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Abstract - Although optimizing compilers have successfully 
been used to reduce the size and running times of compiled 
programs, present incremental compilers only support the 
incremental update of unoptimized code. In this work, we 
extend the notion of incremental compilation to include 
optimized code. Techniques to incrementally compile locally 
optimized code, given intermediate code modifications are 
developed using a program representation based on flow 
graphs and dags. A model is designed to represent both 
unoptimized and optimized code and to maintain an optimiz- 
ing history. Changes to the optimized code which either des- 
troy optimizations or create conditions for further optimiza- 
tions are incorporated into the model and the optimized code 
without recompiling unaffected optimizations. 

1. Introduction 
The recent explosion of interactive systems has 

heightened interest in user friendly programming environ- 
ments. A key component of these systems is an incremental 
compiler which is automatically invoked by source program 
edits in order to provide a uniform user interface. Compila- 
tion time and response time are reduced by recompiling only 
those statements directly changed by the programmer or 
indirectly affected by the change. Although substantial 
numbers of incremental compilation systems have been 
designed and implemented.*,3,s.8.9.13. l2 these systems all 
assume unoptimized code. In this work, we extend the 
notion of incremental compilation to include optimized code. 

The problem of incrementally compiling optimized code 
is inherently difficult due to a number of factors. Code 
optimizing transformations complicate the mapping from the 
source program to intermediate code due to the deletion, 
replacement and reorganization of intermediate code state- 
ments. Furthermore, a change in the source program can 
invalidate an optimization that was done previously. In order 
to “undo” the optimization, it is necessary to keep a history 
of the effects of existing optimizations (an optimization his- 
tory), realizing that the order in which the optimizations are 
destroyed by program changes is independent of the order in 
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which they were performed. 

Although the elimination of the effects of destroyed 
optimizations is sufficient to maintain the functional 
equivalence between source and optimized code, this can 
lead to continual reduction of the degree of optimization as 
more program changes are incrementally compiled into the 
optimized code. Code which was initially very optimized can 
become increasingly unoptimized as a result of a series of 
incrementally compiled program changes. Therefore, it is 
important to detect any newly validated optimizations and 
incrementally perform these additional optimizations. 
Another difficulty involves a rippling effect from creating and 
destroying optimizations. The code that is generated to 
reflect a destroyed or created optimization can in turn create 
or destroy other optimizations. 

Related to the problem of incremental compilation of 
optimized code is the symbolic debugging of optimized code. 
Some programs may not be able to execute without optimiza- 
tion, due to time and space constraints. However, the reord- 
ering and elimination performed during optimization has 
impeded the use of symbolic debuggers for optimized pro- 
grams. Recent work on symbolic debugging for optimized 
code,7.t6 using some type of optimization history, success- 
fully demonstrates the feasibility of the symbolic debugging 
of optimized code. Further support for using an optimizing 
compiler during debugging is the increased debugging infor- 
mation which can be obtained for the user during the 
analysis performed by the optimizing phase (e.g.. ud and du 
chains). 14q to 

Although no work has been found in the literature 
which directly addresses the issue of incrementally updating 
optimized code, some research has been devoted to incre- 
mental data flow analysis and could perhaps be applied to an 
incremental optimization scheme. It, ‘X4 

Thus, in addition to improving the response time and 
recompilation time, an incremental optimizing compiler 
would be valuable in providing information to aid in the 
symbolic debugging of optimized code and thus eliminate the 
need for maintaining a non-optimizing compiler used for 
debugging and another optimizing compiler used for produc- 
tion. Small maintenance changes after a program is in pro- 
duction could be quickly incorporated without consuming 
computer resources for a total recompilation and recalcula- 
tion of optimizations. 



1.1. Features of an Incremental Optimizer 

The ultimate goal of this work is the development of an 
incremental optimizing compiler with the requirements that 
the compiler: 

(I) 

(2) 

(3) 

(4) 

(5) 

detects any change in the source program that invali- 
dates current optimized code; 

detects any change in the source program that creates 
optimizations; 

correctly and efficiently incorporates changes into the 
optimized code and updates the optimizing history to 
maintain consistency between the optimized code and 
the optimization history; 

uses techniques which are consistent with, and can be 
integrated into, existing incremental compilers; and 

enables the interactive symbolic debugging of optimized 
code. 

As a first step towards this goal, we consider local 
optimizations in this paper. Techniques are developed to 
incrementally compile code which has been optimized by 
multiple passes of local common subexpression and redun- 
dant store elimination. A model based on the classical flow 
graph and augmented dag representation is designed to main- 
tain an optimizing history. Algorithms which detect changes 
that affect local optimizations and subsequently update both 
the model and optimized code are presented. The technique 
is capable of handling noncontrol statement changes as well 
as control flow changes which affect the basic block structure. 
Finally, extensions to include global, loop and peephole 
optimizations are discussed. 

There are two approaches that can be taken in the con- 
struction of an incremental optimizing compiler. We are 
currently following the simpler approach which assumes that 
source program changes are correctly translated into a 
sequence of unoptimized intermediate code changes. This is 
a valid assumption, given the existence of incremental com- 
pilers for unoptimized code. Thus, we need only consider 
changes that are being made to the tinoptimized intermediate 
code, which we assume to be three address code. With this 
scheme, when the intermediate code is initially generated, an 
optimizing phase is carried out on the entire intermediate 
code. Any changes are incorporated incrementally into the 
optimized code. The more difficult approach and one that we 
intend to investigate, is to have the initial optimization phase 
be performed incrementally as the intermediate code is gen- 
erated. 

1.2. Overview 

In Section 2, program changes that both destroy and 
create conditions for local common subexpression and redun- 
dant store elimination are described as well as their highly 
interrelated effects. Section 3 presents the model which is 
used to maintain an optimization history and optimized code. 
Algorithms which modify the optimized code and model 
based on the type of intermediate code change are developed 
in Section 4. The algorithms are generalized in Section 5 to 
support the effect of tlow graph changes on locally optimized 
code. Extensions of the technique to global and peephole 
optimizations are given in Section 6 followed by a section 
detailing work in progress and future research directions. 

2. Effects of Program Change on Optimized Code 

We first consider the effects of program modification on 
optimized code. We examine program changes that do not 
alter the llow graph structure and changes that create a basic 
block. divide a basic block into smaller blocks or combine 
two blocks into one. Edit changes that create, delete or 
replace intermediate code statements are considered as well 
as modifications to individual operands within an intermedi- 
ate code statement. The analysis consists of examining the 
requirements wh’lch must be satisfied in order to correctly 
perform each optimization and then detailing those types of 
edits which either destroy or create the conditions required 
for the optimization. 

In order that the model be capable of representing the 
history of all types of optimizations. the analysis of program 
changes was performed taking into account the requirements 
for global and peephole optimizations as well as local optimi- 
zation. As this paper deals primarily with local optimization, 
we focus on program changes which could affect local com- 
mon subexpression and redundant store elimination. We 
first examine these two optimizations in isolation and then 
consider their intricate interconnections. 

