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Abstract 

We consider the type system formed by a finite set of  primitive 
types such as integer, character, real, etc., and three type construc- 
tion operators: (i) Cartesian product, (ii) disjoint sum, and (iii) re- 
cursive type definitions. Type equivalence is defined to obey the 
arithmetical rules: commutativity and associativity of  product and 
sum and distributivity of  product over sum. We offer a compact 
representation of  the types in this system as multivariate algebraic 
functions. This type system admits two natural notions of  subtyp- 
ing: "multiplicative", which roughly corresponds to the notion of 
object-oriented subtyping, and "additive", which seems to be more 
appropriate in our context. Both kinds of  subtyping can be effi- 
ciently computed i f  no recursive definitions are allowed. Our main 
result is that additive subtyping is undecidable in the general case. 
Perhaps surprisingly, this undecidability result is by reduction from 
Hilbert's Tenth Problem (HIO): the solution of Diophantine equa- 
tions. 

1 Introduction 
Central to the object-oriented (OO) paradigm is the notion of 

subtyping. Central to many modem programming languages is the 
notion of recursive data types. The combination of these two no- 
tions is a fascinating and difficult topic. Indeed, the question of 
subtyping recursive types was open for many years until settled by 
the seminal work of Amadio and Cardelli [1] which gave the first 
algorithm for subtyping recursive types. Consequently, the run time 
of this algorithm was improved from exponential to polynomial by 
Kozen, Palsberg and Sehwartzbach [26]. Subtyping of recursive 
types was used in type inference systems such as [40] and [14]. A 
theoretical foundation was laid out by Brandt and Henglein [9] who 
presented a sound and complete axiomatization of the coinductive 
inference that these algorithms use. 

In this paper, we revisit this question, asking how could it be 
married with the notion of structural equivalence, as opposed to 
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name equivalence, which is crucial to distributed computation, and 
more generally, structural subtyping. We use structural equivalence 
in its deepest sense, which includes application of commutative, 
associative and distributive rules on types. 

Thus, the problem that this paper deals with can be labeled 
as distributive and commutative structural subtyping of  recursive 
types. The research presented here is of a theoretical, foundational 
sort, aimed at a better understanding of the notion of subtyping and 
the possible variations of this concept. Nevertheless, the interest in 
this problem is not merely a matter of academic curiosity. In fact, 
the problem was raised and brought to our attention in the course 
of implementing an IBM experimental product, nicknamed "Mock- 
ingbird" [5, 4]. 

Mockingbird is a prototype tool for developing inter-language 
and distributed applications. It facilitates data exchange and com- 
munication between applications which may be written in different 
programming languages. The Mockingbird type compiler reads 
two type definitions, which may be user annotated, and tries to 
generate a stub to convert instances of one type into instances of 
the other. Thus, given two types, T1 and T2, the type compiler is 
concerned with the following classical questions: "are T1 and T2 
equivalent?", "is T1 a subtype of T2" (if the answer to the previous 
question is negative), and "how should a conversion between T1 
and T2 be carried out?" (if the answer to any one of the previous 
questions is positive). 

These three questions are parameterized by the type system 
from which T1 and T2 are drawn and by the definition of equiv- 
alence and subtyping. Intuitively, saying that T1 is a subtype of T2 
means that values of T~ can be used wherever values of T2 can be 
used. This leads to several distinct meanings to the "subtype" term. 

Set inclusion If we consider types T1 and T2 as the set of all their 
values, saying that T1 is a subtype of T2 could mean that ev- 
ery value of T1 is also a value of  T2. This is the notion of 
subtyping in languages such as Ada [22]. 

Value coercion Yet another notion of subtyping is that every value 
of T/ can be coerced into a value ofT2. This is the typical 
case in OO databases in which a relation is considered a sub- 
type of another relation which has fewer columns. This is also 
the definition of subtyping in many OO languages. The type 
Manager may have more attributes than its supertype Em- 
ployee. By removing or ignoring these extra attributes, every 
"manager" can be considered to be an "employee". 

Interface extension In many OO languages the subtype notion is 
further extended to demand that the set of routines (functions 
and procedures) defined in a subtype, i.e., the interface of the 
subtype, is a superset of the interface of the supertype. 
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In this paper we concentrate mostly on the first two notions 
of subtyping. In the context of data interchange between applica- 
tions, it is more important to capture the structure of the informa- 
tion, rather than the behavior associated with it internally in each 
application. Indeed, languages designed for that purpose, such as 
ASN. 1 [44], EDIFACT and Sun's XDR language for remote proce- 
dure call, do not associate behavior with data types, just like many 
non- tO languages. To use the C++ [41] terminology, data types in 
our system do not have "function members". It should be clear that 
this restriction does not invalidate the notion of subtyping. Indeed, 
ASN.1 has a notion of subtyping, albeit not as general as it could 
be. 

Yet another motivation for structural equivalence comes from 
the use of types as search keys in software libraries [35]. The type 
system used in that work is geared toward functional programming. 
As a result, ThlxT, the type system used there, includes the func- 
tion type operator, which renders it very different from ours. 

An important class of examples motivating our type sys- 
tems comes from object oriented compiler compilers, such as 
S tOP [17], YOOC and TROOPER [6, 7], which generate an t O  
type definition from a given BNF grammar, and a parser that con- 
verts a word in the language defined by the BNF into an instantia- 
tion of this type definition. The correspondence between a BNF and 
a data type definition is based on the following principles. Gram- 
mar terminals such as keywords, which can only occur in one form 
in the input, are ignored, while terminals such as numerical con- 
stants and identifiers are represented as primitive data types. Non- 
terminals correspond to composite data types, where concatenation 
in the body of a BNF production is interpreted as a record deft- 
nition, while alternative productions are realized by a choice type 
operator. Again, these data description languages lack behavior. 

We argue that a deeper understanding of the structural, non- 
behavioral, subtyping is important also for the seemingly more 
general notion subtyping as used in contemporary t O  languages, 
which includes both the structural and the behavioral aspects of 
subtyping. First, an intractability result of structural subtyping, of 
the sort we provide here, also implies the intractability of any no- 
tion of subtyping which includes this kind of structural subtyping. 
Conversely, algorithms for a particular kind of structural subtyping 
can be used as subroutines in algorithms for more general subtyp- 
ing problems. 

Secondly, in this paper we develop a unique mathematical the- 
ory that gives a representation in the form of generating functions 
and power series to a rather general family of types. The attempt to 
represent types as power series leads to a discovery of at least one 
family of degenerate types that might indicate programming errors, 
and can be detected automatically. 

We call attention to the fact that interface extension in one of 
its forms is reduced again to structural subtyping. Specifically, it is 
often the case that the correspondence between the routines in the 
supertype and those in the subtype is not required to be exact, and 
that every routine in the supertype must have a compatible routine 
in the subtype. Compatibility traditionally means that the type of 
a routine in the subtype is a subtype of the type of the correspond- 
ing routine in the supertype. Since the subtyping of routines is in 
its turn defined in terms of subtyping relations between the type of 
their arguments (and the return type in case of functions), difficult 
issues of recursive subtyping are raised. This sort of mutual recur- 
sion was the main challenge that Amadio and Cardelli met in their 
subtyping algorithm, and will not concern us as much here. (As 
we will see, even without the subtyping of routines, the subtyping 
problem remains interesting, and as we show, becomes even more 
difficult, by the introduction of what may be called arithmetical 
rules.) We may think of a different slant on interface extension, 
which might be called the structural interface extension problem, 

in which it is required to match the signatures of routines in the 
subtype with the signatures of routines in the supertype, while al- 
lowing arbitrary renaming of routines, their arguments as well as 
reordering of arguments. 

The thrust of this paper is the definition of two type systems and 
type equivalence and subtyping relationships in these systems, and 
a study of the arithmetical rules in these systems. The type system 
79 is formed by a finite set of primitive types such as integer, char- 
acter, real, etc., and two type construction operators: Record and 
Choice. Types in 79 will be encoded as multivariate polynomials. 
Hence, 79 is also called the set of polynomial types. 

