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Abstract 

Jar’aC*ght 
formalize 

is a large sequential sublanguage of Java. We 
its abstract syntax, type system, well-formedness 

conditions, and an operational evaluation semantics. Based 
on this formalization, we can express and prove type sound- 
ness. All definitions and proofs have been done formally in 
the theorem prover Isabelle/HOL. Thus this paper demon- 
strates that machine-checking the design of non-trivial pro- 
gramming languages has become a reality. 

1 Introduction 

Javar+,t is a large subset of the sequential part of Java [12]. 
This paper presents its formalization and a proof of type 
soundness - specified and verified in the theorem prover 
Isabelle/HOL [18]. In the sequel, ‘Javafi,ht’ is abbreviated 
to 'BALI'. 

On the face of it, this paper is mostly about BALI, its ab- 
stract syntax, type system, well-formedness conditions, and 
operational semantics, formalized as a hierarchy of Isabelle 
theories, and the structure of the machine-checked proof 
of type soundness. Although these technicalities do indeed 
take up much of the space, there is a meta-theme running 
through the paper, which we consider at least as impor- 
tant: the technology for producing machine-checked pro- 
gramming language designs has arrived. We emphasize that 
by ‘machine-checked’ we do not just mean th& it has passed 
some type checker, but that some non-trivial properties of 
the language have been established with t.he help of a (semi- 
automatic) theorem prover. The latter process is still not 
a piece of cake, but it has become more than just feasible. 
Therefore any programming language intended for serious 
applications should strive for such a machine-checked de- 
sign. The benefits are not just greater reliability, but also 
greater maintainability because the theorem prover keeps 
track of the impact that changes have on already established 
properties. 
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1.1 Related work 

The hiiory of type soundness proofs goes back to the sub- 
ject reduction theorem for typed Xcalculus hut starts in 
earnest with Milner’s slogan “Well-typed expressions do not 
go wrong” [14] in the context of ML. Milner uses a deno- 
tational semantics, in contrast to most of the later work, 
including ours. The question of type soundness came to 
prominence with the discovery of its failure in Eiffel[7]. Ever 
since, many designers of programming languages (especially 
00 ones) have been at pains to prove type soundness of 
their languages (see, for example, the series of papers by 
Bruce et al. [3, 4, 51). 

Directly related to our work is that by Drossopoulou and 
Eiienbach [lo] who prove (on paper) type soundness of a 
subset of Java very similar to BALI. Although we were fa- 
miliar with an earlier version [9] of their work and have 
certainly profited from it, our work is not a formalization 
of theirs in Isabelle/HOL but differs in many respects from 
it, for example in the representation of programs and the 
use of an evaluation (aka “big-step”) semantics instead of 
a transition (aka “small-step”) semantics. Simultaneously 
with our work, Syme [21] formalized the paper [9] as far as 
possible, uncovering two significant mistakes, both due to 
the use of transition semantics. Syme uses his own theorem 
prover DECLARE, also based on higher-order logic. 

There are two other efforts to formalize aspects of Java in 
a theorem prover. Dean [S] studies the interaction of static 
typing with dynamic linking. His simple PVS specification 
addresses only the linking aspect and requires a formaliza- 
tion of Java (such as our work provides) to turn his lem- 
mas about linkmg into theorems about the type soundness 
of dynamically linked programs. Cohen [S] has formalized 
the semantics of large parts of the Java Virtual Machine, 
essentially by writing an interpreter in Common Lisp. He 
used ACL2, the latest version of the Boyer-Moore theorem 
prover [2]. No proofs have been reported yet. 

2 Overview of Bali 

BALI includes the features of Java that we believe to be 
important for an investigation of the semantics of a practical 
imperative object-oriented language: 

l interface and class declarations with 
instance fields and methods, 

l subinterface, subclass, and implementation relations 
with inheritance, overriding, and hiding, 

l some primitive types, objects (including arrays), 
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l method calls with static overloading and 
dynamic binding, 

l type casts, 
a a minimal treatment of exceptions. 

The portion of Java we consider is roughly the same as cov- 
ered by (101 and [Zl]. 

We do not consider Java packages and concurrency. For 
simplicity, we’ also leave out several features of Java like 
class variables and static methods, constructors and finaliz- 
ers, final classes, and others. Several constructs are simpli- 
fied without limiting the expressiveness of the language (see 
$4.1). We have not yet considered full exception handling 
and the visibility of names, but we aim to include them in 
later stages of our project. 

3 The basics of Isabelle/HCL 

Before we present the formalization of BALI, we briefly in- 
troduce the underlying theorem proving system. 

Isabelle/HOL is the instantiation of the generic interac- 
tive theorem prover Isabelle [18] with Church’s formulation 
of Higher-Order Logic and is very close to Gordon’s HOL 
system [ll]. In this paper HCL k short for Isabelle/HOL. 

The appearance of formulas is standard, e.g. ‘+’ is the 
implication symbol. 

Logical constants are declared by giving their name and 
type, separated by I::‘. Primitive recursive function deli- 
nitions are written as usual.. Non-recursive definitions are 
written with I%“. 

Types follow the syntax of ML, except that the function 
arrow is I*‘. There are the basic types .bool and innt, and 
the polymorphic types 0: x fl, a set and CY et, and a conver- 
sion function set :: Q list =F a set. The “cons” operator on 
lists is the in& ‘#‘, concatenation the infix I@‘- TQles are 
pairs {with prqjections fst and snd) nested to the right, e.g. 
{a,b,c) = (a,(&~)). Type abbreviations are simply $von a.s 
equations, free datatypes are inboduced with the datatype 
keyword. We frequently use the following type: 

datatype CY optkon = None 1 Some a: 

It has an unpacking function the 1: cr option +- Q such that 
the (Some z) = I and the None = arbitrary, where arbitrary 
is an unknown value. 

