
Javalight is Type-Safe - Definitely

Tobias Nipkolv and David van Oheimb*
Fakultgt fiir Iuformatik, Technische UniversitZt Miinchen

http://www4.informatik.tu-muenchen.de/”{nipkowIoheimb}

Abstract

Jar’aC*ght
formalize

is a large sequential sublanguage of Java. We
its abstract syntax, type system, well-formedness

conditions, and an operational evaluation semantics. Based
on this formalization, we can express and prove type sound-
ness. All definitions and proofs have been done formally in
the theorem prover Isabelle/HOL. Thus this paper demon-
strates that machine-checking the design of non-trivial pro-
gramming languages has become a reality.

1 Introduction

Javar+,t is a large subset of the sequential part of Java [12].
This paper presents its formalization and a proof of type
soundness - specified and verified in the theorem prover
Isabelle/HOL [18]. In the sequel, ‘Javafi,ht’ is abbreviated
to 'BALI'.

On the face of it, this paper is mostly about BALI, its ab-
stract syntax, type system, well-formedness conditions, and
operational semantics, formalized as a hierarchy of Isabelle
theories, and the structure of the machine-checked proof
of type soundness. Although these technicalities do indeed
take up much of the space, there is a meta-theme running
through the paper, which we consider at least as impor-
tant: the technology for producing machine-checked pro-
gramming language designs has arrived. We emphasize that
by ‘machine-checked’ we do not just mean th& it has passed
some type checker, but that some non-trivial properties of
the language have been established with t.he help of a (semi-
automatic) theorem prover. The latter process is still not
a piece of cake, but it has become more than just feasible.
Therefore any programming language intended for serious
applications should strive for such a machine-checked de-
sign. The benefits are not just greater reliability, but also
greater maintainability because the theorem prover keeps
track of the impact that changes have on already established
properties.

‘Research supported by DFG SPP Deduftion

Pcrmissioa to make digital/hard copies ofall or part oftbis material for
personal or cbassroom use is granted without fee provided that the copies
‘arc not made or distributed for profit or commercial advantage, the copy-
right notice. fbe title oftbc publication and its date appw, and notice is
given that copyright is by permission of the ACM, Inc. To copy oibenvise,
to republish, to post on servers or to redistribute to lists, requires specific
penniuion and/or fee.
POPL 98 San Diego CA USA
Copyrigl~t 1998ACMO-8979L9793/98/01..$3.50

1.1 Related work

The hiiory of type soundness proofs goes back to the sub-
ject reduction theorem for typed Xcalculus hut starts in
earnest with Milner’s slogan “Well-typed expressions do not
go wrong” [14] in the context of ML. Milner uses a deno-
tational semantics, in contrast to most of the later work,
including ours. The question of type soundness came to
prominence with the discovery of its failure in Eiffel[7]. Ever
since, many designers of programming languages (especially
00 ones) have been at pains to prove type soundness of
their languages (see, for example, the series of papers by
Bruce et al. [3, 4, 51).

Directly related to our work is that by Drossopoulou and
Eiienbach [lo] who prove (on paper) type soundness of a
subset of Java very similar to BALI. Although we were fa-
miliar with an earlier version [9] of their work and have
certainly profited from it, our work is not a formalization
of theirs in Isabelle/HOL but differs in many respects from
it, for example in the representation of programs and the
use of an evaluation (aka “big-step”) semantics instead of
a transition (aka “small-step”) semantics. Simultaneously
with our work, Syme [21] formalized the paper [9] as far as
possible, uncovering two significant mistakes, both due to
the use of transition semantics. Syme uses his own theorem
prover DECLARE, also based on higher-order logic.

There are two other efforts to formalize aspects of Java in
a theorem prover. Dean [S] studies the interaction of static
typing with dynamic linking. His simple PVS specification
addresses only the linking aspect and requires a formaliza-
tion of Java (such as our work provides) to turn his lem-
mas about linkmg into theorems about the type soundness
of dynamically linked programs. Cohen [S] has formalized
the semantics of large parts of the Java Virtual Machine,
essentially by writing an interpreter in Common Lisp. He
used ACL2, the latest version of the Boyer-Moore theorem
prover [2]. No proofs have been reported yet.

2 Overview of Bali

BALI includes the features of Java that we believe to be
important for an investigation of the semantics of a practical
imperative object-oriented language:

l interface and class declarations with
instance fields and methods,

l subinterface, subclass, and implementation relations
with inheritance, overriding, and hiding,

l some primitive types, objects (including arrays),

161

I

i

.

8,.]

1

l method calls with static overloading and
dynamic binding,

l type casts,
a a minimal treatment of exceptions.

The portion of Java we consider is roughly the same as cov-
ered by (101 and [Zl].

We do not consider Java packages and concurrency. For
simplicity, we’ also leave out several features of Java like
class variables and static methods, constructors and finaliz-
ers, final classes, and others. Several constructs are simpli-
fied without limiting the expressiveness of the language (see
$4.1). We have not yet considered full exception handling
and the visibility of names, but we aim to include them in
later stages of our project.

3 The basics of Isabelle/HCL

Before we present the formalization of BALI, we briefly in-
troduce the underlying theorem proving system.

Isabelle/HOL is the instantiation of the generic interac-
tive theorem prover Isabelle [18] with Church’s formulation
of Higher-Order Logic and is very close to Gordon’s HOL
system [ll]. In this paper HCL k short for Isabelle/HOL.

The appearance of formulas is standard, e.g. ‘+’ is the
implication symbol.

Logical constants are declared by giving their name and
type, separated by I::‘. Primitive recursive function deli-
nitions are written as usual.. Non-recursive definitions are
written with I%“.

Types follow the syntax of ML, except that the function
arrow is I*‘. There are the basic types .bool and innt, and
the polymorphic types 0: x fl, a set and CY et, and a conver-
sion function set :: Q list =F a set. The “cons” operator on
lists is the in& ‘#‘, concatenation the infix I@‘- TQles are
pairs {with prqjections fst and snd) nested to the right, e.g.
{a,b,c) = (a,(&~)). Type abbreviations are simply $von a.s
equations, free datatypes are inboduced with the datatype
keyword. We frequently use the following type:

datatype CY optkon = None 1 Some a:

It has an unpacking function the 1: cr option +- Q such that
the (Some z) = I and the None = arbitrary, where arbitrary
is an unknown value.