The type system .,4 is the same as 79 except that it includes an 
operator for recursive type definitions. Types in .,4 are especially 
suited for modeling data type definitions (DTD) in SGML [18], and 
its rapidly growing offspring XML [19], ASN.1 recursive types, as 
well as t O  compiler compilers. Types in ,,4 will be encoded as 
formal power series, which can also be thought of as multivariate 
algebraic functions. 

We consider two natural definitions of subtyping in these sys- 
tems: Multiplicative subtyping, which roughly corresponds to value 
coercion kind of subtyping, can be solved using polynomial divi- 
sion in 79 and using polynomial elimination and GCD in ,,4. 

The second variant, called additive subtyping, corresponds to 
set inclusion. Although it is efficiently computable in 7 9 , it turns 
out to be undecidable in ,A. In fact, it is undecidable even in a 
type system T¢, nicknamed the rational types, where 7 9 C 7¢ C 
,,4. Perhaps surprisingly, this undecidability result is by reduction 
from Hilbert's Tenth Problem (H10): the solution of Diophantine 
equations. 

This work deals with the decision problem. The third question 
asked by the Mockingbird type compiler, namely the construction 
and the study of a type converter, is left for future research, al- 
though we do provide a sketch here of how this might be done in 
an orderly fashion. 

Section 2 informally describes our type systems. The descrip- 
tion is continued in Section 3 which describes how values in this 
type system are structured, and provides intuition behind our def- 
initions of type equivalence and subtyping. Section 4 presents the 
type system 79, and discusses the notions of type equivalence and 
the two main notions of subtyping in it. Algebraic types and their 
representation as formal power series are discussed in Section 5. 
Formal definitions of ,,4 and 7¢ are the subject of Section 6. Sec- 
tions 7 and 8 give the proof that subtyping in T¢ is undecidable. 
Section 7 is the more technical one, and may be skipped in first 
reading. In contrast, the specimens of arithmetical types presented 
in Section 8 may be of independent interest. Section 9 concludes 
with some open problems. 

2 Overview of the type system 
This section provides an informal overview of our type systems, 

concentrating in polynomial types, and in explaining the arithmeti- 
cal roles. 

Compare for example the Pascal [43] type definition of Figure 1 
with that of C [25] in Figure 2. To a human, it is obvious that both 
definitions denote a binary tree with an integer data field in each 
node. To reach the same conclusion, the Mockingbird type com- 
piler must ignore syntactical differences between languages (stan- 
dard practice in the study of type systems), the names of fields (as 
usual in structural equivalence), the order of definitions in a record, 
and assume that the corresponding primitive types in the two lan- 
guages are interchangeable (the working hypothesis of ASN.1 and 
other data interchange languages). It is tacitly assumed that there 
is no subtyping relationship between two distinct primitive types. 
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TYPE 
T1 = ^Y; 
Y = Record 

left, right: TI; 
value: Xnteger 

end 

Figure 1: A binary tree node in Pascal. 

typedef struot X { 
int data; 
mtruct X *rchild; 
struot X *ichild; 

} *T2; 

Figure 2: A binary tree node in C. 

To facilitate comparison of types between different languages, 
we assume that the type system has a set of primitive types, and that 
no two distinct primitive types are interchangeable. In comparing 
types we view all occurrences of a primitive type as being equiv- 
alent. When this is not the desired behavior, new primitive types 
can be introduced, in a manner similar to branding in Modula-3. 
Mockingbird effectively implements branding by means of user an- 
notations, which may mark some of C's t y p e d e f ' s  as being new 
primitive types. 

To model C's s t z ~ c t ,  Pascal's Rec~ord, and other similar 
constructs, the type system will have a product type construction 
operator. (We defer the introduction of notation for the type con- 
struction operators until Section 4.) 

As the example in figures 1 and 2 shows, there is a good reason 
to make product a commutative operation. This demand does not 
show in [1]. Associativity of product is also required to facilitate 
deep comparisons. 

Our type system admits also the sum type construction op- 
erator, also known as choice, for representing e.g., u n i o n  in 
C, variant records in Pascal, or ML [34] constructors. Consider 
for example Figure 3, which represents the requirement of the 
BIBTEX [33, 28] bibliographic system that a book has either an au- 
thor or an editor, but never both. 

We tacitly assume that there is some kind of a mechanism of 
designating which option is selected in a choice. Since a pointer or 
reference to a data type X is either nil or it has a value of type X,  
we represent such a pointer as a choice between X and U n i t ,  the 
empty product. It is always possible to determine for a pointer 
which of the options of it was selected. Just like in ASN.1, SGML, 
SOOP, etc., but also pure Lisp, we cannot represent data structures 
in which more than one pointer may point to the same data item. 

Note that with the commutative and associative rules the prod- 

s t z ~ o t  { 
u n i o n  { 

Stz~1ot Editor editor; 
struot Author author; 

} c; 
8trllot Volume_Data data; 

} Book; 

Figure 3: An example of using sum (choice) type operator in C. 

u n i o n  { 
s t z%lo t  { 

mtz~tQt Author author; 
mtz~aot Volume_Data data; 

} with_author; 
a t ~ c t  { 

stzal~t Editor editor; 
mtzlaat Volume_Data data; 

} with_editor; 
} Book_Alternative; 

Figure 4: An alternative definition of Figure 3. 

uct operator is nothing more than a multi-set of the types on which 
it operates. 

An enumerated type is a choice between several of U n i t s .  
Since field names are insignificant, the names of enumerated values 
are insignificant as well: Two enumerated types of the same length 
are considered equivalent. Branding can be used if this is not the 
desired effect. 

For the sake of completeness, we also introduce the type None,  
which can be thought of as an empty choice. This type, sometimes 
called bottom type and denoted as ..L, has no legal values at all. It 
serves as the neutral element of sum. Also, including None  in any 
product will render the result None  as well. 

Java [2], Eiffel [31] and many other OO languages do not in- 
elude a general purpose choice; choice there is restricted to point- 
ers and to enumerated types. It is further research to extend the 
undecidability result to such systems (see also Section 9 below). 

We assume that sum is commutative and associative. Thus, a 
choice between A and B is the same as a choice between B and A. 
Also, a choice between two given enumerated types is the same as 
an enumerated type whose number of values is the same as the sum 
of values in the given types. 

The distributive rule of  product with sum also applies. Thus, 
the differences between the types defined in Figure 3 and in Fig- 
ure 4 are considered a matter of personal preferences that should 
be overlooked in type comparisons. 

Let us use the term arithmetical rules as a collective term for as- 
sociativity and commutativity of sum and product and distributivity 
of product with sum. Arithmetical rules also include the existence 
of u n i t  and N o n e  as neutral elements for product and sum, al- 
ternatively defined as the corresponding compound types with zero 
arguments. It is also convenient to use the special behavior of None  
in product. 

Types formed by the primitive types by means of sum and prod- 
uct, and where the arithmetical rules apply are called the polyno- 
mial types. The algebraic types are the same as the polynomial 
types except that recursive definitions are allowed. A generic name 
for both type systems is arithmetical types. 

We should note that Mockingbird aspirations transcend arith- 
metical types. Beyond these, [3] discusses function types, ports 
(which are a mechanisms to express call-by-reference) and dynamic 
types, (which are used to express OO polymorphism). It should also 
be mentioned that the polynomial types are a subset of what may be 
called Tarski's types, which extend the algebraic type-system with 
the function type operator, obeying rules similar to that of exponen- 
tiation (see [16, Chap. 1.8.3]). 

