
Subtyping Arithmetical Types

Joseph (Yossi) Gil *t

Systems and Software Development Laboratory
Department of Computer Science

Technion--Israel Institute of Technology
Haifa 32000, Israel

Abstract

We consider the type system formed by a finite set of primitive
types such as integer, character, real, etc., and three type construc-
tion operators: (i) Cartesian product, (ii) disjoint sum, and (iii) re-
cursive type definitions. Type equivalence is defined to obey the
arithmetical rules: commutativity and associativity of product and
sum and distributivity of product over sum. We offer a compact
representation of the types in this system as multivariate algebraic
functions. This type system admits two natural notions of subtyp-
ing: "multiplicative", which roughly corresponds to the notion of
object-oriented subtyping, and "additive", which seems to be more
appropriate in our context. Both kinds of subtyping can be effi-
ciently computed i f no recursive definitions are allowed. Our main
result is that additive subtyping is undecidable in the general case.
Perhaps surprisingly, this undecidability result is by reduction from
Hilbert's Tenth Problem (HIO): the solution of Diophantine equa-
tions.

1 Introduction
Central to the object-oriented (OO) paradigm is the notion of

subtyping. Central to many modem programming languages is the
notion of recursive data types. The combination of these two no-
tions is a fascinating and difficult topic. Indeed, the question of
subtyping recursive types was open for many years until settled by
the seminal work of Amadio and Cardelli [1] which gave the first
algorithm for subtyping recursive types. Consequently, the run time
of this algorithm was improved from exponential to polynomial by
Kozen, Palsberg and Sehwartzbach [26]. Subtyping of recursive
types was used in type inference systems such as [40] and [14]. A
theoretical foundation was laid out by Brandt and Henglein [9] who
presented a sound and complete axiomatization of the coinductive
inference that these algorithms use.

In this paper, we revisit this question, asking how could it be
married with the notion of structural equivalence, as opposed to

*Work done in part while the author was at the IBM T. J. Watson Research Center.
t yogi@CS. Technion. CS. Ib

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that
copies are not made or distributed for profit or commercial advan-
tage and that copies bear this notice and the full citation on the first page.
To copy otherwise, to republish, to post on servers or tO
redistribute to lists, requires prior specific permission and/or a fee.
POPL'O1 1/01 London, UK
© 2001 ACM ISBN 1o58113-336-7/Ol10001 ...$5.00

name equivalence, which is crucial to distributed computation, and
more generally, structural subtyping. We use structural equivalence
in its deepest sense, which includes application of commutative,
associative and distributive rules on types.

Thus, the problem that this paper deals with can be labeled
as distributive and commutative structural subtyping of recursive
types. The research presented here is of a theoretical, foundational
sort, aimed at a better understanding of the notion of subtyping and
the possible variations of this concept. Nevertheless, the interest in
this problem is not merely a matter of academic curiosity. In fact,
the problem was raised and brought to our attention in the course
of implementing an IBM experimental product, nicknamed "Mock-
ingbird" [5, 4].

Mockingbird is a prototype tool for developing inter-language
and distributed applications. It facilitates data exchange and com-
munication between applications which may be written in different
programming languages. The Mockingbird type compiler reads
two type definitions, which may be user annotated, and tries to
generate a stub to convert instances of one type into instances of
the other. Thus, given two types, T1 and T2, the type compiler is
concerned with the following classical questions: "are T1 and T2
equivalent?", "is T1 a subtype of T2" (if the answer to the previous
question is negative), and "how should a conversion between T1
and T2 be carried out?" (if the answer to any one of the previous
questions is positive).

These three questions are parameterized by the type system
from which T1 and T2 are drawn and by the definition of equiv-
alence and subtyping. Intuitively, saying that T1 is a subtype of T2
means that values of T~ can be used wherever values of T2 can be
used. This leads to several distinct meanings to the "subtype" term.

Set inclusion If we consider types T1 and T2 as the set of all their
values, saying that T1 is a subtype of T2 could mean that ev-
ery value of T1 is also a value of T2. This is the notion of
subtyping in languages such as Ada [22].

Value coercion Yet another notion of subtyping is that every value
of T/ can be coerced into a value ofT2. This is the typical
case in OO databases in which a relation is considered a sub-
type of another relation which has fewer columns. This is also
the definition of subtyping in many OO languages. The type
Manager may have more attributes than its supertype Em-
ployee. By removing or ignoring these extra attributes, every
"manager" can be considered to be an "employee".

Interface extension In many OO languages the subtype notion is
further extended to demand that the set of routines (functions
and procedures) defined in a subtype, i.e., the interface of the
subtype, is a superset of the interface of the supertype.

276

In this paper we concentrate mostly on the first two notions
of subtyping. In the context of data interchange between applica-
tions, it is more important to capture the structure of the informa-
tion, rather than the behavior associated with it internally in each
application. Indeed, languages designed for that purpose, such as
ASN. 1 [44], EDIFACT and Sun's XDR language for remote proce-
dure call, do not associate behavior with data types, just like many
non- tO languages. To use the C++ [41] terminology, data types in
our system do not have "function members". It should be clear that
this restriction does not invalidate the notion of subtyping. Indeed,
ASN.1 has a notion of subtyping, albeit not as general as it could
be.

Yet another motivation for structural equivalence comes from
the use of types as search keys in software libraries [35]. The type
system used in that work is geared toward functional programming.
As a result, ThlxT, the type system used there, includes the func-
tion type operator, which renders it very different from ours.

An important class of examples motivating our type sys-
tems comes from object oriented compiler compilers, such as
S tOP [17], YOOC and TROOPER [6, 7], which generate an t O
type definition from a given BNF grammar, and a parser that con-
verts a word in the language defined by the BNF into an instantia-
tion of this type definition. The correspondence between a BNF and
a data type definition is based on the following principles. Gram-
mar terminals such as keywords, which can only occur in one form
in the input, are ignored, while terminals such as numerical con-
stants and identifiers are represented as primitive data types. Non-
terminals correspond to composite data types, where concatenation
in the body of a BNF production is interpreted as a record deft-
nition, while alternative productions are realized by a choice type
operator. Again, these data description languages lack behavior.

We argue that a deeper understanding of the structural, non-
behavioral, subtyping is important also for the seemingly more
general notion subtyping as used in contemporary t O languages,
which includes both the structural and the behavioral aspects of
subtyping. First, an intractability result of structural subtyping, of
the sort we provide here, also implies the intractability of any no-
tion of subtyping which includes this kind of structural subtyping.
Conversely, algorithms for a particular kind of structural subtyping
can be used as subroutines in algorithms for more general subtyp-
ing problems.

Secondly, in this paper we develop a unique mathematical the-
ory that gives a representation in the form of generating functions
and power series to a rather general family of types. The attempt to
represent types as power series leads to a discovery of at least one
family of degenerate types that might indicate programming errors,
and can be detected automatically.

We call attention to the fact that interface extension in one of
its forms is reduced again to structural subtyping. Specifically, it is
often the case that the correspondence between the routines in the
supertype and those in the subtype is not required to be exact, and
that every routine in the supertype must have a compatible routine
in the subtype. Compatibility traditionally means that the type of
a routine in the subtype is a subtype of the type of the correspond-
ing routine in the supertype. Since the subtyping of routines is in
its turn defined in terms of subtyping relations between the type of
their arguments (and the return type in case of functions), difficult
issues of recursive subtyping are raised. This sort of mutual recur-
sion was the main challenge that Amadio and Cardelli met in their
subtyping algorithm, and will not concern us as much here. (As
we will see, even without the subtyping of routines, the subtyping
problem remains interesting, and as we show, becomes even more
difficult, by the introduction of what may be called arithmetical
rules.) We may think of a different slant on interface extension,
which might be called the structural interface extension problem,

in which it is required to match the signatures of routines in the
subtype with the signatures of routines in the supertype, while al-
lowing arbitrary renaming of routines, their arguments as well as
reordering of arguments.

The thrust of this paper is the definition of two type systems and
type equivalence and subtyping relationships in these systems, and
a study of the arithmetical rules in these systems. The type system
79 is formed by a finite set of primitive types such as integer, char-
acter, real, etc., and two type construction operators: Record and
Choice. Types in 79 will be encoded as multivariate polynomials.
Hence, 79 is also called the set of polynomial types.