Most of the HOL text shown in this paper is directly
taken from the input files. However, it has been massaged by
hand to hide Isabelle idiosyncrasies, increase readability, and
adapt the layout. Minor typos may have been introduced in
the process,

4 The formalization of Bali

This section presents all the important aspects of our for-
malization of BALI'.

As far as BALI is a subset of Java, it strictly adheres
to the official Java language specification [12], with three
generalizations:

l we allow the result type of am&hod overriding another
method to widen to the result type of the other method
instead of requiring it to be identical.

l no check of result types in dynamic method lookup.
l the type of an assignment is determined by the right-

hand (not left-hand) side.

‘The Isabelle sources are availabk from the BALI project page
http:/~uvuQ.inforrpatik.tu-muen~en.de/-isabelle/bali/

4.1 Abstract syntax

Fist, we describe how we represent the syntax of BALI cts
Isabelle datatypes, and which abstractions wc have intro-

. duced thereby.

4.1.1 Programs

A BALI program is a pair of lists of interface and class dcc-
larations:

prog = idecl list x cdeci list

Throughout the paper, the symbol ‘I” denotes a BALI pro-
gram, as we use programs as part of the static type context
commonly written ‘P’.

Each declaration is a pair of a name and the defined
entity. We do not Further specify the structure of names, but
use the opaque HOL types tname, mname, and ename for
BALI’S type names, method names, and LLexpression names”
(e.g. field identifiers, see {12, 6.51).

ijaee = tneme list x imdecl list
idecl= tname x ij5ce
class = tnsme option X tname option X

fdecl list x cmdecl Esf
cdecl = tname x class

An interface (iface) contains lists of superinterface names
and method declarations. A class specifies the names of au
optional superclass and implemented interface, and lists of
field and method declarations. (A class that implements
more than one interface can be modeled as implementing an
intermediate interface that extends all these interfaces.)

field = ty
fdecl = ename x field
sig = mname x ty
mhead = ty
mbody = stmt x ezpr
mefhd = mhead x mbody
cm&cl = sig x methd
imdecl = sig x mhead

A field declaration (fdecQ simply gives the field type (ts,
see $4.2). A method declaration (cm&I or imdeci) con-
sists of a “signature” [12, 8.4.21 (i.e. the method name and
parameter type(s), excluding the result type) followed by
the result type @head) and, if it appears within a class,
the method body (mbody). The latter consists of a statc-
ment and a return expression (stmt and ezpr, set below).
Local variables of a method may be simulated with addi-
tional parameters. The separate return expression saves us
corn dealing with return statements occurring in arbitrary
positions within .the method body. Such statements may
be replaced by assignments to a suitable result variable fol-
lowed by a control transfer to the end of the method body,
using the resuIt variabIe as return expression. We provide a
dummy result type and value for “void” methods. For sim-
plicity, each method has exactly one parameter; multiple
parameters can be simnlated by a single parameter object
with multiple fields.

The list representation of declarations gives an impllclt
finiteness constraint, which turns out to be necessary for the
well-foundedness of the subclass and subinterface relation.

162

.I

4.1.2 Representation of lookup tables

For the lookup of declared entities, we transform declara-
tion lists into abstract tables. They are realized in HOL as
Upartial” functions mapping names to values:

(cr,P)tabZe = 0 =S p option

The empty table, pointwise update, extension of one table
by another, the function converting a declaration list into
a table, and an auxiliary predicate relating entries of two
tables, are easily defined:

etable :: (ctJ3)tabZe
-[-:=-I :: (a,p)tabZe =S a * p * (a$)tabZe
-cl3- :: (c&table * (cQtabZe * (a,P)tabZe
table :: (ax@)Zist * (o@)tabZe
_ hiding _ entails _ :: (cr,@dde * (cr,y)tabZe *

(/3 + y =P bool) =S booZ

etablc dz Xk. None

t[z=y] gf Xk. if k = z then Some LJ else t k

set ‘kf XI;. case t k of None + s k
1 Some z * Some 5

table 0 = etable
table ((k,x)#t) = (table t)[k=x]

t hiding s entails R gf WC 2 y.
tK=Somez+sk=Somey-+Rzy

A simple application is the translation of programs to
tables indexed by interface and class names:

iface I? dAf table (fst I’)

class I? dAf table (snd I’)

More interesting are the following functions that traverse
the type hierarchy of a program, collecting the methods and
fields into a table:

imethd :: prog x tname =P (sig, ref-ty x mhead)tabZe
cmethd :: prog x tname =S (sig, ref-ty x methd)tabZe
fields :: prog x tname * ((ename X ref- ty) X fieZd)list

As Syme [Zl] points out, a naive recursive definition is not
possible in HOL because the class hierarchy might be cyclic,
which is ruled out for well-formed programs only. This leads
to partial functions, which HOL does not support directly.
Syme defines these functions as relations instead. In con-
trast, we have chosen to define them as proper functions,
based on Slind’s work on well-founded recursion [19]- We
do not give the definitions, but only the recursion equations
which we derive as easy consequences:

wf-prog r A iface r I = Some (is,ms) +
imethd (I’J) = let imethds = (XJ. imethd (I’J) ” set is

in (~20 o (Un-tables imethds)) 8
table (map (X(s,mh). (s,lfaceT I,mh)) ms)

wf-prog r A class r C = Some (sc,si,fs,ms) +
cmethd (I’,c) = (case SC of None + etable

1 Some D =F cmethd (I’$)) 8
table (map (A(s,m). {s,(ClassT C,m))) ms)

wf-prog r A class r C = Some (sc,si,fs,m~) +
fields (I’,G) = map (X(j$fi). ((fn,ClassT C),fi)) fs @

(case SC of None + 0 1 Some D =S fields (l?,D))

where

s20 A dg if 312. SEA then Some (EZ. sA) else None

f”A if {ye 3z~A. y = f z}
Un-tables ts kf XA u#ts. case t k of None + { }

1 Some x * {x}

4.1.3 Statements and expressions

We define statements (appearing in method bodies), expres-
sions (appearing in statements), and literal values (appear-
ing in expressions) as recursive datatypes.