3 Values of  Arithmetical  Types 
Since the arithmetical types are composed of primitive types, 

any instance (or value) of a compound arithmetical type comprises 
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value assignments to its primitive types components. In case com- 
position was by a product type operator, the instance is simply a 
tuple of assignments to the operands. Exactly one choice must be 
taken in each sum operator. Therefore, the value assignments to 
any primitive types can be represented simply as a multi-set. A 
multi-set of this sort could include for example two integer values, 
three floating values and a value of an enumerated type which was 
designated as a primitive type by branding. We call this multi-set, 
when the values are omitted and just the types remain, a configu- 
ration. A configuration is nothing but a product of primitive types, 
which, as we shall see below, will be encoded as a monomial. 

It is important to stress at this stage that the level of abstraction 
imposed by the arithmetical rules dictates this unordered multi-set 
perspective. Consider for example a type U1 which is a product of 
two integers. Then, a value of Ui is an unordered set of two integer 
values. The match between these two values and the fields of U1 
is not part of our type system. As mentioned above, branding is 
an easy means to distinguish between occurrences of a primitive 
types. The type U1 however, is the data type of a multi-set of two 
integers. 

If the definition of an arithmetical type uses a choice, then the 
same configuration can be obtained in several ways. A value there- 
fore must contain not only the values of a certain configuration, but 
also a designation of a configuration among others. In presence 
of the arithmetical rules, and most specifically, commutativity, the 
matter of designating one configuration among others takes some 
pondering. 

To highlight the issue of commutativity of summation, consider 
a type U2 defined as a choice between two integers. Type U2 gives 
rise to two identical configurations, each with a single integer. A 
value of U2 is therefore an integer, marked with a tag drawn from 
the set (say) {1, 2}. This tagging is not used for matching this in- 
teger against a specific field in U2, since roughly speaking U2 has 
only one field, which may take two different "kinds" of integers. 
Tagging is used however to make a distinction between values; in- 
tegers 531 and 532 are two distinct values of the single "field" of 
U2. 

In the same fashion, a value of the binary tree data type in Fig- 
ure 1 could be a multi-set of three integer values, with marked with 
a tag drawn from a set of five elements which correspond to the five 
different binary trees with three nodes. 

Still, the mapping between these three integers and the four 
nodes in a tree is not part of our type system. As can be seen from 
the binaly tree example, the number of different configurations can 
in general be infinite when reeursive type definitions are allowed. 
We will consider two types as being equivalent if they generate the 
same number of configurations of each kind. This definition is al- 
most a direct consequence of the structural equivalence demands 
that we have made. Similarly, we consider a type T a subtype of 
another type T ' ,  if the (potentially infinite) multiset of configura- 
tions that T generates is contained in the multiset of configurations 
that T '  generates. 

Let us describe now an abstract device, a canonical configu- 
ration generator or CCG, which given an arithmetical type, will 
produce all configurations of this type, together with their count. A 
CCG receives as input an abstract syntax tree of a type definition 
prior to the application of the arithmetical rules, or a representation 
as a polynomial. This abstract syntax tree is ordered, which makes 
it possible for the CCG to produce all occurrences of each possible 
configuration of a type by applying a breadth-first left-to-right scan 
of this tree. Thus, the CCG generates a stream of configurations, 
and the configuration matching can be done by mapping the first 
occurrence of a certain configuration in T against the first occur- 
rence of the same configuration in T'.  

Furthermore, CCG is readily generalized to deal with a regu- 

lar infinite abstract tree, i.e., the abstract syntax tree of a recursive 
arithmetical type. It is plausible that the canonical configuration or- 
dering produced by a CCG correlates with human intuition, since 
the working of a CCG can be thought of as retrace the process by 
which a human understands complicated type definitions. 

The CCG imposes a deterministic matching between the con- 
figurations of one type and the configurations of another type. 
Thus, when one does a there is a unique, deterministic matching 
between the configurations of one type and the There are still a 
number of open questions regarding CCGs. For example, it is use- 
ful to have an algorithm which would extract the i th occurrence of a 
certain configuration from a regular infinite abstract syntax tree in 
an efficient manner, i.e., without applying the full scan. 

At this point, a weary programmer might complain that is 
would not be intuitive to program in a system that provides all these 
arithmetical conversions. The answer is that as is, the type system 
is not usually used internally in a program, but rather for the pur- 
pose of producing an automatic conversion between foreign data 
representations relying on user annotations. It should also be com- 
mented here that the FiSh programming language [23] designed 
for combining high efficiency with high level abstraction makes a 
similar distinction between "shape" and "content". 

A requirement that came from Mockingbird users was to main- 
taln some kind of "structured mapping" between configurations of 
one type with configurations of another type. The problem of satis- 
factorily defining what such a mapping may mean, while still main- 
taining the arithmetical rules, appears to be illusive and difficult, 
and is left for further research. 

A natural question which arises here is what happens if we 
forgo the distinction between configurations of the same structure. 
In other words, a value of a certain type will cease to carry the 
configuration tag. Such a structure would add an idempotent sum- 
mation rule to our arithmetical rules. As it turns out, the problems 
of subtyping and of type equivalence can be done in polynomial 
time [27, Chap. 9]. Similarly, one may also wonder about type 
equivalence and subtype in a type system that does not admit com- 
mutativity of product. In this case, although type equivalence is 
still computable, subtyping is undecidable even if there are only 
two primitive types [38]. 

4 Polynomial  Types 

4.1 Notations and Conventions 
We will refer to non-negative integers as natural numbers. Let 

N be the commutative semi-ring t of natural numbers. The commu- 
tative semi-ring B of Boolean values, where 0=False, l=Truo, and 
OR as addition and AND as multiplication will also be of interest. 

As before, types will usually be denoted using upper case let- 
ters. An extensive use of formal variables will be made. These will 
usually be denoted by lower case letters. Sets of variables are de- 
noted by boldface letters: x, y,  etc. Let x = { x l , . . . ,  xk} be a set 
of variables. Then, Ix] denotes the set of monomials of x, i.e., all 
expressions of the form 

k 
' 

i=1 

where ni  E N. Note that monomials may not have coefficients. 
Still, 1 ~ o = H , = ~  ~ ,  ~ [~]- 

IA commutative semi-ring is a set with constants 0 and I, addition and multiplica- 
tion operations which obey the usual commutative, associative and distributive rules. 
A seml-ring does not necessarily have subtraction or division. 
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For encoding a type system in which the commutative rule 
of multiplication does not apply, it is convenient to use pseudo- 
monomials which are nothing but the set of all finite strings of for- 
mal variables. The set of all pseudo-monomials over x is denoted 
by x*. Multiplication in x* is simply string concatenation, which 
is non-commutative. 

Let A[x] denote the set of all formal polynomials over x with 
coefficients in A, i.e., finite linear combinations of the elements 
of Ix] with coefficients in A. For a polynomial p E A[x] and a 
monomial rn E [x], let [m]p E A denote the coefficient of m 
in p. Also, let A[[x]] denote the set of formal pseudo-polynomials 
over x, which is finite linear combinations of x*. In carrying out 
computations in A[[x]] we allow members of A to commute with 
members of x*. 

4.2 Polynomial Encoding 
Let Z = { z l , . . .  ,z~} be a set of elements, which will be 

thought of as our primitive types. A type system which includes 
product and choice over Z and the special types u n i t  and N o n e  
is defined by the following BNF: 

~- : := Unit ] N o n e  (2)  

~- : := choice(% 7-) I product(~-, ~-) 

Type equality is defined as the minimal symmetrical and tran- 
sitive relation obeying the following axioms 

None ~ None; ~nit ~ Unit 

V z E Z * z ~ z  
choice(None, T) ~ ~'; product (Uni t ,  1") ,~ 7" 
product(None, r )  ,~ N o n e  

choice(v1, T2 ) ~ choice(r2, ~'1) 
product (rl ,  72) ~ product (~-2, ~-1) 
choice(r1, choice(r2, rs ) ) ,~ choice( choice( rl , rz),  ~'1) 

product(7"l, product(~'2, vs) ) ~ product(product(r1,7-z), ~'1) 
product ( ~" l , choice ( ~-2 , ~'s ) ~ choice (product ( ~" l , ~'2), 

product ( ~'l , ~'~ ) ). 
(3) 

Note some of the implications of (3): a record which has N o n e  as 
one of its fields has no legal values. Similarly, a choice between 
N o n e  and any type ~- type is ~- since the N o n e  option can never be 
taken. 

