
Computation of Aliases and Support Sets

Anne Neirynck, Prakash Panangaden
Computer Science Department, Cornell University

Alan J. Demers
Xerox Part, Palo Alto

Received 10/16/86

Abrtract Support sets turn out to be the key ingredient in

We provide a scheme for determining which global
variables are involved when an expression is evaluated
in a language with higher order constructs and impera
tive features. The heart of our scheme is a mechanism
for computing the support of an expression, i.e. the
set of global variables involved in its evaluation. This
computation requires knowledge of all the aliases of an
expression. The inference schemes are presented as ab-
stract semantic interpretations. We prove the sound-
ness of our estimates by establishing a correspondence
between the abstract semantics and the standard se-
mantics of the programming language.

determining whether an expression is side effect free
(pure) or, in general, whether two expressions can be
evaluated independently. We shall refer to this aa pu-
rity analysis. We define semantic functions which as-
sign to expressions their support and alias sets. This
style of presentation for static analysis was pioneered
by the Cousots [9,8]. It allows one to present a static
analysis scheme in a fashion which makes clear the rela-
tion between the abstract semantics and the standard
semantics.

Abstract interpretation provides a general semantic
framework for justifying schemes for the static infer-
ence of properties of programs. Such inference is of

1 Introduction
use in program optimization, transformation and par-
tial correctness. The main idea is that static analysis

We present an abstract semantic interpretation for consists of a scheme for estimating the run-time prop

computing the support set and alias set for an expres- erties of a program. Such estimations can be under-

sion. The language we use is a typed higher order func- stood as arising from a semantics, for the underlying

tional language with a few imperative constructs. programming language, defined on a non-hmfcrd do-
main of interpretation. The non-standard domain is
chosen in such a way as to refiect the features of inter-
est from the actual (or standard) semantics but with
suitable simplifications so that the semantic maps be-
come computable. The inference mechanism is then
viewed as a semantic calculation over the non-standard
interpretation. The advantage of such a view is that
the soundness of the inference scheme can be reduced
to the problem of comparing two semantic definitions
of the language.

Abstract interpretation was first introduced in the
context of imperative programs [7,8,9]. In this setting
programs are modelled as flowcharts. The standard se-
mantics is defined in terms of sets of possible states that

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of
the publication and its date appear, and notice is given that copying
is by permission of the Association for Computing Machinery. To
copy otherwise, or to republish, requires a fee and/or specfic
permission.

0 1987 O-89791-2152/87/0100-0274 754 274

a program could be in. This is a pointwise extension
of the normal standard semantic schemes. The collec-
tion of sets of states forms a complete lattice under the
usual inclusion ordering.

In developing the abstract interpretation of applica
tive programs, Mycroft 114,151 observed that theframe-
work of Cousot and Cousot was useful only for in-
ference schemes which were partially correct; termi-
nation cannot he expressed in their framework. In
place of the powerset based formulation as used by the
Cousots, a powerdomain based formulation is neces-
sary. This view was further developed in by Mishra
and Keller[l2,13] h w ere the abstract interpretation of
non-flat “stream” domains was considered. This ap
proach using powerdomains was put on a firm theoreti-
cal foundation by Mycroft and Nielson [17,19,20,21,22].
One of the problems with the traditional approach to
abstract interpretation is that the framework is strictly
first order.

Several authors have examined the extension to
higher order languages. In particular, there has been
a great deal of interest in the problem of strictness
inference. Here the problem is to determine whether
functions are strict in their arguments. The tint order
case was thoroughly studied by Mycroft [15] and by
Mycroft and Nielson (171. Recently Hudak and Young
Ill], Clack and Peyton-Jones [6] and Burn, Hankin and
Abramsky 151, h ave all studied this question in the con-
text of higher order languages. The idea again has been
to view strictness analysis as abstract interpretation.

The theoretical basis of abstract interpretation was
discussed by Mycroft and Nielson [17] and by Mycroft
and Jones [IS]. The extension to the higher order case
has been discussed by several authors [l] [S] (111 all
of whom examined the particular problem of strictness
analysis. The soundness of static analysis schemes pre-
sented in this way boils down to showing that the ab-
stract semantics and the standard semantics are appra-
priately related. We shall state a soundness theorem
for our analysis scheme and give a partial presentation
of the proof. A complete discussion is available in a
technical report [181.