Statements are reduced to their bare essentials. We do
not formalize syntactic variants of conditionals and loops.
Neither do we consider jumps lie the break statement. The
only non-standard statement is the “expression statement”
Expr, which is evaluated for its side effects only. Assignments
and. method calls, both of which are expressions because
they yield a value, can be turned into statements via Expr.

datatype stmt = Skip

I b-ezpr
1 stmt; stmt
1 If (ezpr) stmt Else stmt
I While(espr) stmt

Concerning expressions, our formalization leaves out the
standard unary and binary operators as their typing and
semantics is straightforward. Creation of multi-dimensional
arrays can be simulated with nested array creation. Because
methods have just one local variable, namely the (single)
parameter, we have given it the special name LVar. We have
chosen not to introduce the general syntactic category of
variables because the semantic treatment of local variables
(including parameters), class instance variables, and array
components differs considerably.

datatype ezpr
= This this
1 New tname class instance creation
1 pQPrl array creation

I Lit ZitptiZ
type cast
literal

I LVar local/param. access
I LVar:=expr local/param. assign.
I ezpr{ref-ty].ename field access
] ezpr{ ref- ty} . enamez= expr field assignment
I WrIezprl array access

I ~rI~rj:=~r array assignment
I ew--mn~me{QfHfwr) method call

The terms in braces (. . . } above, called type annotations, are
normally added by the compiler in order to implement the
static, respectively dynamic, binding of fields and methods.
We avoid distinguishing between the actual input Language
and the augmented language, because this would lead to a
considerable amount of redundancy. Instead, we can safely
assume that the annotations are added beforehand, as they
are checked by the typing rules (in 54.2.3) anyway.

The definition of literal values is straightforward:

datatype ZitvaZ
= Unit dummy result of void methods
1 Null null reference
1 Bool bool Boolean value
1 lntg int integer

This definition is based on the HOL types of Boolean values
(bool) and integers (int).

163

4.2 Type system

Thii section d&es types, various ordering relations betwen
types, and the typing rules for statements and expressions.

4.2.1 Types

We formalize BALI types as values of datatype ty, dividing
them into primitive and reference types:

datatype pn’pn- ty primitive type
= vo;cl dummy type for void methods
1 Boolean Boolean type
] Integer integer type

datatype ref- ty reference type
= NullT null type
1 IfaceT halme interface type
] ClassT trzante class type
] ArrayTm ty array type

datatype ty type
= PrimT prim-ty primitive type
1 Reff ret-ty reference type

In the sequel [face I stands for Reff(IfaceT I), Class C for
Reff(CfassT C) and q for Reff(ArrayT 7’).

4.2.2 Type relations

The relations between types depend on the interface and
class hierarchy of a given program ??, and are therefore ex-
pressed with reference to r. The direct subinterface (I- -$)>
subclass (I- -$) and implementation, { t -’) relations
are of type prog x tname x tname + boo1 and are defined
-as follows:

I? I- I+ J +2 isiface r I A isjface ?J J A
3 E set (fst (the (iface I? 1)))

r t C+t D !Lf is-class r C A is-class r D A
Some D = fst (the (class I’ c>)

r I- C-+’ I 21‘ is-class I? C A isjface I? I A
Some I = fst (snd (the (class I’ CJ))

They are based on the auxiliary functions

isiface l? I dd iface I? I # None

is-class I? C gf class I’ C # None

The transitive {but not reflexive) closures I- -+ and I- +
are defined as usual. There is also a kind of transitive closure
of t- u1 defined inductively:

The key relation is widening: l? F S-4 T, where S and T are
of type iy, means that S is a syntac& subtype of T, i.e. in
any expression context (especially assignments and method
invocations) expecting a value of type T, a value of type S
may occur. Note that this does not necessarily mean that
type S behaves like type T, but only that it has a syntac-
tically compatible set of fields and methods. The widening
relation is defined inductively es

is-type l? T rt c-1

I’l-TdT r I-Class C 5 lface I

isjface I’ I; is-class r Object

rl- (face I 5 Class Object

rtc-0 rt--+,J
r I- Class C 5 Class D lTF lface I j Iface J

is-type I? (Refl R)

where

I’t Reff NullT 5 RefT R

is-type I? T; is-class I? Object

I’i- rrI] 5 Class Object

l?FRefi S5 RefT T
r I- IReff’ $4 5 (Refl T)[l

is-type I? (PrimT -) = True
is-type I? (Reff NyllT) = True
is-type r (Iface I) = is-iface r I
is-type r (Class q = is-class I+ C

is-type r tafl) = is-type I? T

Object is the name of the top of the class hierarchy,
‘To allow for type casting we also have the relation I- 57,

where I’ t 5’57 2’ means that a value of type S may be cast
to type F

rtssT rk c7-k~
I?!-S’S?T r t Class D 57 Class C

is-class r C; isiface r I
r I- Class C 5~ lface I

isiface r I; is-class r C
r t iface I 57 Class F

is-class r Object; is-type I’ 2’

r I- Class Object 57 a

isiface r J;-rl- I+,J;
imethd (I’, hiding imethd (I’,J) entails
(A(m4”1 (ma,rTz). PI- rT~-(rTz) 3

r t lface I 57 lface J

II’I-Reff S s?Reff T
ri- (Refl s)[l 5 (Rem 33[1

4.2.3 Typing rules

Now we come to the actual type checking rules. An en&
ronment consists of a global part, namely a program, and a
local part, namely the type of the (single) current method
parameter and the current cIass, i.e. the type of This:

ena = prog x ty x tname

The well-typedness of statements (t- :: 0) and the typing
of expressions (I- ::> are defined inductively relative to an
environment.