We will encode the polynomial types as formal multivariate 
polynomials with coefficients in N. Each primitive type in Z is 
encoded as a distinct formal variable. The choice type construction 
operator is encoded as polynomial addition, while product is en- 
coded as polynomial multiplication. U n i t  is encoded as 1. Thus, 
a pointer to X is encoded as 1 + X ,  a pointer to a pointer to X 
is 2 + X ,  etc. As might be expected, N o n e  is encoded as the poly- 
nomial O. 

Let z be a set of formal variables that are used for encoding Z. 
Then, the set of polynomial types is the set 

~,  = 1~], (4) 

i.e., the set of all polynomials with natural coefficients over the set 
of formal variables z. The subscript z is omitted when it is clear 
from context. It is mundane to see that ~ ,  has the same structure 
as the BNF (2), and that polynomial equality in it is isomorphic to 
the definition in (3). 

We have that the set of  all possible configurations is [z]. 

TYPE 
Employee= Record 

id:Integer; 
name:String; 
isManager:Boolean; 
desc:Array [1..3] of Character; 
Case Integer of 

0: yearly_salary:Real; 
I: hourly_salary:Integer; 

end 
e n d  

Figure 5: An employee record in Pascal. 

Example  4.1. Consider the Pascal 2 employee record defined in 
Figure 5. This type can be encoded as the polynomial 

ZSBC3(R + I) (5) 

where I ,  S, B,  C,  and R are formal variables encoding the prim- 
itive types Integer, String, Boolean, Character, and 
Real (respectively). 

As the example indicates, arrays of fixed size are considered 
syntactic sugar for product. This is justified since field names are 
ignored. 

Henceforth, we will loosely refer to members of P both as poly- 
nomials and as types. 

4 .3  T y p e  E q u i v a l e n c e  i n  79 

We say that a polynomial is in an expanded form if it is written 
as sum of distinct monomials with coefficients. For algorithmic 
purposes, it is convenient to assume that the terms in the expanded 
form are sorted. Such a sort can be by any monomial ordering. The 
expanded form is canonical in the sense that the coeffÉcient of each 
monomial is exactly the number of configurations of the sort of that 
monomial that the polynomial type generates. 

Since type equality of the system (2), (3) is tantamount to poly- 
nomial equality, it has a straightforward implementation, provided 
the polynomials are given in an expanded form. However, as in 
Example 4.1, a type definition in a programming language does 
not directly yield this form. Expansion by applying the distributive 
rule and grouping monomials together may result in an exponential 
blowup of the size of the polynomial. The technique of Zero equiv- 
alence testing [45, Chap. 12] can be used to bring down the com- 
plexity of type equivalence in T > to randomized polynomial time in 
the size of the non-expanded input. 

All other algorithms presented here assume an expanded form 
of the input, and hence are potentially exponential in the input size. 

4.4 Additive Subtyping in 7 9 

How should subtyping of  arithmetical types be defined? When 
we say that type T is a subtype of  T '  we mean that every value of 
T can be viewed also as a value of T ' .  When T and T '  are thought 
of as sets of instances, then a simple way of interpreting this de- 
mand is that T C T ' .  Recall that each value of T contains not 
only an assignment of primitive values to a specific configuration, 
but also some sort of designation of the way that configuration was 
obtained in T.  If this designation is specific to T,  then it is unlikely 

2we assume here a more modem version of Pascal which has a primitive S t r i n g  
type. 
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that this value will also occur in T ' .  This is the reason why we 
have used a canonical enumeration of configurations for this desig- 
nation. Canonical enumeration naturally gives rise to the following 
definition of subtyping of polynomial types. 

Definition 4.2. For types T, T' E 79, we say that T is a subtype 
o fT '  and write T E T '  if [m]T <_ [m]T' for all m E [z]. 

Since Definition 4.2 means that for all types A and B, A __ 
A + B and no other subtyping occurs, we call the __ relation ad- 
ditive subtyping. The definition is also (trivially) equivalent to the 
following three subtyping rules for < in the system defined by (2) 
and (3) 

n <_ choice(n, v2) 

(6) 

Additive subtyping means that in going from a subtype to the 
supertype, more configurations can be added. In this process, the 
structure of any of the configurations of the subtype is not allowed 
to change. Thus, a record with 10 integer fields is a subtype of an 
array of 10 integers (these two types are in fact equivalent), which 
in turn is a subtype of a choice between an array of 10 integers and 
an array of 10 reals, which is a subtype of an array of 10 integers 
or reals. Also, two enumerated types in which all emmaerated val- 
ues are branded, stand in a subtype relationship if and only if their 
sets of values stand in a containment relationship. With pointers 
we have that X is a subtype of a pointer to X,  which in turn is a 
subtype of a pointer to a pointer to X,  etc. 

When extended to recursive types, Definition 4.2 will mean that 
a list of integers is a subtype of a binary tree of integers. In general, 
additive subtyping captures very general and elaborate conversions, 
for example, the embedding of a binary tree in a forest of general 
trees. 

According to Definition 4.2 each occurrence of a certain con- 
figuration of T can be matched against an occurrence of the same 
configuration of TI, although as a result of the commutativity of 
addition, it is not specified how this matching is made. In the fi- 
nite case, i.e., when the type system is limited to polynomial types 
the problems of existence of a configuration matching andfinding 
a specific one are easy. Applying Definition 4.2 algorithmically, 
we can test for additive subtyping in linear time in the length of 
the expanded form of the input polynomials. (We are unaware of a 
more efficient procedure for this problem.) Definition 4.2 can also 
be used for enumerating all possible matchings between T and T ~. 
It will be interesting to compare the problems again in the infinite 
case, i.e., when recursive types are allowed. 

Note that if is it proved that the subtyping decision problem is 
undecidable, then it is clear that there is no algorithm which finds 
a configuration matching. Conversely, if T .~ T '  was established, 
then it is possible to match the configurations in T with configura- 
tions in T '  type in an orderly, deterministic fashion. 

4.5 Multiplicative Subtyping in 7 9 

Additive subtyping is a weak partial order on 7 9, which means 
that it is reflexive, transitive and anti-symmetric (excepting equal- 
ity). Let us now define another weak partial order subtyping rela- 
tionship on 79 which has these properties. In OO systems subtyping 
means that a type A B  is a subtype of A for all types A and B. Let 
us write this as A B  ~* A. 

The E* relation is formalized in the following definition. 

Definition 4.3. For types T, T '  E 79, we say that T is a multiplica- 
tire subtype o fT '  and write T ~* T '  if there exists a type T"  E 79 
such that T = TIT  ''. 

Clearly, the ~* relation is a weak partial order. In fact, it is not 
so difficult to see that it is equivalent to the relation <* defined in 
the system (2) and (3) by the following subtyping rules: 

product(~'z, v2) <* vz 

(7) 
7"1 ~ T2 7"1 <* ~'2 r2 <* 7"a 

T1 ~ *  T2 T1 .~* T3 

Determining whether two polynomial types stand in a multi- 
plicative subtyping relationship is simply a matter of polynomial 
division--a problem for which efficient algorithms are known [13]. 
Again, efficiency is contingent on having the input in an expanded 
form. 

Using our terminology, the value assignment to a configuration 
is truncated when going from a type to its multiplicative supertype. 
Thus, one can view multiplicativ¢ subtyping and Definition 4.2 as 
being complementary. Multiplicative subtyping deals with the val- 
ues aspect of an instance, while additive subtyping deals with the 
configuration designation aspect. 