2 Purity of Expreaalonr

An expression is said to be pure if its evaluation is
independent of the values of any global variables. The
notion of global variable is relative to a given expres-
sion so a pure expression may contain impure subex-
pressions. An example of this is new z : int in z + 3.
Unfortunately, the reverse situation can also arise; an
impure expression may be built up out of pure subex-

pressions. A lambda abstraction is always pure be-
cause any potential effects occur only during applica-
tion. Thus an expression like .4z : inl. g +- z would
be pure. The main problem with purity determination
in a higher order language is that we need to main-
tain enough information so that we can tell whether
a particular application is pure. This may depend on
the arguments, for example in Xf : int + int. Xg :
int + int. Ai : inf. If odd(i) then / else g we have
a function taking functional arguments and returning
a functional result. The result may or may not yield
impure applications depending on the functional argu-
ments / and g. Not ail applications of a function with
side effects produce impure expressions. As soon as the
global variables involved in the side effect are captured
by their enclosing declarations, the resulting expression
is pure. This is the case with

new 2 : inl In let / = Xy : ref int. y + 3 in f(z)

Thus the data-flow analyses for purity’ which suffice for
first order languages would be inadequate to the task

at hand [3] [2] 1231 14).
In order for our scheme to deem an expression im-

pure only when global variables are affected we need
to compute the set of global variables actually read or
written into during evaluation of that expression. Con-
sider the following two expressions:

new 2 : int in z + 1

new 2 : int in y t 1

The first expression is not impure whereas the second
one is. The two expressions are structurally very simi-
lar. If we hope to distinguish between these two cases
we must actually know which variables are being af-
fected by subexpressions, not just that the subexpres-
sions do affect a variable. We shall call the set of global
variables which are affected by or whose values afiect
the evaluation of an expression the support of that ex-
pression. An expression is pure when its support set is
empty.

3 The Language and Its Semantlcr

The language that we use is an ordinary typed func-
tional language. We add three imperative features: an
assignment statement written el + e2, a dereferencing
construct et and static allocation performed with the
new construct. A variable denotes a storage location;
thus to denote the value associated with the variable
we need to use the dereferencing construct. An expres-
sion can evaluate to a variable rather than to the value
associated with the variable as in lf true then z elre y.

275

This is the abstract syntax for the language:

e =2
let 2 = el he2

letrec I1 = Xzl : Tl.el , . . . ,
rn = AZ, : T,,.e,, in e

if el then e2 elre e3
h:T.e
el (et)
ncwz:Tine
el ; e2

el + e2
et

There are some constraints on the language: we have
only simple types, functions are not storable items,
and at most one level of reference or dereference is al-
lowed. These restrictions can enforced by typecheck-
ing, and were chosen to simplify the abstract interpre-
tation. Furthermore, we insist that l-values cannot be
exported outside their scope. This property can be
detected statically by the methods developed here.

The Store

We will use the normal store mechanism and inter-
pret an expression as being impure if its denotational
semantics involves a reference to the store. This is a
delicate issue. At first it may appear that we are taking
the denotational semantics as indicative of the opera-
tional semantics. After all purity appears to be a very
operational concept. Note, however, that we are claim-
ing only that we can tell whether an expression is pure.
If our approximate analysis says that an expression is
not pure it only means that the expression may or may
not be pure. Whether an expression doea have a pure
version is indeed a property that can be reflected in the
denotational semantics. If we were claiming to make a
precise analysis of purity and impurity then we would
be forced to use an operational formulation.

The way we model the store is particularly impor-
tant since the crux of our analysis is the determination
of which expressions actually affect the store or depend
on the store. It is in fact usual to find that the deno-
tational definition of a programming language includes
a model of the store and of storage management. In
our case the abstract interpretation is insensitive to the
storage allocation policy and the relationship between
the standard semantics and the abstract interpretation
will hold regardless of the storage management policy.
Thus the proof of our soundness theorem requires min-
imal assumptions about the store.

Part of a store can be viewed as a finite function
from locations to values. We will need a notation to

express the restriction of that function to a subset of
the locations.

rtore 1s where S E Lot

We will also allow S E P(Id), a subset of the variables
already allocated when we use the restriction notation
for stores.

Given a store, Allocate returns a store and the ad-
dress of the newly allocated space. The new store must
coincide with the old store over all addresses except the
one just allocated, as stated in Axiom la, and the new
address was not already allocated (Axiom lb).