Most of the HOL text shown in this paper is directly 
taken from the input files. However, it has been massaged by 
hand to hide Isabelle idiosyncrasies, increase readability, and 
adapt the layout. Minor typos may have been introduced in 
the process, 

4 The formalization of Bali 

This section presents all the important aspects of our for- 
malization of BALI'. 

As far as BALI is a subset of Java, it strictly adheres 
to the official Java language specification [12], with three 
generalizations: 

l we allow the result type of am&hod overriding another 
method to widen to the result type of the other method 
instead of requiring it to be identical. 

l no check of result types in dynamic method lookup. 
l the type of an assignment is determined by the right- 

hand (not left-hand) side. 

‘The Isabelle sources are availabk from the BALI project page 
http:/~uvuQ.inforrpatik.tu-muen~en.de/-isabelle/bali/ 

4.1 Abstract syntax 

Fist, we describe how we represent the syntax of BALI cts 
Isabelle datatypes, and which abstractions wc have intro- 

. duced thereby. 

4.1.1 Programs 

A BALI program is a pair of lists of interface and class dcc- 
larations: 

prog = idecl list x cdeci list 

Throughout the paper, the symbol ‘I” denotes a BALI pro- 
gram, as we use programs as part of the static type context 
commonly written ‘P’. 

Each declaration is a pair of a name and the defined 
entity. We do not Further specify the structure of names, but 
use the opaque HOL types tname, mname, and ename for 
BALI’S type names, method names, and LLexpression names” 
(e.g. field identifiers, see {12, 6.51). 

ijaee = tneme list x imdecl list 
idecl= tname x ij5ce 
class = tnsme option X tname option X 

fdecl list x cmdecl Esf 
cdecl = tname x class 

An interface (iface) contains lists of superinterface names 
and method declarations. A class specifies the names of au 
optional superclass and implemented interface, and lists of 
field and method declarations. (A class that implements 
more than one interface can be modeled as implementing an 
intermediate interface that extends all these interfaces.) 

field = ty 
fdecl = ename x field 
sig = mname x ty 
mhead = ty 
mbody = stmt x ezpr 
mefhd = mhead x mbody 
cm&cl = sig x methd 
imdecl = sig x mhead 

A field declaration (fdecQ simply gives the field type (ts, 
see $4.2). A method declaration (cm&I or imdeci) con- 
sists of a “signature” [12, 8.4.21 (i.e. the method name and 
parameter type(s), excluding the result type) followed by 
the result type @head) and, if it appears within a class, 
the method body (mbody). The latter consists of a statc- 
ment and a return expression (stmt and ezpr, set below). 
Local variables of a method may be simulated with addi- 
tional parameters. The separate return expression saves us 
corn dealing with return statements occurring in arbitrary 
positions within .the method body. Such statements may 
be replaced by assignments to a suitable result variable fol- 
lowed by a control transfer to the end of the method body, 
using the resuIt variabIe as return expression. We provide a 
dummy result type and value for “void” methods. For sim- 
plicity, each method has exactly one parameter; multiple 
parameters can be simnlated by a single parameter object 
with multiple fields. 

The list representation of declarations gives an impllclt 
finiteness constraint, which turns out to be necessary for the 
well-foundedness of the subclass and subinterface relation. 
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4.1.2 Representation of lookup tables 

For the lookup of declared entities, we transform declara- 
tion lists into abstract tables. They are realized in HOL as 
Upartial” functions mapping names to values: 

(cr,P)tabZe = 0 =S p option 

The empty table, pointwise update, extension of one table 
by another, the function converting a declaration list into 
a table, and an auxiliary predicate relating entries of two 
tables, are easily defined: 

etable :: (ctJ3)tabZe 
-[-:=-I :: (a,p)tabZe =S a * p * (a$)tabZe 
-cl3- :: (c&table * (cQtabZe * (a,P)tabZe 
table :: (ax@)Zist * (o@)tabZe 
_ hiding _ entails _ :: (cr,@dde * (cr,y)tabZe * 

(/3 + y =P bool) =S booZ 

etablc dz Xk. None 

t[z=y] gf Xk. if k = z then Some LJ else t k 

set ‘kf XI;. case t k of None + s k 
1 Some z * Some 5 

table 0 = etable 
table ((k,x)#t) = (table t)[k=x] 

t hiding s entails R gf WC 2 y. 
tK=Somez+sk=Somey-+Rzy 

A simple application is the translation of programs to 
tables indexed by interface and class names: 

iface I? dAf table (fst I’) 

class I? dAf table (snd I’) 

More interesting are the following functions that traverse 
the type hierarchy of a program, collecting the methods and 
fields into a table: 

imethd :: prog x tname =P (sig, ref-ty x mhead)tabZe 
cmethd :: prog x tname =S (sig, ref-ty x methd)tabZe 
fields :: prog x tname * ((ename X ref- ty) X fieZd)list 

As Syme [Zl] points out, a naive recursive definition is not 
possible in HOL because the class hierarchy might be cyclic, 
which is ruled out for well-formed programs only. This leads 
to partial functions, which HOL does not support directly. 
Syme defines these functions as relations instead. In con- 
trast, we have chosen to define them as proper functions, 
based on Slind’s work on well-founded recursion [19]- We 
do not give the definitions, but only the recursion equations 
which we derive as easy consequences: 

wf-prog r A iface r I = Some (is,ms) + 
imethd (I’J) = let imethds = (XJ. imethd (I’J) ” set is 

in (~20 o (Un-tables imethds)) 8 
table (map (X(s,mh). (s,lfaceT I,mh)) ms) 

wf-prog r A class r C = Some (sc,si,fs,ms) + 
cmethd (I’,c) = (case SC of None + etable 

1 Some D =F cmethd (I’$)) 8 
table (map (A(s,m). {s,(ClassT C,m))) ms) 

wf-prog r A class r C = Some (sc,si,fs,m~) + 
fields (I’,G) = map (X(j$fi). ((fn,ClassT C),fi)) fs @ 

(case SC of None + 0 1 Some D =S fields (l?,D)) 

where 

s20 A dg if 312. SEA then Some (EZ. sA) else None 

f”A if {ye 3z~A. y = f z} 
Un-tables ts kf XA u#ts. case t k of None + { } 

1 Some x * {x} 

4.1.3 Statements and expressions 

We define statements (appearing in method bodies), expres- 
sions (appearing in statements), and literal values (appear- 
ing in expressions) as recursive datatypes. 