4.6 Variations 
The type system P with additive subtyping is the main type sys- 

tem we will deal with here. However, using similar mathematical 
machinery several other variations are possible. 

1. 

2. 

3. 

The type system in which field ordering in a product is signif- 
icant (product is not commutative) is represented by N[[z]]. 

The type system that does not admit multiple occurrences of 
the same configuration is represented by ~z] .  In such a sys- 
tem, the type U2 = z n t  + zn l :  (Section 3) is equivalent to 
the primitive integer type. 

In a similar fashion, ~[z]] models a type system in which 
multiple occurrences of a configuration are considered one, 
but without commutativity of multiplication. 

For each of these systems it is possible to apply the notion of addi- 
tive subtyping, by using Definition 4.2 with the necessary changes. 
On the other hand, multiplicative subtyping as defined in Defini- 
tion 4.3 only makes sense if multiplication is commutative. 

The systems N[[z]], ~ z ]  and ~[[z]] are discussed briefly in Sec- 
tion 9. 

5 Intuition behind Algebraic Types 

This section is devoted to an informal presentation of algebraic 
types, which are obtained by augmenting polynomial types with re- 
cursive definitions. The discourse will follow a series of examples 
highlighting some of their properties. Formal definitions are pro- 
vided in the next section. A novel technique we present here is of 
solving recursive type equations using methods used in combina- 
torics for finding generating functions. 

Example 5.1. Considering the C type definition in Figure 6, we 
see that the type L is defined using itself. Using the conventions 
introduced in the previous section, we may write this as an equation 

L = I ( I + L )  = I + I L .  (8) 
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typede£  s t r u o t  L { 
£ n t  data; 
stz'uQt L *next; 

}; 

Figure 6: A C definition of a linked list node data type. 

One way of determining the meaning of the unknown type L 
from (8) is by directly solving (8) for L 

I 
L = 1---~- ~. (9) 

Clearly, this solution makes little sense in terms of types, since type 
division makes no sense at all, as does type subtraction. Neverthe- 
less, writing the Taylor expansion about zero of the above we obtain 

t o  

L = ~ P .  (10) 
i = 1  

In words, (10) means that IL is either one : t a t  or two :l.nt's or three 
i n t ' s ,  etc. 

Yet another way of dealing with (8) is of repeatedly substitut- 
ing L by its definition 

L = I + I L  = I + I ( I + I L )  = I + I  z + I 2 L  

= I + I  z + I 2 ( I + I  z + I2L)  

= I + 12 + I a + / 4  + 145 . . . .  (11) 
oo 

= E 1  i. 
i = 1  

Fortunately, both ways lead to the same infinite power series. 

Example 5.2. Consider the binary search tree defined in Figure 2, 
which leads to the recursive definition equation 

X = I(1 + X) 2. (12) 

By moving terms we obtain 

I X  2 + ( 2 I -  1)X + I = 0, (13) 

a quadratic equation with two solutions 

1 - 2I  ± x/1 - 41 
X1,2 = 2I (14) 

Carrying on while ignoring the senselessness of the extraction of 
the square root of types we see that the Taylor power series of X1 
contains terms with negative coefficients. Hence, this solution is 
meaningless for our purposes. The expansion of the second solu- 
tion of (14) is more promising 

X2 = I + 2 1 2 + 5 I Z + 1 4 I a +  . . .  . (15) 

In words, X2 is either one : t a t  or one of two configurations of two 
int : ' s ,  or one of five configurations of three : tnt 's ,  etc. Indeed, a 
binary tree has one configuration of one node, two configurations 
of two nodes, five configurations of three nodes etc. 

It is a standard exercise in combinatorics to derive from (14) 
that 

oo 

X2 = ~ C i I  i, (16) 
i = 1  

where C,~ is the n th Catalan number, defined by 

1 
C,~ = ~ \ n ] '  (17) 

It is well known that C,~ is the number of distinct binary trees 
with n nodes. 

Again, repeated substitutions starting from (12) will eventually 
result in the same power series as (15): 

X = I(1 + 2X + X  2) 

= I(1  + 21(1 + 2 X  + X 2) + I2(1 + 2 X  + X~) 2) 

= I + 21 + 4 I X  + 212X 2 + I s + 2X2I 2 + . . .  

(18) 

Let us introduce a notation for formal power series. The set 
of all power series, finite and infinite, of monomiais Ix] with 
coefficients in A is denoted by A(x). Since 0 6 A we have 
A[x] _C A(x). For completeness of the notation we let A((x)) 
denote the set of pseudo formal power series, i.e., the formal series 
with coefficients from A and pseudo monomials from x*. For a 
formal power series p 6 A(x) we let [ra]p denote again the coeffi- 
cient of monomiai m in p. The same convention can be applied to 
pseudo formal power series. 

Since the series are formal, we feel free to multiply and add 
them without concerning ourselves too much with questions of con- 
vergence. 

Examples 5. I and 5.2 indicate that it might be possible to en- 
code recursive data types with power series from N(z). The power 
series of a type, also called generating function of the type, is 
uniquely defined by the demand that the coefficient of a certain 
monomial is the number of different ways the configuration asso- 
ciated with this monomial occurs in the type. We will make scant 
distinction between a recursive type and its power series. 

We do not assume an extensive background in generating func- 
tions and their applications in combinatorics. (The curious reader 
may want to consult standard textbooks on the topic, e.g., [21, 39].) 
However, a few words are in place here to explain why solving di- 
rectly for an unknown type yielded correct results, even though in- 
valid operations were used along the way. The standard technique 
for discovering an explicit representation of a generating function 
is to search for an equation which this function must satisfy. After 
solving this equation, we look for the generating function among 
its, hopefully not too many, solutions. 

We have essentially repeated this standard technique here, ex- 
cept that not much work was required to discover such an equation. 
The recursive type equation is an equation which the generating 
function of the type must satisfy. Therefore, the generating func- 
tion of the type must be found among the solutions of the type 
equation. 

There are cases in which a recursive type has no generating 
function since it has an infinite number of basic configurations. 

Example 5.3. Consider the type D defined by Figure 7, which 
gives rise to the type equation 

D = I + ( l + D ) .  (19) 

This equation has no solutions since it is equivalent to I = -1 .  
Further, repeated substitutions fail to converge 

D = I + I + D = I + I + ( I + I + D )  . . . .  
= n(1 + I )  + D (20) 
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As before, the subscript z is omitted whenever it is clear from 
context. 

Note that there are two kinds of players in (29): 

Formal  Variables These are the primitive types z. 

U n k n o w n s  These are the newly defined, mutually recursive 
types T 1 , . . . ,  T~. 

Eq. (29) defines the unknowns in term of the formal variables. 
We can say that the unknowns are a function of the formal variables. 
The term "algebraic" was coined for our recursive types since this 
function is algebraic in the algebraic geometry sense: 

Definition 6.2. Let x = ( x l , . . . , x , ~ )  and y = (y l , . . . , y ,~ ) .  
An algebraic function is a multivariate multi-valued function f : 

-~ C '~ mapping x to y ,  defined by a system of implicit poly- 
nomial equations 

Pa (x, y)  = 0 

: (30) 

P , ( x , y )  = 0 

where Pi 6 C[x, y]. 

Clearly, (29) is an instance of (30). Therefore, each member 
of ~4 is also what is called a branch of an algebraic function. On 
the other hand, there are algebraic functions which are not algebraic 
types. For example, the function 

1 
= ~ ( - 1 ) ' ~  ' (31) y = y ( z ) =  l + z  

,=0  

has only one branch which clearly does not correspond to a type. 
There are at least three strategies for finding the generating 

function of a type from its definition. The first is by a process of 
repeated substitutions. Even though this process is infinite, in some 
cases it is possible to infer about it and deduce the infinite power 
series. 

Such deduction is complicated by the fact that there are in- 
finitely many different ways of carrying out the substitutions. At 
each substitution stage, one can choose any type T~, any definition 
for it (the original one, i.e., P~, or any alternative polynomial ob- 
tained from Pi through previous substitutions), and replace it into 
the current definition of any other unknown Tj. The only restriction 
is that each one of T~ is selected an infinite number of times. 