-I--::0 :: env 3 stmt =s booi
- t -::- :: env + expr =S ty + booi

The rules for statements are obvious:

El- e::T Et-sl::O; El-sa::U
El-Skip::0 Et Expr tx:O sl; s2::o

El- e::PrimT 3oolean; El- sl::O; El- sz::O
If(e) SI Else sz::V

Et- e::PrimT Boolean; Et s:: 0

El- While(e) s:: 0

More interesting are the rules for expressions:

is-class (prg E) (thisT @ is-class (prg Ef C

El- This::Class (thisT 19) El-New &Class C

is-type (prg E) T; El- i:PrimT Integer

El- New qi]::!lJJ

El- ezT; prg El- T-i? T’
El- (T)e::!P El- Lit zztypeof (k. None) x

is-type (prg .E) (IocalT E)

El- LVar::localT E
El- vz:: T; prg El- T-c IocalT E

El- LVar:=a: T
El- e::Class C; cbeld (prg E,c) fn = Some (fd,f!Z’)

E I- e{fd) .fi::fT

Ei- e{fa).fi::T; El- XT; prg El- 2’5 T
El- e(fd).fi=vz:T’

El- n:: rl]; E I- t:PrimT Integer

El- a[ij::T

El- a[$:T; El- XT; prg El- !Z’s T
El- a[l):=~:Z’

El-e:RetT T; El-p::pT;
max-vec kg E) T bn,pT) = C(~~~T),P~)~

Ei- e.mn(pF}(p)::rT
The rules are based on the auxiliary functions given below.
The function cfield is a variant of fields implementing a field
lookup that is based on the field name alone iu contrast to
a combination of field name and defining class. So in the
above typing rule for field access, equal field names hide
each other, while at run-time all fields are accessible, using
the defining class as an additional search key.
prg (r,IT,tT) = ??
IocalT (I’,lT,tT) = IT
thisT (I’,ZT,tT) = tT

typeof dt Unit = PrimT Void
typeof dt Null = Reff Nulli
typeof dt (Boo1 b) = PrimT Boolean
typeof dt (lntg 2) = PrimT Integer
typeof dt (Addr a) = dt a

cfield dAf table o (map (X((fn,fa),ft). (fn,(fd,fi)))) o fields

The typing rules are rather straightforward, except for
the type annotations (. . 9), which are used to implement
static binding for fields and to resolve overloaded method
names statically. The rules for field access and method call
determine how to compute these annotations. They read as
follows.

A field access e{fd).fn is annotated correctly if fd is the
lirst defining class for a field with name fn when searching ’
the class hierarchy (using tield) starting from the static type
Class Cof e. The annotation (fd) will be used subsequently
to access the field (the one just found) via the pair (fn,fd).

A method call e.mn(p!Z’}(p) is type-correct only if the
function maxspec determining the set of Umaximally spe-
cific” [12, 15.11.2] methods for reference type T (as defined
below) yields exactly one method entry. In thii case, the
call is annotated by p!Z’, which is the argument type of the
most specific method mn applicable according to the static
types T of e aud pT of p. So the dynamic method lookup
at run-time can be based on the signature (mn,pT’).

max_spec J? rT sig dAf {m 1 rn Eapplmethds I’ rT sig A
(Vm’Eapplmethds I’ rT sig.

moreJpec I? m’ m + n’ = m)}

applmethds I? rT (mn, pT) sf {(m,pT) 1
mhead r rT (mn, ~2’) = Some m A I’l- pTjp2’)

more5pec I? ((d,r),p) ((d,r’),p’) %f
PI-R& dsRefl d ArtpAp’

mhead I’ t sig di case t of Nulli =S None
1 IfaceT I =S imethd (I’J sig
1 ClassT C =F option-map (X(md,(mh,mb)). (md,mh))

(cmethd (r,C) sig)
I ArrayT T =S None

4.3 Well-formedness

A program must satisfy a number of well-formedness condi-
tions concerning global properties of all declarations. The
conditions are expressed as predicates on field, method, in-
terface, and class declarations, as follows.

A field declaration is well-formed iff its type exists:

wf-fdecl I? &z#) ‘!!! is-type I? ft

A method declaration is well-formed if its argument and
result types are defined. If the declaration appears in a
class, additionally its body has to be well-typed (in the static
context of its parameter type and the current class) aud its
result expression have a type that wideus to the result type:

wfmhead I’ (mn,pT) rT ‘kf is-type ?? pTA is-type I? rT
wf-cmdecl I? C (sig,rT,bZk,res) d=d wf-mhead P sig rT A

let E=(I’,snd sig,C) in El- bk: 0 A 3T.
El-res::TA i’i- TdrT’

More complex conditions are required for well-formed in-
terface and class declarations. The name of a well-formed
interface declaration is not a class name. All superinter-
faces exist and are not subinterfaces at the same time. All
methods newly declared in the interface are named uniquely
and are well-formed. Furthermore, there are no ambiguously
inherited methods, and any method hiding a method of a
superinterface has a compatible result type:

wf-idecl I? (I,{is,ms)) dgf 1 is-class I’ In
(V&set is. isiface I’ J A -, P I- J* I) A
unique ms A (V(sig,mh)Eset ms. wfmhead I’ sig mh) A
let mtab = Un-tables ((XJ. imethd (l?,J)) “set is) in

(Vsig. atmostl (mtab sig)) A
(table ms) hiding (s20 o mtab) entails
(ArTI (md,rTz). i’l- rT1 -< rTz)

where
unique t sf V(q,yl)Eset t. V(x2,y2)Eset t.

Xl = x2 --) y1 = y2

atmostl S ds VXES. VyES. x = y
Similarly, the name of a well-formed class declaration is

not au interface name. If the class implements an interface,
this interface exists, and for auy method of the interface,
the class provides an implementing method with a possibly
narrower return type. All fields and methods newly de&red
in the class are named uniquely and are well-formed. If the
class is not Object, it refers to an existing superclass, which is
not subclass of the current class. Furthermore, any method
overriding a method of the superclass has a compatible result
type:

165

wf-cdecl iI’ (C,(sc,si,fs,nas)) gf -, isiface I‘ CA
(VI. si = Some I ---t isiface I? [A

Qs m 01. imethd (I’J) s = Some (m ,rZ’l) +
3b m’ rT2. cmethd (r,c) s = Some (m’,r!G,b) A

I’l-rTz<rT~f A
uniquefi A (Qf fset fs. wffdecl I’ f) A
unique ms A (QmEset ms. wf-cmdecl I? C m) A

[case SC of None + C = Object
ISomeD~is_classrDA-,r~D~cCA

(table ms) hiding (cmethd (I’,@) entails
p+a,b) (f3-+r2,b’)). rt rz 3 ~27~)

Finally, a well-formed program contains the standard
declaration of Object, namely the empty class declaration
ObjectC kf (Object,(None,Non&[,0)). All its declared inter-
faces and classes are named uniquely and are well-formed:

wf-prog I? gf ObjectC E set (snd I’) A
unique (fst I’) A V&set (fst J?). wf-ided I? z. A
unique (snd l?) A V&set (snd I’). wf-cdecl I’ c)

4.4 Operationa! semantics

In this section, we describe the notion of a state and give
the evaluation r&s for expressions and statements.