Statements are reduced to their bare essentials. We do 
not formalize syntactic variants of conditionals and loops. 
Neither do we consider jumps lie the break statement. The 
only non-standard statement is the “expression statement” 
Expr, which is evaluated for its side effects only. Assignments 
and. method calls, both of which are expressions because 
they yield a value, can be turned into statements via Expr. 

datatype stmt = Skip 

I b-ezpr 
1 stmt; stmt 
1 If (ezpr) stmt Else stmt 
I While(espr) stmt 

Concerning expressions, our formalization leaves out the 
standard unary and binary operators as their typing and 
semantics is straightforward. Creation of multi-dimensional 
arrays can be simulated with nested array creation. Because 
methods have just one local variable, namely the (single) 
parameter, we have given it the special name LVar. We have 
chosen not to introduce the general syntactic category of 
variables because the semantic treatment of local variables 
(including parameters), class instance variables, and array 
components differs considerably. 

datatype ezpr 
= This this 
1 New tname class instance creation 
1 p$Q$Prl array creation 

I Lit ZitptiZ 
type cast 
literal 

I LVar local/param. access 
I LVar:=expr local/param. assign. 
I ezpr{ref-ty].ename field access 
] ezpr{ ref- ty} . enamez= expr field assignment 
I WrIezprl array access 

I ~rI~rj:=~r array assignment 
I ew--mn~me{QfHfwr) method call 

The terms in braces (. . . } above, called type annotations, are 
normally added by the compiler in order to implement the 
static, respectively dynamic, binding of fields and methods. 
We avoid distinguishing between the actual input Language 
and the augmented language, because this would lead to a 
considerable amount of redundancy. Instead, we can safely 
assume that the annotations are added beforehand, as they 
are checked by the typing rules (in 54.2.3) anyway. 

The definition of literal values is straightforward: 

datatype ZitvaZ 
= Unit dummy result of void methods 
1 Null null reference 
1 Bool bool Boolean value 
1 lntg int integer 

This definition is based on the HOL types of Boolean values 
(bool) and integers (int). 
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4.2 Type system 

Thii section d&es types, various ordering relations betwen 
types, and the typing rules for statements and expressions. 

4.2.1 Types 

We formalize BALI types as values of datatype ty, dividing 
them into primitive and reference types: 

datatype pn’pn- ty primitive type 
= vo;cl dummy type for void methods 
1 Boolean Boolean type 
] Integer integer type 

datatype ref- ty reference type 
= NullT null type 
1 IfaceT halme interface type 
] ClassT trzante class type 
] ArrayTm ty array type 

datatype ty type 
= PrimT prim-ty primitive type 
1 Reff ret-ty reference type 

In the sequel [face I stands for Reff(IfaceT I), Class C for 
Reff(CfassT C) and q for Reff(ArrayT 7’). 

4.2.2 Type relations 

The relations between types depend on the interface and 
class hierarchy of a given program ??, and are therefore ex- 
pressed with reference to r. The direct subinterface (I- -$ )> 
subclass ( I- -$ ) and implementation, { t -’ ) relations 
are of type prog x tname x tname + boo1 and are defined 
-as follows: 

I? I- I+ J +2 isiface r I A isjface ?J J A 
3 E set (fst (the (iface I? 1))) 

r t C+t D !Lf is-class r C A is-class r D A 
Some D = fst (the (class I’ c>) 

r I- C-+’ I 21‘ is-class I? C A isjface I? I A 
Some I = fst (snd (the (class I’ CJ)) 

They are based on the auxiliary functions 

isiface l? I dd iface I? I # None 

is-class I? C gf class I’ C # None 

The transitive {but not reflexive) closures I- -+ and I- + 
are defined as usual. There is also a kind of transitive closure 
of t- u1 defined inductively: 

The key relation is widening: l? F S-4 T, where S and T are 
of type iy, means that S is a syntac& subtype of T, i.e. in 
any expression context (especially assignments and method 
invocations) expecting a value of type T, a value of type S 
may occur. Note that this does not necessarily mean that 
type S behaves like type T, but only that it has a syntac- 
tically compatible set of fields and methods. The widening 
relation is defined inductively es 

is-type l? T rt c-1 

I’l-TdT r I-Class C 5 lface I 

isjface I’ I; is-class r Object 

rl- (face I 5 Class Object 

rtc-0 rt--+,J 
r I- Class C 5 Class D lTF lface I j Iface J 

is-type I? (Refl R) 

where 

I’t Reff NullT 5 RefT R 

is-type I? T; is-class I? Object 

I’i- rrI] 5 Class Object 

l?FRefi S5 RefT T 
r I- IReff’ $4 5 (Refl T)[l 

is-type I? (PrimT -) = True 
is-type I? (Reff NyllT) = True 
is-type r (Iface I) = is-iface r I 
is-type r (Class q = is-class I+ C 