The type system .,4 is the same as 79 except that it includes an
operator for recursive type definitions. Types in .,4 are especially
suited for modeling data type definitions (DTD) in SGML [18], and
its rapidly growing offspring XML [19], ASN.1 recursive types, as
well as t O compiler compilers. Types in ,,4 will be encoded as
formal power series, which can also be thought of as multivariate
algebraic functions.

We consider two natural definitions of subtyping in these sys-
tems: Multiplicative subtyping, which roughly corresponds to value
coercion kind of subtyping, can be solved using polynomial divi-
sion in 79 and using polynomial elimination and GCD in ,,4.

The second variant, called additive subtyping, corresponds to
set inclusion. Although it is efficiently computable in 7 9 , it turns
out to be undecidable in ,A. In fact, it is undecidable even in a
type system T¢, nicknamed the rational types, where 7 9 C 7¢ C
,,4. Perhaps surprisingly, this undecidability result is by reduction
from Hilbert's Tenth Problem (H10): the solution of Diophantine
equations.

This work deals with the decision problem. The third question
asked by the Mockingbird type compiler, namely the construction
and the study of a type converter, is left for future research, al-
though we do provide a sketch here of how this might be done in
an orderly fashion.

Section 2 informally describes our type systems. The descrip-
tion is continued in Section 3 which describes how values in this
type system are structured, and provides intuition behind our def-
initions of type equivalence and subtyping. Section 4 presents the
type system 79, and discusses the notions of type equivalence and
the two main notions of subtyping in it. Algebraic types and their
representation as formal power series are discussed in Section 5.
Formal definitions of ,,4 and 7¢ are the subject of Section 6. Sec-
tions 7 and 8 give the proof that subtyping in T¢ is undecidable.
Section 7 is the more technical one, and may be skipped in first
reading. In contrast, the specimens of arithmetical types presented
in Section 8 may be of independent interest. Section 9 concludes
with some open problems.

2 Overview of the type system
This section provides an informal overview of our type systems,

concentrating in polynomial types, and in explaining the arithmeti-
cal roles.

Compare for example the Pascal [43] type definition of Figure 1
with that of C [25] in Figure 2. To a human, it is obvious that both
definitions denote a binary tree with an integer data field in each
node. To reach the same conclusion, the Mockingbird type com-
piler must ignore syntactical differences between languages (stan-
dard practice in the study of type systems), the names of fields (as
usual in structural equivalence), the order of definitions in a record,
and assume that the corresponding primitive types in the two lan-
guages are interchangeable (the working hypothesis of ASN.1 and
other data interchange languages). It is tacitly assumed that there
is no subtyping relationship between two distinct primitive types.

277

TYPE
T1 = ^Y;
Y = Record

left, right: TI;
value: Xnteger

end

Figure 1: A binary tree node in Pascal.

typedef struot X {
int data;
mtruct X *rchild;
struot X *ichild;

} *T2;

Figure 2: A binary tree node in C.

To facilitate comparison of types between different languages,
we assume that the type system has a set of primitive types, and that
no two distinct primitive types are interchangeable. In comparing
types we view all occurrences of a primitive type as being equiv-
alent. When this is not the desired behavior, new primitive types
can be introduced, in a manner similar to branding in Modula-3.
Mockingbird effectively implements branding by means of user an-
notations, which may mark some of C's t y p e d e f ' s as being new
primitive types.

To model C's s t z ~ c t , Pascal's Rec~ord, and other similar
constructs, the type system will have a product type construction
operator. (We defer the introduction of notation for the type con-
struction operators until Section 4.)

As the example in figures 1 and 2 shows, there is a good reason
to make product a commutative operation. This demand does not
show in [1]. Associativity of product is also required to facilitate
deep comparisons.

Our type system admits also the sum type construction op-
erator, also known as choice, for representing e.g., u n i o n in
C, variant records in Pascal, or ML [34] constructors. Consider
for example Figure 3, which represents the requirement of the
BIBTEX [33, 28] bibliographic system that a book has either an au-
thor or an editor, but never both.

We tacitly assume that there is some kind of a mechanism of
designating which option is selected in a choice. Since a pointer or
reference to a data type X is either nil or it has a value of type X,
we represent such a pointer as a choice between X and U n i t , the
empty product. It is always possible to determine for a pointer
which of the options of it was selected. Just like in ASN.1, SGML,
SOOP, etc., but also pure Lisp, we cannot represent data structures
in which more than one pointer may point to the same data item.

Note that with the commutative and associative rules the prod-

s t z ~ o t {
u n i o n {

Stz~1ot Editor editor;
struot Author author;

} c;
8trllot Volume_Data data;

} Book;

Figure 3: An example of using sum (choice) type operator in C.

u n i o n {
s t z%lo t {

mtz~tQt Author author;
mtz~aot Volume_Data data;

} with_author;
a t ~ c t {

stzal~t Editor editor;
mtzlaat Volume_Data data;

} with_editor;
} Book_Alternative;

Figure 4: An alternative definition of Figure 3.

uct operator is nothing more than a multi-set of the types on which
it operates.

An enumerated type is a choice between several of U n i t s .
Since field names are insignificant, the names of enumerated values
are insignificant as well: Two enumerated types of the same length
are considered equivalent. Branding can be used if this is not the
desired effect.

For the sake of completeness, we also introduce the type None,
which can be thought of as an empty choice. This type, sometimes
called bottom type and denoted as ..L, has no legal values at all. It
serves as the neutral element of sum. Also, including None in any
product will render the result None as well.

Java [2], Eiffel [31] and many other OO languages do not in-
elude a general purpose choice; choice there is restricted to point-
ers and to enumerated types. It is further research to extend the
undecidability result to such systems (see also Section 9 below).

We assume that sum is commutative and associative. Thus, a
choice between A and B is the same as a choice between B and A.
Also, a choice between two given enumerated types is the same as
an enumerated type whose number of values is the same as the sum
of values in the given types.

The distributive rule of product with sum also applies. Thus,
the differences between the types defined in Figure 3 and in Fig-
ure 4 are considered a matter of personal preferences that should
be overlooked in type comparisons.

Let us use the term arithmetical rules as a collective term for as-
sociativity and commutativity of sum and product and distributivity
of product with sum. Arithmetical rules also include the existence
of u n i t and N o n e as neutral elements for product and sum, al-
ternatively defined as the corresponding compound types with zero
arguments. It is also convenient to use the special behavior of None
in product.

Types formed by the primitive types by means of sum and prod-
uct, and where the arithmetical rules apply are called the polyno-
mial types. The algebraic types are the same as the polynomial
types except that recursive definitions are allowed. A generic name
for both type systems is arithmetical types.

We should note that Mockingbird aspirations transcend arith-
metical types. Beyond these, [3] discusses function types, ports
(which are a mechanisms to express call-by-reference) and dynamic
types, (which are used to express OO polymorphism). It should also
be mentioned that the polynomial types are a subset of what may be
called Tarski's types, which extend the algebraic type-system with
the function type operator, obeying rules similar to that of exponen-
tiation (see [16, Chap. 1.8.3]).

3 Values of Arithmetical Types
Since the arithmetical types are composed of primitive types,

any instance (or value) of a compound arithmetical type comprises

278

value assignments to its primitive types components. In case com-
position was by a product type operator, the instance is simply a
tuple of assignments to the operands. Exactly one choice must be
taken in each sum operator. Therefore, the value assignments to
any primitive types can be represented simply as a multi-set. A
multi-set of this sort could include for example two integer values,
three floating values and a value of an enumerated type which was
designated as a primitive type by branding. We call this multi-set,
when the values are omitted and just the types remain, a configu-
ration. A configuration is nothing but a product of primitive types,
which, as we shall see below, will be encoded as a monomial.

It is important to stress at this stage that the level of abstraction
imposed by the arithmetical rules dictates this unordered multi-set
perspective. Consider for example a type U1 which is a product of
two integers. Then, a value of Ui is an unordered set of two integer
values. The match between these two values and the fields of U1
is not part of our type system. As mentioned above, branding is
an easy means to distinguish between occurrences of a primitive
types. The type U1 however, is the data type of a multi-set of two
integers.

If the definition of an arithmetical type uses a choice, then the
same configuration can be obtained in several ways. A value there-
fore must contain not only the values of a certain configuration, but
also a designation of a configuration among others. In presence
of the arithmetical rules, and most specifically, commutativity, the
matter of designating one configuration among others takes some
pondering.