A priori, it is not clear that these different ways will always re- 
sult in the same power series. It is necessary to develop specialized 
mathematical machinery to deal with the notion of "convergence" 
into an infinite, multi-dimensional series. An excellent treatise of 
these topics is provided in Kuich and Salomaa's book [27], and will 
not be repeated here. It is however not too difficult to show that if 

[1]P, ¢ 0 
[z~]P~ = 0 (32) 

for all 1 < i < n and all 1 _< j < k, then the types defined by (29) 
are not degenerate. 

The second strategy for finding the infinite power series of a 
type is described in [27]: start from an initial approximation that Ti 
is 0 for all 1 < i < n. Then, the ( g + l )  'h approximation is obtained 
from the g,h approximation by substituting it into the system (29). 
This strategy can deal with equations such as 

Ta = T~, (33) 

and 

T2 = zT2 + 2T2 (34) 

which do not define degenerate types as defined in Definition 5.4, 
even though a repeated substitution process in them does not ap- 
pear to "converge". Note that this strategy is similar to the familiar 
fixed point iteration method for finding the minimal solution (with 
respect to the additive subtyping partial order) in a system of equa- 
tions, as used in more traditional type theory. 

It is shown in [27] that if 

[lla = 0 
[zAP~ = 0 (35) 

for all 1 < i < n and all 1 _< j < k (a proper set of equations) or 
if 

[ra]Pi = 0 (36) 

for all 1 < i _< n and all m 6 [z] - 1 (a weakly strict set of 
equations) then this successive approximation process converges to 
a solution. 

The third strategy of deducing the power series is by solving 
the system (29) analytically, then writing the Taylor series of all 
solutions, and selecting the one which corresponds to the sought 
generating function. However, since there is no analytic solution to 
quintic and higher order equations, this is impossible to do in the 
general case. 

The third strategy does not yield the same results as the second 
for the type defined by (33). There are two branches to the analytic 
solution of (33), T1 = 0 and T1 = 1. Indeed, both un i t=  and 
N o n e  satisfy (33). In (34) on the other hand, the second and third 
strategies agree, while the first fails. 

There is an interesting family of types in which it is always pos- 
sible to find an analytic solution of (29). Regrettably, even in this 
family it is not in general possible to write an explicit expression 
for the coefficients of the sought power series. 

Definition 6.3. The set R C ,,4 of rational types is defined by the 
following condition. Type T fi 7~ if and only if it can be defined 
by a system of equations 

T = PT + Q (37) 

where T is an (n  x 1) vector of unknowns, T 6 T ,  while P is an 
(n x n) matrix, Q is an (n  x 1) vector, and the elements of P and 
Q are in N[z]. 

The system (37) is nothing but a system of linear equations in 
the unknown types. It is therefore possible to employ Gaussian 
elimination and compute the type T as an explicit function of the 
coefficients in this system. Since all coefficients in (37) are poly- 
nomials it follows that the generating function of T is given by 

T = P ( z ) / Q ( z )  (38) 

where P, Q 6 Z[z]. Eq. (38) explains why this restricted family 
of algebraic types are called rational types) From a programmer 
standpoint, rational types are recursive types which have the prop- 
erty that no recursive type definition makes more than a single use 
of each of the user defined types in each record. 

It is easy to verify from Definition 6.3 that 7~ is closed under 
additions and multiplications. This observation will be used in the 
following section. 

3Rational types are not to be confused with rational trees, a mathematical device 
sometimes used in the study of re, cursive systems. 
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7 A d d i t i v e  S u b t y p i n g  in  7~ is  U n d e c i d a b l e  

In this section we focus our attention on additive subtyping 
(henceforth just subtyping). We will show that subtyping in 7~ is 
undecidable. Of course, this implies that the more general problem 
of subtyping in ,A is undecidable as well. It is not clear however 
if the proof can be made any simpler by working in A, or whether 
there are interesting properties of .,4 which do not hold in 7~. 

The proof is carried out by reduction from Hilbert's tenth prob- 
lem, the solution of polynomial Diophantine equations. We will 
see that for every such equation, there is a pair of rational types, 
which stand in a subtype relationship if and only if the equation is 
solvable. 

Definition 7.1. Hilbert' s tenth problem ( H I O ): 

Instance: A multivariate polynomial Q ( m , . . . ,  uk) E 
~,1,...,,,~1. 

Question: Is there an assignment of rational numbers 
to u ~ , . . . ,  uk such that 

(39) Q(ul , . . .  ,~k) = 0. 

David Hilbert presented H10 in his now famous 1900 lecture 
before the second International Congress of Mathematicians, as 
part of the set of 23 problems, which he deemed as the challenge 
left to the 20 th century mathematics by the 19 th. H10 was the only 
decision problem in this set. In fact, it is the only one which can be 
thought of as a computer science problem. 

Surviving attacks by J. Robinson, M. Davis, H. Putnam and 
others, H10 finally yielded to Yuri Matiyasevich [29, 36] 4 who pro- 
vided the missing step in the proof that it is undecidable. 

Fact 7.2. H10 is undecidable. 

In this paper, we will be concerned only in the variant of H10 
in which the coefficients of Q are restricted to be integers, i.e., Q E 
Z [u] and the sought solutions are restricted to be natural numbers 
instead of integers. The restriction does not lose any generality [30, 
Chap. 1], and the restricted form of H10 is undecidable as well. 

The proof of Fact 7.2 uses what is called in the literature a uni- 
versal Diophantine equation. 

Definition 7.3. Let U E Z[ex . . . .  , el, ux . . . .  , u~] be a polynomial 
with integer coefficients in the code parameters cl , . . . ,  cz and the 
unknowns u l , . . . ,  u~. Suppose that for every given equation of 
the form (39), there is a setting of the code parameters such that the 
equation 

U(Cl, . . . ,  c,, ul . . . . .  u~) = 0, (40) 

is solvable exactly when the given equation is solvable. Then, 
Eq. (40) is called a universal Diophantine equation. 

Note that each instance of (40) has r unknowns and that in gen- 
eral r ¢ k. The existence of universal equations will allow us to 
carry out the reduction from a restricted set of instances of H10, 
rather than the whole range of those instances. 

We will employ a standard technique of using a generating 
function to enumerate the values of a multivariate function of the 
natural numbers (such a function can also be thought of as a multi- 
dimensional series). 

4Several distinct transliterations of this famous Russian mathematician were used 
in the literature 

Definition 7.4. Given S ( u l , . . . ,  uk), a multivariate function of 
natural arguments, its enumerating generating function (or, for 
short, enumerating function) is 

F s ( z ) =  ~ . . .  S(ul  . . . .  ,uk)z~ 1 . . . z ~ '  (41) 

If S assumes only natural values, then its enumerating func- 
tion Fs is in N ( { z l , . . . ,  z~}) and therefore may correspond to an 
algebraic type. We call this type the enumerating type of F .  

The following lemma is pertinent to our reduction. 

Lenuna  7.5. For all Q E N[u], the function TO, the enumerating 
function of Q, belongs to 7~. 

Lemma 7.5 can be used as a black-box in the reduction. We 
therefore postpone the presentation of its proof to Section 8 below. 
The following example will help understand the lemma, as well as 
Definition 7.4. 

Example 7.6. Consider the polynomial 

Q(ul,  us) = u~u2 + 1. (42) 

We can tabulate the values of Q on all natural assignments to ux 
and uz in an infinite two dimensional table as demonstrated in Ta- 
ble 1. 

~ 2  

0 
1 
1 
1 
1 

1 2 3 4 
1 1 1 1 . . .  
2 5 10 17 . . .  
3 9 19 33 . . .  
4 13 28 49 . . .  
: : : : ' . .  

Table 1: The values of u~u2 + 1. 