In the following discussion, the terms “use” and “def” 
have the traditional meaning; that is, a “use” of an identifier 
A is any occurrence where the value of A is needed. A 
“def” of A is an assignment of a value to A. A detailed 
description of techniques for code optimization can be found 
in Aho and U1lman.t 

2.1. Local Redundant Store Elimination 

Local redundant store elimination is an optimization in 
which a store to variable A is redundant and may be elim- 
inated if there exists a later store to A in the same basic 
block and the following 2 conditions hold: (1) Every path 
that reaches the later store to A performs the first store to A, 
and (2) there exists no use of A between the two stores. 
The following conditions cause a destruction of a redundant 
store optimization: 

(I) lnscrtion of a use of A between the 2 stores. 

(2) Deletion of the later store to A. II should be noted that 
deletion of the first store does not affect the optimized 
code. 

(3) Changing the flow of control between the 2 stores to A, 
separating the stores into different basic blocks. 

The following intermediate code changes cause a crea- 
tion vf a redundant store elimination: 

(I) 

(2) 

(3) 

2.2. 

Deletion of the only use of A between 2 stores to A 
within a basic block. 

Insertion of a store to A when there exists an earlier or 
later store to A within the same basic block with no 
intervening uses of A, 

Changing the flow of control which results in merging 2 
basic blocks such that there exist 2 stores to A within 
the same basic block with no intervening uses of A. 

Local Common Subexpression Elimination 

Local common subexpression elimination has the fol- 
lowing requirements and actions. If there exist 2 common 
subexpression evaluations in the same basic block, (e.g., 
statement i:E= A + B... statement j:D = A + B) and the follow- 
ing conditions hold between the 2 subexpression evaluations: 
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(1) there exists no redefinition of the common subexpres- 
sion operands (A or B) and (2) there exists no use or 
definition of the variable (D) being assigned in the later 
common subexpression evaluation, then the second subex- 
pression (D = A+B) is redundant and can be replaced by a 
simple store (D-E) immediately after the first subexpres- 
sion evaluation. 

Common subexpression eliminations are destroyed by the 
following: 

(1) 

(2) 

(3) 

(4) 

(5) 

sion 

Insertion of a store (redefinition) to one of the common 
subexpression operands (A or B) between the subex- 
pression evaluations. 
Insertion of a store to, or use of, the variable being 
defined in the later expression (D) between the com- 
mon subexpression evaluations. 
Deletion of one of the common subexpression state- 
ments completely. 
Changing an operand within a common subexpression 
evaluation. 
Changing the flow of control between the 2 common 
subexpression evaluations, separating the common 
subexpressions into different basic blocks. 

The following are events that create D common subexpres- 
eliminorion, assuming that the two necessary conditions 

for elimination hold: 
(1) 

(2) 

(3) 

(4) 

(5) 

Changing an operand such that the resulting expression 
matches another expression evaluation within the same 
basic block. 
Insertion of a statement whose expression evaluation 
matches another expression within the same basic block. 
Deletion of a store (redefinition) to one of the operands 
(A or B) of a common subexpression. 
Deletion of a store to, or use of, the variable defined in 
the later common subexpression (D). 
Changing the flow of control which results in merging 2 
basic blocks such that there exists local common subex- 
pression evaluations within the same basic block. 

2.3. Interconnection of Optimizations 
Although each code optimization was analyzed in isola- 

tion to determine the program changes which invalidate or 
create conditions for each optimization, the complete effects 
of a particular program change can involve a combination of 
destruction and creation of several different optimizations. 
This can occur by a program change directly causing multiple 
optimization changes or as a result of modifying the code in 
order to update affected optimizations. For example, we 
consider the effects on the optimized code of inserting the 
statement Z-B+C after statement 3 in the following unop- 
timited code segment. The three address code has been 
slightly modified such that multiple operands can appear on 
the left hand side of an assignment. (i.e., X.B-Y+Z means 
X-Y +Z and B-X.) 

Unoptimized code Optimized code 

I. A=Y+2 I. A=Y+Z 
2. z-x+w 2. z-x+w 
3. X-Y-+2 Z-B+C 3. X,B-Y+2 
4. B-Y+2 

We first observe that the expression B+C is not com- 
mon with any previous expression evaluations. However, the 
insertion of a definition of 2 at this point creates a redundant 
store to the variable Z at statement 2. Thus, the statement 
Z=X+W can be eliminated in the updated optimized code. 
The deletion of Z-X+ W from the optimized code allows 
further optimization of the common subexpression state- 
ments A-Y+2 and X-Y+2 since the use of X in 
Z-X+ W is now eliminated. The use of operand B in the 
inserted statement between the two occurrences of the com- 
mon subexpression Y +2 at statements 3 and 4 invalidates 
the previous common subexpression optimization, This 
optimization reversal requires an insertion of an evaluation 
of Y +2 and store to B at its original store location. The 
updated unoptimized and optimized code become: 

Unoptimized code 

I. A-Y+2 
2. z=x+w 
3. x-y+2 
4.Z-B+C 
5. B-Y+2 

Optimized code 

1. A.X=Y+2 
2.Z=B+C 
3. B-Y+2 

This single intermediate code insertion causes a creation 
of a redundant store elimination which creates conditions for 
a new common subexpression elimination. The inserted 
statement also destroys a common subexpression optimiza- 
tion by inserting a use of the variable defined in the later 
occurrence of the common subexpression between the 
expression evaluations. Detection of such multiple effects of 
a single program change must be embedded into the incre- 
mental detection/update process for optimized code. This 
requires careful integration of the information obtained from 
the analysis of the effects of program changes. 

Using the analysis as a basis for detecting conditions 
that affect optimizations, a model capable of maintaining the 
information needed to incrementally update optimized code 
was developed. 

3. Modified Flow Graph Augmented Dag Model 
The model (MFAD) is a modified flow graph with aug- 

mented dags (directed acyclic graphs) which enables incre- 
mental updates of locally optimized intermediate code. The 
optimization history for redundant store and common subex- 
pression elimination can be maintained using MFAD which 
permits the detection of invalidated and newly validated 
instances of these optimizations. 

The model is a variant of the traditional flow graph 
commonly used to portray the flow of control between basic 
blocks. Although following the same basic structure as the 
traditional flow graph, each Bow graph node contains addi- 
tional information including Bags for various optimizations 
and source-to-model mapping information. Each basic block 
is represented by augmented dags which have traditionally 
been used to illustrate the code dependencies within a 
straight line code segment. The dag is modified such that the 
following labels appear on each node. The first two labels are 
also characteristic of the traditional computation dag. 
(1) Each leaf is labeled with a unique id (variable name or 

constant) representing the value of the leaf on entry to 
the basic block. 
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(2) 

(3) 

Each node is labeled by an operator symbol representing 
the operation which computes the value of the node. 

Nodes are optionally labeled by a set of variable labels. 
In particular, those identifiers which at some time dur- 
ing the execution of the basic block, have the computed 
value represented by that node. Each variable label is 
composed of three parts and takes the form: 

The variable name identifies the variable associated 
with the value computed at the node. Used to maintain a 
history of eliminated variable stores, the storestatus may 
reflect either a STORE or NOSTORE value. The value 
STORE indicates that there currently exists a store of this 
node’s value to the variable. while a NOSTORE implies that 
there is currently no store. The status is NOSTORE if the 
store has been eliminated by optimization. 