4.4.1 State ’

A state consists of an option&i exception (of type xcpt, which
currently consists of system exceptions Iike’NullPointerXcpt
only), a heap, and the current invocation f&me, Tyhich is
the value of the (single) parameter and the This pointer:

state = xcpt option x heap x ual x Ioc

A value is either a literal vaIue or a location, i.e. au abstract
non-null pointer to an object; a*heap is a mapping from
locations to objects:

heup = (Zoc, 0bJtable’ ”
datatype val = Vat Ihal] Addr lot

The type lot of locations is not further specified.
An object is either a class instance, modeled as a pair

of its class name and a table mapping pairs of a field name
and the defining class to values, or an array, modeled as a
pair of its component type and a table mapping integers to
V&ES.

fields = (ename x ref- ty, val)table
componenls = (int val) table

datatype obj = Obj tname field; 1 Arr ty components

There is a numberbf auxiliary functions handling the state,
namely:

l theAddr :: val + lot is defined such that
theAddr (Addr a) = a; ,

l the_Obj :: obj option =+ tname x fields with
the-Obj (Obj Gfs) = (C,fs);

l theArr :: obj option + ty x components with
theArr (Arr T cs) = (T,cs);

l obj-ty obj dA’ case oaj of Obj G fs + Class C
1 Arr T es 3 a

0 raise-if c 2 20 dAf
if CA (20 = None) then Some 5 else zo

l np B sf raise-if (u = Null) NullPoihterXcpt

l c-hupd h’ (zo,(h,I,t)) dAf
if Z:D = None then (None,(h’,l,t)) else (zo,(l~,l,t))

l cast-ok r T h o) dAf @pt. T = PrimT pt) V
I’E obj-ty (the (h (theAddr v))) 5 T

l default-vat (PrimT Void) = Unit
default-vat (PrimT Boolean) = Boo1 False
default-vat (PrimT Integer) = lntg 0
default-vat (Reff r) = Null

4.4.2 Evaluation rule format

We define the operational semantics of statements and ex-
pressions via mutually inductive rules. To obtain a concise
description, we use an evaluation semantics rather than a
transition semantics.

l I’+ (z,g) --s+ (z!+r’> means that execution of statc-
ment s transforms state (5~7) into (3!,vz’).

l I’F [z,c,B) -eDv+ ($*u’) means that expression e ovnl-
uates to value u, transforming (z,~) into [d,a’).

Strictly speaking it is neither necessary to include an crcccp-
tion in the start state of a computation nor the This pointor
in the final state (because This does not change). Similarly,
an expression needs only return either a value or an cxcap-
tion, but not both. However, the symmetry achieved by our
slightly redundant model simplifies the rules considerably,
In particular, in many rules we can avoid case distinctions
on whether exceptions occur in intermediate states, which
would cause the rules to be split. As a result, there is exactly
one rule for each syntactic construct.

For both statements and expressions there is a general
rule defining that exceptions simply propagate:

I? t (Some xc,u) -s+ (Some zcp)

I? I- (Some XCJ) -e~arbitrary+ (Some zc,u)

AH other ruies can assume that in their concerning initial
state no exception has been thrown. For such states, ‘we
define the abbreviation Norm G, which stands for (None,o).

4.4.3 Execution of statements

The rules for statements are obvious:

I’i- Norm a0 LeDu+ ul

I’t Norm v -Skip+ Norm Q T’l- Norm go -Expr e--t 01

rl- Norm CC, -s1 + crl; I? I- ~1 -SZ+ u2
I’ I- Norm 00 -sl; sz+ a~

I’k Norm oo --e~v-) 01;
I’t QI -if the-Boo1 2, then SI else s2+ uz

l?l- Norm u. -If(e) 51 Else s2-t ff2

l?k Norm (TO -If(e) (s; While(e) s) Else Skip-t bl
I’t Norm uo -While(e) sd u1

. .
L’ I’- ~ -x& ,, t “.. . ’ .

4.4.4 Evaluation of expressions

In contrast, the evaluation rules for expressions deserve some
comments.

The value of This is a component of the state:

I’l- Norm Q -ThisDAddr (this a)+ Norm u

Creating a new class instance means picking a new ad-
dress a (i.e. h 4 = None) and updating the heap at that ad-
dress with an object, the fields of whir& are initialized with
default values according to their types:

h = heap rr; h 4 = None; h’= h[a:= Obj C (table

(map CWT). tidefault-val fT)) (fields (r,c))))l
I? l- Norm u -New CDAddr a+ chupd IL’ (Norm a)

Creating a new array means picking a new address, up-
dating the heap with an array, the components of which are
initialized with default values, and raising an exception if
the length of the array is negative:

I’l- Norm ao -eDj+ (q,ol); i = the-lnt 3;
h = heap al; h 4 = None; h’=h[a:=Arr T (Xj.

if Kjl\ j<i then Some (default-val !T’) else None)];
x1’- -raise-if (i<O) NegArrSizeXcpt ZI

I’l- Norm cro -New fle]DAddr a+ chupd K (s’,a~)

Type casts simply return their argument value, but raise
an exception if its dynamic type happens to be unsuitable:

l?l- Norm a0 -eDu+ (q,s&

X1 ’ = raise-if(xast_ok I? T (heap SI) u) ClassCastXcpt xl

l’l- Norm a0 -(T)eDv+ (R’,sI)

A literal value is simply returned:

I’l- Norm u -Lit u~u+ Norm u

An access to LVar reads from the corresponding state
component:

I’l- Norm u -LVarDlocal a+ Norm Q

An assignment to LVar updates the state, in case the
subexpression does not raise an exception:

I’l- Norm Q -eDv+ (z,(h,Z,t));
l = (if 1: = None then w else r)

I? l- Norm cr -LVar:=eDo+ (z,(h,l,t))

A field access reads from a field of the given object, check-
ing for null pointer access:

I’l- Norm a0 -eDa’+ (x&;
II = the (snd (the-Obj (heap 01 (theAddr 4)) (~$2))

rl- Norm uo -e{ T).fnr>u+ (np d q,ul)

A field assignment acts accordingly:

I’l- Norm u. -elDa’+ (xl& 4 = theAddr a’;
n- (np a’ zl,ul) -ezDw + (x2,U2);

h = heap ~22; (r$..) = the_Obj (h a);
Ii = h[a:=Obj c cfs[@,T):=u])]

I’l- Norm ue -(el{T).fn:=ez)Dw c-hupd h’ (x2,u2)

An array access reads a component from the given array,
but raises an exception if the index is invalid:

rl- Norm uo -elDd+ UI; rf-ul -ezD%++ (~2,023;
uo = snd (theArr (heap uz (theAddr a’))) (the-lnt t);
x2’ = raise-if (wo = None) IndOutBoundXcpt (np 4’ 22)

rl- Norm ue -el[g]Dthe wo+ (XZ’,UZ)

Similarly, an array assignment updates the appropriate
component, but has to check the typing:

I‘l- Norm uo -elDa’+ UI; a = theAddr a’;
rkul -ezDt”+ uz; i = the-lnt 2;

I’l-~2 -eaDu + (xs,ua); h = heap ua;
(T,cs) = theArr (h a); h’ = h[a:=Arr T (cs[i:=u])];

’ = raiseif (-cast-ok I? T h u) ArrStoreXcpt (
rzsejf (cs i = None) 1ndOutBoundXcpt (np a’ x3))

I’l- Norm uo -(el[e2]:=es)Du+ chupd I&’ (zs’,ue)

The most complex rule is the one for method invoca-
tion: after evaluating e to the target Iocation 4 and p to the
parameter value pu, the block blk and the result expression
res of method mn with argument type Tare extracted from
the program I’ (using the dynamic type dynT of the object
stored at a). After executing blk and res in the new invoca-
tion frame built from pv and a, the old invocation frame is
restored and the result value w returned:

T’t- Norm cre -eDd+ al; 4 = theAddr Q’;
I’ I- ul -p~pu+ (x&h&) ; dynT = fst(the-Obj (h a));

(md,mh,bZk,res) = the cmethd (r,dynT) I
r I- (np d ~2,(h,pu,a)) -bZk+u3;

(mn>T));

r k Us -RSDU -+ (x&U.%)

l?l- Norm uo -(e.mn(T)(p))Du+ (r,(heap a&))

Note that the rules are defined carefully in order to be
applicable in all situations, even not type-correct ones (e.g.
theAddr (Val (Boo1 b)) yields an arbitrary value). A “defen-
sive” evaluation throwing some artificial exception in case of
type mismatches, which would require additional overhead,
is not necessary.

5 Proof of type soundness

This section discusses the type soundness theorem and its
crucial lemmas. As the necessity of certain lemmas emerges
quite naturally, it is not surprising that many of them are
similar to those g&m by Drossopoulou and Eisenbach [lo].
On the other hand, the proof principles we use are sometimes
rather d&rent from those outlined in their earlier paper [9],
some of which are inadequate.

5.1 Lemmas about the type relations

There are two non-trivial lemmas concerning the type rela-
tions of BALI, namely the well-foundedness wf of the (con-
verse) submterface and subclass relations

and the frequently used transitivity of the widening relation:

wf_progr--+r~S~UArI-U~T~rt-S~T

The two relations are well-founded because they are finite
and acyclic, where the former is a consequence of represent-
ing class and interface declarations as lists, and the latter
follows from the irreflexivity of the relations, which in turn

167

--I

s

.

.

follows from the well-formedness of the classes and interfaces
implied by the well-formedness of the whole program.

The well-foundedness facts are necessary for deriving the
recnrsion equations for the functions that traverse the type
hierarchy of a program (see $4.1) and also give rise to in-
duction principles for the (direct) subinterface and subclass
relations, e.g.

wf-prog J?; P Object;
YCD. C#ObjectAr~C~~DA...APD~PC

VE. is-class l? E + P E

Most hmmas like transitivity of E 5, as well as auxil-
iary properties for deriving them, typically rely on several
well-formedness conditions and are usually proved by rule
induction on the type relation invoived, or by applying the
induction principles just mentioned.

5.2 lemmas about fields and methods

For the type-safety of field accesses and method calls, char-
acteristic lemmas concerning the field lookup and method
lookup are required. They are used to relate the (static)
types of fields and methods, as determined at compile-time,
to the actual {dynamic) types that occur at run-time.

For example, fields correctly referred to at compiIe-time
must be found at run-time. More formally, if a field access
e{T).fi with El- e::Class Cstaticaliy refers to a field of type.
f2’ defined in the reference type (some c&s) T, within an
instance of some class d which may be a subclass of C the
fieId can be referred to (dynamically) using the same name
and its defining class. In particular, there is no dynamic
binding for fields. This fact requires the following lemma:-

wf-prog l? n cfield (l?,C) fn = Some (fd,fn A
rl-Class CAClass C+ (

table (fields (l?,G’)) (b,fd) = Some fT ’

Concerning method calls, a similar requirement prevent-
ing ‘method not understood’ errors can be formalized: if
a method call of the form e.nan{pT)(p) with Et- e::RefT 7’
refers to a method that is statically available for the refer-
ence e, the dynamic lookup of the object pointed at by e
should yield a method with a compatible result type. The
lemma that helps to establish this behavior reads as folIows:

wf-prog l? A mhead II’ T sig = Some (m~,rT~),n
rl-Class !&ARefT Tt

3rnz rT2 b. cmethd (I’,TI) sig = Some (mz,rZ’&) A
rt-e25nl

The proofs of these lemmas are lengthy and require many
auxiliary theorems that are proved by induction on the di-
rect subclass relation, by case splitting on the right-hand
argument of the widening relation and by rule induction on
the subinterface, subclass, and implementation relation.