We can summarize the enumeration of this two dimensional 
table using a generating function F(z l ,  zs). Reading the values 
along the secondary diagonals of Table 1 we can write the first few 
terms of F :  

F(z l ,  z2) = 1 + (Zl + z2) + (z~ + 2zlz2 + z~) 

+ (z~ + 5z~zs + 3~1~ + ~)+ 
2 2 + (z~ + 10z~z2 + 9zlz2 + ' " )  + ' "  

(43) 

Notice that zl and z2 are formal variables used in enumerating the 
values that Q assumes, and therefore play an entirely different role 
than that of Ul and u2. Variables zl and z2 typically range over C, 
while u l ,  u2 E N. 

Examining (43) we see that the coefficients of F increase at a 
polynomial rate, and therefore, F is well defined in some neigh- 
borhood of the origin. Eq. (43) does not tell us much more about 
the nature and the behavior of the function F .  However, using 
Lemma 7.5 we can assert that F is a rational function. Moreover, 
it is a rational type. 

We are now ready to present the main result of this paper. 

Theorem 7.7. Subtyping in T~= is undecidable iflzl >_ 9. 
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Proof. By reduction from H10. Given an arbitrary Diophantine 
equation 

O ( u l ,  . . . , ~ k  ) = O. ( 4 4 )  

we write the inequality 

1 -  ( Q ( u l , . . . ,  uk)) 2 > 0. (45) 

Since the coefficients of Q and u l , . . . ,  u~ are all integers, the val- 
ues that Q assumes are integers as well. It follows that the set of 
solutions of (44) is the same as that of (45). 

By rearranging terms in (45) we can rewrite it as 

Q l (Ul , . . .  ,Uk) > Q2(ul . . . . .  uk ), (46) 

where Q1 and Q2 are polynomials with natural coefficients. 
Using Lemma 7.5 we now construct TQ~ and TO2, the enumer- 

ating types of Q~ and Q2. We argue that 

TQx _E TO2 (47) 

if and only if there is no solution to (44). 
Suppose that (47) holds. Then, every coefficient of TQ1 is no 

greater than the corresponding coefficient of TQ2, i.e., 

Q1 ( u l , . . . ,  uk) _< Qz ( u l , . . . ,  u~) (48) 

for any setting of u l , . . . ,  uk. This implies that Ineq. (46) never 
holds, and therefore Eq. (44) is unsolvable. The opposite direction 
is carried out similarly. 

Note that in this construction, k, the number of unknowns in 
(44) is exactly the same as the number of primitive types upon 
which types TQa and TQ2 are constructed. Fortunately, and thanks 
to the existence of universal equations, this does not mean that the 
type system is required to have an unbounded number of primitive 
types. We only need to carry out the reduction for all instances of 
a universal equation of the form (40). 

Our proof is completed by noting that there exists a univer- 
sal equation with nine unknowns. (Such an equation is described 
in [24]). [] 

8 Proof  of  Lemma 7.5 
In this section we will see how all polynomials can be enumer- 

ated by types in 7~, whereby proving Lemma 7.5, and completing 
the proof that subtyping in 7~ is undecidable. The most difficult 
step is in showing that all univariate monomials have an enumerat- 
ing rational type. After doing so, we extend this claim to multivari- 
ate monomials and subsequently to multivariate polynomials. 

Let us use the convention that 0 ° = 1. 

Lemma 8.1. For all r > 0, there exists a rational type Mr such 
that 

t o  

Mr = 2 r l z  r, 
i = 0  

Thus, 

(49) 

Mo = 1 + z + z  2 + z  3 + . . .  

M1 = z + 2z 2 + 3z z + . . .  

M2 = z + 4 z  2 + 9 z  3 + . . .  

M 3 = z + 8 z  2 + 2 7 z  3 + . . .  

A few words of intuition are in place before we proceed to the 
proof. Type Mo is the linked list of z's, which can be defined by 

Mo = 1 + zMo (50) 

Clearly, M0 is a rational type and 

t o  

Mo = Z zi" (51) 
i = 0  

Using Mo we can define M1 by 

M1 = zM1 + zMo. (52) 

By unfolding we obtain 

M1 = z(zM1 + zMo) + z + z 2 + . . .  

= z(zM1 + z + z  2 + . . . )  + z + z  2 + . . .  

= z2M1 + z + 2z 2 + 2z a + . . .  
(53) 

t o  

= z2M1W z + 2zZ + 2 Z z i 
i = 3  

= z + 2z 2 + z2Ml + 2zaMo. 

Further unfolding of the terms z 2 Mi and 2z ~ Mo will yield only z z 
and higher order terms. Therefore, the first two terms in the expan- 
sion of M1 must be z+2z  2. This argument establishes an induction 
base for a proof by induction that 

[ z ~ ] M 1  = n (54) 

for all n > 0. 
To determine [z"]Mx for n > 0, examine the right hand side 

of Eq. (52). By the inductive hypothesis we have that for the 
term zM1 [z'~]zM1 = n - 1. On the other hand, [z~]Mo = 1. 
Thus [z"]M1 = (n - 1) + 1 = n. 

In a similar fashion, we can define the type M2 as 

M2 = zM2 + 2zMa + zMo. (55) 

The induction step in this case can be carried out as follows. By the 
inductive hypothesis 

[zn]zM2 = ( n -  1) 2. (56) 

From (54) and (51) we have 

[zn]2zM1 = 2 ( n -  1) (57) 

and 

[z"]zMo = 1. (58) 

Summing (56), (57) and (58), we obtain [z'~]M2 = (n - 1) 2 + 
2n + 1 = n 2. The proof of Lemma 8.1 is a generalization of these 
considerations. 
Proof of Lemma 8.1. 
Let the types Mr, r > 0 be defined by (50) and the system of 
mutually recursive equations: 

Mr = z ~ Mr-~ (59) 
i = 0  

Then, by means of simultaneous induction on n and r, we show 
that 

[z"]Mr = n r (60) 
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for all n > 0, r > 0. 
The base case r = 0, n >_ 0 trivially follows from the expan- 

sion of the linked list. 
Consider the case n = 0, r _> 0. It is clear from the defini- 

tion (59) that [z°]M~ = 0 for all r = 1, 2 , . . . .  In other words, 
only Mo has a constant term in its expansion. 

The induction step is the case n > 0, r > 0. We use (59) and 
then the inductive hypothesis to obtain 

[znlMr = [z"] E Mr - ,  
i=0  

= ( ( n - - 1 ) + l )  r 

,~. n r 

In order to show that all monomials can be enumerated by ratio- 
nal types we need the following lemma which shows how to enu- 
merate a product. 

Lenmaa 8.2. Let S l ( u l , . . .  ,ul) and S2(uz+l , . . . ,uk)  be two 
multivariate functions of the naturals whose sets of formal argu- 
ments are disjoint. Let S be their product: S(ul ,  . . .  ,u~) = 
S l (ux , . . . ,uz )S2(u l+x , . . . ,uk ) .  Then, Fs, the enumerating 
function of S, is 

Fs ( zx , . . . ,  zk) = FSl (zl , .  • •, zl)Fs2(zz+l, . . . ,  z~) 

where Fsx and Fs2 are the enumerating functions of $1 and Sz. 

Proof. Considering Definition 7.4, we see that in multiplying two 
sums of the form (41), where all summation indices are disjoint, 
gives another sum of the form (41). [] 

Combining lemmas 8.1 and Lemma 8.2, we obtain that an enu- 
meration of all multivariate monomiais. 

Corollary 8.3. All m E [z] can be enumerated by a rational type. 