is-type r tafl) = is-type I? T 

Object is the name of the top of the class hierarchy, 
‘To allow for type casting we also have the relation I- 57, 

where I’ t 5’57 2’ means that a value of type S may be cast 
to type F 

rtssT rk c7-k~ 
I?!-S’S?T r t Class D 57 Class C 

is-class r C; isiface r I 
r I- Class C 5~ lface I 

isiface r I; is-class r C 
r t iface I 57 Class F 

is-class r Object; is-type I’ 2’ 

r I- Class Object 57 a 

isiface r J;-rl- I+,J; 
imethd (I’, hiding imethd (I’,J) entails 
(A(m4”1 (ma,rTz). PI- rT~-(rTz) 3 

r t lface I 57 lface J 

II’I-Reff S s?Reff T 
ri- (Refl s)[l 5 (Rem 33[1 

4.2.3 Typing rules 

Now we come to the actual type checking rules. An en& 
ronment consists of a global part, namely a program, and a 
local part, namely the type of the (single) current method 
parameter and the current cIass, i.e. the type of This: 

ena = prog x ty x tname 

The well-typedness of statements ( t- :: 0) and the typing 
of expressions (I- ::> are defined inductively relative to an 
environment. 

-I--::0 :: env 3 stmt =s booi 
- t -::- :: env + expr =S ty + booi 

The rules for statements are obvious: 

El- e::T Et-sl::O; El-sa::U 
El-Skip::0 Et Expr tx:O sl; s2::o 

El- e::PrimT 3oolean; El- sl::O; El- sz::O 
If(e) SI Else sz::V 

Et- e::PrimT Boolean; Et s:: 0 

El- While(e) s:: 0 



More interesting are the rules for expressions: 

is-class (prg E) (thisT @ is-class (prg Ef C 

El- This::Class (thisT 19) El-New &Class C 

is-type (prg E) T; El- i:PrimT Integer 

El- New qi]::!lJJ 

El- ezT; prg El- T-i? T’ 
El- (T)e::!P El- Lit zztypeof (k. None) x 

is-type (prg .E) (IocalT E) 

El- LVar::localT E 
El- vz:: T; prg El- T-c IocalT E 

El- LVar:=a: T 
El- e::Class C; cbeld (prg E,c) fn = Some (fd,f!Z’) 

E I- e{fd) .fi::fT 

Ei- e{fa).fi::T; El- XT; prg El- 2’5 T 
El- e(fd).fi=vz:T’ 

El- n:: rl]; E I- t:PrimT Integer 

El- a[ij::T 

El- a[$:T; El- XT; prg El- !Z’s T 
El- a[l):=~:Z’ 

El-e:RetT T; El-p::pT; 
max-vec kg E) T bn,pT) = C(~~~T),P~)~ 

Ei- e.mn(pF}(p)::rT 
The rules are based on the auxiliary functions given below. 
The function cfield is a variant of fields implementing a field 
lookup that is based on the field name alone iu contrast to 
a combination of field name and defining class. So in the 
above typing rule for field access, equal field names hide 
each other, while at run-time all fields are accessible, using 
the defining class as an additional search key. 
prg (r,IT,tT) = ?? 
IocalT (I’,lT,tT) = IT 
thisT (I’,ZT,tT) = tT 

typeof dt Unit = PrimT Void 
typeof dt Null = Reff Nulli 
typeof dt (Boo1 b) = PrimT Boolean 
typeof dt (lntg 2) = PrimT Integer 
typeof dt (Addr a) = dt a 

cfield dAf table o (map (X((fn,fa),ft). (fn,(fd,fi)))) o fields 

The typing rules are rather straightforward, except for 
the type annotations (. . 9 ), which are used to implement 
static binding for fields and to resolve overloaded method 
names statically. The rules for field access and method call 
determine how to compute these annotations. They read as 
follows. 

A field access e{fd).fn is annotated correctly if fd is the 
lirst defining class for a field with name fn when searching ’ 
the class hierarchy (using tield) starting from the static type 
Class Cof e. The annotation (fd) will be used subsequently 
to access the field (the one just found) via the pair (fn,fd). 

A method call e.mn(p!Z’}(p) is type-correct only if the 
function maxspec determining the set of Umaximally spe- 
cific” [12, 15.11.2] methods for reference type T (as defined 
below) yields exactly one method entry. In thii case, the 
call is annotated by p!Z’, which is the argument type of the 
most specific method mn applicable according to the static 
types T of e aud pT of p. So the dynamic method lookup 
at run-time can be based on the signature (mn,pT’). 

max_spec J? rT sig dAf {m 1 rn Eapplmethds I’ rT sig A 
(Vm’Eapplmethds I’ rT sig. 

moreJpec I? m’ m + n’ = m)} 

applmethds I? rT (mn, pT) sf {(m,pT) 1 
mhead r rT (mn, ~2’) = Some m A I’l- pTjp2’) 

more5pec I? ((d,r),p) ((d,r’),p’) %f 
PI-R& dsRefl d ArtpAp’ 

mhead I’ t sig di case t of Nulli =S None 
1 IfaceT I =S imethd (I’J sig 
1 ClassT C =F option-map (X(md,(mh,mb)). (md,mh)) 

(cmethd (r,C) sig) 
I ArrayT T =S None 

4.3 Well-formedness 

A program must satisfy a number of well-formedness condi- 
tions concerning global properties of all declarations. The 
conditions are expressed as predicates on field, method, in- 
terface, and class declarations, as follows. 

