the ad- 
dress of the newly allocated space. The new store must 
coincide with the old store over all addresses except the 
one just allocated, as stated in Axiom la, and the new 
address was not already allocated (Axiom lb). 

Allocate : Store + Store x Luc 

Axiom 1 

if (new8 tore, address) = Allocate( store) 

then 

(4 newstore ~~~~~~~~~~~~~~~ store lh-{addrcrs~ 
(b) Eval(store, address) = I 

Evaf(newstore, address) = empty 

Given a store and an address, DeAflocale returns the 
same store, with the address deallocated. The remain- 
der of the store is unchanged. 

DeAllocate : Store x Lot -+ Store 

Axiom 2 

nedore Itoc-~oddrtr8) = dare Itoc--(addrcs8) 
where netustore = DeAlhate( rtore, oddreds) 

The following two functions are used to perform read- 
ing and updating. 

Update : Store X Lot X Ifal-+ Store 

Eva1 : Store x Lot + Val 

Axiom 3 states that Update only affects the location 
indicated and leaves the rest of the store unaltered. 
Axiom 3 

Update(rtore,addrerr, value) If+oc-loddtc,,) 
= store 11; oc--(oddrcr8) 

The last axiom defines the effect of EvaI and Update. 
Axiom 4 

Eval(Update(store, addrers, value), address) = value 
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The Semantics 

The semantic domains which, we use in our denota- 
tiona! semantics are as follows. 

Val = Triv + Baol + Nat -+ FVal f LOG 

Env = Id + Val 

FVal = Val -+ Store + (Val x Store) 

The domains Ttiv, Bool, Nat and Lot contain the 
atomic values used in the language. We shall assume 
that the domains are Bat and the sum of domains being 
used is the coalesced sum. The domain Lot represents 
the domain of storage locations. The domain F’Val 
is used to represent higher order constructs or “func- 
tional” values. An element of FVal is viewed as a pair. 
Evaluating a function will return a value and, in gen- 
eral, modify the store. The pair construction is used 
to “package” together functions which represent both 
effects. 

In defining the denotationa! semantics we shall use 
a pair of semantic functions called Me and Ms. The 
first one defines the value of an expression while the 
second one describes how the store is modified. This 
is just a notational variation of the ordinary semantic 
definitions one sees in textbooks. This notation is par- 
ticularly convenient for our discussion since our prin- 
cipal concern is how the store is a&ted by constructs 
in the language. The arities of these functions are: 

Me : Ezp --* Env --) Store -+ Val 
and 

Ms : Ezp + Em -$ Store 4 Store. 

A full definition of the semantics is given in a technical 
report 1181; the part included here is intended to illus- 
trate the notation and style of semantic definition that 
we shall use. 

Me[z]env store = em(z) 
Ms[zlenv store = atote 

This illustrates the simplest construct namely an 
identifier. The value of an identidler is the location 
to which it is bound and there is no effect on the 
store. 

&[!et 2 = el in e2 ]env etore = 

1 ik&le2l env’ store’ 
if &[ellenv etore = I 

otherwise 

b&[!et 2 = el tn e2 lenv store 
= M~le2J env’ &ore 

where 
env’ = env[z 4- &(ei)env rtorej 
stord = !bf&lenv store 

These i!!ustrate how the scope rules for let blocks op- 
erate. Note that the above semantic clauses are stan- 
dard and are meant only to illustrate our notation. If 
an identifier is already bound before entry into a let 
block it will get rebound by the declaration but the 
old environment is passed to expressions outside the 
scope of a let. Thus the usual scoping rules are en- 
forced and we may reuse identifiers as we please when 
entering loca! scopes. 

!&[new z : T ln e)env rlore 
= &[e] env’ 8tore’ 

!&&[new z : T SD e)env store = rfore”’ 
where 

(addrerr, store’) = Allocafe(rZore) 
env’ = env[z + addresr] 
store” = M~[e] env’ store’ 
elate”’ = DeAUocate(stote”, addreee) 

This semantic clause illustrates how the store mode! 
is used to define the meaning of the new construct. 
Deallocation occurs when the scope of the new dec- 
laration is exited. Note that declaring a variable 
change9 the store and not just the environment. 