5.3 Type soundness

FinalIy, we state and prove the type soundness theorem.

5.3.1 Notions

In order to express the type soundness theorem, we intro-
duce the notion of a state u conforming to an environment
E, written a::5 E, which intuitively means that the value of
any variable within the state is compatible with 5%~static
type. The conformance relation is based on the two auxil-
iary concepts l?,hl- v::d T of a value v conforming to a type

Tand l?,hl- obj::s 0 of all components of an object objcon-
forming to their respective types, both with reference to a
given program l? and heap k

l?,hl- v::< T %f 32’. typeof (option-map obj-ty o h) II =
SomeTAGtTTT

r,hl- obj::d 0 dgf case obj of
Obj Cf.. + VTJ table (fields (l?,c)) f= Some T +

3v. fs f = Some v A I’,ht- v::s T
1 Arr T cs + Vi v. cs i = Some w 4 I’,hl- v::d T

s::sE dAf let I? =,prg E; h = heap s; t = this s in
(‘v’u obj. h a = Some bbj + ??,h I- obj::A 0) A
l?,kl- local s::AlocalT EA
??,lal-Addr t::AClass (thisT Ii’)

Another helpful notion used below is a pre-order on heaps:
hah’ means that any object existing on heap h also exists
on h’ and has the same type there. This property holds for
any transition of the operational semantics, which turns out
to be necessary in our proof of type soundness.

hah’ dz Va. bCfi. h a = Some (Obj Cfs) +
3fs’. h’ la = Some (Obj C fs’)) A

(VT cs. h a = Some (At-r T cs) --t
3~s’. hf u = Some (Arr T cs’))

5.3.2 Main theorem

Next, we give the key type soundness theorem. It is proved
by simultaneous rule induction on the evaluation of exprcs-
sions and statements and therefore has to be formulated in
a way that gives a strong enough induction hypothesis, We
do not attempt to cast it into words. Instead, WC discuss
some of its corollaries below, which are surprisingly clear.

wf-prog r +

(h’,f,t’) ::s (r,lT,tT) A hll h’) A
(J?t (z,(h ,Z ,t)) -eDv+ (d,(h’,f,t’)) +
VlT tT. (h ,I ,t) ::5 (?l’,lT,tT) +
VT. (J?,lT,t!i!J t e:: T ---f

(h',~,t')::i.(r,K!',tT) A h_ah' A
(d = None + r,tit~::LI:q)

The proof of this theorem is by far the heaviest. At its top
level, it consists of (currentIy) 19 cases, one per syntactic
construct, where

7 cases can be solved rather directly (e.g. from the
induction hypothesis),

4 cases require just simple lemmas on the structure of
the state,

and the remaining 8 cases require extensive reasoning
on the characteristic properties of the constructs con-
cerned.

Most of this reasoning is independent of the operational sc-
mantics itself and can be factored out, which keeps the main
proof manageable.

168

----.--- - _ -.. . ^ ., ., * -- . . . -, _- - -*r- y

5.3.3 Corollaries

For a discussion of its consequences, we state two imme-
diate corollaries of the main theorem. In the context of a
well-formed program, the execution of a well-typed state-
ment transforms a state conforming to the environment into
another state that again conforms to the environment:

I? = fst E A wf-prog r A
rl-jzp) -s--f @,a’) Au::~EAEt-s::O +

u’ ::j E

The same holds for the evaluation of well-typed expression,
where additionally we have that, unless au exception occurs
during evaluation, the resulting value conforms to the static
type of the expression:

r = fst En wf-prog I? A
r i- (syr) --eDw+ (d,u’) A u::s E A Eb e:: !?? +

a’::5 E A (z’ = None -+ I’,fst u’ I- w::A T)

This is what type soundness actually means.
A corollary of type soundness is that method calls always

find a suitable method, i.e. a ‘method not understood’ run-
time error is impossible. This can be stated more formally:
for a well-formed program and a state that conforms to the
environment, if an expression of reference type (which plays
the role of the target expression for the method call consid-
ered) evaluates without an exception to a non-null reference,
and if there is a method available for that (static) type and
a given signature, the dynamic method lookup for the same
signature according to the class instance pointed at by the
reference value yields a method body:

I? = fst E A wf-prog r A
l? l- (qu) --eDa’+ Norm u’ A $ # Val Null A
dynT = fst (the-Obj (fst u’ (theAddr d))) A
u:$EAEl-c:Reff TAmhead r Tsig# None +

cmethd (I’,dyn!Z’j sig # None

This implies that in a well-formed context, in every in-
stance of the evaluation rule for method calls, the function
cmethd returns a proper method body.

6 Experience and statistics

Because of the expressiveness of HOL, our formalization of
BALI is quite natural and direct. Isabelle’s mix& syntax and
mathematical font are indispensable for writing moderately
readable definitions and theorems. The theory l&s add up
to about 1100 lines of well-documented specifications. It
took us roughly two months of work and about 2400 lines of
proof scripts to show the type soundness theorem with all
necessary lemmas.

Although we are far from satisfied with the current sta-
tus of Isabelle’s proof procedures (for example, the handling
of assumptions during simplification, or the necessity to ex-
pand tuples and similar datatypes by hand), they are ba-
sically adequate for the task at hand. Nevertheless, more
automation is necessary and feasible.

The adaption of old proofs after changing the formaliza-
tion is a tedious job. Although the changes in the proofs
are usually quite local, there tend to be many. Higher-level
proof scripts and more automation are some of theanswers.
A dedicated mechanism for exploring and fixing the impact
of modifications would also help.

7 Conclusion

The reader has been exposed to large chunks of a formal
language specification and a proof of type soundness and
may need to be reminded of the benefits. Even including the
slight generalizations mentioned in $4, we did not discover
a loop-hole in the type system. But we had not seriously
expected this either- So what have we gained over and above
a level of certainty far beyond any paper-and-pencil proof?