To highlight the issue of commutativity of summation, consider
a type U2 defined as a choice between two integers. Type U2 gives
rise to two identical configurations, each with a single integer. A
value of U2 is therefore an integer, marked with a tag drawn from
the set (say) {1, 2}. This tagging is not used for matching this in-
teger against a specific field in U2, since roughly speaking U2 has
only one field, which may take two different "kinds" of integers.
Tagging is used however to make a distinction between values; in-
tegers 531 and 532 are two distinct values of the single "field" of
U2.

In the same fashion, a value of the binary tree data type in Fig-
ure 1 could be a multi-set of three integer values, with marked with
a tag drawn from a set of five elements which correspond to the five
different binary trees with three nodes.

Still, the mapping between these three integers and the four
nodes in a tree is not part of our type system. As can be seen from
the binaly tree example, the number of different configurations can
in general be infinite when reeursive type definitions are allowed.
We will consider two types as being equivalent if they generate the
same number of configurations of each kind. This definition is al-
most a direct consequence of the structural equivalence demands
that we have made. Similarly, we consider a type T a subtype of
another type T ' , if the (potentially infinite) multiset of configura-
tions that T generates is contained in the multiset of configurations
that T ' generates.

Let us describe now an abstract device, a canonical configu-
ration generator or CCG, which given an arithmetical type, will
produce all configurations of this type, together with their count. A
CCG receives as input an abstract syntax tree of a type definition
prior to the application of the arithmetical rules, or a representation
as a polynomial. This abstract syntax tree is ordered, which makes
it possible for the CCG to produce all occurrences of each possible
configuration of a type by applying a breadth-first left-to-right scan
of this tree. Thus, the CCG generates a stream of configurations,
and the configuration matching can be done by mapping the first
occurrence of a certain configuration in T against the first occur-
rence of the same configuration in T'.

Furthermore, CCG is readily generalized to deal with a regu-

lar infinite abstract tree, i.e., the abstract syntax tree of a recursive
arithmetical type. It is plausible that the canonical configuration or-
dering produced by a CCG correlates with human intuition, since
the working of a CCG can be thought of as retrace the process by
which a human understands complicated type definitions.

The CCG imposes a deterministic matching between the con-
figurations of one type and the configurations of another type.
Thus, when one does a there is a unique, deterministic matching
between the configurations of one type and the There are still a
number of open questions regarding CCGs. For example, it is use-
ful to have an algorithm which would extract the i th occurrence of a
certain configuration from a regular infinite abstract syntax tree in
an efficient manner, i.e., without applying the full scan.

At this point, a weary programmer might complain that is
would not be intuitive to program in a system that provides all these
arithmetical conversions. The answer is that as is, the type system
is not usually used internally in a program, but rather for the pur-
pose of producing an automatic conversion between foreign data
representations relying on user annotations. It should also be com-
mented here that the FiSh programming language [23] designed
for combining high efficiency with high level abstraction makes a
similar distinction between "shape" and "content".

A requirement that came from Mockingbird users was to main-
taln some kind of "structured mapping" between configurations of
one type with configurations of another type. The problem of satis-
factorily defining what such a mapping may mean, while still main-
taining the arithmetical rules, appears to be illusive and difficult,
and is left for further research.

A natural question which arises here is what happens if we
forgo the distinction between configurations of the same structure.
In other words, a value of a certain type will cease to carry the
configuration tag. Such a structure would add an idempotent sum-
mation rule to our arithmetical rules. As it turns out, the problems
of subtyping and of type equivalence can be done in polynomial
time [27, Chap. 9]. Similarly, one may also wonder about type
equivalence and subtype in a type system that does not admit com-
mutativity of product. In this case, although type equivalence is
still computable, subtyping is undecidable even if there are only
two primitive types [38].

4 Polynomial Types

4.1 Notations and Conventions
We will refer to non-negative integers as natural numbers. Let

N be the commutative semi-ring t of natural numbers. The commu-
tative semi-ring B of Boolean values, where 0=False, l=Truo, and
OR as addition and AND as multiplication will also be of interest.

As before, types will usually be denoted using upper case let-
ters. An extensive use of formal variables will be made. These will
usually be denoted by lower case letters. Sets of variables are de-
noted by boldface letters: x, y, etc. Let x = { x l , . . . , xk} be a set
of variables. Then, Ix] denotes the set of monomials of x, i.e., all
expressions of the form

k
'

i=1

where ni E N. Note that monomials may not have coefficients.
Still, 1 ~ o = H , = ~ ~ , ~ [~]-

IA commutative semi-ring is a set with constants 0 and I, addition and multiplica-
tion operations which obey the usual commutative, associative and distributive rules.
A seml-ring does not necessarily have subtraction or division.

279

For encoding a type system in which the commutative rule
of multiplication does not apply, it is convenient to use pseudo-
monomials which are nothing but the set of all finite strings of for-
mal variables. The set of all pseudo-monomials over x is denoted
by x*. Multiplication in x* is simply string concatenation, which
is non-commutative.

Let A[x] denote the set of all formal polynomials over x with
coefficients in A, i.e., finite linear combinations of the elements
of Ix] with coefficients in A. For a polynomial p E A[x] and a
monomial rn E [x], let [m]p E A denote the coefficient of m
in p. Also, let A[[x]] denote the set of formal pseudo-polynomials
over x, which is finite linear combinations of x*. In carrying out
computations in A[[x]] we allow members of A to commute with
members of x*.

4.2 Polynomial Encoding
Let Z = { z l , . . . ,z~} be a set of elements, which will be

thought of as our primitive types. A type system which includes
product and choice over Z and the special types u n i t and N o n e
is defined by the following BNF:

~- : := Unit] N o n e (2)

~- : := choice(% 7-) I product(~-, ~-)

Type equality is defined as the minimal symmetrical and tran-
sitive relation obeying the following axioms

None ~ None; ~nit ~ Unit

V z E Z * z ~ z
choice(None, T) ~ ~'; product (Uni t , 1") ,~ 7"
product(None, r) ,~ N o n e

choice(v1, T2) ~ choice(r2, ~'1)
product (rl , 72) ~ product (~-2, ~-1)
choice(r1, choice(r2, rs)) ,~ choice(choice(rl , rz), ~'1)

product(7"l, product(~'2, vs)) ~ product(product(r1,7-z), ~'1)
product (~" l , choice (~-2 , ~'s) ~ choice (product (~" l , ~'2),

product (~'l , ~'~)).
(3)

Note some of the implications of (3): a record which has N o n e as
one of its fields has no legal values. Similarly, a choice between
N o n e and any type ~- type is ~- since the N o n e option can never be
taken.

We will encode the polynomial types as formal multivariate
polynomials with coefficients in N. Each primitive type in Z is
encoded as a distinct formal variable. The choice type construction
operator is encoded as polynomial addition, while product is en-
coded as polynomial multiplication. U n i t is encoded as 1. Thus,
a pointer to X is encoded as 1 + X , a pointer to a pointer to X
is 2 + X , etc. As might be expected, N o n e is encoded as the poly-
nomial O.

Let z be a set of formal variables that are used for encoding Z.
Then, the set of polynomial types is the set

~, = 1~], (4)

i.e., the set of all polynomials with natural coefficients over the set
of formal variables z. The subscript z is omitted when it is clear
from context. It is mundane to see that ~ , has the same structure
as the BNF (2), and that polynomial equality in it is isomorphic to
the definition in (3).

We have that the set of all possible configurations is [z].

TYPE
Employee= Record

id:Integer;
name:String;
isManager:Boolean;
desc:Array [1..3] of Character;
Case Integer of

0: yearly_salary:Real;
I: hourly_salary:Integer;

end
e n d

Figure 5: An employee record in Pascal.

Example 4.1. Consider the Pascal 2 employee record defined in
Figure 5. This type can be encoded as the polynomial

ZSBC3(R + I) (5)

where I , S, B, C, and R are formal variables encoding the prim-
itive types Integer, String, Boolean, Character, and
Real (respectively).

As the example indicates, arrays of fixed size are considered
syntactic sugar for product. This is justified since field names are
ignored.

Henceforth, we will loosely refer to members of P both as poly-
nomials and as types.

4 .3 T y p e E q u i v a l e n c e i n 79

We say that a polynomial is in an expanded form if it is written
as sum of distinct monomials with coefficients. For algorithmic
purposes, it is convenient to assume that the terms in the expanded
form are sorted. Such a sort can be by any monomial ordering. The
expanded form is canonical in the sense that the coeffÉcient of each
monomial is exactly the number of configurations of the sort of that
monomial that the polynomial type generates.