A field declaration is well-formed iff its type exists: 

wf-fdecl I? &z#) ‘!!! is-type I? ft 

A method declaration is well-formed if its argument and 
result types are defined. If the declaration appears in a 
class, additionally its body has to be well-typed (in the static 
context of its parameter type and the current class) aud its 
result expression have a type that wideus to the result type: 

wfmhead I’ (mn,pT) rT ‘kf is-type ?? pTA is-type I? rT 
wf-cmdecl I? C (sig,rT,bZk,res) d=d wf-mhead P sig rT A 

let E=(I’,snd sig,C) in El- bk: 0 A 3T. 
El-res::TA i’i- TdrT’ 

More complex conditions are required for well-formed in- 
terface and class declarations. The name of a well-formed 
interface declaration is not a class name. All superinter- 
faces exist and are not subinterfaces at the same time. All 
methods newly declared in the interface are named uniquely 
and are well-formed. Furthermore, there are no ambiguously 
inherited methods, and any method hiding a method of a 
superinterface has a compatible result type: 

wf-idecl I? (I,{is,ms)) dgf 1 is-class I’ In 
(V&set is. isiface I’ J A -, P I- J* I) A 
unique ms A (V(sig,mh)Eset ms. wfmhead I’ sig mh) A 
let mtab = Un-tables ((XJ. imethd (l?,J)) “set is) in 

(Vsig. atmostl (mtab sig)) A 
(table ms) hiding (s20 o mtab) entails 
(ArTI (md,rTz). i’l- rT1 -< rTz) 

where 
unique t sf V(q,yl)Eset t. V(x2,y2)Eset t. 

Xl = x2 --) y1 = y2 

atmostl S ds VXES. VyES. x = y 
Similarly, the name of a well-formed class declaration is 

not au interface name. If the class implements an interface, 
this interface exists, and for auy method of the interface, 
the class provides an implementing method with a possibly 
narrower return type. All fields and methods newly de&red 
in the class are named uniquely and are well-formed. If the 
class is not Object, it refers to an existing superclass, which is 
not subclass of the current class. Furthermore, any method 
overriding a method of the superclass has a compatible result 
type: 
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wf-cdecl iI’ (C,(sc,si,fs,nas)) gf -, isiface I‘ CA 
(VI. si = Some I ---t isiface I? [A 

Qs m 01. imethd (I’J) s = Some (m ,rZ’l) + 
3b m’ rT2. cmethd (r,c) s = Some (m’,r!G,b) A 

I’l-rTz<rT~f A 
uniquefi A (Qf fset fs. wffdecl I’ f) A 
unique ms A (QmEset ms. wf-cmdecl I? C m) A 

[case SC of None + C = Object 
ISomeD~is_classrDA-,r~D~cCA 

(table ms) hiding (cmethd (I’,@) entails 
p+a,b) (f3-+r2,b’)). rt rz 3 ~27~) 

Finally, a well-formed program contains the standard 
declaration of Object, namely the empty class declaration 
ObjectC kf (Object,(None,Non&[,0)). All its declared inter- 
faces and classes are named uniquely and are well-formed: 

wf-prog I? gf ObjectC E set (snd I’) A 
unique (fst I’) A V&set (fst J?). wf-ided I? z. A 
unique (snd l?) A V&set (snd I’). wf-cdecl I’ c) 

4.4 Operationa! semantics 

In this section, we describe the notion of a state and give 
the evaluation r&s for expressions and statements. 

4.4.1 State ’ 

A state consists of an option&i exception (of type xcpt, which 
currently consists of system exceptions Iike’NullPointerXcpt 
only), a heap, and the current invocation f&me, Tyhich is 
the value of the (single) parameter and the This pointer: 

state = xcpt option x heap x ual x Ioc 

A value is either a literal vaIue or a location, i.e. au abstract 
non-null pointer to an object; a*heap is a mapping from 
locations to objects: 

heup = (Zoc, 0bJtable’ ” 
datatype val = Vat Ihal ] Addr lot 

The type lot of locations is not further specified. 
An object is either a class instance, modeled as a pair 

of its class name and a table mapping pairs of a field name 
and the defining class to values, or an array, modeled as a 
pair of its component type and a table mapping integers to 
V&ES. 

fields = (ename x ref- ty, val)table 
componenls = (int val) table 

datatype obj = Obj tname field; 1 Arr ty components 

There is a numberbf auxiliary functions handling the state, 
namely: 

l theAddr :: val + lot is defined such that 
theAddr (Addr a) = a; , 

l the_Obj :: obj option =+ tname x fields with 
the-Obj (Obj Gfs) = (C,fs); 

l theArr :: obj option + ty x components with 
theArr (Arr T cs) = (T,cs); 

l obj-ty obj dA’ case oaj of Obj G fs + Class C 
1 Arr T es 3 a 

0 raise-if c 2 20 dAf 
if CA (20 = None) then Some 5 else zo 

l np B sf raise-if (u = Null) NullPoihterXcpt 

l c-hupd h’ (zo,(h,I,t)) dAf 
if Z:D = None then (None,(h’,l,t)) else (zo,(l~,l,t)) 

l cast-ok r T h o) dAf @pt. T = PrimT pt) V 
I’E obj-ty (the (h (theAddr v))) 5 T 

l default-vat (PrimT Void ) = Unit 
default-vat (PrimT Boolean) = Boo1 False 
default-vat (PrimT Integer ) = lntg 0 
default-vat (Reff r ) = Null 

4.4.2 Evaluation rule format 

We define the operational semantics of statements and ex- 
pressions via mutually inductive rules. To obtain a concise 
description, we use an evaluation semantics rather than a 
transition semantics. 

l I’+ (z,g) --s+ (z!+r’> means that execution of statc- 
ment s transforms state (5~7) into (3!,vz’). 

l I’F [z,c,B) -eDv+ ($*u’) means that expression e ovnl- 
uates to value u, transforming (z,~) into [d,a’). 

