
AN AXIOMATIC TREATNENT OF EXCEPTION HANDLING

1. INTRODUCTION

Shaula Yemini
Department of Computer Science

Courant Institute of Mathematical Sciences

New York University

This paper presents an axiomatic treatment of

exception handling, based on the replacement model
[16]. The replacement model, in contrast to other
exception handling proposals, supports all the
handler responses of resumption, termination,

retry and exception propagation, within both

statements and expressions, in a modular, simple
and uniform fashion. The main result presented in

this paper is that the semantics of all these

handler responses can be captured using a simple

axiomatic definition involving only two proof
rules in addition to the rules defining the other

aspects of the embedding programming language;

these rules place no restrictions on allowable

handler effects except for those resulting from

scope rules. The model is suitable for any

block-structured programming language. A

syntactic extension and both operational and

axiomatic semantic definitions for embedding the

replacement model in ALGOL 68 ([15]) are presented

in [16].

z. EXCEPTION RANDLING IN THE REPLACEMENT MODEL

Operations provided by a programming

language, whether primitive or program-defined

(functions and procedures), can often be usefully

defined only on a subset of the states in their

domain of definition. This subset is defined by

an assertion that we call the normal case input

aasertion of the operation. We c~~eption

of an operation a atate in that operation’s domain——

~%lrt~~~. ‘“;xa~~~~fyofth~xc~yols c;;lu~~pl~

empty (or ended) file for the read operation, a

zero denominator in division, an empty stack in
pop .

For maximal usefulness of a module construct

that encapsulates objects and related operations,
an invoker of an operation should be notified of

the detection of an exception, to allow it to

determine an appropriate action.
This also supports modular decomposition: the
detection of an exception is done by the operation

supplied by the module, but the response, which is

application specific and cannot therefore be

determined in the module, is left to the invoker.
Not if ying the invoker of an operation that an

exception has been detected is called signaling

the exception, and the operation is called a

aignsller of its exceptions. The program supplied

by the invoker for responding to the detection of

an exception is called the handler.

The replacement model adopts an expression

oriented view: a program is considered a composite
expression; exceptions correspond to

subexpressions that cannot be fully computed in

their signaller. Operations (procedures and

functions), are required to declare the identifier

and data type of each exception they signal. Any

generalized expression (i.e., closed construct
such as a block, loop or conditional), may become

a signaller, by declaring its exceptions.

Exception handling in the replacement model

consists of computing replacement effects and

returning replacement values for:
1. either the signaling of the exception

(after which the signsller may resume),

or
2. the invocation of the signaller of the

exception

Since in 1. signaling hss the effect of a
normal procedure call to the designated handler,

Permission to copy whhout fee aU or part of this material k granted no new keyword is required for supporting
provided that the copies are not made or dktributed for direct resumption; an end terminating a handler has
commercial advantage, the ACM copyright notice and thethle of the exactly the inten~ semsntica. Thus our only
publication and hs date appear, and notice k given that copying k by
permission of the Association for Computing Machinery. To copy

otherwise, or to republish, requkes afeeand/or specific permksion. lSince exceptions can be propagated, an exception

of one operation may also be a result of another
operation used in its implementation not having

its normal case input assertion satisfied.

o 1982 ACM0-89791-065-6/82/001 /0281 $00.75

281

syntactic extension, apart from extensions to the

type system, is the completer (a piece of
punctuation similar to a closing bracket) replace,

allowed within handler bodies. Replace completes

an expression in a handler. The value of this

expression will serve as a replacement for the
value that the signaller would have returned in

the normal case.

The addition of replace suffices to support

all of the structured handler responses considered
useful in previous exception handling proposals
(e.g. [3], [11, [51, [71, [4] and [9]): replacing

the immediate signaling of the exception yields

resumption; replacing the signaller invocation

yields termination; signaling an exception within
a handler yields propagation; having a new

invocation of a signaller within a handler, to
replace a signaling invocation, yields retry;

signaling an exception of a closed construct, in

the handler for the original exception, with the
handler for this propagated exception replacing

the invocation of the construct, yields

termination of the construct as a result of the

original exception. None of the proposals we are
aware of, can support all of these handler

responses in a structured fashion.