The fo!!owingc!auses illustrate the explicit imperative 
features namely assignment and dereferenciug. 

l&(el +- e21env rlore = 

I 

I if address = 1 
value otherwise 

Msfel t ezlenv store = 

I 

I if address = I 
Update(store”,address, value) otherwise 

where 
addresr = &iel]env store 
8lor.d = MS Iel )en v atore 
value = &(e21 env dfore’ 
store“ = Ma(e2 J env r&e 

&[et]env rtore = 

I 

I if addrer 8 = I 
Evai(store,address) otherwise 

where address = &(e]env store 

M,[et]env store = Ms(e)env rtore 
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4 An Abatract Interpretation for Alher 

Before we can calculate the support of an expres- 
sion, we may need another semantics function to de- 
termine the aliasing behavior of some of its subexpres- 
sions. Consider for instance a dereferencing expresssion 
et. The support of this expression is the support of c 
together with all the variables possibly aliased by e. A 
similar phenomenon occurs in assignment expressions. 
This section describes the semantic function A, which 
gives the set of possible aliases of an expression. 

The recursive structure of the semantic domains is 
similar to the ones used by Hudak and Young 1111 
and reflects the fact that the simplified domain being 
used for the abstract interpretation must describe the 
aliasing behavior of expressions containing arbitrarily 
higher order functions. 

ValA = {~}+DA+DA 

EnvA = Id+ VA 

DA = P(Id) x ValA 

A:Ezp-rEnvA-,DA 

A(lf el then e2 elm eglaenv 
= A(~jaenu LI A(eslaenu 

For a conditional, the least upper bound operation 
will compute the possible aliases as the union of the 
sets of possible aliases for each arm of the conditional. 

Alnew z : T In elaenv 
= A[elaenu[z t ( {“z”},~)] 

This clause tells us that a new variable starts out 
being aliased only to itself. 

A(el ; e2 ]aenv = Alezlaenv 

A(el t e2 laenv = ( 0, a& ) 
The result of an assignment is the (r-value) e2. Be- 
cause we are only allowing one level of indirection this 
cannot be an l-value thus we are assured that the set 
of possible aliases for this expression is the empty set. 
It is possible to extend this clause to handle arbitrary 
levels of indirection. Similar remarks apply to the 
semantic clause below for the dereferencing operator. 

The lattice structure over domain DA is defined by : A[etJaenv = ( 0, a& ) 

Xu.(bl, vl) IJ Xu.(b2, v2) = Xu.(bl u b2, u1 u v2) A(Az : T.e)aenu = ( 0, Au. A[elaenv[z + u1 ) 
A lambda abstraction cannot possibly be an identifier 

where U is the least upper bound operator. The ele- so we compute its alias set aa the empty set, but we 
ment atom is related only to 1. The intuition behind need the second component to compute the alias set 
this choice of domains is as follows. A particular ex- of expressions involving applications of this function. 
pression is going to denote an element of DA. The 
first component of DA is just a set of identifiers, just A(el(e2)jaenu = (A[el]aenv)2 A[ez]aenv 
what one would expect, while the second contains the 
information needed to determine the aliasing bebav- 

The intuitive justification behind our scheme for es- 

ior of other expressions which contain applications of 
timating alias sets is clear and the resemblance to the 

the first expression. Note bow the operation of least 
standard semantics is manifest. 

upper bound is obtained by taking &ions of possible 
alias sets. This reflects the conservative nature of the 6 Support S&r ar an Abrtract Interpretation 

estimates te are making. The support set of an expression is estimated by the 
As in the standard semantics, we need an environ- semantic function S. The domains are very similar to 

ment which we shall call aenu; this is a map from iden- those introduced earlier for aliases. 
tiflers to DA. The following are the semantic clauses. 
We shall use subscripts if we wish to use only the first Val s = {atom} + Vafs --, DS 

or second components of a pair in DA. Envs = Id + Vols 

Ds = P(Id) x Vals 

S:Ezp+Enus-+Ds 
A[z]aenu = aenufz) 

Allet z = el ln e2)oenv 
= A[e2]aenu[z * Alellaenv] 

A(lctnc 11 = el . . . /,, = e, In elaenu 
= A(elaenv’ 

where aenu’ = Ifp(Xenu. enu[..., fi + A[ei)enu, . ..I) 

When we use the semantic function A in the definition 
of S we assume that the environment aenu results from 
a computation of A for the same expression as the one 
for which the action of S is being defined. 

