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Abstract
Narrowing is the usual computation mechanism in functional-logic
programming (FLP), where bindings for free variables are found
at the same time that expressions are reduced. These free variables
may be already present in the goal expression, but they can also be
introduced during computations by the use of program rules with
extra variables. However, it is known that narrowing in FLP gen-
erates problems from the point of view of types, problems that can
only be avoided using type information at run-time. Nevertheless,
most FLP systems use static typing based on Damas-Milner type
system and they do not carry any type information in execution,
thus ill-typed reductions may be performed in these systems. In this
paper we prove, using the let-narrowing relation as the operational
mechanism, that types are preserved in narrowing reductions pro-
vided the substitutions used preserve types. Based on this result, we
prove that types are also preserved in narrowing reductions without
type checks at run-time when higher order (HO) variable bindings
are not performed and most general unifiers are used in unifica-
tions, for programs with transparent patterns. Then we characterize
a restricted class of programs for which no binding of HO variables
happens in reductions, identifying some problems encountered in
the definition of this class. To conclude, we use the previous re-
sults to show that a simulation of needed narrowing via program
transformation also preserves types.

Categories and Subject Descriptors F.3.3 [Logics and meanings
of programs]: Studies of Program Constructs—Type Structure;
D.3.2 [Programming Languages]: Language Classifications—
Multiparadigm languages; D.3.1 [Programming Languages]: For-
mal Definitions and Theory

General Terms Theory, Languages, Design

Keywords Functional-logic programming, narrowing, extra vari-
ables, type systems

1. Introduction
Functional-logic programming (FLP). Functional logic lan-
guages [3, 15, 30] like Toy [24] or Curry [16] can be described as
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an extension of a lazy purely-functional language similar to Haskell
[18], that has been enhanced with logical features, in particular log-
ical variables and non-deterministic functions. Disregarding some
syntactic conventions, the following program defining standard list
concatenation is valid in all the three mentioned languages:

[ ] + +Ys = Ys [X | Xs] + +Ys = [X | Xs + +Ys]

Logical variables are just free variables that get bound during
the computation in a way similar to what it is done in logic pro-
gramming languages like Prolog [11]. This way FLP shares with
logic programming the ability of computing with partially unkown
data. For instance, assuming a suitable definition and implementa-
tion of equality ==, the following is a natural FLP definition of
a predicate (a true-valued function) sublist stating that a given list
Xs is a sublist of Ys:

sublist Xs Ys = cond (Us + +Xs + +Vs == Ys) true
cond true X = X

Notice that the rule for sublist is not valid in a functional lan-
guage due to the presence of the variables Us and Vs , which do not
occur in the left hand side of the program rule. They are called extra
variables. Using cond and extra variables makes easy translating
pure logic programs into functional logic ones1. For instance, the
logic program using Peano’s natural numbers z (zero) and s (suc-
cessor)

add(z,X,X).
add(s(X), Y, s(Z)) :− add(X,Y, Z).
even(X) :− add(Y, Y,X).

can be transformed into the following functional logic one:

add z X Y = cond (X==Y ) true
add (s X) Y (s Z) = add X Y Z
even X = add Y Y X

Notice that the rule for even is another example of FLP rule with
an extra variable Y . The previous examples show that, contrary to
the usual practice in functional programming, free variables may
appear freely during the computation, even when starting from
an expression without free variables. Despite these connections
with logic programming, owing to the functional characteristics of
FLP languages—like the nesting of function applications instead of
SLD resolution—several variants and formulations of narrowing
[19] have been adopted as the computation mechanism in FLP.
There are several operational semantics for computing with logical

1 As a secondary question here, notice that using cond is needed if ==,
as usual, is a two-valued function returning true or false. Defining directly
sublist Xs Ys = (Us + +Xs + +Vs == Ys) would compute wrong
answers: evaluating sublist [1] [1, 2] produces true but also the wrong
value false , because there are values of the extra variables Us and Vs such
that Us + +[1] + +Vs == [1, 2] evaluates to false.
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and extra variables [15, 25, 30], and this kind of variables are
supported in every modern FLP system.

As FLP languages were already non-deterministic due to the
different possible instantiations of logical variables—these are han-
dled by means of a backtracking mechanism similar to that of
Prolog—it was natural that these languages eventually evolved to
include so-called non-deterministic functions, which are functions
that may return more than one result for the same input. These func-
tions are expressed by means of program rules whose left hand
sides overlap, and that are tried in order by backtracking during
the computation, instead of taking a first fit or best fit approach like
in pure functional languages. The combination of lazy evaluation
and non-deterministic functions gives rise to several semantic op-
tions, being call-time choice semantics [13] the option adopted by
the majority of modern FLP implementations. This point can be
easily understood by means of the following program example:

coin → z coin → s z dup X → (X,X)

In this example coin is a non-deterministic expression, as it can
be reduced both to the values z and s z. But the point is that, ac-
cording to call-time choice the expression dup coin evaluates to (z,
z) and (s z, s z) but not to (z, s z) nor (s z, z). Operationally, call-time
choice means that all copies of a non-deterministic subexpression,
like coin in the example, created during the computation reduction
share the same value. In Section 2.2 we will see a simple formu-
lation of narrowing for programs with extra variables, that also re-
spects call-time choice, which will be used as the operational pro-
cedure for this paper.

Apart from these features, in the Toy system left hand sides
of program rules can use not only first order patterns like those
available in Haskell programs, but also higher order patterns (HO-
patterns), which essentially are partial applications of function
or constructor symbols to other patterns. This corresponds to an
intensional view of functions, i.e., different descriptions of the
same ‘extensional’ function can be distinguished by the semantics,
and it is formalized and semantically characterized with detail in
the HO-CRWL2 logic for FLP [12]. This is not an exoticism: it
is known [25] that extensionality is not a valid principle within
the combination of higher order functions, non-determinism and
call-time choice. HO-patterns are a great expressive feature [30],
however they may have some bad interferences with types, as we
will see later in the paper.

Because of all the presented features, FLP languages can be
employed to write concise and expressive programs, specially for
search problems, as it was explored in [3, 15, 30].
FLP and types. Current FLP languages are strongly typed. Apart
from programming purposes, types play a key role in some program
analysis or transformations for FLP, as detecting deterministic com-
putations [17], translation of higher order into first order programs
[4], or transformation into Haskell [8]. From the point of view of
types FLP has not evolved much from Damas-Milner type system
[9], so current FLP systems use an almost direct adaptation of that
classic type system. However, that approach lacks type preserva-
tion during evaluation, even for the restricted case where we drop
logical and extra variables. It is known from afar [14] that, even
in that simplified scenario, HO-patterns break the type preservation
property. In particular, they allows us to create polymorphic casting
functions [7]—functions with type ∀α, β.α → β, but that behave
like the identity wrt. the reduction of expressions. This has moti-
vated the development of some recent works dealing with opaque
HO-patterns [22], or liberal type systems for FLP [21]. There are
also some preliminary works concerning the incorporation of type

2 CRWL [13] stands for Constructor Based Rewriting Logic; HO-CRWL is
a higher order extension of it.

classes to FLP languages [26, 29], but this feature is still in an ex-
perimental phase in current systems.