We view our work primarily as an investment for the fu-
ture. For a start, it can serve as the basis for many other
mechanized proofs about Java, e.g. as a foundation for the
work by Dean [s] or for compiler correctness. More impor-
tantly, we see machine-checked proofs as an invaluable aid in
maintaining large language designs (or formal documents of
any kind). It is all very well to perform a detailed proof on
paper once, but in the face of changes of the formalization,
the reliability of such proofs begins to crumble. In con-
trast, we developed the design incrementally, and Isabelle
reminded us where proofs needed to be modified. Unless the
language changes drastically, such modifications of proofs
tend to be of a local nature. This change management will
continue to be of great importance when we extend BALI
further: apart from adding the last important Java features
missing from BALI, full exception handling and threads, we
also plan to use BALI as a vehicle for experimental exten-
sions of Java such as parameterized classes [Xi, 17, 11.

Despite our general enthusiasm for machine-checked lan-
guage designs, a few words of warning are in order:

l BALI is still a half-way house: not a toy language any
more, but missing many details and some important
features of Java.

a The type system of BALI is, despite subclassing, sim-
pler than that of your average functional language:
whereas BALI’S type checking rules are almost directly
executable, the verification of ML’s type inference al-
gorithm against the type system requires a significant
elfort [16]. The key complication there is the presence
of free and bound type variables, which requires com-
plex reasoning about substitutions. VanInwegen [22]
reports similar difficulties in her formalization of the
type system and the semantics of ML.

l Theorem provers, and Isabelle is no exception, require
a certain learning elfort due to the machine-oriented
proof style. Recent moves towards a more human-
oriented proof style lie Syme’s DECLARE system [20]
promise to lower this barrier- However, as Harrison [13]
points out, both proof styles have their merits, and we
are currently investigating a combination of both.

In a nutshell: although machine-checked language designs
for the masses are still some way off, this paper demonstrates
that they have definitely become a viable option for the
expert.

Acknowledgments. We thank Sophia Drossopoulou and
Donald Syme for the very helpful discussions about their
work. We also thank Wolfgang Nareschewski, Markus Wen-
zel, Andrew Gordon, and two anonymous referees for their
comments on draft versions of this paper.

-

169

I i
.
,.’ i

References

[l] 0. Agesen, S. N. Freund, and J. C. Mitchell. Adding
type parameterization to the Java Ianguage. In ACM
Symp. Object-Oriented Programming: Systems, Lan-
guages and Applications, 1997.

[2] R S. Bayer and J. S. Moore. A Computational Logic
Handbook. Academic Press, 1988.

!3] K. B. Bruce. Safe type checking in a statically-typed
object-oriented programming language. III Ppoe. 20th
ACM Symp. Principles of Programming Languages,
pages 285-298. ACM Press, 1993.

[4] K. 3. Bruce, J. Crabtree, T. P. Murtagh, R. van Gent,
A. Dimock, and R. Muller. Safe and decidable type
checking in an object-oriented language. In Proc. OOP-
SLA’93, volume 18 of ACM SIGPLAN Notices, pages
29-46, Oct. 1993.

f5] K. B. Bruce, R. van Gent, and A. Schuett. PolyTOIL:
A type-safe polymorphic object-oriented language. In
W. Olthoff, editor, ECOOP ‘95, volume 952 of Lect.
Notes in Camp. Sci., pages 27-51. Springer-Verlag,
1995.

[S] R. M. Cohen. The defensive J&a Virtual Machine spec-
ification. Technical report, Computational Logic Inc.,
1997. Draft version.

[7] W. Cook. A proposal for making EHel type-safe. In
Proc. ECOOP’89, pages 57-70. Cambridge University
Press, 1989.

IS] D. Dean. The security of static typing with dynamic
linking. In Proc. 4th ACM Conf. Computer and Com-
munications Sew&y. ACM Press, 1997.

f9] S. Drossopoulou and S. Eisenbach. Is the Java type
system sound? In Proc. 4th Int. Workshop Foundations
of Object-Oriented Languages, Jan. 1997.

[lo] S. Drossoponlou and S. Eisenbach. Java is type safe -
probably. In ECOOP’97 - Object-Oriented Prognam-
ming, volume 1241 of Lect. Notes in. Camp. Sci., pages
389-418. Springer-Verlag, 1997.

1111 M. Gordon and T. Melham. Introduction to HOL:
a theorem-proving enWirOn?Rcnt fOT higher OTdeT logic.

Cambridge University Press, 1993.

1121 J. Gosling, B. Joy, and G. Steele. The Java Language
Specification. Addison-Wesley, 1996.

1131 J. Harrison. Proof style. Technical Report 410, Univer-
sity of Cambridge Computer Laboratory, 1997.

[14] R. Mimer. A theory of type polymorphism in program-
ming. j. Camp. Sys. Sci., 17:348-375, 1978.

[15] A. C. Myers, J. A. Bank, and 3. Liskov. Parameterized
types for Java. In Proc. 24th AG’M Symp. Principles of
Programming Langzlages, pages 132-145, 1997.

[16] W. Naraschewski and T. Nipkow. Type inference ver-
ified: Algorithm W in Isabelle/HOL. In C. Paulin-
Mohring, editor, Proc. Int. Workshop TYPES’96, vol-
ume l??? of Lect. Notes in Camp. Sci. Springer-Verlag,
1997. To appear.

[17] M. Odersky and P. Wadler. Pizza into Java: Trans-
lating theory into practice. In Proc. 24th ACM Sgmp,
Principles of Programming Languages, pages 146-169,
1997.

[18] L. C. Paulson. Isabeffe: A Generic Theorem Prover,
volume 828 of Lect. Notes in Comp. Sci. Springcr-
Verlag, 1994.

1191 K. Slind. Function definition id higher order lo& In
J. von Wright, J. Grundy, and J. Harrison, editors, Z’lbe-
orem Proving in Higher Order Logics, volume 1125 of
Lect. Notes in Comp. Sci., pages 381-397. Springcr-
Verlag, 1996.

1201 D. Syme. DECLARE: A prototype declarative proof
system for higher order logic. Technical Report 416,
University of Cambridge Computer Laboratory, 1997.

[21] D. Syme. Proving Java type soundness. Technical Rc-
port 427, University of Cambridge Computer Labora-
tory, 1997.

[22] M. Vanhwegen. Towards type preservation for core
SML. University of Cambridge Computer Laboratory,
1997.

170