S(z]senu = ( 0, denu(z)) 
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S(lf el then e2 else eglaenu = 
( S1 (elldenu U S1 [e2]senv U S1 (e.9lttenu , 
&[e2)renu fl Szfes]denu ) 

s(1ct 2 = el in e+enu = 
(Sl(el Jdenu U Sl(e~~senu(z + SJelldenuJ , 
S2(e2)senu[z 4-- Sp(ellsenu] ) 

S~letrec !I = el . . . In = e, ln e2)denu = S(e]senu’ 
where senu’ = I/p( Xenu.enu[ . . . . fi + S2 lei JenU, . ..I) 

S[new z : T fn e]aenu = 
(Sl [e)benu[z + a-] - (“2”) , 

S2 [e]benu[z 4- -1) 
In the above clause we need to enforce the scoping 
rules. When a new variable is declared we note that 
inside its scope its support is just itself. On the other 
hand the support of the entire block must not include 
the new variable since the scope of the new variable 
ends when the block is exited; so we explicitly remove 
the new variable from the support which we compute 
for the body of the block. 

S[el ; e2 ]denw = 
( Sl (el]senu U Sl [ez)senu , &[ealsenu ) 

S[el c- e2 ]aenu = 
( S1 (el]senu u 51 [e2]aenu u Al (elluenu , 

atom) 

S(ef]senu = ( S1 [e]senu u Al [ejaenu , a= ) 
In determining the support of the explicitly impera- 
tive constructs we need to know the aliases of some 
subexpressions. Thus in the assignment statement 
above we union together the supports of the two sides 
of the assignment and also all possible aliases of the 
left hand side . 

S[kx : T.e]senu = ( 0, h.S(e)aenu[z 4- u] ) 

S[el (e2)]8enu = 
( S1 [el Jdenu U S1 (e2)denu 

U(fh[el)renu S2le2)=4, , 
(S2(ellsenu S21e2)eenu)2 ) 

The correctness is already intuitively plausible be- 
cause of the correspondence between the standard se- 
mantics and the abstract interpretations used to define 
support and alias. 

6 Soundnew Theorem for Support S&r 

In this section we shall state a soundness theorem for 
our abstract interpretations. The heart of the proof 
of the soundness theorem is a joint induction on the 
structure of terms in the programming language a9 well 
as on their types. Hudak and Young ;)rove a soundness 
theorem for strictness analysis which they claim holds 
for the untyped lambda calculus. In ,fact, their proof 
crucially uses induction on the type of lambda terms 
and, a9 they observe, they need to enforce a ‘weak type 
discipline” to guarantee termination. 

The soundness theorem for the function S says that 
the evaluation of an expression depends solely on the 
value9 of variables in its support set and does not affect 
the store outside that set. 

Theorem(support sets) 

If the evaluation of e terminates, 
V enu, denw corresponding environments, 
S~leJsenu E S * 
V dote (M,[e]enu dote) 13 = dote 1s 
&[ejsenu E S * 

V store, store’ such that &ore Is= store’ 1s 
Me[e]enu dote = Me[el enu elore’ 
M~leJenu #tore 1s = Mm[e) enu &ore’ 1s 

The requirement that a pure expression always evalu- 
ates to the same value may be too stringent for l-values 
and could be replaced by a weaker one. Note also that 
the S semantics cannot distinguish non-terminating 
computations. 

We need a precise definition of corresponding envi- 
ronments uenv and env. As in Hudak and Young Ill], 
we define partial application operator9 in both seman- 
tic domains, which wilI facilitate the proof by providing 
a mechanism for carrying out induction on the type 
structure. The partial applicators define the reduc- 
tion of a sequence of nested applications. The notation 
PAP,, is used for the abstract domain while AP,, is 
used in the standard domain. 
I’%& (Ds)~+’ + P(ld) 

n 4b..,4 = 

I 
(41 n= 
(811 U(~I)I uPAPn-1((e)2bl,...,a,) n >x 

The partial applicator AP, is defined in such a way as 
to incorporate the effect on the store when a cascaded 
sequence of applications is partially reduced. The defi- 
nition is chosen so that as each application is performed 
a value, store pair is produced and the new store is used 
in the next application, 
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AP, : (Store + Val x Store)“+’ 
+ (Store -b Val x Sfore) 
AP”(e,el,...,e,) = 

i 
iPa- (A+ a)1 (cl (e 8)2)1 (el te 8)2)2, 

n= 0 

e2,...,en) n>O 

These operators allow one to move down the type struc- 
ture by applying the function component of a member 
of Vals or Vol. The fact that we have finite types only 
means that one can “reach” all types of interest by an 
inductive argument. Dually, it also means that com- 
putations in the approximating semantic domain must 
terminate. It is straightforward to check that the fol- 
lowing identity holds: 
AI’,+1 (M[e&mu, M[e&nu, “1,. . - , urn) 
= AP,(M(el (ez)lenv, VI,. . . , urn) 

Following Hudak and Young we shall use the term 
safe to characterize the correctness property that we 
need to prove. 