Regardless of the expressiveness of extra variables, these are
usually out the scope of the works dealing with types and FLP, in
particular in all the aforementioned. But these variables are a dis-
tinctive feature of FLP systems, hence in this work our main goal
is to investigate the properties of a variation of the Damas-Milner
type system that is able to handle extra variables, giving an abstract
characterization of the problematic issues—most of them were al-
ready identified in the seminal work [14]—and then determining
sufficient conditions under which type preservation is recovered for
programs with extra variables evaluated with narrowing. In particu-
lar, we are interested in preserving types without having to use type
information at run-time, in contrast to what it is done in previous
proposals [14].

The rest of the paper is organized as follows. Section 2 contains
some technical preliminaries and notations about programs and ex-
pressions, and the formulation of the let-narrowing relation  l,
which will be used as the operational mechanism for this paper. In
Section 3 we present our type system and study those interactions
with let-narrowing that lead to the loss of type preservation. Then
we define the well-typed let-narrowing relation lwt , a restriction
of  l that preserves types relying on the abstract notion of well-
typed substitution. To conclude that section we present lmgu , an-
other restriction of l that is able to preserve types without using
type information—in contrast to  lwt , which uses types at each
step to determine that the narrowing substitution is well-typed—at
the price of losing some completeness. To cope with this lack of
completeness, in Section 4 we look for sufficient conditions under
which the narrowing relation  lmgu is complete wrt. the compu-
tation of well-typed solutions, thus identifying a class of programs
for which completeness is recovered, and whose expressiveness is
then investigated. In Section 5 we propose a simulation of needed
narrowing with  lmgu via two well-known program transforma-
tions, and show that it also preserves types. The class of programs
supported in that section is specially relevant, as it corresponds to
a simplified version of the Curry language. Finally Section 6 sum-
marizes some conclusions and future work. Fully detailed proofs,
including some auxiliary results, can be found in the extended ver-
sion of this paper [23].

2. Preliminaries
2.1 Expressions and programs
We consider a set of functions symbols f, g, . . . ∈ FS and con-
structor symbols c, d, . . . ∈ CS , each h ∈ FS ∪ CS with an as-
sociated arity ar(h). We also consider a denumerable set of data
variables X,Y, . . . ∈ V . The notation on stands for a sequence
o1, . . . , on of n syntactic elements o, being oi the ith element.
Figure 1 shows the syntax of patterns t ∈ Pat and expressions
e ∈ Exp. We split the set of patterns into two: first order patterns
FOPat 3 fot ::= X | c fotn where ar(c) = n, and higher-
order patterns HOPat = Pat r FOPat , i.e., patterns containing
some partial application of a symbol of the signature. Expressions
X en are called variable application when n > 0, and expressions
with the form h en are called junk if h ∈ CS and n > ar(h)
or active if h ∈ FS and n ≥ ar(h). The set of free and bound
variables of an expression e—fv(e) and bv(e) resp.—are defined
in the usual way. Notice that let-expressions are not recursive, so
fv(let X = e1 in e2) = fv(e1)∪ (fv(e2)r {X}). The set var(e)
is the set containing all the variables in e, both free and bound.
Notice that for patterns var(t) = fv(t).

Contexts C ∈ Cntxt are expressions with one hole, and the
application of C to e—written C[e]—is the standard. The notion
of free and bound variables are extended in the natural way to
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Data variable X ,Y . . .
Function symbol f ,g . . .
Constructor symbol c,d . . .
Non-variable symbol h ::= c | f
Symbol s ::= X | c | f
Pat t, p ::= X

| c tn if n ≤ ar(c)
| f tn if n < ar(f)

FOPat fot ::= X | c fotn if n = ar(c)
Exp e, r ::= X | c | f | e1 e2

| let X = e1 in e2
PSubst θ ::= [Xn 7→ tn]
Cntxt C ::= [ ] | C e | e C

| let X = C in e
| let X = e in C

Program rule R ::= f tn → e if ar(f) = n
Program P ::= {Rn}

Type variable α,β . . .
Type constructor C
Simple type τ ::= α | τ1 → τ2

| C τn if n = ar(C)
Type-scheme σ ::= ∀αn.τ
Set of assumptions A ::= {sn : σn}
TSubst π ::= [αn 7→ τn]

Figure 1. Syntax of programs and types

contexts: fv(C) = fv(C[h]) for any h ∈ FS ∪CS with ar(h) = 0,
and bv(C) is defined as bv([ ]) = ∅, bv(C e) = bv(C), bv(e C) =
bv(C), bv(let X = C in e) = bv(C), bv(let X = e in C) =
{X} ∪ bv(C).

Data substitution θ ∈ PSubst are finite maps from data vari-
ables to patterns [Xn 7→ tn]. We write ε for the empty substitution,
dom(θ) for the domain of θ and vran(θ) =

⋃
X∈dom(θ) fv(Xθ).

Given A ⊆ V , the notation θ|A represents the restriction of θ to
D, and θ|rA is a shortcut for θ|VrA. Substitution application over
data variables and expressions is defined in the usual way.

Program rules R have the form f tn → e, where ar(f) = n
and tn is linear, i.e., there is no repetition of variables. Notice that
we allow extra variables, so it could be the case that e contains
variables which do not appear in tn. A program P is a set of
program rules.

2.2 Let-narrowing
Let-narrowing [25] is a narrowing relation devised to effectively
deal with logical and extra variables, that is also sound and com-
plete wrt. HO-CRWL [12], a standard logic for higher order
FLP with call-time choice. Figure 2 contains the rules of the let-
narrowing relation l. The first five rules (LetIn)–(LetAp) do not
use the program and just change the textual representation of the
term graph implied by the let-bindings in order to enable the ap-
plication of program rules, but keeping the implied term graph
untouched. The (Narr) rule performs function application, finding
the bindings for the free variables needed to be able to apply the
rule, and possibly introducing new variables if the program rule
contains some extra variables. Notice that it does not require the
use of a most general unifier (mgu) so any unifier can be used. As
we will see in Section 3, this later point should be refined in order
to ensure type preservation. Rules (VAct) and (VBind) produce HO
bindings for variable applications, and are needed for let-narrowing
to be complete. These rules are particularly problematic because
they have to generate speculative bindings that may involve any

function of the program, contrary to (Narr) where the computation
of bindings is directed by the program rules for f . Later on we
will see how this “wild” nature of the bindings generated by these
rules poses especially hard problems to type preservation. Finally,
(Contx) allows to apply a narrowing rule in any part of the ex-
pression, protecting bound variables from narrowing and avoiding
variable capture.

3. Type Preservation
In this section we first present the type system we will use in
this work, which is a simple variation of Damas-Milner typing en-
hanced with support for extra variables. Then we show some exam-
ples of l-reductions not preserving types (Section 3.2). Based on
the ideas that emerge from these examples, in Section 3.3 we de-
velop a new let-narrowing relation lwt that preserves types. This
new relation uses only well-typed substitutions in each step, which
gives an abstract and general characterization of the requirements a
narrowing relation must fulfil in order to preserve types, but it still
needs to perform type checks at run-time. To solve this problem,
in Section 3.4 we present a restricted let-narrowing  lmgu which
only uses mgu’s as unifiers and drops the problematic rules (VAct)
and (VBind). The main advantage of this relation is that if the pat-
terns that can appear in program rules are limited then mgu’s are
always well-typed, thus obtaining type preservation without using
type information at run-time. Sadly this comes at a price, as lmgu

loses some completeness wrt. HO-CRWL.