The missing step for the enumeration of all polynomials is the 
enumeration of addition: 

Lenmaa 8.4. Let S l ( u l , . . . , u ~ )  and S2 (u l , . . . , u k )  be two 
multivariate functions of the naturals, and let S be their 
sunI:  S ( ' / g l , . . . , ~ k )  = S l ( U l , . . . , ' / / ~ k )  + ~2( 'U . l , . . . , ' / / , k ) .  
Then, Fs, the enumerating function of S, is Fs(Zl , . . .  ,zk) = 
F s l ( z l , . . . , z k )  + Fa2(Zl , . . . ,Zk)  where Fsl and Fs2 are the 
enumerating functions of $1 and $2. 

Proof. The proof follows immediately from Definition 7.4. D 

The proof of Lemma 7.5 now follows from Lemma 8.4 and 
Corollary 8.3. 

In summary, we have shown that the enumerating function of 
polynomials in N[u] is a rational type. It is not difficult to extend 
our proof to show that the encoding function of polynomials in Z [u] 
is a rational function. Conversely, it follows from Matiyasevich's 
proof that all computable functions can be expressed as the values 
of polynomials in Z [u]. Since the coefficients of rational (and alge- 
braic) types can clearly be computed, then, for any such type, there 
is a polynomial in Z[u] whose values span these coefficients. 

Obviously, rational types cannot enumerate all polynomials 
in Z [u], since such polynomials may assume negative values. The 
converse, namely whether polynomials in N[u] are sufficient for 
the enumeration of rational types is not clear. 

9 Discussion and Open Problems 
Perhaps the most interesting definitional problem that this paper 

leaves open is that of a notion of "structured conversion" between 
arithmetical types, beyond, or on top of, the abstract CCO mecha- 
nism. Such a notion may lead to a different definition of additive 
subtyping which might be decidable. 

As an indication that structured convertibility might be easier 
than mere inclusion should serve the fact that containment of con- 
text free languages is undecidable, while there is an algorithm (al- 
beit complicated) for the structured version of this problem, namely 
containment of parenthesized grammars [37, Chap. VIII.3]. 

Other, more mathematically oriented problems and directions 
for further research are mentioned below. 

9.1 The main result, extensions and improvements 

The main result presented in this paper is that additive subtyp- 
ing is undecidable in N{z). Our undecidability result required that 
the type system has 9 or more primitive types. The value 9 seems 
to be borderline. Java for example has 8 primitive types, while C 
(depending on the counting) has more than 9. Concrete subtyping 
problems may use a fewer number of primitive types than those 
which exist in the host programming language. Therefore it is in- 
teresting to try to reduce the number of primitive types required for 
the proof. 

Reducing the number of unknowns in a universal polynomial 
Diophantine seems difficult. The lower bound of 9 achieved by 
Jones [24] was not improved for almost twenty years. We believe 
that such a reduction is easier in our context. Support for this belief 
we find in the fact that there exists a universal exponential Dio- 
phantine equation using only three unknowns [30, Chap. 7]. We 
observe that the expressive power of rational types is richer than 
polynomials, and includes e.g., exponentiation. The type 

Er = 1 + rzEr 

gives an encoding of the function r u for any integer r > 0. Using 
general algebraic types it is possible to encode even more interest- 
ing integer functions, such as the binomial values (Example 5.6), 
and in particular Catalan numbers (Example 5.2). Unfortunately, 
unlike polynomials, the composition of such integer functions is 
not so simple. Even a simple encoding in types of a function 
with doubly exponential growth rate does not seem possible. This 
makes the encoding the universal exponential equation with three 
unknowns using algebraic types an interesting challenge. 

The following fact states that without commutativity, additive 
subtyping is undecidable with two primitive types or more. 

Fact 9.1. Additive subtyping in N({z)), Izl >_ 2 is undecidable. 

Proof. The proof is by giving a type theoretical interpretation to 
the corresponding result in formal power series [38]. [] 

Fact 9.1 might be interpreted to gives another indication that a 
reduction in the number of unknowns is possible. 

When there is only one primitive types, commutativity plays 
no role and we have that A((z)) = A(z) for any ring A. The most 
interesting case is A = N. It is a "celebrated" 5 open problem to 
show that additive subtyping in N((z)), Izl -- 1 is undecidable, or 
find an algorithm for it. 

If choice is idempotent, specifically when A = B, then additive 
subtyping, and hence additive inequality can be decided in polyno- 
mial time. 

5A. Salomaa (private communication), and P Flajolet (private communication) 
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Fact 9.2. Additive subtyping in B(z) and in B((z)) can be decided 
in polynomial time. 

Proof The proof is by using Parikh's theorem [32] to show the 
infinite set, with duplications removed, of configurations generated 
by an algebraic type is a regular set. Details can be found in [27, 
Chap. 7]. [] 

Another research direction is to explore multiplicative subtyp- 
ing in B(z), in B((z)), and N((z)) 

9.2 Other problems in the A type system 
Given two systems of equations 

T1 = Pi(T1, . . .  ,T,~,z) 

T,~ = P~(T1,. . .  ,T~,z)  

and 

Ti = Pi(T2,..., T',,-.) 

(61) 

: (62) 

T,', = P, '  ( T ~ , . . . , r , ' , , ~ ) ,  

the type equality problem is to determine whether the Laurent 
power series expansion of the algebraic functions T1 = T1 (z) and 
T~ = T~ (z) are identical. A simple algorithm for this problem is by 
applying Tarski's theorem [42] which gives a quantifiers removal 
procedure and a checking algorithm for every first order predicate 
over the reals involving equality, addition and multiplication as well 
as the usual logical operators. If two algebraic functions coincide 
in a non-empty neighborhood of the origin, then their Laurent ex- 
pansion must be identical. This condition is readily written in a 
prenex form, and hence can be tested. 

Tarski's original algorithm is highly inefficient [15]. More effi- 
cient (though still non-polynomial) implementation of his theorem 
exist [10, 8, 11]. These algorithms use techniques related to Groeb- 
ner bases [13]. A natural question is therefore whether Groebner 
bases can be applied directly for checking type equivalence. More 
generally, find a procedure for determining multiplicative subtyp- 
ing in .A (or show that it undecidable). 

9.3 Function types 
How should functions (in the programming sense) be incorpo- 

rated into the arithmetical types framework? The natural way of 
doing so is using exponentiation: a function mapping type zl into 
type z2 will be encoded as z~ 1 . Exponential encoding models well 
currying and other common operations on function types. We may 
use the term transcendental for a type system which includes ad- 
dition, product and exponentiation. Our undecidability result triv- 
ially extends to transcendental recursive type systems, and hence 
applies to traditional OO systems which admit functions as another 
type operator. 

Exploring subtype and type equivalence issues in a non- 
recursive transcendental type system is interesting, but the parallels 
between the type system and the arithmetical encoding do not work 
as nicely: The encoding of a procedure type 7- : z ~ Un:l.l: as 1 z 
may lead to the false conclusion that ~- = 1. Also, subtyping of 
function types obeys the contra-variance rule for arguments, which 
would be hard to model using arithmetic. 

9.4 A Restricted Type System 
In the context of many contemporary OO languages, it is im- 

portant to investigate a type system variant in which the choice type 
operator is used solely for the representation of references. Such a 
type system will not include types such as zl + z2. However, it 
will include types such as 1 + zl (a pointer to z), 2 + z (a pointer 
to a pointer to z) as well as (1 + zl)(2 + z~)za. This restriction 
roughly corresponds to languages such as Java and Eiffel in which 
there are no choices, but references which can be, to use the Eiffel 
terminology, void. More formally, we define the set Nix] C Nix] 
as follows. 

Definition 9.3. Given a finite set of primitive formal variables x, 
the set Nix] of pointer polynomials over x is defined by 

1. x • Nix], fo ra l lx  • x, 

2. 1 + p • N[x] for all p • Nix], 

3. plpz • ~l[x] for a i lp l ,pz  • N[x], and 

4. nothing else is in Nix]. 

The system N[x] is somewhat weird since it is closed under 
multiplication and substitution but not addition. An open problem 
is to determine the complexity of subtyping of algebraic types if 
the type equations are restricted to polynomials drawn from Nix]. 
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