Allocate : Store + Store x Luc

Axiom 1

if (new8 tore, address) = Allocate(store)

then

(4 newstore ~~~~~~~~~~~~~~~ store lh-{addrcrs~
(b) Eval(store, address) = I

Evaf(newstore, address) = empty

Given a store and an address, DeAflocale returns the
same store, with the address deallocated. The remain-
der of the store is unchanged.

DeAllocate : Store x Lot -+ Store

Axiom 2

nedore Itoc-~oddrtr8) = dare Itoc--(addrcs8)
where netustore = DeAlhate(rtore, oddreds)

The following two functions are used to perform read-
ing and updating.

Update : Store X Lot X Ifal-+ Store

Eva1 : Store x Lot + Val

Axiom 3 states that Update only affects the location
indicated and leaves the rest of the store unaltered.
Axiom 3

Update(rtore,addrerr, value) If+oc-loddtc,,)
= store 11; oc--(oddrcr8)

The last axiom defines the effect of EvaI and Update.
Axiom 4

Eval(Update(store, addrers, value), address) = value

276

The Semantics

The semantic domains which, we use in our denota-
tiona! semantics are as follows.

Val = Triv + Baol + Nat -+ FVal f LOG

Env = Id + Val

FVal = Val -+ Store + (Val x Store)

The domains Ttiv, Bool, Nat and Lot contain the
atomic values used in the language. We shall assume
that the domains are Bat and the sum of domains being
used is the coalesced sum. The domain Lot represents
the domain of storage locations. The domain F’Val
is used to represent higher order constructs or “func-
tional” values. An element of FVal is viewed as a pair.
Evaluating a function will return a value and, in gen-
eral, modify the store. The pair construction is used
to “package” together functions which represent both
effects.

In defining the denotationa! semantics we shall use
a pair of semantic functions called Me and Ms. The
first one defines the value of an expression while the
second one describes how the store is modified. This
is just a notational variation of the ordinary semantic
definitions one sees in textbooks. This notation is par-
ticularly convenient for our discussion since our prin-
cipal concern is how the store is a&ted by constructs
in the language. The arities of these functions are:

Me : Ezp --* Env --) Store -+ Val
and

Ms : Ezp + Em -$ Store 4 Store.

A full definition of the semantics is given in a technical
report 1181; the part included here is intended to illus-
trate the notation and style of semantic definition that
we shall use.

Me[z]env store = em(z)
Ms[zlenv store = atote

This illustrates the simplest construct namely an
identifier. The value of an identidler is the location
to which it is bound and there is no effect on the
store.

&[!et 2 = el in e2]env etore =

1 ik&le2l env’ store’
if &[ellenv etore = I

otherwise

b&[!et 2 = el tn e2 lenv store
= M~le2J env’ &ore

where
env’ = env[z 4- &(ei)env rtorej
stord = !bf&lenv store

These i!!ustrate how the scope rules for let blocks op-
erate. Note that the above semantic clauses are stan-
dard and are meant only to illustrate our notation. If
an identifier is already bound before entry into a let
block it will get rebound by the declaration but the
old environment is passed to expressions outside the
scope of a let. Thus the usual scoping rules are en-
forced and we may reuse identifiers as we please when
entering loca! scopes.

!&[new z : T ln e)env rlore
= &[e] env’ 8tore’

!&&[new z : T SD e)env store = rfore”’
where

(addrerr, store’) = Allocafe(rZore)
env’ = env[z + addresr]
store” = M~[e] env’ store’
elate”’ = DeAUocate(stote”, addreee)

This semantic clause illustrates how the store mode!
is used to define the meaning of the new construct.
Deallocation occurs when the scope of the new dec-
laration is exited. Note that declaring a variable
change9 the store and not just the environment.

The fo!!owingc!auses illustrate the explicit imperative
features namely assignment and dereferenciug.

l&(el +- e21env rlore =

I

I if address = 1
value otherwise

Msfel t ezlenv store =

I

I if address = I
Update(store”,address, value) otherwise

where
addresr = &iel]env store
8lor.d = MS Iel)en v atore
value = &(e21 env dfore’
store“ = Ma(e2 J env r&e

&[et]env rtore =

I

I if addrer 8 = I
Evai(store,address) otherwise

where address = &(e]env store

M,[et]env store = Ms(e)env rtore

277

4 An Abatract Interpretation for Alher

Before we can calculate the support of an expres-
sion, we may need another semantics function to de-
termine the aliasing behavior of some of its subexpres-
sions. Consider for instance a dereferencing expresssion
et. The support of this expression is the support of c
together with all the variables possibly aliased by e. A
similar phenomenon occurs in assignment expressions.
This section describes the semantic function A, which
gives the set of possible aliases of an expression.