3.1 A type system for extra variables
In Figure 1 we can find the usual syntax for simple types τ and type-
schemes σ. For a simple type τ , the set of free type variables—
denoted ftv(τ)—is var(τ), and for type-schemes ftv(∀αn.τ) =
var(τ)r{αn}. A type-scheme is closed if ftv(σ) = ∅. We say that
a type-scheme is k-transparent if it can be written as ∀αn.τk → τ
such that var(τk) ⊆ var(τ).

A set of assumptions A is a set of the form {sn : σn} such
that the assumption for variables are simple types. If (si : σi) ∈
A we write A(si) = σi. For sets of assumptions we define
ftv({sn : σn}) =

⋃n
i=1 ftv(σi). The union of set of assump-

tions is denoted by ⊕ with the usual meaning: A ⊕ A′ contains
all the assumptions inA′ as well as the assumptions inA for those
symbols not appearing in A′. Based on the previous notion of k-
transparency, we say a pattern t is transparent wrt. A if t ∈ V
or t ≡ h tn where A(h) is n-transparent and tn are transparent
patterns. We also say a constructor symbol c is transparent wrt. A
if A(c) is n-transparent, where ar(c) = n.

Type substitutions π ∈ TSubst are mappings from type vari-
ables to simple types, where dom and vran are defined similarly
to data substitutions. Application of type substitutions to simple
types is defined in the natural way, and for type-schemes consists
in applying the substitution only to their free variables. This notion
is extended to set of assumptions: {sn : σn}π = {sn : σnπ}. We
say τ is a generic instance of σ ≡ ∀αn.τ ′ if τ = τ ′[αn 7→ τn]
for some τn, written σ � τ . Finally, τ is a variant of σ ≡ ∀αn.τ ′
(denoted by σ �var τ ) if τ = τ ′[αn 7→ βn] where βn are fresh
type variables.

Figure 3 contains the typing rules for expressions considered
in this work, which constitute a variation of Damas-Milner typing
that now is able to handle extra variables. The main novelty wrt. a
regular formulation of Damas-Milner typing with support for pat-
tern matching is that now the (Λ) rule considers extra variables in
λ-abstractions: in addition to guessing types for the variables in
the pattern t, it also guesses types for the free variables of λt.e,
which correspond to extra variables. Although λ-abstractions are
expressions not included in the syntax of programs showed in Fig-
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(LetIn) e1 e2  l
ε let X = e2 in e1 X , if e2 is an active expression, variable application, junk or let-rooted expression, for X fresh.

(Bind) let X = t in e  l
ε e[X 7→ t], if t ∈ Pat

(Elim) let X = e1 in e2  l
ε e2, if X 6∈ fv(e2)

(Flat) let X = (let Y = e1 in e2) in e3  l
ε let Y = e1 in (let X = e2 in e3), if Y 6∈ fv(e3)

(LetAp) (let X = e1 in e2) e3  l
ε let X = e1 in e2 e3, if X 6∈ fv(e3)

(Narr) f tn  l
θ rθ, for any fresh variant (f pn → r) ∈ P and θ such that f tnθ ≡ f pnθ.

(VAct) X tk  l
θ rθ, if k > 0, for any fresh variant (f p→ r) ∈ P and θ such that (X tk)θ ≡ f pθ

(VBind) let X = e1 in e2  l
θ e2θ[X 7→ e1θ], if e1 /∈ Pat, for any θ that makes e1θ ∈ Pat, provided thatX /∈ (dom(θ)∩vran(θ))

(Contx) C[e] l
θ Cθ[e′], for C 6= [ ], e l

θ e
′ using any of the previous rules, and:

i) dom(θ) ∩ bv(C) = ∅
ii) • if the step is (Narr) or (VAct) using (f pn → r) ∈ P then vran(θ|rvar(pn)) ∩ bv(C) = ∅
• if the step is (VBind) then vran(θ) ∩ bv(C) = ∅.

Figure 2. Let-narrowing relation l

ure 1 and thus they cannot appear in the expressions to reduce3,
we use them as the basis for the notions of well-typed rule and
program. Essentially, for each program rule we construct an asso-
ciated λ-abstraction so the rule is well-typed iff the corresponding
λ-abstraction is well-typed. This is reflected in the following def-
inition of program well-typedness, an important property assuring
that assumptions over functions are related to their rules:

DEFINITION 3.1 (Well-typed program wrt. A). A program rule
f → e is well-typed wrt. A iff A ⊕ {Xn : τn} ` e : τ where
A(f) �var τ , {Xn} = fv(e) and τn are some simple types. A
program rule (f pn → e) (with n > 0) is well-typed wrt. A
iff A ` λp1 . . . λpn.e : τ with A(f) �var τ . A program P is
well-typed wrt. A if all its rules are well-typed wrt. A.

This definition is the same as the one from [22] but it has a
different meaning, as it is based on a different definition for the (Λ)
rule. Notice that the case f → e must be handled independently
because it does not have any argument. In this case the (Λ) rule is
not used to derive the type for e, so the types for the extra variables
would not be guessed.

An expression e is well-typed wrt.A iffA ` e : τ for some type
τ , written as wtA(e). We will use the metavariable D to denote
particular type derivations A ` e : τ . If P is well-typed wrt. A we
write wtA(P).

3.2 Let-narrowing does not preserve types
Now we will see how let-narrowing interacts with types. It is easy
to see that let-narrowing steps  l which do not generate bind-
ings for the logical variables—i.e., those using the rules (LetIn),
(Bind), (Elim), (Flat) and (LetAp)—preserve types trivially. This is
not very surprising because, as we showed in Section 2.2, those
steps just change the textual representation of the implied term
graph. However, steps generating non trivial bindings can break
type preservation easily:

EXAMPLE 3.2. Consider the function and defined by the rules
{and true X → X, and false X → false} with type (bool →
bool → bool) and the constructor symbols for Peano’s natural
numbers z and s, with types (nat) and (nat → nat) respectively.
Starting from the expression and true Y—which has type bool

3 As there is no general consensus about the semantics of λ-abstractions
in the FLP community, due to their interactions with non-determinism and
logical variables, we have decided to leave λ-abstractions out of programs
and evaluating expressions, thus following the usual applicative program-
ming style of the HO-CRWL logic.

(ID) A ` s : τ
if A(s) � τ

(APP)

A ` e1 : τ1 → τ
A ` e2 : τ1
A ` e1 e2 : τ

(Λ)

A⊕ {Xn : τn} ` t : τt
A⊕ {Xn : τn} ` e : τ

A ` λt.e : τt → τ
if {Xn} = var(t) ∪ fv(λt.e)

(LET)

A ` e1 : τx
A⊕ {X : τx} ` e2 : τ

A ` let X = e1 in e2 : τ

Figure 3. Type System

when Y has type bool—we can perform the let-narrowing step:

and true Y  l
[X1 7→z,Y 7→z] z

This (Narr) step uses the fresh program rule (and true X1 → X1),
but the resulting expression z does not have type bool .