Strictly speaking it is neither necessary to include an crcccp- 
tion in the start state of a computation nor the This pointor 
in the final state (because This does not change). Similarly, 
an expression needs only return either a value or an cxcap- 
tion, but not both. However, the symmetry achieved by our 
slightly redundant model simplifies the rules considerably, 
In particular, in many rules we can avoid case distinctions 
on whether exceptions occur in intermediate states, which 
would cause the rules to be split. As a result, there is exactly 
one rule for each syntactic construct. 

For both statements and expressions there is a general 
rule defining that exceptions simply propagate: 

I? t (Some xc,u) -s+ (Some zcp) 

I? I- (Some XCJ) -e~arbitrary+ (Some zc,u) 

AH other ruies can assume that in their concerning initial 
state no exception has been thrown. For such states, ‘we 
define the abbreviation Norm G, which stands for (None,o). 

4.4.3 Execution of statements 

The rules for statements are obvious: 

I’i- Norm a0 LeDu+ ul 

I’t Norm v -Skip+ Norm Q T’l- Norm go -Expr e--t 01 

rl- Norm CC, -s1 + crl; I? I- ~1 -SZ+ u2 
I’ I- Norm 00 -sl; sz+ a~ 

I’k Norm oo --e~v-) 01; 
I’t QI -if the-Boo1 2, then SI else s2+ uz 

l?l- Norm u. -If(e) 51 Else s2-t ff2 

l?k Norm (TO -If(e) (s; While(e) s) Else Skip-t bl 
I’t Norm uo -While(e) sd u1 
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4.4.4 Evaluation of expressions 

In contrast, the evaluation rules for expressions deserve some 
comments. 

The value of This is a component of the state: 

I’l- Norm Q -ThisDAddr (this a)+ Norm u 

Creating a new class instance means picking a new ad- 
dress a (i.e. h 4 = None) and updating the heap at that ad- 
dress with an object, the fields of whir& are initialized with 
default values according to their types: 

h = heap rr; h 4 = None; h’= h[a:= Obj C (table 

(map CWT). tidefault-val fT)) (fields (r,c))))l 
I? l- Norm u -New CDAddr a+ chupd IL’ (Norm a) 

Creating a new array means picking a new address, up- 
dating the heap with an array, the components of which are 
initialized with default values, and raising an exception if 
the length of the array is negative: 

I’l- Norm ao -eDj+ (q,ol); i = the-lnt 3; 
h = heap al; h 4 = None; h’=h[a:=Arr T (Xj. 

if Kjl\ j<i then Some (default-val !T’) else None)]; 
x1’- -raise-if (i<O) NegArrSizeXcpt ZI 

I’l- Norm cro -New fle]DAddr a+ chupd K (s’,a~) 

Type casts simply return their argument value, but raise 
an exception if its dynamic type happens to be unsuitable: 

l?l- Norm a0 -eDu+ (q,s& 

X1 ’ = raise-if(xast_ok I? T (heap SI) u) ClassCastXcpt xl 

l’l- Norm a0 -(T)eDv+ (R’,sI) 

A literal value is simply returned: 

I’l- Norm u -Lit u~u+ Norm u 

An access to LVar reads from the corresponding state 
component: 

I’l- Norm u -LVarDlocal a+ Norm Q 

An assignment to LVar updates the state, in case the 
subexpression does not raise an exception: 

I’l- Norm Q -eDv+ (z,(h,Z,t)); 
l = (if 1: = None then w else r) 

I? l- Norm cr -LVar:=eDo+ (z,(h,l,t)) 

A field access reads from a field of the given object, check- 
ing for null pointer access: 

I’l- Norm a0 -eDa’+ (x&; 
II = the (snd (the-Obj (heap 01 (theAddr 4)) (~$2)) 

rl- Norm uo -e{ T).fnr>u+ (np d q,ul) 

A field assignment acts accordingly: 

I’l- Norm u. -elDa’+ (xl& 4 = theAddr a’; 
n- (np a’ zl,ul) -ezDw + (x2,U2); 

h = heap ~22; (r$..) = the_Obj (h a); 
Ii = h[a:=Obj c cfs[@,T):=u])] 

I’l- Norm ue -(el{T).fn:=ez)Dw c-hupd h’ (x2,u2) 

An array access reads a component from the given array, 
but raises an exception if the index is invalid: 

rl- Norm uo -elDd+ UI; rf-ul -ezD%++ (~2,023; 
uo = snd (theArr (heap uz (theAddr a’))) (the-lnt t ); 
x2’ = raise-if (wo = None) IndOutBoundXcpt (np 4’ 22) 

rl- Norm ue -el[g]Dthe wo+ (XZ’,UZ) 

Similarly, an array assignment updates the appropriate 
component, but has to check the typing: 

I‘l- Norm uo -elDa’+ UI; a = theAddr a’; 
rkul -ezDt”+ uz; i = the-lnt 2; 

I’l-~2 -eaDu + (xs,ua); h = heap ua; 
(T,cs) = theArr (h a); h’ = h[a:=Arr T (cs[i:=u])]; 

’ = raiseif (-cast-ok I? T h u) ArrStoreXcpt ( 
rzsejf (cs i = None) 1ndOutBoundXcpt (np a’ x3)) 

I’l- Norm uo -(el[e2]:=es)Du+ chupd I&’ (zs’,ue) 

The most complex rule is the one for method invoca- 
tion: after evaluating e to the target Iocation 4 and p to the 
parameter value pu, the block blk and the result expression 
res of method mn with argument type Tare extracted from 
the program I’ (using the dynamic type dynT of the object 
stored at a). After executing blk and res in the new invoca- 
tion frame built from pv and a, the old invocation frame is 
restored and the result value w returned: 

T’t- Norm cre -eDd+ al; 4 = theAddr Q’; 
I’ I- ul -p~pu+ (x&h&) ; dynT = fst(the-Obj (h a)); 

(md,mh,bZk,res) = the cmethd (r,dynT) I 
r I- (np d ~2,(h,pu,a)) -bZk+u3; 

(mn>T)); 

r k Us -RSDU -+ (x&U.%) 

l?l- Norm uo -(e.mn(T)(p))Du+ (r,(heap a&)) 

Note that the rules are defined carefully in order to be 
applicable in all situations, even not type-correct ones (e.g. 
theAddr (Val (Boo1 b)) yields an arbitrary value). A “defen- 
sive” evaluation throwing some artificial exception in case of 
type mismatches, which would require additional overhead, 
is not necessary. 