Since type equality of the system (2), (3) is tantamount to poly-
nomial equality, it has a straightforward implementation, provided
the polynomials are given in an expanded form. However, as in
Example 4.1, a type definition in a programming language does
not directly yield this form. Expansion by applying the distributive
rule and grouping monomials together may result in an exponential
blowup of the size of the polynomial. The technique of Zero equiv-
alence testing [45, Chap. 12] can be used to bring down the com-
plexity of type equivalence in T > to randomized polynomial time in
the size of the non-expanded input.

All other algorithms presented here assume an expanded form
of the input, and hence are potentially exponential in the input size.

4.4 Additive Subtyping in 7 9

How should subtyping of arithmetical types be defined? When
we say that type T is a subtype of T ' we mean that every value of
T can be viewed also as a value of T ' . When T and T ' are thought
of as sets of instances, then a simple way of interpreting this de-
mand is that T C T ' . Recall that each value of T contains not
only an assignment of primitive values to a specific configuration,
but also some sort of designation of the way that configuration was
obtained in T. If this designation is specific to T, then it is unlikely

2we assume here a more modem version of Pascal which has a primitive S t r i n g
type.

280

that this value will also occur in T ' . This is the reason why we
have used a canonical enumeration of configurations for this desig-
nation. Canonical enumeration naturally gives rise to the following
definition of subtyping of polynomial types.

Definition 4.2. For types T, T' E 79, we say that T is a subtype
o fT ' and write T E T ' if [m]T <_ [m]T' for all m E [z].

Since Definition 4.2 means that for all types A and B, A __
A + B and no other subtyping occurs, we call the __ relation ad-
ditive subtyping. The definition is also (trivially) equivalent to the
following three subtyping rules for < in the system defined by (2)
and (3)

n <_ choice(n, v2)

(6)

Additive subtyping means that in going from a subtype to the
supertype, more configurations can be added. In this process, the
structure of any of the configurations of the subtype is not allowed
to change. Thus, a record with 10 integer fields is a subtype of an
array of 10 integers (these two types are in fact equivalent), which
in turn is a subtype of a choice between an array of 10 integers and
an array of 10 reals, which is a subtype of an array of 10 integers
or reals. Also, two enumerated types in which all emmaerated val-
ues are branded, stand in a subtype relationship if and only if their
sets of values stand in a containment relationship. With pointers
we have that X is a subtype of a pointer to X, which in turn is a
subtype of a pointer to a pointer to X, etc.

When extended to recursive types, Definition 4.2 will mean that
a list of integers is a subtype of a binary tree of integers. In general,
additive subtyping captures very general and elaborate conversions,
for example, the embedding of a binary tree in a forest of general
trees.

According to Definition 4.2 each occurrence of a certain con-
figuration of T can be matched against an occurrence of the same
configuration of TI, although as a result of the commutativity of
addition, it is not specified how this matching is made. In the fi-
nite case, i.e., when the type system is limited to polynomial types
the problems of existence of a configuration matching andfinding
a specific one are easy. Applying Definition 4.2 algorithmically,
we can test for additive subtyping in linear time in the length of
the expanded form of the input polynomials. (We are unaware of a
more efficient procedure for this problem.) Definition 4.2 can also
be used for enumerating all possible matchings between T and T ~.
It will be interesting to compare the problems again in the infinite
case, i.e., when recursive types are allowed.

Note that if is it proved that the subtyping decision problem is
undecidable, then it is clear that there is no algorithm which finds
a configuration matching. Conversely, if T .~ T ' was established,
then it is possible to match the configurations in T with configura-
tions in T ' type in an orderly, deterministic fashion.

4.5 Multiplicative Subtyping in 7 9

Additive subtyping is a weak partial order on 7 9, which means
that it is reflexive, transitive and anti-symmetric (excepting equal-
ity). Let us now define another weak partial order subtyping rela-
tionship on 79 which has these properties. In OO systems subtyping
means that a type A B is a subtype of A for all types A and B. Let
us write this as A B ~* A.

The E* relation is formalized in the following definition.

Definition 4.3. For types T, T ' E 79, we say that T is a multiplica-
tire subtype o fT ' and write T ~* T ' if there exists a type T" E 79
such that T = TIT ''.

Clearly, the ~* relation is a weak partial order. In fact, it is not
so difficult to see that it is equivalent to the relation <* defined in
the system (2) and (3) by the following subtyping rules:

product(~'z, v2) <* vz

(7)
7"1 ~ T2 7"1 <* ~'2 r2 <* 7"a

T1 ~ * T2 T1 .~* T3

Determining whether two polynomial types stand in a multi-
plicative subtyping relationship is simply a matter of polynomial
division--a problem for which efficient algorithms are known [13].
Again, efficiency is contingent on having the input in an expanded
form.

Using our terminology, the value assignment to a configuration
is truncated when going from a type to its multiplicative supertype.
Thus, one can view multiplicativ¢ subtyping and Definition 4.2 as
being complementary. Multiplicative subtyping deals with the val-
ues aspect of an instance, while additive subtyping deals with the
configuration designation aspect.

4.6 Variations
The type system P with additive subtyping is the main type sys-

tem we will deal with here. However, using similar mathematical
machinery several other variations are possible.

1.

2.

3.

The type system in which field ordering in a product is signif-
icant (product is not commutative) is represented by N[[z]].

The type system that does not admit multiple occurrences of
the same configuration is represented by ~z] . In such a sys-
tem, the type U2 = z n t + zn l : (Section 3) is equivalent to
the primitive integer type.

In a similar fashion, ~[z]] models a type system in which
multiple occurrences of a configuration are considered one,
but without commutativity of multiplication.

For each of these systems it is possible to apply the notion of addi-
tive subtyping, by using Definition 4.2 with the necessary changes.
On the other hand, multiplicative subtyping as defined in Defini-
tion 4.3 only makes sense if multiplication is commutative.

The systems N[[z]], ~ z] and ~[[z]] are discussed briefly in Sec-
tion 9.

5 Intuition behind Algebraic Types

This section is devoted to an informal presentation of algebraic
types, which are obtained by augmenting polynomial types with re-
cursive definitions. The discourse will follow a series of examples
highlighting some of their properties. Formal definitions are pro-
vided in the next section. A novel technique we present here is of
solving recursive type equations using methods used in combina-
torics for finding generating functions.

Example 5.1. Considering the C type definition in Figure 6, we
see that the type L is defined using itself. Using the conventions
introduced in the previous section, we may write this as an equation

L = I (I + L) = I + I L . (8)

281

typede£ s t r u o t L {
£ n t data;
stz'uQt L *next;

};

Figure 6: A C definition of a linked list node data type.

One way of determining the meaning of the unknown type L
from (8) is by directly solving (8) for L

I
L = 1---~- ~. (9)

Clearly, this solution makes little sense in terms of types, since type
division makes no sense at all, as does type subtraction. Neverthe-
less, writing the Taylor expansion about zero of the above we obtain

t o

L = ~ P . (10)
i = 1

In words, (10) means that IL is either one : t a t or two :l.nt's or three
i n t ' s , etc.

Yet another way of dealing with (8) is of repeatedly substitut-
ing L by its definition

L = I + I L = I + I (I + I L) = I + I z + I 2 L

= I + I z + I 2 (I + I z + I2L)

= I + 12 + I a + / 4 + 145 (11)
oo

= E 1 i.
i = 1

Fortunately, both ways lead to the same infinite power series.

Example 5.2. Consider the binary search tree defined in Figure 2,
which leads to the recursive definition equation

X = I(1 + X) 2. (12)

By moving terms we obtain

I X 2 + (2 I - 1)X + I = 0, (13)

a quadratic equation with two solutions

1 - 2I ± x/1 - 41
X1,2 = 2I (14)

Carrying on while ignoring the senselessness of the extraction of
the square root of types we see that the Taylor power series of X1
contains terms with negative coefficients. Hence, this solution is
meaningless for our purposes. The expansion of the second solu-
tion of (14) is more promising

X2 = I + 2 1 2 + 5 I Z + 1 4 I a + (15)

In words, X2 is either one : t a t or one of two configurations of two
int : ' s , or one of five configurations of three : tnt 's , etc. Indeed, a
binary tree has one configuration of one node, two configurations
of two nodes, five configurations of three nodes etc.