The cause of the loss of type preservation is that the unifier
θ1 = [X1 7→ z, Y 7→ z] used in the (Narr) step is ill-typed,
because it replaces the boolean variables X1 and Y by the natural
z. The problem with θ1 is that it instantiates the variables too much,
and without using any criterion that ensures that the types of the
expressions in its range are adequate.

We have just seen that using the (Narr) rule with an ill-typed
unifier may lead to breaking type preservation because of the in-
stantiation of logical variables, like the variable Y above. We may
reproduce the same problem easily with extra variables, just con-
sider the function f with type bool defined by the rule (f →
and true X) for which we can perform the following let-narrowing
step:

f  l
[X2 7→z] and true z

using (Narr) with the fresh rule (f → and true X2). The resulting
expression is obviously ill-typed, and so type preservation is broken
again because the substitution used in (Narr) instantiates variables
too much and without assuring that the expression in its range
have the correct types. The interested reader may easily check that
this is also a valid let-rewriting step [25], thus showing that extra
variables break type preservation even in the restricted scenario
where we drop logical variables. Hence, the type systems in the
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papers mentioned at the end of Section 1 lose type preservation if
we allow extra variables in the programs.

However, the (Narr) rule is not the only one which can break
type preservation. The rules (VAct) and (VBind) also lead to prob-
lematic situations:

EXAMPLE 3.3. Consider the functions and symbols from Example
3.2. Using the rule (VAct) it is possible to perform the step

s (F z) l
[F 7→and false,X3 7→z] s false

with the fresh rule (and false X3 → false). Clearly s (F z) has
type nat and F has type (nat → nat), but the resulting expression
is ill-typed. As before, the reason is an ill-typed binding for F ,
which binds F with a pattern of type (bool → bool).

On the other hand, we can perform the step

let X = F z in s X  l
[F 7→and] s (and z)

using the rule (VBind). The expression let X = F z in s X
has type nat when F has type (nat → nat), but the resulting
expression is ill-typed. The cause of the loss of type preservation
is again an ill-typed substitution binding, in this case the one for
F which assigns a pattern of type (bool → bool → bool) to a
variable of type (nat → nat).

Notice that ill-typed substitutions do not break type preservation
necessarily. For example the step and false X  l

θ5
false using

(Narr) with the fresh rule (and false X5 → false) preserves types,
although it can use the ill-typed unifier θ5 ≡ [X 7→ z,X5 7→ z].
However, avoiding ill-typed substitutions is a sufficient condition
which guarantees type preservation, as we will see soon. Besides, it
is important to remark that the bindings for the free variables of the
starting expression that are computed in a narrowing derivation are
as important as the final value reached at the end of the derivation,
because these bindings constitute a solution for the starting expres-
sion if we consider it as a goal to be solved, just like the goal expres-
sions used in logic programming. That allows us to use predicate
functions like the function sublists in Section 1 with some vari-
ables as their arguments, i.e., using some arguments in Prolog-like
output mode. Therefore, well-typedness of the substitutions com-
puted in narrowing reductions is also important and the restriction
to well-typed substitutions is not only reasonable but also desir-
able, as it ensures that the solutions computed by narrowing respect
types.

3.3 Well-typed let-narrowing lwt

In this section we present a narrowing relation  lwt which is
smaller than  l in Figure 2 but that preserves types. The idea
behind  lwt is that it only considers steps e  l

θ e
′ using well-

typed programs where the substitution θ is also well-typed. We
say a substitution is well-typed when it replaces data variables by
patterns of the same type. Formally:

DEFINITION 3.4 (Well-typed substitution). A data substitution θ
is well-typed wrt. A, written wtA(θ), if A ` Xθ : A(X) for every
X ∈ dom(θ).

Notice that according to the definition of set of assumptions,
A(X) is always a simple type.

As it is usual in narrowing relations, let-narrowing steps can in-
troduce new variables that do not occur in the original expression.
Moreover, this new variables do not come only from extra vari-
ables but from fresh variants of program rules—using (Narr) and
(VAct)—or from invented patterns—using (VBind). Therefore, we
need to consider some suitable assumptions over these new vari-
ables. However, that set of assumptions over the new variables is
not arbitrary but it is closely related to the step used:

EXAMPLE 3.5 (A associated to a (Narr) step). Consider the func-
tion f with type ∀α.α→ [α] defined with the rule f X → [X,Y ].
We can perform the narrowing step f true  l

θ [true, Y1] us-
ing (Narr) with the fresh variant f X1 → [X1, Y1] and θ ≡
[X1 7→ true]. Since the original expression is f true , it is clear
that X1 must have type bool in the new set of assumptions. More-
over, Y1 must have the same type since it appears in a list with X1.
Therefore in this concrete step the associated set of assumptions is
{X1 : bool , Y1 : bool}.

The following definition establishes when a set of assumptions
is associated to a step. Notice that due to the particularities of the
rules (VAct) and (VBind), in some cases there is not such set or
there are several associated sets.

DEFINITION 3.6 (A associated to l steps). Given a type deriva-
tion D for A ` e : τ and wtA(P), a set of assumptions A′ is
associated to the step e l

θ e
′ iff:

• A′ ≡ ∅ and the step is (LetIn), (Bind), (Elim), (Flat) or (LetAp).
• If the step is (Narr) then f tn  l

θ rθ using a fresh variant
(f pn → r) ∈ P and substitution θ such that (f pn)θ ≡
(f tn)θ. Since D is a type derivation for A ` f tn : τ , it will
contain a derivation A ` f : τn → τ . The rule f pn → r is
well-typed by wtA(P), so we also have (when the rule is f → e
it is similar):

(Λ)
A⊕A1 ` p1 : τ ′1

(Λ)

A⊕A1 . . .⊕An ` pn : τ ′n
A⊕A1 . . .⊕An ` r : τ ′

...

A ` λp1 . . . λpn.r : τ ′n → τ ′

where An are the set of assumptions over variables introduced
by (Λ) and τ ′n → τ ′ is a variant of A(f). Therefore (τ ′n →
τ ′)π ≡ τn → τ for some type substitution π whose domain
are fresh type variables from the variant. In this case A′ is
associated to the (Narr) step if A′ ≡ (A1 ⊕ . . .⊕An)π.
• If the step is (VAct) then we have X tk  l

θ rθ for a fresh vari-
ant (f pn → r) ∈ P and substitution θ such that (X tk)θ ≡
f pnθ. Since D is a type derivation for A ` X tk : τ , it will
contain a derivation A ` X : τk → τ . The rule f pn → r
is well-typed by wtA(P), so we have a type derivation A `
λp1 . . . λpn.r : τ ′n → τ ′ as in the (Narr) case (similarly when
the rule is f → e). Let τ ′′k be τ ′n−k+1 → τ ′n−k+2 . . . → τ ′n,
i.e., the last k types in τ ′n. If A′ ≡ (A1 ⊕ . . . ⊕ An)π for
some substitution π such that (τ ′′k → τ ′)π ≡ τk → τ and
fv(A)∩ dom(π) = ∅, thenA′ is associated to the (VAct) step.
• Any A′ ≡ {Xn : τn} is associated to a (VBind) step, if Xn

are those data variables introduced by vran(θ)—they do not
appear in A—and τn are simple types.
• A′ is associated to a (Contx) step if it is associated to its inner

step.