Used to maintain a history of common subexpression 
optimizations, the original location component of the label 
contains adequate information to determine the precise loca- 
tion of the original store of this node’s value to the variable. 
In a traditional dag construction, a common subexpression is 
represented by several variables labeling the operator node of 
the common subexpression in order to evaluate the expres- 
sion once and store the computed value into each labeling 
variable.’ However, the position of the original store to each 
labeling variable is needed during incremental optimizing 
compilation. This is used to determine whether the optimiza- 
tion is invalidated and to correctly relocate the store. 

The node pointer points to the dag node corresponding to 
the original location of the store to the labeling variable prior 
to optimization. That is, if the original store to a variable v 
occurred at the unoptimized statement s mapped to node n, 
regardless of whether or not the store was moved by optimi- 
zation, v’s node poinfer will point to node n. If optimization 
removes node n from the dag (the common subexpression 
evaluation at s does not exist in the optimized code), v’s 
node poinfer will point to the node built just prior to node n 
(i.e., the node corresponding to the unoptimized statement 
immediately preceding the statement s). Therefore, if no 
common subexpression optimization is performed to affect 
the variable’s original store location, its node pointer points to 
the node containing the variable’s label. This is illustrated in 
Figure I. 

The existence of nodes with more than one variable 
label suggests that the mapping between the unoptimized 
code and MFAD is a many-to-one mapping. That is, a single 
dag node can represent several unoptimized intermediate 
code statements, and in particular, those statements 
corresponding to stores to the variables labeling that node. 
Furthermore, the node corresponding to the original location 
of a variable store can represent several unoptimized state- 
ments (i.e., contain several variable Labels). In this situation, 
the node pointer of that variable label is insufficient to pre- 
cisely determine the original position of the variable’s store. 
We know only that the original store occurred at one of the 
unoptimized statements mapped to node n. In the example 
below, we cannot determine by looking at the model whether 

the original store to P occurred after the store to D or the 
store to G. Additional information is required to explicitly 
identify which unoptimized statement mapped to node n 
corresponds to the original store to the variable. This is 
needed in order to keep a complete accurate history of the 
common subexpression optimizations so detection of affected 
optimizations and updates to the optimized code can be 
correctly performed. 

Therefore, the label index is included as part of the vari- 
able label to specify which unoptimized statement that maps 
to the target node of the variable’s node pointer represents the 
variable’s original store position. If no common subexpres- 
sion has been performed such that the location occurs at the 
node on which the variable label currently resides, then the 
label index is set to zero. The combined use of the node 
pointer and label index information suffices to uniquely deter- 
mine the original location of a variable’s store in the unop- 
timized code. 

A chain of node pointers will exist within the dag when 
consecutive later occurrences of different common subex- 
pressions occur. Figure I illustrates this scenario. 

Unoptimized code DAG 

A-B+C 
D==E+F 
L-M-I-N 
G-E+F 
P=B+C 

Optimized code 

A.P-B+C 
D,G-E+F 
L-M+N 

Figure 1: Node pointers in MFAD. 

As the statement G-E+F is optimized and replaced by 
a store immediately following D-E+F (the first occurrence 
of this common subexpression), a variable label for G is 
added to the node labeled by D with its node pointer set to 
the node labeled by L representing the statement immedi- 
ately preceding the original store to G. Similarly, as the 
statement P-Bi-C is optimized and replaced by a store 
immediately following the statement A=B+C. a variable 
label for P is added to the node labeled by A with its node 
pointer set to the node (labeled by G) representing the state- 
ment immediately preceding the original store to P. The 
label indices of both G and P are set accordingly. The two 
consecutive common subexpression optimizations create a 
chain of node pointers for the unoptimized statement 
P=B+C. The entire chain is needed to avoid losing the 
order of the unoptimized code as common subexpressions 
are created and destroyed. 

Additional labels on nodes in MFAD include: 



(4) 

(5) 

Each interior node includes a set of pointers to nodes 
which reference it. These back pointers are used to 
ensure that all node pointers are kept current. For exam- 
ple, if variable v labeling node n is deleted, all node 
pointers pointing to code n with la’bel indices referencing 
variable v should be updated to point to the node 
corresponding to the statement preceding the one being 
deleted. 
All root nodes which correspond to statements contain a 
pointer to the node’s generated target instruction 
sequence. This provides the mapping between the 
model and optimized code. 
Each intermediate code statement is represented by a 

unique subtree in one of the augmented dags of the flow 
graph. The nodes of the dag for a basic block are ordered by 
performing a postorder traversal of the nodes in the same 
order in which they were created. Following the flow graph 
node order, this postorder traversal of each dag structure 
yields the optimized code sequence for the entire program. 
The unoptimized intermediate code can be obtained by per- 
forming the same traversal with variable stores delayed until 
the end of their respective node pointer chains and variable 
stores inserted at each NOSTORE variable label. 

Figure 2 gives an example illustrating the MFAD 
representation of optimizations. 

Unoptimized code 

1. M=Z+A 
2. C-A+B 
3. E=L+C 
4. M-E+2 
5. H-L-+-C 
6. D=A+B 

Optimized code 

1. C,D=A+B 
2. E,H=L+C 
3. M-E+2 

9 M, store,],0 -- -- 
+(r 

fi 

\ 
\ 

\ 
‘.0 

2 

Figure 2: Optimizations Represented in MFAD. 

MFAD is related to the model developed by Hennessy’ 
for the symbolic debugging of optimized code. In symbolic 
debugging, it is necessary to detect whether a variable’s value 
is current (i.e., correctly displayed according to the user’s 
viewpoint) at some point in the program’s execution and 
attempt to recover those values which are noncurrent. In 
order to accomplish this, Hennessy presents a model which is 
also based on the traditional flow graph and dag models, but 
requires a less extensive optimization history than MFAD. 
For example, Hennessy’s work does not require the exact 
original location of a later common subexpression evaluation. 
The close similarity of these models supports the claim that 
MFAD can be used for both symbolic debugging and incre- 
mental compilation of optimized code. 

MFAD is purposely designed to lake advantage of the 
inherent qualities of the flow graph and dag models and their 

long standing, successful implementation in conventional 
optimizing compilers. The traditional optimization phase can 
be slightly modified to construct the initial MFAD such that 
the additional information which is readily available at certain 
points in the optimization process, is saved rather than des- 
troyed. 

4. Incremental Algorithms - Locally Optimized Code 

Incremental optimization algorithms were developed 
which use MFAD to detect and update the effects of invali- 
dated and newly validated optimizations caused by intermedi- 
ate code changes. The algorithms were constructed by 
directly applying the information obtained from the analysis 
of the effects of program edits on the optimizations (see Sec- 
tion 2) to MFAD. Given that a particular action is known to 
cause invalidation of an optimization, the model is used to 
correctly detect whether execution of that action has, in fact, 
destroyed an instance of the optimization. If it has, the 
model and mappings are updated as well as the optimized 
code to reflect the reversal of the optimization. Similarly, 
when an action is known to create a necessary condition for 
an optimization, the algorithms use the model to determine 
that all conditions for the new optimization are satisfied. 

4.1. Design Considerations 

The analysis discussed in Section 2 demonstrates the 
intricate interconnections of the optimizations and the poten- 
tial for a single program change to affect several optimiza- 
tions. Loss of information during detection and update of 
one optimization can possibly cause another affected optimi- 
zation to go undetected. Therefore, to ensure correct detec- 
tion and avoid redundant actions, the algorithms are 
designed according to the type of program edit and with care- 
ful examination of the order of detection and updates. 