It is a standard exercise in combinatorics to derive from (14)
that

oo

X2 = ~ C i I i, (16)
i = 1

where C,~ is the n th Catalan number, defined by

1
C,~ = ~ \ n] ' (17)

It is well known that C,~ is the number of distinct binary trees
with n nodes.

Again, repeated substitutions starting from (12) will eventually
result in the same power series as (15):

X = I(1 + 2X + X 2)

= I(1 + 21(1 + 2 X + X 2) + I2(1 + 2 X + X~) 2)

= I + 21 + 4 I X + 212X 2 + I s + 2X2I 2 + . . .

(18)

Let us introduce a notation for formal power series. The set
of all power series, finite and infinite, of monomiais Ix] with
coefficients in A is denoted by A(x). Since 0 6 A we have
A[x] _C A(x). For completeness of the notation we let A((x))
denote the set of pseudo formal power series, i.e., the formal series
with coefficients from A and pseudo monomials from x*. For a
formal power series p 6 A(x) we let [ra]p denote again the coeffi-
cient of monomiai m in p. The same convention can be applied to
pseudo formal power series.

Since the series are formal, we feel free to multiply and add
them without concerning ourselves too much with questions of con-
vergence.

Examples 5. I and 5.2 indicate that it might be possible to en-
code recursive data types with power series from N(z). The power
series of a type, also called generating function of the type, is
uniquely defined by the demand that the coefficient of a certain
monomial is the number of different ways the configuration asso-
ciated with this monomial occurs in the type. We will make scant
distinction between a recursive type and its power series.

We do not assume an extensive background in generating func-
tions and their applications in combinatorics. (The curious reader
may want to consult standard textbooks on the topic, e.g., [21, 39].)
However, a few words are in place here to explain why solving di-
rectly for an unknown type yielded correct results, even though in-
valid operations were used along the way. The standard technique
for discovering an explicit representation of a generating function
is to search for an equation which this function must satisfy. After
solving this equation, we look for the generating function among
its, hopefully not too many, solutions.

We have essentially repeated this standard technique here, ex-
cept that not much work was required to discover such an equation.
The recursive type equation is an equation which the generating
function of the type must satisfy. Therefore, the generating func-
tion of the type must be found among the solutions of the type
equation.

There are cases in which a recursive type has no generating
function since it has an infinite number of basic configurations.

Example 5.3. Consider the type D defined by Figure 7, which
gives rise to the type equation

D = I + (l + D) . (19)

This equation has no solutions since it is equivalent to I = -1 .
Further, repeated substitutions fail to converge

D = I + I + D = I + I + (I + I + D)
= n(1 + I) + D (20)

282

As before, the subscript z is omitted whenever it is clear from
context.

Note that there are two kinds of players in (29):

Formal Variables These are the primitive types z.

U n k n o w n s These are the newly defined, mutually recursive
types T 1 , . . . , T~.

Eq. (29) defines the unknowns in term of the formal variables.
We can say that the unknowns are a function of the formal variables.
The term "algebraic" was coined for our recursive types since this
function is algebraic in the algebraic geometry sense:

Definition 6.2. Let x = (x l , . . . , x , ~) and y = (y l , . . . , y ,~) .
An algebraic function is a multivariate multi-valued function f :

-~ C '~ mapping x to y , defined by a system of implicit poly-
nomial equations

Pa (x, y) = 0

: (30)

P , (x , y) = 0

where Pi 6 C[x, y].

Clearly, (29) is an instance of (30). Therefore, each member
of ~4 is also what is called a branch of an algebraic function. On
the other hand, there are algebraic functions which are not algebraic
types. For example, the function

1
= ~ (- 1) ' ~ ' (31) y = y (z) = l + z

,=0

has only one branch which clearly does not correspond to a type.
There are at least three strategies for finding the generating

function of a type from its definition. The first is by a process of
repeated substitutions. Even though this process is infinite, in some
cases it is possible to infer about it and deduce the infinite power
series.

Such deduction is complicated by the fact that there are in-
finitely many different ways of carrying out the substitutions. At
each substitution stage, one can choose any type T~, any definition
for it (the original one, i.e., P~, or any alternative polynomial ob-
tained from Pi through previous substitutions), and replace it into
the current definition of any other unknown Tj. The only restriction
is that each one of T~ is selected an infinite number of times.

A priori, it is not clear that these different ways will always re-
sult in the same power series. It is necessary to develop specialized
mathematical machinery to deal with the notion of "convergence"
into an infinite, multi-dimensional series. An excellent treatise of
these topics is provided in Kuich and Salomaa's book [27], and will
not be repeated here. It is however not too difficult to show that if

[1]P, ¢ 0
[z~]P~ = 0 (32)

for all 1 < i < n and all 1 _< j < k, then the types defined by (29)
are not degenerate.

The second strategy for finding the infinite power series of a
type is described in [27]: start from an initial approximation that Ti
is 0 for all 1 < i < n. Then, the (g + l) 'h approximation is obtained
from the g,h approximation by substituting it into the system (29).
This strategy can deal with equations such as

Ta = T~, (33)

and

T2 = zT2 + 2T2 (34)

which do not define degenerate types as defined in Definition 5.4,
even though a repeated substitution process in them does not ap-
pear to "converge". Note that this strategy is similar to the familiar
fixed point iteration method for finding the minimal solution (with
respect to the additive subtyping partial order) in a system of equa-
tions, as used in more traditional type theory.

It is shown in [27] that if

[lla = 0
[zAP~ = 0 (35)

for all 1 < i < n and all 1 _< j < k (a proper set of equations) or
if

[ra]Pi = 0 (36)

for all 1 < i _< n and all m 6 [z] - 1 (a weakly strict set of
equations) then this successive approximation process converges to
a solution.

The third strategy of deducing the power series is by solving
the system (29) analytically, then writing the Taylor series of all
solutions, and selecting the one which corresponds to the sought
generating function. However, since there is no analytic solution to
quintic and higher order equations, this is impossible to do in the
general case.

The third strategy does not yield the same results as the second
for the type defined by (33). There are two branches to the analytic
solution of (33), T1 = 0 and T1 = 1. Indeed, both un i t= and
N o n e satisfy (33). In (34) on the other hand, the second and third
strategies agree, while the first fails.

There is an interesting family of types in which it is always pos-
sible to find an analytic solution of (29). Regrettably, even in this
family it is not in general possible to write an explicit expression
for the coefficients of the sought power series.

Definition 6.3. The set R C ,,4 of rational types is defined by the
following condition. Type T fi 7~ if and only if it can be defined
by a system of equations

T = PT + Q (37)

where T is an (n x 1) vector of unknowns, T 6 T , while P is an
(n x n) matrix, Q is an (n x 1) vector, and the elements of P and
Q are in N[z].

The system (37) is nothing but a system of linear equations in
the unknown types. It is therefore possible to employ Gaussian
elimination and compute the type T as an explicit function of the
coefficients in this system. Since all coefficients in (37) are poly-
nomials it follows that the generating function of T is given by

T = P (z) / Q (z) (38)

where P, Q 6 Z[z]. Eq. (38) explains why this restricted family
of algebraic types are called rational types) From a programmer
standpoint, rational types are recursive types which have the prop-
erty that no recursive type definition makes more than a single use
of each of the user defined types in each record.

It is easy to verify from Definition 6.3 that 7~ is closed under
additions and multiplications. This observation will be used in the
following section.

3Rational types are not to be confused with rational trees, a mathematical device
sometimes used in the study of re, cursive systems.

284

7 A d d i t i v e S u b t y p i n g in 7~ is U n d e c i d a b l e

In this section we focus our attention on additive subtyping
(henceforth just subtyping). We will show that subtyping in 7~ is
undecidable. Of course, this implies that the more general problem
of subtyping in ,A is undecidable as well. It is not clear however
if the proof can be made any simpler by working in A, or whether
there are interesting properties of .,4 which do not hold in 7~.

The proof is carried out by reduction from Hilbert's tenth prob-
lem, the solution of polynomial Diophantine equations. We will
see that for every such equation, there is a pair of rational types,
which stand in a subtype relationship if and only if the equation is
solvable.

Definition 7.1. Hilbert' s tenth problem (H I O):

Instance: A multivariate polynomial Q (m , . . . , uk) E
~,1,...,,,~1.

Question: Is there an assignment of rational numbers
to u ~ , . . . , uk such that

(39) Q(ul , . . . ,~k) = 0.