A set of assumptions A′ is associated to n  l steps (e1  l

e2 . . . l en+1) ifA′ ≡ A′1⊕A′2 . . .⊕A′n, whereA′i is associated
to the step ei  l ei+1 and the type derivation Di for ei using
A⊕A′1 . . .⊕A′i−1 (A′ ≡ ∅ if n = 0).

Based on the previously introduced notions we can define a re-
striction of let-narrowing that only employs well-typed substitu-
tions, that we will denote by lwt :

DEFINITION 3.7 ( lwt let-narrowing). Consider an expression e,
a program P and set of assumptions A such that wtA(e) with
a derivation D and wtA(P). Then e  lwt

θ e′ iff e  l
θ e′ and

wtA⊕A′(θ), where A′ is a set of assumptions associated to e  l
θ

e′, D.
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The premises wtA(e) and wtA(P) are essential, since the asso-
ciated set of assumptions wrt. e l

θ e
′ is only well defined in those

cases. Note that the step lwt cannot be performed if no set of as-
sociated assumptions A′ exists. Although  lwt is strictly smaller
than  l—the steps in Examples 3.2 and 3.3 are not valid  lwt -
steps—it enjoys the intended type preservation property:

THEOREM 3.8 (Type preservation of lwt ). If wtA(P), e  lwt∗
θ

e′ and A ` e : τ then A⊕A′ ` e′ : τ and wtA⊕A′(θ), where A′
is a set of assumptions associated to the reduction.

The previous result is the main contribution of this paper. It
states clearly that, provided that the substitutions used are well-
typed, let-narrowing steps preserve types. Moreover, type preser-
vation is guaranteed for general programs, i.e., programs contain-
ing extra variables, non-transparent constructor symbols, opaque
HO-patterns . . . This result is very relevant because it clearly iso-
lates a sufficient and reasonable property that, once imposed to
the unifiers, ensures type preservation. Besides, this condition is
based upon the abstract notion of well-typed substitution, which
is parameterized by the type system and independent of the con-
crete narrowing or reduction notion employed. Thus the problem
of type preservation in let-narrowing reductions is clarified. New
let-narrowing subrelations can be proposed for restricted classes of
programs or using particular unifiers and, provided the generated
substitutions are well-typed, they will preserve types. We will see
an example of that in Section 3.4.

This is an important advance wrt. previous proposals like [14],
where the computation of the mgu was interleaved with and in-
separable from the rest of the evaluation process in the narrowing
derivations. Besides, although the identification of three kinds of
problematic situations for the type preservation made in that work
was very valuable—especially taking into account it was one of
the first studies of the subject in FLP with HO-patterns—having
a more general and abstract result is also valuable for the reasons
stated above.

3.4 Restricted narrowing using mgu’s lmgu

The lwt relation has the good property of preserving types, how-
ever it presents a drawback if used as the reduction mechanism
of a FLP system: it requires the substitutions generated in each
 lwt step to be well-typed. Since these substitutions are gener-
ated just by using the syntactic criteria expressed in the rules of
the let-narrowing relation l, the only way to guarantee this is to
perform type checks at run-time, discarding ill-typed substitutions.
But, as we mentioned in Section 1, we are interested in preserving
types without having to use type information at run-time. Hence, in
this section we propose a new let-narrowing relation lmgu which
preserves types without need of type checks at run-time. The let-
narrowing relation lmgu is defined as:

DEFINITION 3.9 (Restricted narrowing lmgu ). e  lmgu
θ e′ iff

e  l
θ e
′ using any rule from Figure 2 except (VAct) and (VBind),

and if the step is f tn  l
θ rθ using (Narr) with the fresh variant

(f pn → r) then θ = mgu(f tn, f pn).

As explained in Section 3.2, the rules that break type preserva-
tion are (Narr), (VAct) and (VBind). The rules (VAct) and (VBind)
present harder problems to preserve types since they replace HO
variables by patterns. These patterns are searched in the entire
space of possible patterns, producing possible ill-typed substitu-
tions. Since we want to avoid type checks at run-time, and we
have not found any syntactic criterion to forbid the generation of
ill-typed substitutions by those rules, (VAct) and (VBind) have
been omitted from  lmgu . Although this makes  lmgu a relation

strictly smaller than lwt , it is still meaningful: expressions need-
ing (VAct) or (VBind) to proceed can be considered as frozen until
other let-narrowing step instantiates the HO variable. This is some-
how similar to the operational principle of residuation used in some
FLP languages such as Curry [15, 16]. Regarding the rule (Narr),
Example 3.2 shows the cause of the break of type preservation.
In that example, the unifier of and true Y and and true X1 is
θ1 = [X1 7→ z, Y 7→ z]. Although θ1 is a valid unifier, it instan-
tiates variables unnecessarily in an ill-typed way. In other words,
it does not use just the information from the program and the ex-
pression, which are well-typed, but it “invents” the pattern z. We
can solve this situation easily using the mgu θ′1 = [X1 7→ Y ],
which is well-typed, so by Theorem 3.8 we can conclude that the
step preserves types.

Moreover, this solution applies to any (Narr) step (under certain
conditions that will be specified later): if we chose mgu’s in the
(Narr) rule and both the rule and the original expression are well-
typed, then the mgu’s will also be well-typed. This fact is based in
the following result:

LEMMA 3.10 (Mgu well-typedness). Let pn be fresh linear trans-
parent patterns wrt. A and let tn be any patterns such that A `
pi : τi and A ` ti : τi for some type τi. If θ ≡ mgu(f pn, f tn)
then wtA(θ).

The restriction to fresh linear transparent patterns pn is essen-
tial, otherwise the mgu may not be well-typed. Consider for exam-
ple the constructor cont : ∀α.α → container and a set of as-
sumptions A containing (X : nat). It is clear that p ≡ cont X
is linear but non-transparent, because cont is not 1-transparent.
Both p and t ≡ cont true patterns have type container and
mgu(f p, f t) = [X 7→ true] ≡ θ for any function symbol
f . However the unifier θ is ill-typed as A 6` Xθ : A(X), i.e.,
A 6` true : nat . Similarly, consider the patterns p′ ≡ (Y, Y ) and
t′ ≡ (cont X , cont true) and a set of assumptions A containing
(Y : container , X : nat). It is easy to see that p′ and t′ have type
(container , container), and p′ is transparent but non-linear. The
mgu of f p′ and f t′ is [Y 7→ cont true, X 7→ true], which is
ill-typed by the same reasons as before.

Due to the previous result, type preservation is only guaran-
teed for  lmgu -reductions for programs such that left-hand sides
of rules contain only transparent patterns. This is not a severe limi-
tation, as it is considered in other works [14], and as we will see in
the next section.