Since intermediate code level changes can be classified 
as insertion, deletion, or replacement of an intermediate code 
statement, separate algorithms were developed for incremen- 
tally compiling each of these basic program changes. Multi- 
ple intermediate code changes are then handled by recur- 
sively applying these algorithms. An alternative approach is 
to design separate algorithms for each type of optimization 
being supported by the compiler. Although this may more 
clearly distinguish the detection and update processes 
required for each optimization, this approach was not taken 
because it appears to be more difficult to deal with the 
interrelationships of the optimizations. 

4.1.1. Order of detecting affected optimizations 

The order that we detect and update affected optimiza- 
tions is independent of the order in which the optimizations 
were originally performed. However, careful ordering of 
detection and update in response to a single program change 
must be done to ensure correctness as well as improve the 
efficiency of the incremental optimization process. 

Some ordering must be imposed on the algorithms in 
order to ensure that correct information is available during 
certain detection operations. For example, when checking 
for the effects of deleting a statement, the model representa- 
tion of the deleted statement should be maintained until all 
checks are performed. 

Efficiency is improved by determining early in the detec- 
tion algorithm if the inserted statement is a redundant store 
which can be immediately eliminated. The model is updated 
to represent the inserted redundant store statement, but all 
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other checks normally performed during an insertion are 
avoided, since the statement is essentially never inserted in 
the optimized code. If the detection of the effects of the 
inserted statement were performed before detecting a created 
redundant store, we would detect optimizations destroyed by 
the inserted statement which are actually valid optimizations 
after the inserted statement is eliminated by redundant store 
elimination. The process of removing the redundant store 
would eventually detect that the destroyed optimization is 
valid and perform the optimization at that time. However, 
the destruction and then reinstatement of the same optimiza- 
tion can be avoided by careful ordering of detection and 
update actions. 

4.1.2. Optimization dependencies 
The design of the incremental optimization algorithms 

must take into account the dependencies among the optimi- 
zations. Compilers usually make multiple passes through the 
optimization phase to obtain a higher degree of optimization. 
As statements are eliminated and reordered, conditions for 
other optimizations become satisfied and are incorporated to 
produce a more optimized program. Thus, in addition to 
detection and update of optimizations directly affected by a 
program change, the algorithms must consider other optimi- 
zations affected by the optimized code changes. The extent 
of this rippling depends on the feasibility of chains of depen- 
dent optimizations existing in the optimized code, given the 
conditions for each optimization. 

Creating a redundant store elimination in the optimized 
code is represented by “covering” the effects of the elim- 
inated statement in MFAD. The covering deletes the state- 
ment from the optimized code, but the unoptimized state- 
ment remains represented in MFAD. Similarly, in creating a 
common subexpression the later occurrence of the common 
subexpression is covered. Destructioti of a redundant store 
elimination must undo the effects of the optimization. This 
is done by “uncovering” the original unoptimized statement 
using the model. Uncovering essentially inserts the unoptim- 
ized statement into the optimized code at the correct loca- 
tion. However, the statement representation already exists in 
the model and merely has to be updated for the statement to 
become part of the optimized code. Uncovering is also 
involved in the destruction of a common subexpression elim- 
ination. Analysis of the covering and uncovering of these 
optimizations shows the rippling effect of modifying optimi- 
zations. 

4.2. Incremental Optimization Algorithms 
The current algorithms support common subexpression 

and redundant store elimination and allow program edits 
which do not affect the flow graph structure. The insert and 
delete algorithms are presented in this paper. The replace 
algorithm consists of execution of the delete algorithm for 
the replaced intermediate code statement followed by execu- 
tion of the insert algorithm to incorporate the new inter- 
mediate code statement. 

The algorithms use the model to detect the effects of 
program changes disregarding any eliminated redundant store 
statement (represented by a NOSTORE status) and using the 
current location of an optimized common subexpression 
(rather than the original location). 

In the discussion of the insert and delete algorithms in 
the next two sections, we concentrate on the detection pro- 
cess for affected optimizations. The model and optimized 
code updates are more fully described for both creation and 

destruction of each type of optimization in Section 4.2.3. 
Section 4.2.3 also discusses the rippling effect of changing the 
code for the affected optimizations. The actual insert and 
delete algorithms, given in Figures 3 and 4, include both 
detection and updates. In the algorithms, destroycse and 
createcse are procedures which check for conditions that 
either destroy or create a common subexpression elimination 
and then take the appropriate update actions, including recur- 
sive calls to the cover and uncover routines. Likewise, des- 
troyrse and createrse perform similar checks and updates for 
redundant store elimination. Covercse removes the effects 
of :I created common subexpression from MFAD. And 
finally. uncoveccse restores the later common subexpression 
to its original location in response to a destroyed optimira- 
tion. Calls to coverrse and uncoverrse are embedded in the 
create routines for redundant store. 

4.2.1. Detection in the insert algorithm 
According to the analysis of Section 2, when an inter- 

mediate code statement is inserted, a newly validated optimi- 
zation can be directly created if the inserted statement is (1) 
a first or later occurrence of a common subexpression or (2) 
the redundant store or the store causing the redundancy. 
Similarly, the inserted statement can directly cause a destruc- 
tion of a redundant store elimination if the statement con- 
tains a use of the variable defined in the redundant store and 
is inserted between the two statements involved in the 
redundant store. A common subexpression elimination can 
be destroyed if the statement is inserted between the original 
locations of the common subexpressions and either (1) a use 
or definition of the variable defined in the later occurrence of 
the common subexpression is present or (2) a redefinition of 
an operand used in the common subexpression occurs. 

Therefore. the algorithm for insertion includes detection 
and appropriate update for each of these situations in addi- 
tion to proper insertion of the new statement into the model 
and optimized code. In order to avoid destroying and rein- 
stating valid optimizations during an insertion, we first check 
if the new statement is a redundant store or the later 
occurrence of a common subexpression. 

If it is a later occurrence of a common subexpression, 
then the statement is effectively inserted as a simple store 
after the first common subexpression evaluation. The effects 
of the operands used in the inserted statement need not be 
determined, but the effects of the inserted store are checked. 
If the inserted statement is a redundant store, it is never 
inserted into the optimized code and its effects need not be 
checked. 

Otherwise the effects of inserting the state’lient are 
based on the actual insertion of this statement. Due to the 
action of the cover and uncover algorithms whicit handle the 
rippling of optimizations, these effects can be detected in any 
order. The insert algorithm only considers the inserted 
statement and its direct affects, 

In discussing the actions of the insert algorithm, we 
assume that statement A:-B op C is inserted after statement 
s-l in the unoptimized code and thus becomes statement s. 
The algorithm essentially considers all the possible effects of 
inserting a noncontrol flow statement. in order to determine 
the correct position of the inserted statement in the optim- 
ized code, its child nodes are determined and their parents 
are examined to determine whether the inserted statement is 
a later occurrence of a common subexpression. If the chil- 
dren share the same parenl node p which occurs before the 
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ALGORITHM: INSERT. Insert noncontrol slateinent. IF def i at s’ has SS THEN BEGIN (defeffects) 

(is s’ first occurrence of cse?) 
IF there is node f > n with SS and f has 

same uses as s’ THEN BEGIN (csecheck) 
LET ms - most recent def of x defined at f < f with SS: 
IF (ms-nil) or (ms C n and ms has no parents with SS 

between n and f) THEN BEGIN (newcse) 
Move variable labels of f to n; (cse created) 
Update child pointers of parents of f to n; 
Update node pointers at n to record optimization; 
Replace expression at f by store x at n; 
covercse(f); (cover later cse) 
Delete node f; 
END (newcse) 

END (csecheck) 

INPUT: Statement s before insert-dag node d 
Statement s’ to be inserted. 