David Hilbert presented H10 in his now famous 1900 lecture
before the second International Congress of Mathematicians, as
part of the set of 23 problems, which he deemed as the challenge
left to the 20 th century mathematics by the 19 th. H10 was the only
decision problem in this set. In fact, it is the only one which can be
thought of as a computer science problem.

Surviving attacks by J. Robinson, M. Davis, H. Putnam and
others, H10 finally yielded to Yuri Matiyasevich [29, 36] 4 who pro-
vided the missing step in the proof that it is undecidable.

Fact 7.2. H10 is undecidable.

In this paper, we will be concerned only in the variant of H10
in which the coefficients of Q are restricted to be integers, i.e., Q E
Z [u] and the sought solutions are restricted to be natural numbers
instead of integers. The restriction does not lose any generality [30,
Chap. 1], and the restricted form of H10 is undecidable as well.

The proof of Fact 7.2 uses what is called in the literature a uni-
versal Diophantine equation.

Definition 7.3. Let U E Z[ex , el, ux , u~] be a polynomial
with integer coefficients in the code parameters cl , . . . , cz and the
unknowns u l , . . . , u~. Suppose that for every given equation of
the form (39), there is a setting of the code parameters such that the
equation

U(Cl, . . . , c,, ul u~) = 0, (40)

is solvable exactly when the given equation is solvable. Then,
Eq. (40) is called a universal Diophantine equation.

Note that each instance of (40) has r unknowns and that in gen-
eral r ¢ k. The existence of universal equations will allow us to
carry out the reduction from a restricted set of instances of H10,
rather than the whole range of those instances.

We will employ a standard technique of using a generating
function to enumerate the values of a multivariate function of the
natural numbers (such a function can also be thought of as a multi-
dimensional series).

4Several distinct transliterations of this famous Russian mathematician were used
in the literature

Definition 7.4. Given S (u l , . . . , uk), a multivariate function of
natural arguments, its enumerating generating function (or, for
short, enumerating function) is

F s (z) = ~ . . . S(ul ,uk)z~ 1 . . . z ~ ' (41)

If S assumes only natural values, then its enumerating func-
tion Fs is in N ({ z l , . . . , z~}) and therefore may correspond to an
algebraic type. We call this type the enumerating type of F .

The following lemma is pertinent to our reduction.

Lenuna 7.5. For all Q E N[u], the function TO, the enumerating
function of Q, belongs to 7~.

Lemma 7.5 can be used as a black-box in the reduction. We
therefore postpone the presentation of its proof to Section 8 below.
The following example will help understand the lemma, as well as
Definition 7.4.

Example 7.6. Consider the polynomial

Q(ul, us) = u~u2 + 1. (42)

We can tabulate the values of Q on all natural assignments to ux
and uz in an infinite two dimensional table as demonstrated in Ta-
ble 1.

~ 2

0
1
1
1
1

1 2 3 4
1 1 1 1 . . .
2 5 10 17 . . .
3 9 19 33 . . .
4 13 28 49 . . .
: : : : ' . .

Table 1: The values of u~u2 + 1.

We can summarize the enumeration of this two dimensional
table using a generating function F(z l , zs). Reading the values
along the secondary diagonals of Table 1 we can write the first few
terms of F :

F(z l , z2) = 1 + (Zl + z2) + (z~ + 2zlz2 + z~)

+ (z~ + 5z~zs + 3~1~ + ~)+
2 2 + (z~ + 10z~z2 + 9zlz2 + ' ") + ' "

(43)

Notice that zl and z2 are formal variables used in enumerating the
values that Q assumes, and therefore play an entirely different role
than that of Ul and u2. Variables zl and z2 typically range over C,
while u l , u2 E N.

Examining (43) we see that the coefficients of F increase at a
polynomial rate, and therefore, F is well defined in some neigh-
borhood of the origin. Eq. (43) does not tell us much more about
the nature and the behavior of the function F . However, using
Lemma 7.5 we can assert that F is a rational function. Moreover,
it is a rational type.

We are now ready to present the main result of this paper.

Theorem 7.7. Subtyping in T~= is undecidable iflzl >_ 9.

285

Proof. By reduction from H10. Given an arbitrary Diophantine
equation

O (u l , . . . , ~ k) = O. (4 4)

we write the inequality

1 - (Q (u l , . . . , uk)) 2 > 0. (45)

Since the coefficients of Q and u l , . . . , u~ are all integers, the val-
ues that Q assumes are integers as well. It follows that the set of
solutions of (44) is the same as that of (45).

By rearranging terms in (45) we can rewrite it as

Q l (Ul , . . . ,Uk) > Q2(ul uk), (46)

where Q1 and Q2 are polynomials with natural coefficients.
Using Lemma 7.5 we now construct TQ~ and TO2, the enumer-

ating types of Q~ and Q2. We argue that

TQx _E TO2 (47)

if and only if there is no solution to (44).
Suppose that (47) holds. Then, every coefficient of TQ1 is no

greater than the corresponding coefficient of TQ2, i.e.,

Q1 (u l , . . . , uk) _< Qz (u l , . . . , u~) (48)

for any setting of u l , . . . , uk. This implies that Ineq. (46) never
holds, and therefore Eq. (44) is unsolvable. The opposite direction
is carried out similarly.

Note that in this construction, k, the number of unknowns in
(44) is exactly the same as the number of primitive types upon
which types TQa and TQ2 are constructed. Fortunately, and thanks
to the existence of universal equations, this does not mean that the
type system is required to have an unbounded number of primitive
types. We only need to carry out the reduction for all instances of
a universal equation of the form (40).

Our proof is completed by noting that there exists a univer-
sal equation with nine unknowns. (Such an equation is described
in [24]). []

8 Proof of Lemma 7.5
In this section we will see how all polynomials can be enumer-

ated by types in 7~, whereby proving Lemma 7.5, and completing
the proof that subtyping in 7~ is undecidable. The most difficult
step is in showing that all univariate monomials have an enumerat-
ing rational type. After doing so, we extend this claim to multivari-
ate monomials and subsequently to multivariate polynomials.

Let us use the convention that 0 ° = 1.

Lemma 8.1. For all r > 0, there exists a rational type Mr such
that

t o

Mr = 2 r l z r,
i = 0

Thus,

(49)

Mo = 1 + z + z 2 + z 3 + . . .

M1 = z + 2z 2 + 3z z + . . .

M2 = z + 4 z 2 + 9 z 3 + . . .

M 3 = z + 8 z 2 + 2 7 z 3 + . . .

A few words of intuition are in place before we proceed to the
proof. Type Mo is the linked list of z's, which can be defined by

Mo = 1 + zMo (50)

Clearly, M0 is a rational type and

t o

Mo = Z zi" (51)
i = 0

Using Mo we can define M1 by

M1 = zM1 + zMo. (52)

By unfolding we obtain

M1 = z(zM1 + zMo) + z + z 2 + . . .

= z(zM1 + z + z 2 + . . .) + z + z 2 + . . .

= z2M1 + z + 2z 2 + 2z a + . . .
(53)

t o

= z2M1W z + 2zZ + 2 Z z i
i = 3

= z + 2z 2 + z2Ml + 2zaMo.

Further unfolding of the terms z 2 Mi and 2z ~ Mo will yield only z z
and higher order terms. Therefore, the first two terms in the expan-
sion of M1 must be z+2z 2. This argument establishes an induction
base for a proof by induction that

[z ~] M 1 = n (54)

for all n > 0.
To determine [z"]Mx for n > 0, examine the right hand side

of Eq. (52). By the inductive hypothesis we have that for the
term zM1 [z'~]zM1 = n - 1. On the other hand, [z~]Mo = 1.
Thus [z"]M1 = (n - 1) + 1 = n.

In a similar fashion, we can define the type M2 as

M2 = zM2 + 2zMa + zMo. (55)

The induction step in this case can be carried out as follows. By the
inductive hypothesis

[zn]zM2 = (n - 1) 2. (56)

From (54) and (51) we have

[zn]2zM1 = 2 (n - 1) (57)

and

[z"]zMo = 1. (58)

Summing (56), (57) and (58), we obtain [z'~]M2 = (n - 1) 2 +
2n + 1 = n 2. The proof of Lemma 8.1 is a generalization of these
considerations.
Proof of Lemma 8.1.
Let the types Mr, r > 0 be defined by (50) and the system of
mutually recursive equations:

Mr = z ~ Mr-~ (59)
i = 0

Then, by means of simultaneous induction on n and r, we show
that

[z"]Mr = n r (60)

286

for all n > 0, r > 0.
The base case r = 0, n >_ 0 trivially follows from the expan-

sion of the linked list.
Consider the case n = 0, r _> 0. It is clear from the defini-

tion (59) that [z°]M~ = 0 for all r = 1, 2 , In other words,
only Mo has a constant term in its expansion.