The recursive structure of the semantic domains is
similar to the ones used by Hudak and Young 1111
and reflects the fact that the simplified domain being
used for the abstract interpretation must describe the
aliasing behavior of expressions containing arbitrarily
higher order functions.

ValA = {~}+DA+DA

EnvA = Id+ VA

DA = P(Id) x ValA

A:Ezp-rEnvA-,DA

A(lf el then e2 elm eglaenv
= A(~jaenu LI A(eslaenu

For a conditional, the least upper bound operation
will compute the possible aliases as the union of the
sets of possible aliases for each arm of the conditional.

Alnew z : T In elaenv
= A[elaenu[z t ({“z”},~)]

This clause tells us that a new variable starts out
being aliased only to itself.

A(el ; e2]aenv = Alezlaenv

A(el t e2 laenv = (0, a&)
The result of an assignment is the (r-value) e2. Be-
cause we are only allowing one level of indirection this
cannot be an l-value thus we are assured that the set
of possible aliases for this expression is the empty set.
It is possible to extend this clause to handle arbitrary
levels of indirection. Similar remarks apply to the
semantic clause below for the dereferencing operator.

The lattice structure over domain DA is defined by : A[etJaenv = (0, a&)

Xu.(bl, vl) IJ Xu.(b2, v2) = Xu.(bl u b2, u1 u v2) A(Az : T.e)aenu = (0, Au. A[elaenv[z + u1)
A lambda abstraction cannot possibly be an identifier

where U is the least upper bound operator. The ele- so we compute its alias set aa the empty set, but we
ment atom is related only to 1. The intuition behind need the second component to compute the alias set
this choice of domains is as follows. A particular ex- of expressions involving applications of this function.
pression is going to denote an element of DA. The
first component of DA is just a set of identifiers, just A(el(e2)jaenu = (A[el]aenv)2 A[ez]aenv
what one would expect, while the second contains the
information needed to determine the aliasing bebav-

The intuitive justification behind our scheme for es-

ior of other expressions which contain applications of
timating alias sets is clear and the resemblance to the

the first expression. Note bow the operation of least
standard semantics is manifest.

upper bound is obtained by taking &ions of possible
alias sets. This reflects the conservative nature of the 6 Support S&r ar an Abrtract Interpretation

estimates te are making. The support set of an expression is estimated by the
As in the standard semantics, we need an environ- semantic function S. The domains are very similar to

ment which we shall call aenu; this is a map from iden- those introduced earlier for aliases.
tiflers to DA. The following are the semantic clauses.
We shall use subscripts if we wish to use only the first Val s = {atom} + Vafs --, DS

or second components of a pair in DA. Envs = Id + Vols

Ds = P(Id) x Vals

S:Ezp+Enus-+Ds
A[z]aenu = aenufz)

Allet z = el ln e2)oenv
= A[e2]aenu[z * Alellaenv]

A(lctnc 11 = el . . . /,, = e, In elaenu
= A(elaenv’

where aenu’ = Ifp(Xenu. enu[..., fi + A[ei)enu, . ..I)

When we use the semantic function A in the definition
of S we assume that the environment aenu results from
a computation of A for the same expression as the one
for which the action of S is being defined.

S(z]senu = (0, denu(z))

278

S(lf el then e2 else eglaenu =
(S1 (elldenu U S1 [e2]senv U S1 (e.9lttenu ,
&[e2)renu fl Szfes]denu)

s(1ct 2 = el in e+enu =
(Sl(el Jdenu U Sl(e~~senu(z + SJelldenuJ ,
S2(e2)senu[z 4-- Sp(ellsenu])

S~letrec !I = el . . . In = e, ln e2)denu = S(e]senu’
where senu’ = I/p(Xenu.enu[. . . . fi + S2 lei JenU, . ..I)

S[new z : T fn e]aenu =
(Sl [e)benu[z + a-] - (“2”) ,

S2 [e]benu[z 4- -1)
In the above clause we need to enforce the scoping
rules. When a new variable is declared we note that
inside its scope its support is just itself. On the other
hand the support of the entire block must not include
the new variable since the scope of the new variable
ends when the block is exited; so we explicitly remove
the new variable from the support which we compute
for the body of the block.