OUTPUT: Updated MFAD and optimized code. 

NOTE: STORE status is represented by SS and 
NOSTORE status by NS. 

BEGIN (insert) 

(determine nodes for uses in s’) 
FOR EACH operand i used in s’ DO BEGIN (child) 

Let mr=most recent and original def of i< =d with SS; 
{no prior def of i within this basic block) 
IF mr = nil THEN BEGIN (no prior) 

Create leaf labeled i; 
LET mr = leaf created with label i; 
Remove any leaf nodes labeled i after mr; 
END (no prior) 

DOEND (child) 

(s’ contains a variable definition) 
IF s’ has a def i THEN BEGIN (process def) 

LET mr-most recent def of i < = d with SS; 

(is s’ is later occurrence of cse?) 
IF (children share parent p <= d and p has SS) and 
((mr = nil) or tmr < p and mr has no parent with SS 

between p and d+ I)) THEN 
BEGIN (2nd cse) 
Add variable label for i to p; (cse created) 
LET s’ map to node p; 
Update node pointer of i at p to record optimization; 
Insert store to i at p; 
END (2nd cse) 

{s’ is not later occurrence of cse) 
ELSE BEGIN (create) 

Insert root node n, labels and child pointers; 
Insert expression and store to i at n; 
LET s’ map to n; 
END (create) 

LET n = p or n from above; (operator node for s’) 

(check effects of inserting def i at s’) 
(if def of i prior to n. check for created rse) 

LET ns = next def of i after n; 
IF mr < > nil THEN BEGIN (rse check) 

IF original def of i at mr > n THEN 
createrse(n); (rse between cse) 

ELSE BEGIN (not in cse) 
IF mr has no parent with SS < n THEN creatersefmr); 

ELSE IF ns< >nil and mr has no parent with SS 
between n and ns THEN creatersetn); 

END (not in cse) 
END (rse check) 

ELSE BEGIN (no prior) 
IF ns < > nil THEN creatersetn); 
Remove any leaf nodes labeled i after n; 
END (no prior) 

IF mt < > nil THEN updateparentstmr,i.n); 
(cse destroyed if new def between cse) 

END (defeffects) 
END (processdef) 

ELSE BEGIN (no def i in s’) 
Insert root node n with child pointers from above; 
Insert corresponding optimized code for n; 
LET s’ map to n; 
END (no def i in s’) 

(check effects of inserting the uses at s’) 
IF s’ is NOT NEW CSE and NOT RSE THEN 

FOR EACH i used in s’ DO BEGIN (process uses) 
LET mr = most recent def of i < n; 
destroyese(mr,i,n,flag); (destroy cse?) 
IF flag THEN BEGIN (cse destroyed) 

LET mr-most recent def of i < mr; 
IF mr < > nil THEN destroyrse(mr,i); (destroy rse?] 
END (cse destroyed) 

ELSE destroyrse(mr,i); (destroy rse?) 
DOEND (process uses) 

Update node pointers that reference d; 
END. (insert) 

Figure 3: Insert Algorithm. 

inserted statement and the two conditions for common 
subexpression elimination are satisfied, then the optimization 
is created. A variable label for A is added to p and the state- 
ment is inserted into the optimized code as a simple store at 
the first occurrence of the expression. Otherwise, a new 
operator node n is created for A and linked to its previously 
found child nodes. The statement is inserted into the optim- 
ized code at the position indicated by node n. 

The effects of the inserted statement are then checked 
according to its location in the optimized code. The algo- 
rithm examines the most recent definition of A and next 
definition of A after s and checks for intervening uses of A 
to determine whether a redundant store is created. If the 
statement is inserted between two common subexpressions 
and A is the variable defined in the later occurrence of the 
common subexpression, a redundant store is created at s, 
and thus the common subexpression is not destroyed. How- 
ever, if redundant store elimination were not included as an 
optimization, the common subexpression would be 
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destroyed. If the definition of A in the inserted statement 
causes a redundant store, the earlier store is covered. If the 
inserted definition of A is a redundant store, then the 
remainder of the insert algorithm is ignored since the slate- 
ment is essentially not inserted. 

We then check whether B op C is common to a later 
subexpression by checking the parents of B and C which 
occur after n. If all conditions for optimization are satisfied, 
the later occurrence of the common subexpression is 
covered. 

In order to completely integrate the inserted node n into 
MFAD, the parents of n are determined by examining the 
parents of the most recent definition of A prior to n. This is 
performed in the procedure updateparents. A common 
subexpression is destroyed if the definition of A at s is a 
redefinition of an operand used in a common subexpression 
between occurrences of the common expression. This is 
detected during the update of the parents of n. If a parent 
node, p, contains some variable labels with node pointers 
before n and some after n, then the common subexpression 
represented at p is destroyed. 

If the inserted statement is not a common subexpres- 
sion, the algorithm examines the effects of inserting uses of 
B and C at statement s. A destroyed common subexpression 
is detected by examining the most recent definition, mr, of 
the operand, say B, prior to n. If the original location of mr 
occurs after n, then a common subexpression is destroyed by 
inserting a use of the variable defined in the later occurrence 
of a common subexpression between the original expression 
evaluations. 

Finally, the status of the most recent definition of B 
prior to n must be examined to detect whether the use of B 
falls between two stores involved in a redundant store. At 
this point, the model, mappings, art@ optimized code are all 
correctly updated to reflect the inserted statement. 

4.2.2. Detection in the delete algorithm 
Using the analysis of Section 2, when an intermediate 

code statement is deleted, a newly validated optimization can 
be directly created when the deleted statement contains (I) 
the only use of the variable defined in a redundant store 
between the two stores involved in the redundant store, (2) 
a use or definition of a variable defined in the later 
occurrence of a common subexpression between the expres- 
sion evaluations, or (3) a redefinition of an operand used in 
a common subexpression between subexpression evaluations. 
The deleted statement can directly cause a destroyed optimi- 
zation when the deleted statement is (1) the one causing the 
redundant store or (2) the first or later occurrence of a com- 
mon subexpression. The delete algorithm must check for 
these conditions and subsequently perform the necessary 
updates. 

Similar to the insert algorithm, the delete algorithm can 
be improved by avoiding unnecessary checks when the 
deleted statement is an eliminated redundant store or a later 
occurrence of a common subexpression. On a redundant 
store, the model is correctly updated to delete the statement 
from the optimization history and the remainder of the 
detection performed in the delete algorithm is ignored. 
When the deleted statement is a later occurrence of a com- 
mon subexpression, only the effects of deleting its definition 
are determined. The detection must be done before the 
statement is actually deleted. 

Throughout the following discussion, we assume that 
the statement being deleted is statement s in the unoptim- 
ized code which appears as A:=B op C at node n. The algo- 
rithm checks if a redundant store is destroyed by examining 
the status of the most recent definition (mr) of A prior to n. 
If mr has NOSTORE status, then a redundant store to A is 
destroyed by deleting the store at s. 