The induction step is the case n > 0, r > 0. We use (59) and
then the inductive hypothesis to obtain

[znlMr = [z"] E Mr - ,
i=0

= ((n - - 1) + l) r

,~. n r

In order to show that all monomials can be enumerated by ratio-
nal types we need the following lemma which shows how to enu-
merate a product.

Lenmaa 8.2. Let S l (u l , . . . ,ul) and S2(uz+l , . . . ,uk) be two
multivariate functions of the naturals whose sets of formal argu-
ments are disjoint. Let S be their product: S(ul , . . . ,u~) =
S l (ux , . . . ,uz)S2(u l+x , . . . ,uk) . Then, Fs, the enumerating
function of S, is

Fs (zx , . . . , zk) = FSl (zl , . • •, zl)Fs2(zz+l, . . . , z~)

where Fsx and Fs2 are the enumerating functions of $1 and Sz.

Proof. Considering Definition 7.4, we see that in multiplying two
sums of the form (41), where all summation indices are disjoint,
gives another sum of the form (41). []

Combining lemmas 8.1 and Lemma 8.2, we obtain that an enu-
meration of all multivariate monomiais.

Corollary 8.3. All m E [z] can be enumerated by a rational type.

The missing step for the enumeration of all polynomials is the
enumeration of addition:

Lenmaa 8.4. Let S l (u l , . . . , u ~) and S2 (u l , . . . , u k) be two
multivariate functions of the naturals, and let S be their
sunI: S (' / g l , . . . , ~ k) = S l (U l , . . . , ' / / ~ k) + ~2('U . l , . . . , ' / / , k) .
Then, Fs, the enumerating function of S, is Fs(Zl , . . . ,zk) =
F s l (z l , . . . , z k) + Fa2(Zl , . . . ,Zk) where Fsl and Fs2 are the
enumerating functions of $1 and $2.

Proof. The proof follows immediately from Definition 7.4. D

The proof of Lemma 7.5 now follows from Lemma 8.4 and
Corollary 8.3.

In summary, we have shown that the enumerating function of
polynomials in N[u] is a rational type. It is not difficult to extend
our proof to show that the encoding function of polynomials in Z [u]
is a rational function. Conversely, it follows from Matiyasevich's
proof that all computable functions can be expressed as the values
of polynomials in Z [u]. Since the coefficients of rational (and alge-
braic) types can clearly be computed, then, for any such type, there
is a polynomial in Z[u] whose values span these coefficients.

Obviously, rational types cannot enumerate all polynomials
in Z [u], since such polynomials may assume negative values. The
converse, namely whether polynomials in N[u] are sufficient for
the enumeration of rational types is not clear.

9 Discussion and Open Problems
Perhaps the most interesting definitional problem that this paper

leaves open is that of a notion of "structured conversion" between
arithmetical types, beyond, or on top of, the abstract CCO mecha-
nism. Such a notion may lead to a different definition of additive
subtyping which might be decidable.

As an indication that structured convertibility might be easier
than mere inclusion should serve the fact that containment of con-
text free languages is undecidable, while there is an algorithm (al-
beit complicated) for the structured version of this problem, namely
containment of parenthesized grammars [37, Chap. VIII.3].

Other, more mathematically oriented problems and directions
for further research are mentioned below.

9.1 The main result, extensions and improvements

The main result presented in this paper is that additive subtyp-
ing is undecidable in N{z). Our undecidability result required that
the type system has 9 or more primitive types. The value 9 seems
to be borderline. Java for example has 8 primitive types, while C
(depending on the counting) has more than 9. Concrete subtyping
problems may use a fewer number of primitive types than those
which exist in the host programming language. Therefore it is in-
teresting to try to reduce the number of primitive types required for
the proof.

Reducing the number of unknowns in a universal polynomial
Diophantine seems difficult. The lower bound of 9 achieved by
Jones [24] was not improved for almost twenty years. We believe
that such a reduction is easier in our context. Support for this belief
we find in the fact that there exists a universal exponential Dio-
phantine equation using only three unknowns [30, Chap. 7]. We
observe that the expressive power of rational types is richer than
polynomials, and includes e.g., exponentiation. The type

Er = 1 + rzEr

gives an encoding of the function r u for any integer r > 0. Using
general algebraic types it is possible to encode even more interest-
ing integer functions, such as the binomial values (Example 5.6),
and in particular Catalan numbers (Example 5.2). Unfortunately,
unlike polynomials, the composition of such integer functions is
not so simple. Even a simple encoding in types of a function
with doubly exponential growth rate does not seem possible. This
makes the encoding the universal exponential equation with three
unknowns using algebraic types an interesting challenge.

The following fact states that without commutativity, additive
subtyping is undecidable with two primitive types or more.

Fact 9.1. Additive subtyping in N({z)), Izl >_ 2 is undecidable.

Proof. The proof is by giving a type theoretical interpretation to
the corresponding result in formal power series [38]. []

Fact 9.1 might be interpreted to gives another indication that a
reduction in the number of unknowns is possible.

When there is only one primitive types, commutativity plays
no role and we have that A((z)) = A(z) for any ring A. The most
interesting case is A = N. It is a "celebrated" 5 open problem to
show that additive subtyping in N((z)), Izl -- 1 is undecidable, or
find an algorithm for it.

If choice is idempotent, specifically when A = B, then additive
subtyping, and hence additive inequality can be decided in polyno-
mial time.

5A. Salomaa (private communication), and P Flajolet (private communication)

287

Fact 9.2. Additive subtyping in B(z) and in B((z)) can be decided
in polynomial time.

Proof The proof is by using Parikh's theorem [32] to show the
infinite set, with duplications removed, of configurations generated
by an algebraic type is a regular set. Details can be found in [27,
Chap. 7]. []

Another research direction is to explore multiplicative subtyp-
ing in B(z), in B((z)), and N((z))

9.2 Other problems in the A type system
Given two systems of equations

T1 = Pi(T1, . . . ,T,~,z)

T,~ = P~(T1,. . . ,T~,z)

and

Ti = Pi(T2,..., T',,-.)

(61)

: (62)

T,', = P, ' (T ~ , . . . , r , ' , , ~) ,

the type equality problem is to determine whether the Laurent
power series expansion of the algebraic functions T1 = T1 (z) and
T~ = T~ (z) are identical. A simple algorithm for this problem is by
applying Tarski's theorem [42] which gives a quantifiers removal
procedure and a checking algorithm for every first order predicate
over the reals involving equality, addition and multiplication as well
as the usual logical operators. If two algebraic functions coincide
in a non-empty neighborhood of the origin, then their Laurent ex-
pansion must be identical. This condition is readily written in a
prenex form, and hence can be tested.

Tarski's original algorithm is highly inefficient [15]. More effi-
cient (though still non-polynomial) implementation of his theorem
exist [10, 8, 11]. These algorithms use techniques related to Groeb-
ner bases [13]. A natural question is therefore whether Groebner
bases can be applied directly for checking type equivalence. More
generally, find a procedure for determining multiplicative subtyp-
ing in .A (or show that it undecidable).

9.3 Function types
How should functions (in the programming sense) be incorpo-

rated into the arithmetical types framework? The natural way of
doing so is using exponentiation: a function mapping type zl into
type z2 will be encoded as z~ 1 . Exponential encoding models well
currying and other common operations on function types. We may
use the term transcendental for a type system which includes ad-
dition, product and exponentiation. Our undecidability result triv-
ially extends to transcendental recursive type systems, and hence
applies to traditional OO systems which admit functions as another
type operator.

Exploring subtype and type equivalence issues in a non-
recursive transcendental type system is interesting, but the parallels
between the type system and the arithmetical encoding do not work
as nicely: The encoding of a procedure type 7- : z ~ Un:l.l: as 1 z
may lead to the false conclusion that ~- = 1. Also, subtyping of
function types obeys the contra-variance rule for arguments, which
would be hard to model using arithmetic.