THEOREM 3.11 (Type preservation of lmgu ). Let P be a pro-
gram such that left-hand sides of rules contain only transpar-
ent patterns. If wtA(P), A ` e : τ and e  lmgu∗

θ e′ then
A ⊕ A′ ` e′ : τ and wtA⊕A′(θ), where A′ is a set of assump-
tions associated to the reduction.

So finally, with  lmgu we have obtained a narrowing relation
that is able to ensure type preservation without using any type
information at run-time. However, as we mentioned before, this
comes at the price of losing completeness wrt. HO-CRWL, not
only because we are restricted to using mgu’s—which is not a
severe restriction, as we will see later—but mainly because we are
not able to use the rules (VAct) and (VBind) any more, which are
essential for generating binding for variable applications like those
in Example 3.3. We will try to mitigate that problem in Section 4.

4. Reductions without Variable Applications
In this section we want to identify a class of programs in which
 lmgu is sufficiently complete so it can perform well-typed nar-
rowing derivations without losing well-typed solutions. As can be
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seen in the Lifting Lemma from [25], the restriction of the let-
narrowing relation l that only uses mgu’s in each step is complete
wrt. HO-CRWL. Therefore, we strongly believe that the restriction
of  lwt using only mgu’s is complete wrt. to the computation of
well-typed solutions, although proving it is an interesting matter of
future work. For this reason, in this section we are only concerned
about determining under which conditions lmgu is complete wrt.
the restriction of lwt to mgu’s.

Our experience shows that although we only have to assure that
neither (VAct) nor (VBind) are used, the characterization of such
a family of programs is harder than expected. In Section 4.1 we
show the different approaches tried, explaining their lacks, that led
us to a restrictive condition—Section 4.2. This condition limits the
expressiveness of the programs, hence we explore the possibilities
of that class of programs in Section 4.3.

4.1 Naive approaches
Our first attempt follows the idea that if an expression does not
contain any free HO variable (free variable with a functional type of
the shape τ → τ ′) then neither (VAct) nor (VBind) can be used in a
narrowing step. This result is stated in the following easy Lemma:

LEMMA 4.1 (Absence of HO variables). Let e be an expression
such that wtA(e) and for every Xi ∈ fv(e), A(Xi) is not a
functional type. Then no step e l

θ e
′ can use (VAct) or (VBind).

Our belief was that if an expression does not contain free HO
variables and the program does not have extra HO variables, the
resulting expression after a  lmgu step does not have free HO
variables either. This is false, as the following example shows:

EXAMPLE 4.2. Consider a constructor symbol bfc with type bfc :
(bool → bool) → BoolFunctContainer and the function f with
type f : BoolFunctContainer → bool defined as {f (bfc F ) →
F true}. We can perform the narrowing reduction

f X  lmgu
θ F1 true

where θ ≡ [X 7→ bfc F1 ] = mgu(f X, f (bfc F1 )). The free
variable F1 introduced has a functional type, however the original
expression has not any free HO variable—X has the ground type
BoolFunctContainer . Moreover, the program does not contain
extra variables at all.

The previous example shows that not only free HO variables
must be avoided in expressions, but also free variables with unsafe
types as BoolFunctContainer. The reason is that patterns with un-
safe types may contain HO variables. Those patterns can appear in
left-hand sides of rules, so a narrowing step can unify a free variable
with one of these patterns, thereby introducing free HO variables—
notice that the unification of X and bfc F1 introduces the free HO
variable F1 in the previous example. To formalize these intuitions
we define the set of unsafe types as those for which problematic
patterns can be formed:

DEFINITION 4.3 (Unsafe types). The set of unsafe types wrt. a set
of assumptions A (UTypesA) is defined as the least set of simple
types verifying:

1. Functional types (τ → τ ′) are in UTypesA.
2. A simple type τ is in UTypesA if there exists some pattern
t ∈ Pat with {Xn} = var(t) such that:
a) t ≡ C[Xi] with C 6= [ ]

b) A⊕ {Xn : τn} ` t : τ , for some τn
c) τi ∈ UTypesA.

For brevity we say a variable X is unsafe wrt. A if A(X) is
unsafe wrt. A.

(Λr)

A⊕ {Xn : τn} ` t : τt
A⊕ {Xn : τn} ⊕ {Yk : τ ′k} ` e : τ

A ` λrt.e : τt → τ

where {Xn} = var(t), {Yk} = fv(λrt.e) such that τ ′k are
ground and safe wrt. A.

Figure 4. Typing rule for restricted λ-abstractions

Clearly, if an expression does not contain free unsafe variables it
does not contain free HO variables either, so by Lemma 4.1 neither
(VAct) nor (VBind) could be used in a narrowing step. However,
the absence of unsafe variables is not preserved after lmgu steps
even if the rules do not contain unsafe extra variables:

EXAMPLE 4.4. Consider the symbols in Example 4.2 and a new
function g defined as {g → X} with type g : ∀α.α. The extra
variable X has the polymorphic type α in the rule for g, so it is
safe. The expression (f g) does not contain any unsafe variable,
however we can make the reduction:

f g  lmgu
ε f X1  

lmgu
[X1 7→bfc F1]

F1 true

The new variable X1 introduced has type BoolFunctContainer ,
which is unsafe.

Example 4.4 shows that not only unsafe free variables must be
avoided, but any expression of unsafe type which can be reduced
to a free variable. In this case the problematic expression is g,
which has type BoolFunctContainer and produces a free variable.
Example 4.4 also shows that polymorphic extra variables are a
source of problems, since they can take unsafe types depending
on each particular use.

4.2 Restricted programs
Based on the problems detected in the previous section, we charac-
terize a restricted class of programs and expressions to evaluate in
which lwt steps do not apply (VAct) and (VBind). First, we need
that the expression to evaluate does not contain unsafe variables.
Second, we forbid rules whose extra variables have unsafe types.
Finally, we must also avoid polymorphic extra variables, since they
can take different types, in particular unsafe ones. The restriction
over programs is somehow tight: any program with functions us-
ing polymorphic extra variables are out of this family of programs,
in particular the function sublist in Section 1 and other common
functions using extra variables—see Section 4.3 for a detailed dis-
cussion.

In order to define formally this family of programs, we propose
a restricted notion of well-typed programs. This notion is very
similar to that in Definition 3.1, but using the restricted typing rule
(Λr) for λ-abstractions in Figure 4, which avoids extra variables
with polymorphic or unsafe types.

DEFINITION 4.5 (Well-typed restricted program). A program rule
f → e is well-typed restricted wrt. A iff A ⊕ {Xn : τn} ` e : τ
where A(f) �var τ , {Xn} = fv(e) and τn are some ground and
safe simple types wrt.A. A program rule (f pn → e) (with n > 0)
is well-typed restricted wrt. A iff A ` λrp1 . . . λ

rpn.e : τ with
A(f) �var τ . A program P is well-typed restricted wrt.A if all its
rules are well-typed restricted wrt. A.

If a program P is well-typed restricted wrt. A we write
wtrA(P). Notice that for any P and A we have that wtrA(P) im-
plies wtA(P). For the rest of the section we will implicitly use
this notion of well-typed restricted programs. Since the notion of
well-typed substitution, and as a consequence the notion of  lwt
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step, is parameterized by the type system, then further mentions to
 lwt in this section will refer to a relation slightly smaller than the
one presented in Section 3.3: a variant of  lwt based on the type
system from Definition 4.5. It is easy to see that this variant also
preserves types in derivations. Therefore, although the following
results are limited to this variant, they are still relevant.