In preparation for the deletion of s from the model. the 
child pointers of each parent of n are updated to point to mr. 
Each parent is examined to determine whether the definition 
of A at s is used between IWO common subexpressions. If 
two nodes now share the same updated child nodes and all 
other conditions for optimization are satisfied, a common 
subexpression is created by covering the later occurrence of 
the common subexpression. 

A created common subexpression is also detected when 
the most recent definition of an operand (B or C) used in the 
deleted statement is originally defined after n. This indicates 
that statement s uses the variable defined in the later 
occurrence of a common subexpression between the expres- 
sion evaluations. 

If statement s is part of a common subexpression 
optimization then we update the model and optimized code 
to correctly undo the optimization. If s is the later 
occurrence of the common subexpression, its variable label is 
deleted, and if s is not an eliminated redundant store, its 
store is deleted. Otherwise, s is the first occurrence of the 
common subexpression and the common expression must be 
uncovered at its next occurrence which is not a redundant 
store, If s is not part of a common subexpression, MFAD is 
updated to delete the subtree representing s and the state- 
ment is deleted from the optimized code. In this situation, a 
created redundant store is detected when a child node of n is 
an interior node with no other parent, and there exists a later 
definition of the variable defined at the child node. 

The detection analysis is not performed if the deleted 
statement is a redundant store. However, updating MFAD 
to delete the redundant store requires that we distinguish if s 
is a common subexpression. The statement s is finally 
deleted. 

4.2.3. Updates for program changes 
As program changes are made and optimizations are 

affected, MFAD must be updated to maintain consistency 
between the unoptimized code, model, and optimized code. 
This ensures an accurate optimization history and enables the 
detection of future affected optimizations in response to a 
program change given in terms of the unoptimized code. 
Unlike the detection process, the updating of the representa- 
tion of redundant stores cannot be ignored. In particular, the 
child nodes for a redundant store must be kept current, for 
uncovering the redundant store must find its model subtree 
representation up to date. The subtree for a covered com- 
mon subexpression is always current since its subtree 
represents more than one statement. 

The effects of reversing invalidated optimizations and 
creating new optimizations are handled by a family of cover 
and uncover algorithms. Any additional affected optimiza- 
tions must be detected and incorporated into the model. For 
example, when a redundant store is created, the statement is 
eliminated in the optimized code and has to be covered in 
the model. To do this, coverrse is called which checks for 
any created or destroyed optimizations which could occur. 
By analysis, it can be determined that coverrse must check 
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ALGORITHM: DELETE. Delete noncontrol statement. 

INPUT: Statement s to be deleted-dag node n. 
OUTPUT: Updated MFAD and optimized code. 

NOTE: STORE status is represented by SS and 
NOSTORE status by NS. 

BEGIN (delete) 
Update node pointers that reference n; 

(s contains a variable definition-update parents of n) 
IF s has def i with SS THEN 
BEGIN (process def) 
LET mr - most recent def of i prior to s; 
IF mr < > nil THEN destroyrse(mr,i); (destroy me?) 

(i is used in later statements) 
IF n has parents using i THEN BEGIN (parents) 
IF mr = nil THEN BEGIN (no prior def i) 

LET min = lowest parent of n; (1st use of i > s) 
Create leaf labeled i positioned as child to min; 
LET mr = created leaf node; 
END (no prior def i) 

(does i redefine a use in cse between cse?) 
FOR EACH parent p of n using i DO BEGIN 

Update child pointer of p to mr; 
IF mr has a parent q < p with SS 

and same uses as p THEN BEGIN (create cse?) 
LET mp = most recent def of x defined at p < p with SS; 
IF (mp = nil) or (mp < q and mp has no parents< >n 

with SS between q and p) THEN 
BEGIN (newcse) 
Move variable labels of p to q; (cse created) 
Update child pointers of parents of p to q; 
Update node pointers at q to record optimization; 
Replace expression at p by store to x at q; 
covercsetp); (cover later cse) 
Delete node p; 
END (newcse) 

END (check cse) 
DOEND 

END (parents) 
END (process def) 

(create cse by deleting use of later def of cse?) 
IF s is not rse and not later of cse THEN 

FOR EACH operand i used in s DO (for each use) 
createcse(i,s); (create cse?) 

(n is a cse node-cse destroyed) 
IF n has more than I variable label THEN BEGIN (cse node) 

(s is 1st of cse-->i must have SS) 
IF original def of i is n THEN BEGIN (1st store) 

LET ns = next matching cse with SS; 
Update MFAD for any occurrence 

of this cse between n and ns with NS; 
Delete variable label i from n; 
Renumber subtree n to be positioned at ns; 
Move all other variable labels to ns; 
Update child pointers of parents to ns; 
Insert expression and stores at ns; 

uncovercse(statement at n,n,i); (uncover later cse) 
Delete stores at n from optimized code; 
END (1st store) 

(s is later occurrence of cse) 
ELSE BEGIN (later) 
Delete variable label i from n; 
If not rse, delete store to i in optimized code; 
END (later) 

END (cse node) 

ELSE BEGIN (n is not cse node) 
FOR EACH child c of n DO BEGIN (child) 

IF c is leaf THEN 
IF c has no other parents THEN Delete c; 
ELSE BEGIN (other parents) 

LET min - lowest parent of c after n; 
Renumber c to become leaf of min; 
END (other parents) 

(c is not leaf) 
ELSE IF c has def j with no other parents 

and there is a later def of j 
THEN creatersetcj); 

Delete child pointer of n to c; 
DOEND {child) 

Delete node n and its optimized code; 
END (n is not cse node) 

END. (delete) 

Figure 4: Delete Algorithm. 

ACTION Createrse 
EFFECTS 

Destroyrse Createcse Destroycse 
Uncoverrse no yes yes 
Coverrse yes no yes 

Uncovercse no IlO yes 
Covercse no no Yes 

Table 1: Relationships of the optimizations. 

yes 
yes 
yes 
no 

for created redundant store and common subexpression 
elimination and destroyed common subexpression elimina- 
tion. The actions of the cover and uncover algorithms are 
summarized in Table I. For example, in covering a statement 
due to a created common subexpression we need only check 
for another created common subexpression elimination. The 
reader can verify these interrelationships by examples or 
proofs, using the conditions necessary for the existence of 
each optimization. 

Creation of redundant store 

When a redundant store is created at statement s, the 
model is updated to record the new optimization by setting 
the status of the variable defined at s to NOSTORE and 
coverrse is called for s. In coverrse, if s is also the first of a 
common subexpression, then the model is updated to indi- 
cate a destruction of a common subexpression. An aigo- 
rithm, uncovercse, to handle the uncovering of a statement 
restored by a destroyed common subexpression elimination 
is called for the second occurrence of the common subex- 
pression. Since the redundant store effectively deletes a 
statement from the optimized code, each child node is exam- 
ined. If there are no other parents for that child node, and 



the variable defined at the child node is redefined later in this 
basic block, another redundant store has been created. If so, 
a new child node is determined for statement s. Covering 
the operands used in s can also create a common subexpres- 
sion. Since s is a redundant store, covering the definition at 
s has no effects. 