S[el ; e2]denw =
(Sl (el]senu U Sl [ez)senu , &[ealsenu)

S[el c- e2]aenu =
(S1 (el]senu u 51 [e2]aenu u Al (elluenu ,

atom)

S(ef]senu = (S1 [e]senu u Al [ejaenu , a=)
In determining the support of the explicitly impera-
tive constructs we need to know the aliases of some
subexpressions. Thus in the assignment statement
above we union together the supports of the two sides
of the assignment and also all possible aliases of the
left hand side .

S[kx : T.e]senu = (0, h.S(e)aenu[z 4- u])

S[el (e2)]8enu =
(S1 [el Jdenu U S1 (e2)denu

U(fh[el)renu S2le2)=4, ,
(S2(ellsenu S21e2)eenu)2)

The correctness is already intuitively plausible be-
cause of the correspondence between the standard se-
mantics and the abstract interpretations used to define
support and alias.

6 Soundnew Theorem for Support S&r

In this section we shall state a soundness theorem for
our abstract interpretations. The heart of the proof
of the soundness theorem is a joint induction on the
structure of terms in the programming language a9 well
as on their types. Hudak and Young ;)rove a soundness
theorem for strictness analysis which they claim holds
for the untyped lambda calculus. In ,fact, their proof
crucially uses induction on the type of lambda terms
and, a9 they observe, they need to enforce a ‘weak type
discipline” to guarantee termination.

The soundness theorem for the function S says that
the evaluation of an expression depends solely on the
value9 of variables in its support set and does not affect
the store outside that set.

Theorem(support sets)

If the evaluation of e terminates,
V enu, denw corresponding environments,
S~leJsenu E S *
V dote (M,[e]enu dote) 13 = dote 1s
&[ejsenu E S *

V store, store’ such that &ore Is= store’ 1s
Me[e]enu dote = Me[el enu elore’
M~leJenu #tore 1s = Mm[e) enu &ore’ 1s

The requirement that a pure expression always evalu-
ates to the same value may be too stringent for l-values
and could be replaced by a weaker one. Note also that
the S semantics cannot distinguish non-terminating
computations.

We need a precise definition of corresponding envi-
ronments uenv and env. As in Hudak and Young Ill],
we define partial application operator9 in both seman-
tic domains, which wilI facilitate the proof by providing
a mechanism for carrying out induction on the type
structure. The partial applicators define the reduc-
tion of a sequence of nested applications. The notation
PAP,, is used for the abstract domain while AP,, is
used in the standard domain.
I’%& (Ds)~+’ + P(ld)

n 4b..,4 =

I
(41 n=
(811 U(~I)I uPAPn-1((e)2bl,...,a,) n >x

The partial applicator AP, is defined in such a way as
to incorporate the effect on the store when a cascaded
sequence of applications is partially reduced. The defi-
nition is chosen so that as each application is performed
a value, store pair is produced and the new store is used
in the next application,

279

AP, : (Store + Val x Store)“+’
+ (Store -b Val x Sfore)
AP”(e,el,...,e,) =

i
iPa- (A+ a)1 (cl (e 8)2)1 (el te 8)2)2,

n= 0

e2,...,en) n>O

These operators allow one to move down the type struc-
ture by applying the function component of a member
of Vals or Vol. The fact that we have finite types only
means that one can “reach” all types of interest by an
inductive argument. Dually, it also means that com-
putations in the approximating semantic domain must
terminate. It is straightforward to check that the fol-
lowing identity holds:
AI’,+1 (M[e&mu, M[e&nu, “1,. . - , urn)
= AP,(M(el (ez)lenv, VI,. . . , urn)

Following Hudak and Young we shall use the term
safe to characterize the correctness property that we
need to prove.