As an example consider the procedure

“convert”, which takes an array-of-integers

variable as a parameter, and returns the string of
the integers’ character representations,

signaling an exception “badcode” when an integer

for which there is no corresponding character is
found. The procedure is written in ALGOL 68,

modified to include the extensions required for

our exception handling mechanism.

Ex?Ec”n’ert = (.Esu-EEc”de) SEz.!E
signals (exe (int) (~ string) badcode):——

begin

Q-&L&s ‘= ““;
for i from lb code to ub code—. ——

do

~:= s + repr code[i]
append to s the char represented by code[i]#

od

~ nochar = (char, char):
~when repr s~ls nochar, #

badcode(i) replace
signal ba~

no;—
s

end—

Convert invokes the operator ~, . which

returns the character represented by an integer if
one exists. Repr has been modified here to signal

the exceptio~ nochsr” if its argument does not

represent any character. Convert handles nochar

of repr by signaling convert’s own exception

badcode, thus propagating nochar. A signaling of
an exception has the same syntactic form as a

call. The value returned by a handler for badcode

will replace the value that would have been
returned by repr, had ~ not signalled an

exception.

On e=h no postfixed to a closed construct

(here= loop~designates the handler expression h

for all signalings of the exception e in that
construct. In ALGOL 68, a procedure denotation is

headed by the list of the types and identifiers of

its formal parameter, and its return type. The
same is done here for handler denotations. In

general, h can be any expression yielding a
handler. In the following, we use only handler
denotations.

Exc is the type constructor for exceptions.

Excep~ns are typed by the type of their
parameters and their two return types. An
exception (and any handler designated for it), has
two return types (e.g., (~, string) for
badcode), since a handler may either resume, or
replace the signaller invocation, and each case
may require the handler to deliver a value of a
different type. By convention, the first type

listed in the return type pair is that for
resumption, the second that for replacement. For
example, the type of repr is:
~ (int) char

~nals (exc(char, char) nochar).— —

The identifier and data type of badcode are

declared in convert’s heading, and are considered
part of convert’s data type, in order to enable a
compiler to check that handlers of the proper
types have been designated in the static scope of

each invocation of “convert”, as required in the
replacement model. Exceptions are not passed up

the calling chain unless explicitly propagated by

a handler.

The following examples demonstrate how the

various handler responses are supported in the
replacement model.

1. Resumption: supply a “?” as a replacement

for the char corresponding to badcode. Convert
then resumes. The result is therefore a string in

which the characters corresponding to unconvertible
codes are “?”.

do . . . print(convert(nums)) . . . od

~ badcode = (int i) (char, stri~): “?” no— — .— —

2.i Termination of the signaller: supply the——
the empty string as a replacement for the string
returned by convert. Note that the replace type

of an exception is always the type returned by
that exception’s signaller.

do . . . print(convert(nums)) . . . od

~ badcode = (int i) (char, stri~): ““ replace no— — —— — —

Since replace completes the expression whose

value is intended to serve as a replacement for
the ~alue returned by the signaller, its semantics

are: return the value to the point (label)
following the invocation which signalled the
exception this handler was designated for. This
is the return label for the signaller invocation,
and can therefore be statically determined.

2.ii Retry: retry after changing the badcode
to a zero. The string returned by the new
invocation of convert will be returned as (a

282

replacement for) the value of the initial
invocation.

~ . . . print(convert(nums)) . . . od

~ badcode = (int i) (char, stri~):—_
&k@—
nums[i] := O;

convert (nums) replace
call convert again, to replace the result of

the previous call #

end—
no—

To support replacing subexpressions at ~nY

level uniformly, without coupling the effects made
by a handler to the flow control required after

the handling is completed (as in [4, 7]), anY

closed construct in the embedding programming
language is allowed to become a sigMller of

exceptions. This is done by the construct

declaring its exceptions in a signals clause
following the opening bracket of the construct.

Thus for example, a block, loop or conditional can

become a sigmller of exceptions. The rules for
resumption and replacement apply uniformly to
procedure sigmllers and any closed construct
sigmllers.

The following example will demonstrate two of
the handler responses supported by the replacement

model: termination of a closed construct
containing the invocation signaling an exception

(as in [4, 71), and exception propagation.