Creation of common subexpression elimination 

Creation of a common subexpression is accomplished 
by moving the appropriate variable labels and parents’ child 
pointers from the node r representing the later occurrence to 
node n representing the first occurrence. The node pointers 
of those moved variables are updated to record the original 
location of the later common subexpression, and the expres- 
sion evaluation and stores at r are replaced by simple stores 
at n in the optimized code. The effects of covering the state- 
ment at r are examined by the covercse algorithm, and the 
node r is then deleted. Covering the statement can only 
create additional common subexpressions by deleting the use 
or definition of the variable defined in a later occurrence of a 
common subexpression between the common subexpres- 
sions. 

Destruction of redundant store 

When a redundant store to A is destroyed at statement 
s. the model is updated by setting A’s status to STORE and 
inserting the statement back into the optimized code. The 
effects of uncovering a redundant store statement are then 
examined in uncoverrse. The newly uncovered statement 
can create a common subexpression by being the first or last 
occurrence of a common subexpression which satisfies all 
conditions for optimization. If so, the model is updated and 
covering is performed by calling createcse. A common 
subexpression can be destroyed by uncovering the operands 
used in the redundant store. If so, the procedure destroycse 
is called. Uncovering the operands used in s can also destroy 
a redundant store elimination by s being located between the 
two stores involved in a redundant store. Destroyrse is then 
executed again. 

Destruction of common subexpression elimination 

Destruction of a common subexpression causes the 
creation of a new root node r at the second occurrence with 
the same child pointers as the first occurrence at node n. 
The appropriate variabte labels and parents’ child pointers are 
moved from n to r, the simple stores at n are replaced by an 
expression evaluation and simple stores at r, and the effects 
of uncovering the later occurrence are examined through the 
uncovercse algorithm. Although the uncovered statement 
results from a destroyed common subexpression elimination, 
a new common subexpression can be created if this is the 
first or later occurrence satisfying all conditions for optimiza- 
tion. The procedure createcse is called to update the model 
and cover the later occurrence. Uncovering the uses in the 
common subexpression can destroy another common subex- 
pression. The procedure destroycse is then executed. 

4.3. A Complete Example 
As an example of the algorithms, we consider the 

effects of deleting statement 3 tie. A-B+0 from Figure 5. 
Following the delete algorithm, we find that the most recent 
definition of A prior to node 9 occurs at node 3. The 
NOSTORE status of A at node 3 indicates that a redundant 
store elimination is destroyed by deleting the definition of A 
at node 9. At node 3, the NOSTORE status is replaced by a 

Unoplimized code MFAD 

I. A=G+F 
2. F=D+E 
3. A=B+C 
4. H-A+2 
5. B=D+E 
6. D-A+2 

Optimized code 

I. F=D+E 
2. A=B+C 
3. H=A+Z 
4. B=D+E 
5. D=A+2 

Figure 5: Example of incremental change 

STORE status. A is inserted into the optimized code at node 
3. and the uncover algorithm finds that the newly uncovered 
statement does not affect any other optimizations. The child 
pointers of the parents of node n, namely nodes II and 13, 
are updated to point to node 3, where the most recent 
definition of A prior to node 9 occurs. Examining the 
parents of node 3 reveals that there is no new common 
subexpression optimization created by the deletion of the 
definition of A at node 3. 

However, when the operands of the deleted statement 
A=B+C are examined for possible creation of a common 
subexpression elimination, we see that the deletion of the 
use of B at statement 3 between the common subexpressions 
at statements 2 (F=D+ E) and 4 (B=D+E) creates poten- 
tial for a new common subexpression optimization. Since 
there is no prior definition of B in this basic block, all condi- 
tions for optimization are satisfied, and the model is updated 
by adding a variable label and store for B at node 6 with its 
node pointer pointing to node 1 I. Node I2 is then deleted 
with its associated optimized code. The cover algorithm finds 
that the covering of statement B-DCE creates another 
common subexpression by covering the use of the variable 
defined in the later occurrence of the common expression 
(A+21 between statements 4 (H=A+2) and 6 (D=A+2). 
The model is updated by adding the variable label and store 
to D at node I I, deleting node 13, and observing that cover- 
ing D-A+2 has no other effects. 

Since node 9 has only one variable label, it does not 
represent a deleted common subexpression evaluation. 
Therefore, each child of node 9 is examined. Since both are 
leaves with no other parents, they are both deleted from the 
model. The resulting updated code and model appear in Fig- 
ure 6. 

5. Flow Graph Changes to Locally Optiqized Code 
The incremental optimization algorithms are currently 

being generalized to support program edits which affect the 
flow graph structure. In order to detect optimizations 
affected by control flow changes, the changes are identified as 
a sequence of insertions, deletions, or changes to flow graph 
edges and separations, creations, deletions, or merges of 
basic blocks. The intermediate code changes which can cause 
these control flow changes are: (1) insertion of a label on an 
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Unoptimizecl code MFAD 

1. A-G+F 
2. F=D+E 
3. H-A+2 
4. B-D+E 
5. D-A+2 

Optimized code 

1. A=G+F 
2. F,B-DSE 
3. H,D=A+2 

Figure 6: Effects of change on MFAD and code. 

existing nonlabeled statement, (2) change of a label on an 
existing labeled statement, (3) insertion of a labeled state- 
ment, (4) deletion of a label on an existing labeled state- 
ment, (5) deletion of a labeled statement, (6) change of a 
target label on an existing control flow statement, (7) inser- 
tion of a control flow statement, and (8) deletion of a control 
flow statement. 

These changes can modify the edges of the flow graph, 
leaving the basic block structure unperturbed, or can actually 
change the structure of ,the basic blocks (e.g., merge or split 
basic blocks). Only those program changes that modify the 
structure of the basic blocks can potentially invalidate or 
create newly validated local optimizations since the conditions 
for performing them are isolated within the given basic 
block. 

Incremental local optimization resulting from the crea- 
tion of a basic block can be handled as in the initial construc- 
tion of MFAD. Deletion of a basic block automatically 
deletes the local optimizations within the basic block without 
affecting other local optimizations. However, incremental 
local optimization when merging and separating basic blocks 
is more complex. 

5.1. Merging of two basic blocks 

The merging of two consecutive basic blocks might be 
necessary when a label is deleted from an existing labeled 
noncontrol flow statement, a labeled noncontrol flow state- 
ment is deleted, or a control flow statement is deleted. The 
merge of two consecutive basic blocks, B and B’, into a sin- 
gle basic block is accomplished by inserting each statement 
subtree of B’ successively to the end of B following a pos- 
torder traversal of the augmented dag representation of B. 
The following method for merging basic blocks allows the 
optimizations currently existing in B’ to remain throughout 
the merge. Each individual merge can be viewed as a special 
case of the insertion of an unoptimized statement after the 
last statement of basic block B. Since the statement is 
currently represented by a subtree in B‘ and appropriately 
included in the code, full insertion is not being performed 
during a merge. For example, realizing that a leaf node in B’ 
represents a value obtained from outside B’. only leaf nodes 
in B’ will be replaced by nodes currently in B when there 
exists a definition of that variable in B. 

Created local optimizations are detected and performed 
as the root of each subtree is merged. If there exists an ear- 
lier expression statement in B which matches the statement 

represented by the subtree currently being merged (i.e., they 
share the same child nodes) and the conditions for optimiza- 
tion are satisfied, then a common subexpression elimination 
is performed on the optimized code and the model is 
appropriately updated. Similarly, a new redundant store is 
detected by examining whether there exists a use of the 
newly merged definition after its last definition in B before 
the merge of this subtree. 