5 Proof of type soundness 

This section discusses the type soundness theorem and its 
crucial lemmas. As the necessity of certain lemmas emerges 
quite naturally, it is not surprising that many of them are 
similar to those g&m by Drossopoulou and Eisenbach [lo]. 
On the other hand, the proof principles we use are sometimes 
rather d&rent from those outlined in their earlier paper [9], 
some of which are inadequate. 

5.1 Lemmas about the type relations 

There are two non-trivial lemmas concerning the type rela- 
tions of BALI, namely the well-foundedness wf of the (con- 
verse) submterface and subclass relations 

and the frequently used transitivity of the widening relation: 

wf_progr--+r~S~UArI-U~T~rt-S~T 

The two relations are well-founded because they are finite 
and acyclic, where the former is a consequence of represent- 
ing class and interface declarations as lists, and the latter 
follows from the irreflexivity of the relations, which in turn 
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follows from the well-formedness of the classes and interfaces 
implied by the well-formedness of the whole program. 

The well-foundedness facts are necessary for deriving the 
recnrsion equations for the functions that traverse the type 
hierarchy of a program (see $4.1) and also give rise to in- 
duction principles for the (direct) subinterface and subclass 
relations, e.g. 

wf-prog J?; P Object; 
YCD. C#ObjectAr~C~~DA...APD~PC 

VE. is-class l? E + P E 

Most hmmas like transitivity of E 5, as well as auxil- 
iary properties for deriving them, typically rely on several 
well-formedness conditions and are usually proved by rule 
induction on the type relation invoived, or by applying the 
induction principles just mentioned. 

5.2 lemmas about fields and methods 

For the type-safety of field accesses and method calls, char- 
acteristic lemmas concerning the field lookup and method 
lookup are required. They are used to relate the (static) 
types of fields and methods, as determined at compile-time, 
to the actual {dynamic) types that occur at run-time. 

For example, fields correctly referred to at compiIe-time 
must be found at run-time. More formally, if a field access 
e{T).fi with El- e::Class Cstaticaliy refers to a field of type. 
f2’ defined in the reference type (some c&s) T, within an 
instance of some class d which may be a subclass of C the 
fieId can be referred to (dynamically) using the same name 
and its defining class. In particular, there is no dynamic 
binding for fields. This fact requires the following lemma:- 

wf-prog l? n cfield (l?,C) fn = Some (fd,fn A 
rl-Class CAClass C+ ( 

table (fields (l?,G’)) (b,fd) = Some fT ’ 

Concerning method calls, a similar requirement prevent- 
ing ‘method not understood’ errors can be formalized: if 
a method call of the form e.nan{pT)(p) with Et- e::RefT 7’ 
refers to a method that is statically available for the refer- 
ence e, the dynamic lookup of the object pointed at by e 
should yield a method with a compatible result type. The 
lemma that helps to establish this behavior reads as folIows: 

wf-prog l? A mhead II’ T sig = Some (m~,rT~),n 
rl-Class !&ARefT Tt 

3rnz rT2 b. cmethd (I’,TI) sig = Some (mz,rZ’&) A 
rt-e25nl 

The proofs of these lemmas are lengthy and require many 
auxiliary theorems that are proved by induction on the di- 
rect subclass relation, by case splitting on the right-hand 
argument of the widening relation and by rule induction on 
the subinterface, subclass, and implementation relation. 

5.3 Type soundness 

FinalIy, we state and prove the type soundness theorem. 

5.3.1 Notions 

In order to express the type soundness theorem, we intro- 
duce the notion of a state u conforming to an environment 
E, written a::5 E, which intuitively means that the value of 
any variable within the state is compatible with 5%~static 
type. The conformance relation is based on the two auxil- 
iary concepts l?,hl- v::d T of a value v conforming to a type 

Tand l?,hl- obj::s 0 of all components of an object objcon- 
forming to their respective types, both with reference to a 
given program l? and heap k 

l?,hl- v::< T %f 32’. typeof (option-map obj-ty o h) II = 
SomeTAGtTTT 

r,hl- obj::d 0 dgf case obj of 
Obj Cf.. + VTJ table (fields (l?,c)) f= Some T + 

3v. fs f = Some v A I’,ht- v::s T 
1 Arr T cs + Vi v. cs i = Some w 4 I’,hl- v::d T 

s::sE dAf let I? =,prg E; h = heap s; t = this s in 
(‘v’u obj. h a = Some bbj + ??,h I- obj::A 0 ) A 
l?,kl- local s::AlocalT EA 
??,lal-Addr t::AClass (thisT Ii’) 

Another helpful notion used below is a pre-order on heaps: 
hah’ means that any object existing on heap h also exists 
on h’ and has the same type there. This property holds for 
any transition of the operational semantics, which turns out 
to be necessary in our proof of type soundness. 

hah’ dz Va. bCfi. h a = Some (Obj Cfs ) + 
3fs’. h’ la = Some (Obj C fs’)) A 

(VT cs. h a = Some (At-r T cs ) --t 
3~s’. hf u = Some (Arr T cs’)) 