In order to obtain termination of the loop

after badcode has been detected, the loop iS made
a signaller of a parameterless exception called

“finish”. This is done by attaching a signals
clause after the @, declaring finish. The two
types appearing in finish’s heading are its resume
and replace types respectively. Finish is
signalled in the handler for badcode (i.e., it is

the propagation of badcode). When the handler for
finish replaces finish’s signaller’s invocation -

the 100P invocation, the loop will be terminated,
as required:

3. Termination of a closed construct and.—
exception propagation~

—

w
do signals (exe (char void) finish).— —— j_
w“”” Pri”t(’=”nvert(n”ms)) ““”E??!l
on bedcode = (int i) (char, string): finish no——
z

—

enT—
~ finish = (char, void): ~ replace no——
when finish is raised, replac~i~mller’s

invocation by the value yielded by skip #

Skip in Algol 68 yields an undefined value of
whatever type is required by the context.

For further details and examples of the
replacement model see [16].

3 AXIOMATIC SEMANTICS

Our axiomatic treatment of exception handling

follows the axiomatic approach proposed by

Schwartz for Algol 68 in [13]. We find this

approach most suitable for axiomatizing the

replacement mechanism, since it contains rules of

inference for procedures that allow parameters of

arbitrary types including procedures, and contains
no restrictions on side effects in expressions.

It should be noted that side effects occur

mturally in exception handling, since any effect
made by a handler (including the printing of an

error message) is a aide effect of invoking the
signaller.

Sentences in the extended logic used in [13]

have the formN / P {s} Q I=v. S is an expression

or statement. 1 represents the value yielded by s

(empty if s is a statement). P and QA1=v are the

input and output assertions respectively. N is a
NESTL, which maps the set of all identifiers and

derived modes known at each point in the program,
into their declared modes. The NESTL provides the

static properties of the program necessary for the
proof. The axiomatization assumes that programs

to be verified are compile-time correct, i.e., all
type checking and mode equivalencing have been

done, and all grammar imposed restrictions have

been met.

The above sentence is to be read as “if P is

true with respect to N, and if the evaluation of s
halts, then Q is true with respect to N after

evaluating s, and the value yielded by s is v“.

The axiomatic definition of exception

handling requires:
1. a form for specifying a signaller

together with the exceptions it signals,

independently of any specific choice of

handlers,

2. a definition of correctness of a

signaller with respect to a specificat~on

of the above form,

3. a form for specifying the independent

effect of a handler, and
4. an adaptation style proof rule that

combines the specification of a

signaller, together with the

specifications of the handlers designated

for an invocation of that signaller, in
order to derive the effect of that

invocation.

3.1 Specifying Signalers and their Exceptions

Let s be a signaller of one exception e with

formal parameters ~. We use the following

notation for an input/output specification of s:

(1) N / {P, QA1=v, e(~) <E(z), R(~)A~=u>}

P is the input assertion. QA1=v is the

normal case output assertion which will be

satisfied if no exceptions are signalled. E iS

the exception condition corresponding to the

exception e, describing the state when e is

283

signalled. RA1=u iS the resumption condition,

which is required to be satisfied by a handler for

e before resumption, in order to ensure that the

normal case output assertion, Q Al=v , will be

satisfied if and when s halts. The above

specification states that if the input state

satisfies P, and if the execution of the specified

construct halts, then either QA1=v holds, or the

exception e is signalled and the state then

satisfies E. RAI=u must be satisfied before

resumption. This notation reduces to {P, QA1=v}

when there are no ~xceptions, but in that case we

will uae the conventional notation: P {s} QA1=v.

We say s is y artially correct with respect to

the specification above, or

a PC wrt N/ {P, QA1=v, e(~) <E(z), R(~)Al=u>]

iff

for any handler h for e N/ E(z) {h(~)} R(~)Al=u

N/ P {S’} QA1=v

i.e. , iff the assumption N/ E {h} RA1=u,

enables proving that N/ P {s} QA1=v. This enables

us to use the procedure proof rules to push

assertions through a signaling in the process of

verification, even though the handler is not known

within the signaller body. The rule for an

invocation of a signaller will ensure that a

handler does indeed satisfy the resumption

condition before resumption.

In the general case, a specification may

include several (P, QA1=v) pairs, which may each

have several associated exceptions. The extension

to this case is straightforward (see [16]).