4 E DS is safe at level n for value e E D if: 
V m 5 n, 6i E Ds, ei E D, ai safe at level n - 1 for ei 

PAP,,,(r,rl,...,um) C S 
3 

V &ore, store’ such that store IS= dote’ 1s 
[APm (e, el, . . . , e,)rtore]l = 

lAP,(e, el,. . . ,e,)store’]l (14 
[AP, (e, el , . . . , e,)slore]2 IS= 

IAPrn (e, el , . . . , em btore’]z IS (lb) 

and 
v rfore 

[APm(er el, . . . , em, dote))2 IS= dote 1~ (2) 

u E DS is safe for value e E D if 
it is safe at all levels 

renv and enu are corresponding environments if 
senufz) is safe for As.(env(z), 8) V 2 E dom(senv) 

Proof : 

We will show that S[e]p, where p is the support en- 
vironment, is safe for M(e]env, where M is defined by 

M[e]env = Xd.(Ib&[eJ env 8, &[e] env 8) 

The proof proceeds by structural induction (3) on e 
and by induction on the type of e. For the letm con- 
struct we will need fixpoint induction as well. Assume, 

proof of (la) and (lb) are virtually identical, therefore 
we shall only describe the proof of (la). 

1. eznewz:Tinei 
To show (2) for n > 0 and (l), it is sufficient to show 
that env’ and 8env’ are corresponding environments, 
and then use SI on ei. 
By definition, 
end = en+ t address] 

dent+ = sent+ 4- 4 
Since env and uenv are corresponding environments, 
and z is not of functional type, it is sufficient to show 
that (&atom) is safe at level 0 for ~s.(address,r), 
which is true. 

There is one equality left to show independently, that 
is (2) for n = 0, or Me[elenv store Is= store 1~. 
Assume Si(new z : T in el)p c S 
(a) Sllel)p C S u (“2”) by definition of S 
(b) rtore’ Is= store 1s by definition of Allocate 
(c) store” ISUpz-~ = store’ IsUpz~) by SI on el and 
by using (a) 
(d) rtore” 1s = &ore 1s by restriction on (c) 
(e) Since S is disjoint from {z}, when deallocating the 
space for 2, 
the S-restriction of the store is not affected: 
etore”’ 1s = DeAbcale(store”, addreas) 1s 
= 8tore” 1s by axiom I 
and we have our equality by transitivity of (b), (d), 
ad (4 

2. e z el(*) 

Fix n > 0 
We must show S[ei(es))P is safe at level n for 
M(el (e2)lenv 
Choose m 5 n, 
and 8i safe at level n - 1 for Vi, i = 1,. . . , m 