4 E DS is safe at level n for value e E D if:
V m 5 n, 6i E Ds, ei E D, ai safe at level n - 1 for ei

PAP,,,(r,rl,...,um) C S
3

V &ore, store’ such that store IS= dote’ 1s
[APm (e, el, . . . , e,)rtore]l =

lAP,(e, el,. . . ,e,)store’]l (14
[AP, (e, el , . . . , e,)slore]2 IS=

IAPrn (e, el , . . . , em btore’]z IS (lb)

and
v rfore

[APm(er el, . . . , em, dote))2 IS= dote 1~ (2)

u E DS is safe for value e E D if
it is safe at all levels

renv and enu are corresponding environments if
senufz) is safe for As.(env(z), 8) V 2 E dom(senv)

Proof :

We will show that S[e]p, where p is the support en-
vironment, is safe for M(e]env, where M is defined by

M[e]env = Xd.(Ib&[eJ env 8, &[e] env 8)

The proof proceeds by structural induction (3) on e
and by induction on the type of e. For the letm con-
struct we will need fixpoint induction as well. Assume,

proof of (la) and (lb) are virtually identical, therefore
we shall only describe the proof of (la).

1. eznewz:Tinei
To show (2) for n > 0 and (l), it is sufficient to show
that env’ and 8env’ are corresponding environments,
and then use SI on ei.
By definition,
end = en+ t address]

dent+ = sent+ 4- 4
Since env and uenv are corresponding environments,
and z is not of functional type, it is sufficient to show
that (&atom) is safe at level 0 for ~s.(address,r),
which is true.

There is one equality left to show independently, that
is (2) for n = 0, or Me[elenv store Is= store 1~.
Assume Si(new z : T in el)p c S
(a) Sllel)p C S u (“2”) by definition of S
(b) rtore’ Is= store 1s by definition of Allocate
(c) store” ISUpz-~ = store’ IsUpz~) by SI on el and
by using (a)
(d) rtore” 1s = &ore 1s by restriction on (c)
(e) Since S is disjoint from {z}, when deallocating the
space for 2,
the S-restriction of the store is not affected:
etore”’ 1s = DeAbcale(store”, addreas) 1s
= 8tore” 1s by axiom I
and we have our equality by transitivity of (b), (d),
ad (4

2. e z el(*)

Fix n > 0
We must show S[ei(es))P is safe at level n for
M(el (e2)lenv
Choose m 5 n,
and 8i safe at level n - 1 for Vi, i = 1,. . . , m