3.L Specifying Handler Effects

Since resumption is obtained by the same
mechanism as procedure calls, and termination of a
construct enclosing an invocation is obtained by

simply generalizing the notion of a signaller, we

need onlY one additional rule (to the rules in
[13]), in order to specify handler eemantics.

This is the rule for the site of the completer

replace.

&2. i Rule for Replace

Replace completes an expression in a handler

body . The value of this expression is yielded at

the program location (label) to which control is

transfered by replace. This label is the return
label of the invocation the handler was designated
for, and is statically determinable.

Replace has the effect of preserving both the
state and the returned value, except that control
is transferred to the label determined by the
invocation. The interpretation of this label
therefore haa to be adapted to the context of each

invocation for which the handler is designated, aa

will be seen in the rule for the site of an

invocation given below. The rule for replace is:

N/P{e}QAl=v

N / P {e replace} replace: QA1=v

The notation here is borrowed from temporal

logic ([12]), which uses assertions of the form

<label>: <predicate> to specify that the predicate
is to hold at the specified label in the program.
The “replace:” in the consequent is an

uninterpreted label, which will be interpreted

(adapted) in the rule for the site of an

invocation, for each specific invocation.

3.2.2 Rule for a Signaller Invocation

This rule combines the independent
specification of a signaller, and the independent

specification of the handlers designated for a

particular invocation of this signaller, to derive
the effect of the invocation.

Since the signaller, and the handlers for a

given invocation of it, are likely to have

different accessing environments, an invocation

maY have side effects on objects in the

environment containing the invocation, which are

not accessible to the signal ler. Let T.NV be an

assertion about objects in this environment which
holds true before the invocation, and is preserved

by the elaboration of the actual parameter
expressions. If INV is preserved by all handlers

designsted for that invocation (for all the

exceptions that may be signal led by the invoked

signaler), we will conclude that INV remains true
after the signaller has completed.

In [13], a unique special variable Ii is

associated with each occurrence of each expression
layer in the program, representing the value
yielded by evaluating that expression. In order
to be able to maintain a normal form: ““l=v” for

assertions about lis when pushing assertions

through successive expression layers, the domain

of formal values was enlarged to include
conditional values of the form (P Iv) (intuitively:
if “P then v“) , and vl@v2 (intuitively: “VI or

V2”), where P is a predicate in the underlying
logic, and v, Vl, V2 are themselves formal values.

We first give a special case of the rule for

the case where the expressions yielding the
sigmller and the handler are both identifiers (p
and h respectively), bound to values of the

corresponding types (aa opposed to arbitrary

expressions) . This is probably the most common

case, and is most likely to be supported in

programming languages that are not expression
oriented. For brevity, we assume that p may

signal only one exception ex.

284

The rule is:

1. N/ TAINV {COLLAT(el,en)} PAINVAle=~

2. Ifp/ p(~) PC wrt {P, QA~=V, ex(~)~, RA~l=u>}

3. N/ EAINV {h(~)} RAINVA1l=U V replace: SA12=y

N/T A INV {p(el, ... en) w ex=h ~}

(Q v s) AINV A1=(QIV)O(SIY)

Premise 1 accounts for the effects of the

collateral elaboration (evaluation in an
unspecified order) of the actual parameter

expressions el,...en. This elaboration may have

side effects. (Rules for collateral elaboration

can be found in [13]).

Premise 2 is the specification of p, in the

form described earlier.

Premise 3 is the specification of the handler

h. The input assertion for the handler naturally
involves the exception condition for the exception

the handler is designated for. A handler may

either cause resumption of the signaller after
handling (indicated by terminating the handler by
end, without any preceding replaces); in this case

~must be shown that the handler established the
resumption condition, in order to be able to

conclude that the normal caae output assertion

holds after p terminate; alternatively, it may
cause replacement of the signaller (indicated by
an expression followed by replace); in this case

the result of the invocation will be the result of
evaluating the replacement expression. There can

also be more than one replace in the handler, or a
conditional choice between resumption and
termination. Thus in general, the output
assertion of a handler contains both an assertion
for the resumption case and an assertion for the
replacement case.

The consequent statea that if all the

premises hold before the invocation, then after
the invocation, either the normal case output

assertion or the handler’s replacement output
assertion hold.