As before, covering the statements when creating 
optimizations by merging can cause further optimizations. 
However, merging two basic blocks cannot destroy optimiza- 
tions since optimizations existing prior to the merge were 
performed locally within each basic block. 

5.2. Separatlon of a basic block 
A single basic block might need to be divided into two 

consecutive basic blocks (B and B’) when a label is inserted 
on an existing nonlabeled statement, a labeled statement is 
inserted, or a control flow statement is inserted. Given that 
the program change requires that the basic blo!k B be split 
after statement s, the dag subtrees representing each state- 
ment following s in B are successively updated to be included 
in the new basic block B’ starting with the last statement sub- 
tree currently in B and following backwards through the pos- 
torder node ordering. Existing local optimizations which are 
not invalidated by the basic block separation remain in effect 
in the respective basic block after the separation. 

The separation of a given subtree from B is effectively a 
deletion from B and insertion into 8’ of the subtree and its 
associated statements. As each statement is put into B’, the 
effects of deleting its uses from B must be examined. Also, 
any uses of operands defined prior to s+l must be 
represented in B’ by leaf nodes since they now obtain their 
values from outside B’. 

A redundant store optimization is destroyed when the 
definition of a variable which caused a redundant store 
resides in B’ after separation is complete. A local common 
subexpression elimination is invalidated when the original 
location of the later occurrence of a common subexpression 
resides in B’ and the first occurrence resides in B. Changing 
code to uncover these destroyed optimizations can cause sub- 
sequent invalidation of other optimizations. However, local 
optimizations cannot be created by separating a basic block 
since no additional sequential code is being constructed 
which could create potential for further local optimization% 

The procedures for combining and separating basic 
blocks within MFAD detect newly validated and invalidated 
optimizations and update the model and optimized code 
accordingly to represent the new basic block structure, new 
optimizations, and reversal of destroyed optimizations. The 
algorithms are special cases of the insert and delete algo- 
rithms, use the optimization history as in the other algo- 
rithms, and require no additional information to be main- 
tained. Therefore, supporting program edits which affect the 
flow graph structure of I&ally optimized code requires that 
the current detection/update algorithms be generalized to 
allow control flow changes, detect the need to merge or split 
basic blocks, and then execute the procedures outlined 
above. 

6. Extensions to Peephole, Global, and Loop 
Detection and update of affected peephole, global, and 

loop optimizations requires that additional information be 
integrated into MFAD. Extension of the model to effectively 
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represent this information and support detection and update 
of these optimizations is currently being studied. It appears 
that little additional information is required to maintain an 
optimization history and enable detection and update of 
selected peephole optimizations. 

Incremental update of unreachable code optimization 
can be done by observing the number of flow graph edges 
leading into each basic block. A basic block with no incom- 
ing flow graph edges is unreachable and the corresponding 
segment of code can be deleted from the optimized code. 
Therefore, when a control flow change affects an existing 
flow graph edge or inserts a new flow graph edge, the algo- 
rithms should check the number of incoming flow graph 
edges of the involved basic blocks. A previously unreachable 
basic block becomes reachable when an incoming flow graph 
edge is added to that basic block, and a reachable basic block 
becomes unreachable when all incoming flow graph edges ol 
the basic block are removed. 

Since an instance of an algebraic simplification optimiza- 
tion is isolated in a single intermediate level expression state- 
ment, optimization is automatically destroyed and updated by 
deletion or replacement of an intermediate code expression 
evaluation. However, algebraic simplification can occur when 
an expression statement is inserted. The insert algorithm 
need only be extended to determine whether the inserted 
expression statement follows one of the supported algebraic 
simplification laws and insert the corresponding simplified 
statement in place of the original expression statement. This 
can be done by keeping tags on algebraically simplified 
expressions. 

A history of a multiple jump optimization can be 
represented in MFAD by maintaining a list at the node 
representing an intermediary jump statement s which con- 
tains pointers to all control flow statements that originally 
jumped to s but have been optimized to skip s and go 
directly to the target label of s. The original target label of a 
control flow statement is kept as a label on the statement’s 
corresponding operator node. Therefore, when a control 
flow statement is changed, we can identify whether it is an 
intermediary jump in a multiple jump optimization by the 
existence of a jump list. We can also determine whether it is 
the initial control Bow statement optimized to jump directly 
to its final destination by comparing its target label in the 
optimized code with the target label labeling its operator 
node. Update consists of updating jump lists and target 
labels of the appropriate control flow statements as indicated 
from the detection phase. 

Model representations and incremental detection/update 
algorithms for global and loop optimizations are not yet 
specified. However, the information that must bc saved to 
enable correct detection and update for these optimizations is 
outlined here. Constant folding requires the original expres- 
sion and location of the constant folded expression and 
current use-definition cud) and definition-use fdu) chain 
information. The original location and expression of global 
common subexpressions, a link between the earlier and later 
occurrence of the common subexpression, and current ud 
and du chain information are needed to incrementally detect 
and update global common subexpression eliminations. 

Code motion of loop invariants can be represented by a 
special preheader node which precedes the loop and contains 
the moved invariant computation with a pointer to its origi- 
nal location within the loop. Current ud and du chain infor- 
mation and detection of loops is also required. Lastly, induc- 
tion variable elimination requires the original location of the 

basic and induction variable statements, the values of the 
basic and induction variables expressed in terms of the tem- 
porary variable, currcni ud and du chain information, and 
dctcction of loops. 

7. Summary 
The ideal incremental programming environment would 

closely intcgrote the incremental compiler. incremental 
optimizer and a symbolic debugger. The similarity of infor- 
mation needed for incremental compilation and the symbolic 
debugging of optimized code suggests that variations of the 
same basic internal representation can be used for both pur- 
posts. 

In summary, we present the first step in a project IO 
develop an incremental optimizing compiler. The model and 
algorithms presented in this paper can be used to incremen- 
tally update locally optimized code. The algorithms modify 
the optimized code to reflect any destroyed or created optimi- 
zations due to the source code changes. They are currently 
being implemented in C6 running under UNIX? on a Vax 
I l/78, and form the basis of a prototype incremental optimi- 
zation system that we are building. 

Besides implementation, future work includes the 
expansion of the system to include global, loop and peephole 
optimization. We also intend to examine the construction of 
an integrated incremental optimizing compiler. Perhaps a 
concurrent algorithm, similar to that developed by Sawam’i- 
phakdi and Ford,‘* can be constructed to speed up the incre- 
mental optimization process. Lastly, we intend to evaluate 
the overhead of incremental optimizing compilers. 

A major objection to incrementally compiling optimized 
code is the additional storage needed during the compilation 
phase. However, in addition to reduced compilation time 
due to incremental compilation, execution time and space are 
decreased by optimizing the code. Greater run-time storage 
requirements arc necessary only when an incremental, optim- 
izing compiler is used in conjunction with a symbolic 
debugger. In this situation, suficient information must be 
present at run-time to allow execution to be stopped, debug- 
ging actions to be correctly executed, and desired program 
changes to be incrementally compiled before execution is 
resumed. An incremental. optimizing compiler is particularly 
useful for embedded systems where limited storage may 
require that code be optimized in order to execute success- 
fully. 
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