Here we need induction on the term structure as well
as on the type structure. The latter is represented by
the level n. We need to prove the following implica-

~~~P,(s(elp,sl,...,d,) E s * 
[AP, (Mie1 (e2 ))env, “1, - - - , Urn) store11 
= [AP,(M(el(en))enu, VI,. . . ,vmr) store’jl 

if store IS= store’ 1s 
(2)PAP,(s(elp,al,. . . ,a,) C_ S 

env, "1,. . . , vm) store):! Is= store 1-g 

To prove the first we proceed as follows: 
By definition of PAP 
P~m(Ski (ez)b, 81, - - - I am) for simplicity, that all variable names are distinct. The _ _ __ 

280 



= (S[el(e2)lP)l U (h)lU 
PAP,,,-1 ((S(e, (ez))& Q,~P~. a. 9 b) 

Note bow the type of the term has been decreased 
by using the definition of PAP. The next equality 
follows by using the definition of S twice. 
= (S[ellP)l u (Sle2lf41 U ((SIfald2Sle2ldl 

~(81)~ u PAP,- 1(((S[e11P)2S(e2JP)281r...,8,) 

The next equality follows from the definition of PAP 
used in the reverse direction to go to a higher safety 
level but with the original application term broken 

~&3]p)l U (S[e2)& 
uPAp,((S[el]P)2Sle2l~,s1~...~~~) 

= PAP,+1 (S[el]P, S(e2Jh 81, . . at h) 

The last step takes us to a higher safety level but 
with simpler terms. We now perform the analogous 
calculation in tbe standard semantics and establish 
the inductive step for this case of the proof. 
Since el and e2 are structurally simpler than e, we 
get from the inductive hypothesis: 
[APm+l (M[el)enu, M[e]env, ~1,. . . , urn) store]2) ]g 

= store la 
But : 
AP,+l (M[elbwM(e2)env, ~1,. . . , urn) 
= AP, (M[el (e2 )]ew ~1,. . . , urn) 
and therefore (2) holds. 
For (1) we proceed as follows: 
YAP,+1 (Stel J, S[e2), 81,. . . , h) 

(AP,+l (M(el Jew, M(es]enu, VI,. . . , u,) store]2 
= [AP,,,+l (M[el]enu, M(e:!]enu, ~1,. . . , w,,,) store’]2 

~P,(MIel(e2)lenv,vl,...,u,) store]2 
= [AP,,, (Mie1 (ez)lenu, VI, . . . , w,) dote’]:! 

The two cases we have shown illustrate the higher order 
situations and an imperative construct. The remaining 
cases are much simpler, the details are available in our 
technical report [18]. It is interesting to observe that 
this proof has the same sort of reasoning that one sees 
in proofs of strong normalization of the typed lambda- 
caiculus. There again one needs to go down in the type 
structure which is done by performing an application 
and producing in the process a structurally more com- 
plicated term. 

The corresponding soundness theorem for the ab- 
stract interpretation A for computing aliases is: 
Tbeorem( alias sets) 

If S is the set of variables possibly aliased by an ex- 

pression e, then e can never evaluate to a variable not 
in S. The soundness of our abstract interpretation for 
aliases is defined formally in the following theorem: 

If the evaluation of e terminates, 
V enw, aenu corresponding environments,‘ 
vs c P(M), 

Al[e)aenu E S =+ 
V g E 3, V dote 

li&(eJenu store # M&]enu etore 

The proof is similar to the one for support sets, full 
details are provided in our technical report ]lS]. 

7 Conclurlon 

In this paper we have produced a method for deter- 
mining (approximately) whether the evaluations of two 
expressions are independent of each other. The pre- 
sentation of our method uses the technique of abstract 
interpretation. We feel that using abstract interpre- 
tation allows one to present static analysis schemes in 
a semantically appealing fashion. The resulting algo- 
rithm is easy to code and has been implemented in ML. 
Furthermore, the static analysis scheme which we de- 
scribe brings an interesting and pragmatically relevant 
new problem within the scope of abstract interpreta- 
tion techniques. 

The problem of determining side effects has been 
studied for a fairly long time by workers developing 
flow analysis techniques [3] 12) 123). The work of Barth 
addressed the problem of purity analysis in the pres- 
ence of recursive procedures and with atiasing but he 
did not consider higher order functions or the presence 
of pointer variables. Banning also considers first order 
block structured languages and also does not allow l- 
valued expressions. Weihl actually considers variables 
of function type but the language be uses is otherwise 
first order. He does allow l-valued expressions. All 
three papers just cited use various ad hoc flow analysis 
algorithms rather than a semantic scheme. Accord- 
ingly the correctness of their schemes is hidden in al- 
gorithmic details. Recently, Gifford and Lucassen [lo] 
have written a very interesting paper in which they 
relate effect checking (as they call it) to polymorphic 
type checking. Their scheme incorporates the relevant 
information into the type system and their inference 
mechanism becomes part of the of the type inference 
mechanism. Though their scheme is semantically rn+ 
tivated we feel their analysis lacks the precision of our 
scheme. Their language is indeed higher order but their 

281 



abstract domain for discussing side effects has only four PI 
elements. Their scheme needs programmer supplied 
annotations in order to obtain useful purity analysis. 
Furthermore they impose constraints on their language 