The syntactic rules for designating handlers

allow an on clause designating handlers, to be
to a closed construct, thus designatingpostfixed—

the handlers in the on clause for all invocations—
within the construct. In the proof rules it is

a=sumed that all handler designations have been

copied to immediately postfix the associated

invocations. This copying transformation can be

determined statically.

The rule for a signaller which is a closed
construct (e.g. block) is a special case of the

rule for a signaller invocation, where there are

no parameter expressions and INV=true:

1. N/ s pC wrt {P, QAIO=V, ex(~) C3, RAll=wJl

2. N/ E {h(z_)] RAll=w V replace: SA12=Y

N/ P {s ~e~h~} (Q V S) A1=(QIv)O(SIY)

In the general case, in an expression
oriented language both the invoked signsller and

the designated handlers can be yielded by

arbitrary expressions. In this case, the proof

rule needs to consider all the signaller values

that could possibly be yielded by these

expressions. Each of these signalers maY be
partially correct with respect to different input,

output, and exception specifications (though they

will all have exceptions With identical

identifiers and data types, since these are

considered part of the data type of the

signsller). In order to not complicate the rule

further, we assume that the invoked signaller may

signal only one exception ex. The rule is thus:

1.

2.

3.

N/TAINV{COLLAT(ep,el,en.eh)}

A \~l(Pj A~=hj)]A INV A1e=~[~, (Pi Alp=@l ,_
—

V i, I<i<m N/ wi(~) PC wrt

{Pi, QiA~l=vi, ex(y) <Ei, RiA12=Zi>}

v i,j, l<i<rq l<j<k

[N/ EiAINv {hj(y)}

RiAINVA~=Zi V replace: sij AI~All=uijl

N/TAINV {ep(el,...,en) ~ex=eh~} INV A

[((i~LQi) All= (Q1lvl)@...@(Qml vm)) V

‘(i~l~,sij) ‘ll=(sll lull)$”””@(smklumk))]

Premise 1. accounts for the side effects of

the (collateral) evaluation of the expressions

yielding the invoked procedure value, the

parameters to the invocation, and the designsted

handler. ml are potentially conditional values.
However, for both the invoked procedure and the

designated handlers, it iS necessary to

distinguish all the individual values comprising

the conditional value in order to examine all the
individual specifications. Thus , assuming that

the procedure expression ep may yield any one of

the routine values w ,
i

instead of writing lp=p

where p is a condit oml value involving m

(P~lw~)s, P is separated into the m (piAl~i)s.

The same is done for $. le=~ is shorthand for

le =v~, i=l,n the -actual (conditioml)

pa$ameter values.

Premise 2. includes the specifications of all
the possible signellera that could be yielded by

e.
P

premise 3. includes the specifications of all
the possible handler valuee that could be yielded
by .h.

285

In the following we outline the use of our

proof rules in proving the correctness of convert.

Since convert contains an invocation of a

signaller, this will demonstrate both proving
correctness with respect to a specification of the
form we have introduced, and applying the rule for

an invocation.

In order to keep the notation less cluttered,

the NRSTLS are omitted. We assume repr(n) has

been proven correct with respect to the following
specification:

{P repr(n)= true

repr assumes nothing about its argument

Qrepr(n)s cl<n<ch Al=char rep(n),

repr returns the character represented by its

argument when its argument is in the range

(cl,ch). #

nochar <EnocharS n>ch V n<cl,

when repr signals nochar, its argument

is out of range #

Rnochar= Qrepr(n)>}

in order to ensure that repr satisfies

Q~epr(n), a handler must satisfy

Qrepr(n) before resuming repr #

It is assumed that the mapping char rep has

been defined appropriately. The rules also assume
that that all type checking has already been

performed. Rnochar in effect specifies that

resumption of repr after nochar has been signalled

cannot possibly lead to repr satisfying its normal
case output assertion, since n is a “value”
parameter.

The specification of convert makes use of the

Algol 68 ascription relationship, which associates

identifiers with the values to which they are

hound. Since code is a “variable” identifier, it

is bound to a location of an array-of-integers

‘code” The contents of this location are obtained

by the mapping T, and are denoted here by ‘code.
(Ascribed and T are close to the notions of

environment and store in denotational semantics).