Here we need induction on the term structure as well 
as on the type structure. The latter is represented by 
the level n. We need to prove the following implica- 

~~~P,(s(elp,sl,...,d,) E s * 
[AP, (Mie1 (e2 ))env, “1, - - - , Urn) store11 
= [AP,(M(el(en))enu, VI,. . . ,vmr) store’jl 

if store IS= store’ 1s 
(2)PAP,(s(elp,al,. . . ,a,) C_ S 

env, "1,. . . , vm) store):! Is= store 1-g 

To prove the first we proceed as follows: 
By definition of PAP 
P~m(Ski (ez)b, 81, - - - I am) for simplicity, that all variable names are distinct. The _ _ __ 
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= (S[el(e2)lP)l U (h)lU 
PAP,,,-1 ((S(e, (ez))& Q,~P~. a. 9 b) 

Note bow the type of the term has been decreased 
by using the definition of PAP. The next equality 
follows by using the definition of S twice. 
= (S[ellP)l u (Sle2lf41 U ((SIfald2Sle2ldl 

~(81)~ u PAP,- 1(((S[e11P)2S(e2JP)281r...,8,) 

The next equality follows from the definition of PAP 
used in the reverse direction to go to a higher safety 
level but with the original application term broken 

~&3]p)l U (S[e2)& 
uPAp,((S[el]P)2Sle2l~,s1~...~~~) 

= PAP,+1 (S[el]P, S(e2Jh 81, . . at h) 

The last step takes us to a higher safety level but 
with simpler terms. We now perform the analogous 
calculation in tbe standard semantics and establish 
the inductive step for this case of the proof. 
Since el and e2 are structurally simpler than e, we 
get from the inductive hypothesis: 
[APm+l (M[el)enu, M[e]env, ~1,. . . , urn) store]2) ]g 

= store la 
But : 
AP,+l (M[elbwM(e2)env, ~1,. . . , urn) 
= AP, (M[el (e2 )]ew ~1,. . . , urn) 
and therefore (2) holds. 
For (1) we proceed as follows: 
YAP,+1 (Stel J, S[e2), 81,. . . , h) 

(AP,+l (M(el Jew, M(es]enu, VI,. . . , u,) store]2 
= [AP,,,+l (M[el]enu, M(e:!]enu, ~1,. . . , w,,,) store’]2 

~P,(MIel(e2)lenv,vl,...,u,) store]2 
= [AP,,, (Mie1 (ez)lenu, VI, . . . , w,) dote’]:! 

The two cases we have shown illustrate the higher order 
situations and an imperative construct. The remaining 
cases are much simpler, the details are available in our 
technical report [18]. It is interesting to observe that 
this proof has the same sort of reasoning that one sees 
in proofs of strong normalization of the typed lambda- 
caiculus. There again one needs to go down in the type 
structure which is done by performing an application 
and producing in the process a structurally more com- 
plicated term. 

The corresponding soundness theorem for the ab- 
stract interpretation A for computing aliases is: 
Tbeorem( alias sets) 

If S is the set of variables possibly aliased by an ex- 

pression e, then e can never evaluate to a variable not 
in S. The soundness of our abstract interpretation for 
aliases is defined formally in the following theorem: 

If the evaluation of e terminates, 
V enw, aenu corresponding environments,‘ 
vs c P(M), 

Al[e)aenu E S =+ 
V g E 3, V dote 

li&(eJenu store # M&]enu etore 

The proof is similar to the one for support sets, full 
details are provided in our technical report ]lS]. 

7 Conclurlon 

In this paper we have produced a method for deter- 
mining (approximately) whether the evaluations of two 
expressions are independent of each other. The pre- 
sentation of our method uses the technique of abstract 
interpretation. We feel that using abstract interpre- 
tation allows one to present static analysis schemes in 
a semantically appealing fashion. The resulting algo- 
rithm is easy to code and has been implemented in ML. 
Furthermore, the static analysis scheme which we de- 
scribe brings an interesting and pragmatically relevant 
new problem within the scope of abstract interpreta- 
tion techniques. 

The problem of determining side effects has been 
studied for a fairly long time by workers developing 
flow analysis techniques [3] 12) 123). The work of Barth 
addressed the problem of purity analysis in the pres- 
ence of recursive procedures and with atiasing but he 
did not consider higher order functions or the presence 
of pointer variables. Banning also considers first order 
block structured languages and also does not allow l- 
valued expressions. Weihl actually considers variables 
of function type but the language be uses is otherwise 
first order. He does allow l-valued expressions. All 
three papers just cited use various ad hoc flow analysis 
algorithms rather than a semantic scheme. Accord- 
ingly the correctness of their schemes is hidden in al- 
gorithmic details. Recently, Gifford and Lucassen [lo] 
have written a very interesting paper in which they 
relate effect checking (as they call it) to polymorphic 
type checking. Their scheme incorporates the relevant 
information into the type system and their inference 
mechanism becomes part of the of the type inference 
mechanism. Though their scheme is semantically rn+ 
tivated we feel their analysis lacks the precision of our 
scheme. Their language is indeed higher order but their 
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abstract domain for discussing side effects has only four PI 
elements. Their scheme needs programmer supplied 
annotations in order to obtain useful purity analysis. 
Furthermore they impose constraints on their language 
which prohibit, for example, a pure function from per- 
forming assignments to local variables. Thus they treat 
the store as a single unit. 161 

We are considering two directions for future work in 
this area. First, we are going to remove the restric- 
tions on pointers and on variables of functional type. 
We anticipate no new problems in carrying out this 
extension. Second, we intend to introduce data struc- 
tures into the language and study the viability of pu- I71 

rity analysis in the presence of this extension. A recent 
paper by Burke and Cytron 141 has given a thorough 
discussion of dependency analysis for a first order lan- 
guage. We are working on expressing their data flow PI 
analysis algorithms as part of our abstract interprets 
tion thereby extending their work to the higber rjrder 
case. 
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