The key property of well-typed restricted programs is that, start-
ing from an expression without unsafe variables, the resulting ex-
pression of a lwt reduction do not contain such variables either:

LEMMA 4.6 (Absence of unsafe variables). Let e be an expres-
sion not containing unsafe variables wrt. A and P be a program
such that wtrA(P). If e  lwt∗

θ e′ then e′ does not contain unsafe
variables wrt.A⊕A′, whereA′ is a set of assumptions associated
to the reduction.

Notice that the use of mgu’s in the lwt steps is not necessary
in the previous lemma, as the absence of unsafe variables is guar-
anteed by the well-typed substitution implicit in the definition of
the  lwt . Based on Lemma 4.6, it is easy to prove that  lmgu is
complete to the restriction of lwt to mgu’s:

THEOREM 4.7 (Completeness of lmgu wrt. lwt ). Let e be an
expression not containing unsafe variables wrt. A and P be a
program such that wtrA(P). If e  lwt∗

θ e′ using mgu’s in each
step then e lmgu∗

θ e′.

Notice that completeness is assured even for programs having
non transparent left-hand sides, as well-typedness of substitutions
is guaranteed by lwt .

4.3 Expressiveness of the restricted programs
The previous section states the completeness of  lmgu wrt.  lwt

for the class of well-typed restricted programs, when only mgu’s
are used in (Narr) steps. However this class leaves outside a number
of interesting functions containing extra variables. For example,
the sublist function in Section 1 is discarded. The reason is that
extra variables of the rule—Us and Vs—must have type [α], which
is not ground. A similar situation happens with other well-known
polymorphic functions using extra variables, as the last function
to compute the last element of a list—last Xs → cond (Ys +
+[E] == Xs) E [15]—or the function to compute the inverse of
a function at some point—inv F X → cond (F Y == X) Y .
A consequence is that the class of well-typed restricted programs
excludes many polymorphic functions using extra variables, since
they usually have extra variables with polymorphic types.

However, not all functions using extra variables are excluded
from the family of well-typed restricted programs. An example
is the even function from Section 1 that checks whether a nat-
ural number is even or not. The whole rule has type nat →
nat and it contains the extra variable Y of type nat, which is
ground and safe, making the rule valid. Other functions handling
natural numbers and using extra variables as compound X →
cond (times M N == X) true—where times computes the
product of natural numbers—are also valid, since both M and
N have type nat. Moreover, versions of the rejected polymorphic
functions adapted to concrete ground types are also in the fam-
ily of well-typed restricted programs. For example, functions as
sublistNat or lastBool with types [nat ] → [nat ] → bool and
[bool ] → bool and the same rules as their polymorphic versions
are accepted. However, this is not a satisfactory solution: the gen-
eration of versions for the different types used implies duplication
of code, which is clearly contrary to the degree of code reuse and
generality offered by declarative languages—specially by means
of polymorphic functions and the different input/output modes of
function arguments.

The class of well-typed restricted programs is tighter than de-
sired, and leaves out several interesting functions. Furthermore, for
some of those functions—as subslist or last—we have not discov-
ered any example where unsafe variables were introduced during
reduction4. Therefore, we plan to further investigate the character-
ization of such a family in order to widen the number of programs
accepted, while leaving out the problematic ones.

5. Type Preservation for Needed Narrowing
In this section we consider the type preservation problem for a sim-
plified version of the Curry language, where features irrelevant to
the scope of this paper are ignored, like constraints, encapsulated
search, i/o, etc. Therefore we restrict ourselves to simple Curry pro-
grams, i.e., programs using only first-order patterns and transparent
constructor symbols—which implies that all the patterns in left-
hand sides are transparent. Besides, programs will be evaluated us-
ing the needed narrowing strategy [5] and performing residuation
for variable applications—which is simulated by dropping the rules
(VAct) and (VBind). We have decided to focus on needed narrow-
ing because it is the most popular on-demand evaluation strategy,
and it is at the core of the majority of modern FLP systems.

We use a transformational approach to employ  lmgu to sim-
ulate an adaptation of the needed narrowing strategy for let-
narrowing. We rely on two program transformations well-known
in the literature. In the first one, we start with an arbitrary simple
Curry program and transform it into an overlapping inductively se-
quential (OIS) program [1]. For programs in this class, an overlap-
ping definitional tree is available for every function, that encodes
the demand structure implied by the left-hand sides of its rules.
Then we proceed with the second transformation, which takes an
OIS program and transforms it into uniform format [32]: programs
in which the left-hand sides of the rules for every function f have
either the shape f X or f X (c Y ) Z.

There are other well-known transformations from general pro-
grams to OIS programs—for example [10]—but we have chosen
the transformation in Definition 5.1—which is similar to the trans-
formation in [2], but now extended to generate type assumptions—
because of its simplicity. The transformation processes each func-
tion independently: it takes the set of rules Pf for each function
f and returns a pair composed by the transformed rules and a set
of assumptions for the auxiliary fresh functions introduced by the
transformation.

DEFINITION 5.1 (Transformation to OIS). Let Pf ≡ {f t1n →
e1, . . . , f tmn → em} be a set of m program rules for the func-
tion f such that wtA(Pf ). If f is an OIS function, OIS(Pf ) =
(Pf , ∅). Otherwise OIS(Pf ) = ({f1 t1n → e1, . . . , fm tmn →
em, f Xn → f1 Xn? . . .?fm Xn}, {fm : A(f)}), where ? is the
non-determistic choice function defined with the rules {X?Y →
X,X?Y → Y }.

The following result states that the transformation OIS pre-
serves types. Notice that any other transformation to OIS format
that also preserves types could be used instead.

THEOREM 5.2 (OIS(Pf ) well-typedness). Let Pf be a set of
program rules for the same function f such that wtA(Pf ). If
OIS(Pf ) = (P ′,A′) then wtA⊕A′(P ′).

After the transformation the assumption for f remains the same
and the new assumptions refer to fresh function symbols. There-

4 The function inv can introduce HO variables when combined with
a constant function as zero X → z with type ∀α.α → nat :
(inv zero z) true  lwt∗

θ Y1 true, where Y1 is clearly unsafe.
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fore, it is easy to see that the previous result is also valid for pro-
grams with several functions.

Now, to transform the program from OIS into uniform format
we use the following transformation, which is a slightly variant
of the transformation in [32]. Like in the previous transformation,
we treat each function independently, returning the translated rules
together with the extra assumptions for the auxiliary functions.