We assume the following specification of
convert:

{P = ascribed(code,dcode) A~(dcode)=vcodeconvert-

aasuming that Vcode is the value at the

location bound to convert’s argument, #

QConvert(code) SPconvert A .(d~) =

ub code—
+ [(Cl<vcode(i)<Chl char rep(vcode(i)))

i=lb code.
@ (CIJVcode(i) v vcode(i)>chl replchar)]

A MS

when convert terminates, the argument will be

unchanged, and the returned value will be the

location of the result of the successive

concatenation of character representations and

replacement characters, corresponding to the

cases of character and noncharacter codes

respectively #

‘Ebadcode (i)s Pconvert A

(cljvcode(i) V vcode(i))ch)

when badcode is signalled an unrepresentable

code has been encountered, #

‘badcode(i)= Ebadcode Al= replchar>}

and the handler must provide a replacement

character in order to enable convert to

satisfy Qconvert #

We define

string(l,u) ~

~ [(cl<vcode(i)<chl char rep(vcode(i)))
i=l

@ (C1>VC de(i) V vcode(i)>chlrepl char)]

string(l,u? is the string resulting from the
successive concatenation of the corresponding

character representation for character codes of
code, and repl char for non character codes of

code.

The major step in the proof of correctness of

convert with respect to its specification is in

proving:
Pc A ascribed(s,ds) A T(ds)=””

?~:;rt
i from lb code to ub code— —— ——

do
‘S := s + repr code[i]
nd.-
x nochar = (char,char):— .—

badcode(i) replace

no }
P conv~t Aascribed(s,ds)

A ~(ds)=string(g code,~ code) Al=empty

This requires using the rule for a loop. We

use the following notation for intervals on the
integers:
[l,u]={jl l<j<u, j&INT}
[I,u)={jl l<j<u, jsINT}

The rule for a loop which we need to apply
is:
1. N/P =>1([])

2. N’/i’E[l,u] AI([l, i’)) {body } 1([1, i’])

N/P{for i from 1 to u do body od}— —. _ —

I([l,u]) A l=empty

286

I in the above is the looD invariant. Let:
S=p

p = sw%%=’@cribed(s’ds)“
I([l,u]) ~ S A ‘c(ds)=string(l,u)

The proof of premise 1. is immediate.

In order to show 2., (the inductive step), we
need to use the rule for an invocation of a
signaller, in order to get the effect of repr
given the supplied handler.

We want to show that
I([lb code,i’))

{re~code[i]
on nochar = (char, char):— .—

badcode(i) replace
no }

I([lb~ode,i’]) Al=

+~cl~vcode(i)~chl char ‘ep(vcode(i)))

e (cl>vcode(i) V vcode(i))chlreplchar)]

We use the rule for an invocation with
T~I([lb code, i’)). Since there are no. side
effects in evaluating code[i], we have for premise
1. of the rule for an invocation:
1. N/ I([lb code,i’)) {code[i]}.

I([~code,i’)) ATWcode(i)

For premise 2. of the rule for an invocation,

we assume repr has been proven correct with

respect. to the given specification. The output
assertion of 1. trivfally inipiles the input

assertion of repr.

For premise 3. of the rule for an invocation,

we need to get the characterization of the handler

for nochar. This handler propagates repr’s
exception nochar as the exception badcode of

convert. Our definition of partial correctness
allows to assume in proving the correctness of a
signaller (here convert), that any handler for an
exception signalled in the signaller’s body, is
partially correct with respect to that exception’s
specified exception and resumption conditions.
Thus, if it can be shown that just before the
signaling of barcode, the exception condition

‘badcode (i) holds, it may be assumed that

immediately after the signaling, the

corresponding resumption condition
holds . Since for code[i]

‘badcode(i)

Enochar ‘> ‘badcode (i),

we may assume ‘badcode (i) holds after the
sigmlling of badcode. Thus :
3. EnocMr

{(char, char): badcode(i) replace }

replace: Pconvert A (cl>vcode(i) V Vcode(i)>ch)

A 1= replchar

Applying the rule for an invocation, we can

conclude that:
I([lb code,i’]) A—

1= ((cl<vcode(i)~chl char rep(vcode(i)) @

(cl>vcode v vcodejchl rePlchar))

holds after the invocation of repr.

Therefore

I([lb code,i’))

{s ~ a += code[i]

on nochar = (char, char):

‘badcode(i) replace

no }
I~lb code,i’]) A l=ds

so ~hat the rmoof of uremise 2. of the rule for a

loop immediately follows.