9.4 A Restricted Type System
In the context of many contemporary OO languages, it is im-

portant to investigate a type system variant in which the choice type
operator is used solely for the representation of references. Such a
type system will not include types such as zl + z2. However, it
will include types such as 1 + zl (a pointer to z), 2 + z (a pointer
to a pointer to z) as well as (1 + zl)(2 + z~)za. This restriction
roughly corresponds to languages such as Java and Eiffel in which
there are no choices, but references which can be, to use the Eiffel
terminology, void. More formally, we define the set Nix] C Nix]
as follows.

Definition 9.3. Given a finite set of primitive formal variables x,
the set Nix] of pointer polynomials over x is defined by

1. x • Nix], fo ra l lx • x,

2. 1 + p • N[x] for all p • Nix],

3. plpz • ~l[x] for a i lp l ,pz • N[x], and

4. nothing else is in Nix].

The system N[x] is somewhat weird since it is closed under
multiplication and substitution but not addition. An open problem
is to determine the complexity of subtyping of algebraic types if
the type equations are restricted to polynomials drawn from Nix].

Acknowledgments The comments of Jens Palsberg on a pre-
liminary version of this paper are gratefully acknowledged.

References
[1] R. M. Amadio and L. Cardelli. Subtyping recursive types.

ACM Transactions on Programming Languages and Systems,
15(4):575--631, 1993.

[2] K. Arnold and J. Gosling. The Java Programming Language.
The Java Series. Addison-Wesley, 1996.

[3] J. Auerbach. The #type system. Unpublished Manuscript,
IBM T. J. Watson Research Center, P.O. Box 704, Yorktown
Heights, NY 10598, 1998.

[4] J. Auerbach, C. Barton, M. Chu-Carroll, and
M. Raghavachari. Mockingbird: Flexible stub compila-
tion from pairs of declarations. In M. G. Gouda, editor,
The 19 th IEEE International Conference on Distributed
Computing Systems (ICDCS), Austin, Texas, May-June
1999.

[5] J. Auerbach and M. Chu-Carroll. The Mockingbird system:
A compiler based approach to maximally interoperable dis-
tributed programming. Technical Report RC20718, IBM T.
J. Watson Research Center, EO. Box 704, Yorktown Heights,
NY 10598, 1997.

[6] J. Avotins, G. Maughan, and C. Mingins. Language proces-
sor construction: The case for YOOCC and TROOPER. In
Proceedings of TOOLS USA'95, 1995.

[7] J. Avotins, C. Mingins, and H. Schmidt. Yes! an object-
oriented compiler compiler YOOCC. In Proceedings of
TOOLS USA'95, 1995.

288

[8] S. Basu and M.-E Roy. On the combinatorial and algebraic
complexity of quantifier elimination. J. ACM, 43(6):1002-
1045, Nov. 1996.

[9] M. Brandt and E Henglein. Coinductive axiomatization of
recursive type equality and subtyping. Fundamenta Informat-
icae, 33(4):309-338, May 1998.

[10] G. E. Collins. Quantifier elimination for real closed fields by
cylindrical algebraic decomposition. In Proceeding of the 2 nd
GI Conference on Automata Theory and Formal Languages,
pages 134--183, New York, 1975. Springer Verlag.

[11] G.E. Collins. Quantifier elimination by cylindrical algebraic
decomposition--twenty years of progress. In B. E Caviness
and J. R. Johnson, editors, QuantO~er Elimination and Cylin-
drical Algebraic Decomposition, pages 8-23. Springer Ver-
lag, New York, 1998.

[12] T.H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction
to Algorithms. MIT Press, Cambridge, Massachusetts, 1990.

[13] D. Cox, J. Little, and D. O'Shea. Ideals, Varieties andAlgo-
rithms. Undergraduate Texts in Mathematics. Springer Ver-
lag, second edition, 1996.

[14] E Datum. Subtyping with union types, intersection types and
recursive types. In Hagiya and Mitchell [20], pages 687-706.

[15] J. Davenport and J. Heintz. Real quantifier elimination if dou-
bly exponential. J. Symb. Comput., 5:29-35, 1988.

[16] R. Di Cosmo. Isomorphisms of Types: from A-calculus to
information retrieval and language design. Birkh~iuser, 1995.

[17] J. Gil and D. H. Lorenz. SOOP - A synthesizer of an object-
h oriented parser. In Proceedings of the 16 ~ International Con-

ference on Technology of Object-Oriented Languages and
Systems, pages 81-96, Versailles, France, Mar. 6-10 1995.
TOOLS 16 Europe Conference, Prentice-Hall.

[18] C. F. Goldfarb. The SGML Handbook. Clarendon Press, Ox-
ford, 1990.

[19] C. E Goldfarb and P. Prescod. The XML Handbook. Charles
E Goldfarb Series. Prentice-Hall, 1998.

[20] M. Hagiya and J. C. Mitchell, editors. Proceedings of the 2 nd
International Symposium on Theoretical Aspects of Computer
Software, volume 789 of Lecture Notes in Computer Science,
Sendai, Japan, Apr. 1994. Springer Verlag.

[21] M. Hofri. Probabilistic Analysis of Algorithms. Springer-
Verlag New York Inc., 1987.

[22] J. Ichibia, editor. Ada Programming Language. ANSI/MIL-
STD-1815A. Ada Joint Program Office, Department of De-
fense, Washington, DC, 1983.

[23] C. B. Jay. The FISh programming definition. Avail-
able as http: //www-sta f f.mcs .uts. edu. au/au/~cbj/-

Publications/lastest_fish.ps. gz, Oct. 1998.

[24] J. E Jones. Universal Diophantine equation. Journal of Sym-
bolic Logic, 47(3):547-571, 1982.

[25] B. W. Kernighan and D. M. Ritchie. The C Programming
Language. Software Series. Prentice-Hail, second edition,
1988.

[26] D. Kozen, J. Palsberg, and M. Schwartzbach. Efficient re-
cursive subtyping. Mathematical Structures in Computer Sci-
ence, 5, 1995.

[27] W. Kuich and A. Salomaa. Semirings, Automata, Languages,
volume 5 of EATCS Monographs on Theoretical Computer
Science. Springer-Verlag, 1986.

[28] L. Lamport. I~TEX: A Document Preparation System.
Addison-Wesley, 1986.

[29] J. V. Matijasevi~. Enumerable sets are Diophantine. Soviet
Mathematics. Doklady, 11(2):354--358, 1970. This is an En-
glish translation of the original paper in Russian (1970).

[30] Y. V. Matiyasevich. Hilbert's tenth problem. MIT Press,
1993.

[31] B. Meyer. Object-Oriented Software Construction. Prentice-
Hail, second edition, 1997.

[32] R. J. Parikh. On context-free languages. J. ACM, 13(4):570-
581, 1966.

[33] O. Patashnik. BIBTL~fing, 8 Feb. 1988. Documentation for
general BIBTEX users.

[34] L. C. Paulson. MLfor the Working Programmer. Cambridge
University Press, Cambridge, 1991.

[35] M. Rittri. Using types as search keys in function libraries.
Journal of Functional Programming, 1:71-89, 1991.

[36] J. Robinson. Hilbert's tenth problem. In Proc. Syrup. Pure
Math., 20, pages 191-194. Amer. Math. Soc., Providence,
Rhode Island, 1971.

[37] A. Salomaa. Formal Languages. Academic Press, New York
and London, 1973.

[38] A. Salomaa and M. Soittola. Automata-Theoretic Aspects of
Formal Power Series. Springer-Verlag, 1978.

[39] R. Sedgewick and P. Flajolet. An Introduction to the Analysis
of Algorithms. Addison-Wesley Publishing Company, Inc.,
1996.

[40] T. Sekiguchi and A. Yonezawa. A complete type inference
system for subtyped recursive types. In Hagiya and Mitchell
[20], pages 667--685.

[41] B. Stroustrup. The C++ Programming Language. Addison-
Wesley, third edition, 1997.

[42] A. Tarski. A Decision Method for Elementary Algebra and
Geometry. University of California Press, Berkeley, CA, sec-
ond edition, 1951.

[43] N. Wirth. The programming language Pascal. Acta Informat-
ica, 1:35--63, 1971.

[44] Recommendation x.208: Speficiation of abstract syntax nota-
tion one (ASN.1), Mar. 1988.

[45] R. E. Zippel. Effective Polynomial Computation. Kluwer
Academic Publishers, Boston, Dordrecht, London, 1993.

289