DEFINITION 5.3 (Transformation to uniform format). Let Pf ≡
{f t1n → e1, . . . , f tmn → em} be an OIS program of m pro-
gram rules for a function f such that wtA(Pf ). If Pf is already in
uniform format, then U(Pf ) = (P ′, ∅). Otherwise, we take the uni-
formly demanded position5 o and split Pf into r sets Pr contain-
ing the rules in Pf with the same constructor symbol in position o.
Then U(Pf ) = (

⋃r
i=1 P

′
i ∪ P ′′,

⋃r
i=1A

′
i ∪ A′′) where:

• U(Poi ) = (P ′i,A′i)
• ci is the constructor symbol in position o in the rules ofPi, with
ar(ci) = ki
• Poi is the result of replacing the function symbol f in Pi by
f(ci,o) and flattening the patterns in position o in the rules, i.e.,
f tj (ci t′ki) t

′′
l → e is replaced by f(ci,o) tj t

′
ki
t′′l → e

• P ′′ ≡ {f Xj (c1 Yk1) Zl → f(c1,o) Xj Yk1 Zl, . . . ,

f Xj (cr Ykr ) Zl → f(cr,o) Xj Ykr Zl}, with Xj Yki Zl
pairwise distinct fresh variables such that j + l + 1 = n
• A′′ ≡ {f(c1,o) : ∀α.τj → τ ′k1 → τl → τ, . . . , f(cr,o) :

∀α.τj → τ ′kr → τl → τ} where A(f) = ∀α.τj → τ ′ →
τl → τ and A ⊕ {Yki : τ ′ki} ` ci Yki : τ ′. Notice that since
constructor symbols ci are transparent, these τ ′ki do exist and
are univocally fixed.

This transformation also preserves types. For the same reasons
as before, the following result is also valid for programs with
several functions.

THEOREM 5.4 (U(Pf ) well-typedness). Let Pf be a set of pro-
gram rules for the same overlapping inductive sequential function
f such that wtA(Pf ). If U(Pf ) = (P ′,A′) then wtA⊕A′(P ′).

We have just seen that we can transform an arbitrary program
into uniform format while preserving types. The preservation of the
semantics is also stated in [2, 32]. Although these results have been
proved in the context of term rewriting, we strongly believe that
they remain valid for the call-time choice semantics of the HO-
CRWL framework. Similarly, we are strongly confident that the
completeness of narrowing with mgu’s over a uniform program wrt.
needed narrowing over the original program [32] is also valid in the
framework of let-narrowing. Combining those results with the type
preservation results for lmgu and the program transformations—
Theorems 3.11, 5.2 and 5.4—we can conclude that a simulation of
the evaluation of simple Curry programs using lmgu based on the
transformations above, is safe wrt. types.

6. Conclusions and Future Work
In this paper we have tackled the problem of type preservation for
FLP programs with extra variables. As extra variables lead to the
introduction of fresh free variables during the computations, we
have decided to use the let-narrowing relation l—which is sound
and complete wrt. HO-CRWL, a standard semantics for FLP—as
the operational mechanism for this paper. This is also a natural
choice because let-narrowing reflects the behaviour of current FLP

5 A position in which all the rules in Pf have a constructor symbol. Notice
that this position will always exist because Pf is an OIS program [1].

systems like Toy or Curry, that provide support for extra and logical
variables instead of reducing expressions by rewriting only.

The other main technical ingredient of the paper is a novel varia-
tion of Damas-Milner type system that has been enhanced with sup-
port for extra variables. Based on this type system we have defined
the well-typed let-narrowing relation  lwt , which is a restriction
of let-narrowing that preserves types. To the best of our knowledge,
this is the first paper proposing a polymorphic type system for FLP
programs with logical and extra variables such that type preserva-
tion is formally proved. As we have seen in Example 3.2 from Sec-
tion 3 the type systems from [21, 22] lose type preservation when
extra variables are introduced. In [4], another remarkable previous
work, the proposed type system only supports monomorphic func-
tions and extra variables are not allowed. In [14] only programs
with transparent patterns and without extra variables are consid-
ered, and functional arguments in data constructors are forbidden.
Nevertheless, any of those programs is supported by our lwt rela-
tion, which has to carry type information at run-time, but just like
the extension of the Constructor-based Lazy Narrowing Calculus
proposed in [14].

The relevance of Theorem 3.8, which states that lwt preserves
types, lies in the clarification it makes of the problem of type preser-
vation on narrowing reductions with programs with extra variables.
Relying on the abstract notion of well-typed substitution, which
is parametrized by the type system and independent of any con-
crete operational mechanism, we have isolated a sufficient condi-
tion that ensures type preservation when imposed to the unifiers
used in narrowing derivations. This contrasts with previous works
like [14]—the closest to the present paper—in which a most gen-
eral unifier was implicitly computed. Moreover,  lwt preserves
types for arbitrary programs, something novel in the field of type
systems in FLP—to the best of our knowledge. Hence,  lwt is
an intended ideal narrowing relation that always preserves types,
but that can only be directly realized by using type checks at run-
time. Therefore,  lwt is most useful when used as a reference to
define some imperfect but more practical materializations of it—
subrelations of  lwt—that only work for certain program classes
but also preserve types while avoiding run-time type checks. An
example of this is the relation  lmgu , whose applicability is re-
stricted to programs with transparent patterns, and that also lacks
some completeness. This relation is based on two conditions im-
posed over l steps: mgu’s are used in every (Narr) step; and the
rules (VAct) and (VBind) are avoided. While the former is not a
severe restriction—as l is complete wrt. HO-CRWL even if only
mgu’s are allowed as unifiers [25]—the latter is more problematic,
because then  lmgu is not able to generate bindings for variable
applications. To mitigate this weakness we have investigated how
to prevent the use of (VAct) and (VBind) in lwt derivations. After
some preliminary attempts that witness the difficulty of the task,
and also give valuable insights about the problem, we have finally
characterized a class of programs in which these bindings for vari-
able applications are not needed, and studied their expressiveness.
Then we have applied the results obtained so far for proving the
type preservation for a simplified version of the Curry language.
HO-patterns are not supported in Curry, which treats functions as
black boxes [4]. Therefore Curry programs do not intend to gen-
erate solutions that include bindings for variable applications, and
so the rules (VAct) and (VBind) will not be used to evaluate these
programs. Besides, in Curry all the constructors are transparent,
and the needed narrowing on-demand strategy is employed in most
implementations of Curry. We have used two well-known program
transformations to simulate the evaluation of Curry programs with
an adaptation of needed narrowing for let-narrowing. Then we have
proved that both transformations preserve types which, combined
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with the type preservation of lmgu , implies that our proposed sim-
ulation of needed narrowing also preserves types.

Regarding future work, we would like to look for new program
classes more general than the one presented in Section 4 because,
as we pointed out at the end of that section, the proposed class is
quite restrictive and it forbids several functions that we think are
not dangerous for the types.

Another interesting line of future work would deal with the
problems generated by opaque pattens, as we did in [22] for the
restricted case where we drop logical and extra variables. We think
that an approach in the line of existential types [20] that, con-
trary to [22], forbids pattern matching over existential arguments,
is promising. This has to do with the parametricy property of types
systems [31], which is broken in [22] as we allowed matching on
existential arguments, and which is completely abandoned from the
very beginning in [21]. In fact it was already detected in [14] that
the loss of parametricity leads to the loss of type preservation in
narrowing derivations—in that paper instead of parametricity the
more restrictive property of type generality is considered. All that
suggests that our first task regarding this subject should be modify-
ing our type system from [22] to recover parametricity by following
an approach to opacity closer to standard existential types.
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