Applying the rule for a loop, we can now

conclude the required output assertion for the

loop :
I([lb code,ub code]) ~
P— A~cribed(s,ds)

c~n%~~)=string(g code,~ code)

The last expression in convert is the

evaluation of s, whose value is returned as the

value of convert.
I[lb code,ub code])

{Sy —
P Aascribed(s,ds)

c~n%~~~)=string(~ code,~ code, code, replchar)

A l=d~

The proof of the above immediately follows from
the rule for elaborating an identifier. Since the

above immediately implies Qconvert(code), this

concludes the proof of correctness of convert with
respect to its specification.

4. CONCLUSIONS

Adopting an expression oriented approach, and
generalizing the concept of a signaller, enabled

us to support all the structured handler responses
that were considered useful in various proposals

for exception handling, with minimal additional

mechanism. The uniformity of the mechanism,

contributes to the simplicity of its axiomatic

semantica. In contrast, the only other exception

handling proposals supporting both resumption and

termimtion of the signaller, [1] and [91, require

a much more complex syntactic and semantic

extension, though neither one supports all the

handler responses supported in the replacement

model. The mechanism can be adapted to any of the

block-structured programming languages modulo

their specific restrictions, with little loss of

expressive power.

It is interesting to note that addressing
exception handling in the context of modularity

and program verification providea insights that

contribute to simplifying the mechanism.

Modularity requires both the exception state and

the resumption state to be be “consistent” or

“possible” states in the sense of [11], otherwise

they cannot be specified externally without

compromising modular information hiding. This

eliminates the problem of exceptions which must be
resumed in order to restore the state to a

consistent atate. Exceptions which cannot, or
must not, be resumed, should be signalled just

before a logical end of the signaller, after which

287

there is nothing left to be done in the signaller

even if resumption is attempted. This eliminates

the need for constructs such as the SIGNAL and

NOTIFY in [1], and SIGNAL and ERROR in Mesa ([9]),

and the main argument of [5] for supporting only

resumption.

References

1. Goodenough, J. B. “Exception Handling:

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

Issues and a Proposed Notation”, Comm.

ACM, 18,2 December 1975.

Hoare, C. A. R. “An Axiomatic Basis for

Computer Programming”, Comm. ACM 12,10

October 1969.

IBM OS PL/I Checkout and Optimizing

Compilers: Language Reference Nanual
SC33–0009–2 IBM Corp. 1973.
Ichbia, J. et al “Rationale for the
Design of the ADA Programming Language”

SIGPLAN Notices 14,6 June 1979.
Levin, R. “Program Structures for

Exceptional Condition Handling”. PhD

Thesis, Carnegie Mellon University, June

1977.

Liskov, B. H. and S. N. Zilles,

“Specification Techniques for Data

Abstractions”, IEEE Trans. Software Eng.
1,1 March 1975.

Liskov, B. H. and A. Snyder, “Structured
Exception Handling” Computation

Structures Group Memo 155, MIT December

1977.
Luckham, D. C., and W. Polak “ADA

Exception Handling: An Axiomatic

Approach”, ACM TOPLAS 2,2 April 1980.
Mitchell, J. G., W. Maybury and R. Sweet

“MESA Language Manual”, Xerox Research

Center, Palo Alto March 1979.

Parnas D. L., “A Technique for the

Specification of Software Modules”, Comm.

ACM 15,5 My 1972.
Parnas D. L., “Response to Detected

Errors in Well-Structured Programs”,

Computer Science Dept., Carnegie-Mellon

University 1972.
Pnueli, A. “The Temporal Logic of
Programs”, 19th Annua 1 Symp . on
Foundations of Computer Science,
Providence R.I. November 1977.
Schwartz, R. L., “An Axiomatic Semantic

Definition of ALGOL 68”, PhD Thesis, UCLA
1978.

Schwartz, R. L., “An Axiomatic Treatment

of Algol 68 Routines”, Proc. 6th
International Conf. on Automata,

Languages and Programming, Gratz Austria
July 1979.
van Wijngaarden, A. et al “Revised Report
on the Algorithmic Language Algol 68”,
Acts Informatica 5 1975.
Yemini, S. “The Replacement Model for
Modular Verifiable Exception Handling”,

PhD Thesis, UCLA 1980.

288