which prohibit, for example, a pure function from per- 
forming assignments to local variables. Thus they treat 
the store as a single unit. 161 

We are considering two directions for future work in 
this area. First, we are going to remove the restric- 
tions on pointers and on variables of functional type. 
We anticipate no new problems in carrying out this 
extension. Second, we intend to introduce data struc- 
tures into the language and study the viability of pu- I71 

rity analysis in the presence of this extension. A recent 
paper by Burke and Cytron 141 has given a thorough 
discussion of dependency analysis for a first order lan- 
guage. We are working on expressing their data flow PI 
analysis algorithms as part of our abstract interprets 
tion thereby extending their work to the higber rjrder 
case. 

Acknowledgments 

We thank Jim Hook, Dieter Maurer, and Keshav [9] 
Pingali for useful comments. The first author thanks 
John Lucassen for helpful discussions and for point- 
ers to the literature. The second author has benefited 
from discussions with Prateek Mishra and Uday Reddy. 
This research was supported by the NSF under grant POl 
DCR-860272 to Cornell University and also by the Cor- 
nell Center for Theory and Simulation in Science and 
Engineering, which is funded in part by the National 
Science Foundation, New York State and IBM Carp+ 
ration. 

ill1 

Refercncem 

PI 

PI 

PI 

I41 

S. Abramsky. Strictness analysis and polymorphic 
WI 

invariance. In Proceeding8 of Program8 as Data 
Objects, Sptinger Lecture Notes in Co:!:puter Sci- [131 
ence 217, 1986. 

John P. Banning. An efficient way to find the 
side effects of procedure calls and the aliases of 1141 
variables. In 6th Symposium of Principles of Pro- 
gramming Languages, 1979. 

J. Barth. A practical interprocedural data flow 
analysis algorithm. CACM, 21:724-736, 1978. WI 

M. Burke and R. Cytron. Interprocedural depen- 
dence analysis and parallelization. In ACM Sig- 
plan Notices, Vol 21,7, 1986. 

G.L. Burn, C.L. Hankin, and S. Abramsky. The 
theory and practice of strictness analysis for 
higher order functions. In Proceeding8 of Programs 
a8 Data Objects, Springer Lecture Notes in Com- 
puter Science 217, 1986. 

C.D. Clack and S.L. Peyton-Jones. Strictness 
analysis - a practical approach. In Proceeding8 of 
IFIP Conference on Functional Programming and 
Computer Architecture, Springer Lecture Note8 in 
Computer Science 201, 1985. 

P. Cousot. Semantic fondations of program anal- 
ysis. In S.S. Muchnick and N.D. Jones, editors, 
Program Flow AnaiySi8: Theory and Applications, 
Prentice-Hall, 1981. 

P. Cousot and R. Cousot. Abstract interpreta- 
tion: a unified lattice model for static analysis of 
programs by construction or approximation of fix- 
points. In Conf. Record of the 4th ACM Sum- 
posium art Principles of Programming Languages, 
1977. 

P. Cousot and R. Cousot. Static determination of 
dynamic properties of programs. In Proceedings 
of the 2nd International Symposium on Program- 
ming, 1976. 

D.K. Gifford and J.M. Lucassen. Integrating func- 
tional and imperative programming. In Proceed- 
ings of 1986 ACM Conference on Lisp and Func- 
tional Programming, 1986. 

P. Hudak and J. Young. Higher-order strictness 
analysis in untyped lambda calculus. In Proceed- 
inga 13th POPL, 1986. 

P. Mishra. Static Inference in Applicative Lan- 
guages. PhD thesis, University of Utah, 1985. 

P. Mishra and R. M. Keller. Static inference of 
properties of applicative programs. In Proceeding8 
of flth POPL, 1984. 

A. Mycroft. Abstract Interpret&ion and Opti- 
mising Transformations for Applicative Programa. 
PbD thesis, University of Edinburgh, Scottand, 
1981. 

A. Mycroft. The theory and practice of trans- 
forming call-by-need into call-by-value. In Pro- 
ceedings of 4th Int. Symposium on Programming, 
Lecture Notes in Computer Science 83, pages 269- 
281, Springer-Verlag, 1980. 

282 



116) A. Mycroft and N. D. Jones. A new framework 
for abstract interpretation. In Proceedings of Pro- 
grams a8 Data Objects, Springer Lecture Notea in 
Computer Science 217, 1986. 

(171 A. Mycroft and F. Nielson. Strong abstract in- 
terpretation using power domains. In Proceedinga 
ICALP 1983, Lecture Notes in Computer Science 
154, pages 536-547, Springer-Verlag, 1983. 

1181 A. Neirynck, P. Panangaden, and A.J. Demers. 
Computation of Aliaseu and Support Set8. Tecb- 
o&I Report TR86-763, Cornell University, 1986. 

1191 F. Nielson. Abstract Interpretation U&g Domain 
Theory. PbD thesis, University of Edinburgh, 
Scotland, 1984. 

1201 F. Nielson. A denotational framework for data 
flow analysis. Acta Informaticu, 18, 1982. 

1211 F. Nielson. Program transformations in a denota- 
tionaI setting. In ACM fhvz8actions on Progrum- 
ming Language8 and Syutemu, 1985. 

122) F. Nielson. Towards viewing nondeterminism as 
abstract interpretation. In FST l3 TCSS, 1983. 

1231 W. Weibl. Interprocedural data Row analysis in 
the presence of pointers, procedure variables, and 
label variables. In 7th ACM Symposium on Prin- 
ciples of Programming Languages, 1980. 

283 