5.3.2 Main theorem 

Next, we give the key type soundness theorem. It is proved 
by simultaneous rule induction on the evaluation of exprcs- 
sions and statements and therefore has to be formulated in 
a way that gives a strong enough induction hypothesis, We 
do not attempt to cast it into words. Instead, WC discuss 
some of its corollaries below, which are surprisingly clear. 

wf-prog r + 

(h’,f,t’) ::s (r,lT,tT) A hll h’) A 
(J?t (z,(h ,Z ,t)) -eDv+ (d,(h’,f,t’)) + 
VlT tT. (h ,I ,t ) ::5 (?l’,lT,tT) + 
VT. (J?,lT,t!i!J t e:: T ---f 

(h',~,t')::i.(r,K!',tT) A h_ah' A 
(d = None + r,tit~::LI:q) 

The proof of this theorem is by far the heaviest. At its top 
level, it consists of (currentIy) 19 cases, one per syntactic 
construct, where 

7 cases can be solved rather directly (e.g. from the 
induction hypothesis), 

4 cases require just simple lemmas on the structure of 
the state, 

and the remaining 8 cases require extensive reasoning 
on the characteristic properties of the constructs con- 
cerned. 

Most of this reasoning is independent of the operational sc- 
mantics itself and can be factored out, which keeps the main 
proof manageable. 
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5.3.3 Corollaries 

For a discussion of its consequences, we state two imme- 
diate corollaries of the main theorem. In the context of a 
well-formed program, the execution of a well-typed state- 
ment transforms a state conforming to the environment into 
another state that again conforms to the environment: 

I? = fst E A wf-prog r A 
rl-jzp) -s--f @,a’) Au::~EAEt-s::O + 

u’ ::j E 

The same holds for the evaluation of well-typed expression, 
where additionally we have that, unless au exception occurs 
during evaluation, the resulting value conforms to the static 
type of the expression: 

r = fst En wf-prog I? A 
r i- (syr) --eDw+ (d,u’) A u::s E A Eb e:: !?? + 

a’::5 E A (z’ = None -+ I’,fst u’ I- w::A T) 

This is what type soundness actually means. 
A corollary of type soundness is that method calls always 

find a suitable method, i.e. a ‘method not understood’ run- 
time error is impossible. This can be stated more formally: 
for a well-formed program and a state that conforms to the 
environment, if an expression of reference type (which plays 
the role of the target expression for the method call consid- 
ered) evaluates without an exception to a non-null reference, 
and if there is a method available for that (static) type and 
a given signature, the dynamic method lookup for the same 
signature according to the class instance pointed at by the 
reference value yields a method body: 

I? = fst E A wf-prog r A 
l? l- (qu) --eDa’+ Norm u’ A $ # Val Null A 
dynT = fst (the-Obj (fst u’ (theAddr d))) A 
u:$EAEl-c:Reff TAmhead r Tsig# None + 

cmethd (I’,dyn!Z’j sig # None 

This implies that in a well-formed context, in every in- 
stance of the evaluation rule for method calls, the function 
cmethd returns a proper method body. 

6 Experience and statistics 

Because of the expressiveness of HOL, our formalization of 
BALI is quite natural and direct. Isabelle’s mix& syntax and 
mathematical font are indispensable for writing moderately 
readable definitions and theorems. The theory l&s add up 
to about 1100 lines of well-documented specifications. It 
took us roughly two months of work and about 2400 lines of 
proof scripts to show the type soundness theorem with all 
necessary lemmas. 

Although we are far from satisfied with the current sta- 
tus of Isabelle’s proof procedures (for example, the handling 
of assumptions during simplification, or the necessity to ex- 
pand tuples and similar datatypes by hand), they are ba- 
sically adequate for the task at hand. Nevertheless, more 
automation is necessary and feasible. 

The adaption of old proofs after changing the formaliza- 
tion is a tedious job. Although the changes in the proofs 
are usually quite local, there tend to be many. Higher-level 
proof scripts and more automation are some of theanswers. 
A dedicated mechanism for exploring and fixing the impact 
of modifications would also help. 

7 Conclusion 

The reader has been exposed to large chunks of a formal 
language specification and a proof of type soundness and 
may need to be reminded of the benefits. Even including the 
slight generalizations mentioned in $4, we did not discover 
a loop-hole in the type system. But we had not seriously 
expected this either- So what have we gained over and above 
a level of certainty far beyond any paper-and-pencil proof? 

We view our work primarily as an investment for the fu- 
ture. For a start, it can serve as the basis for many other 
mechanized proofs about Java, e.g. as a foundation for the 
work by Dean [s] or for compiler correctness. More impor- 
tantly, we see machine-checked proofs as an invaluable aid in 
maintaining large language designs (or formal documents of 
any kind). It is all very well to perform a detailed proof on 
paper once, but in the face of changes of the formalization, 
the reliability of such proofs begins to crumble. In con- 
trast, we developed the design incrementally, and Isabelle 
reminded us where proofs needed to be modified. Unless the 
language changes drastically, such modifications of proofs 
tend to be of a local nature. This change management will 
continue to be of great importance when we extend BALI 
further: apart from adding the last important Java features 
missing from BALI, full exception handling and threads, we 
also plan to use BALI as a vehicle for experimental exten- 
sions of Java such as parameterized classes [Xi, 17, 11. 

Despite our general enthusiasm for machine-checked lan- 
guage designs, a few words of warning are in order: 

l BALI is still a half-way house: not a toy language any 
more, but missing many details and some important 
features of Java. 

a The type system of BALI is, despite subclassing, sim- 
pler than that of your average functional language: 
whereas BALI’S type checking rules are almost directly 
executable, the verification of ML’s type inference al- 
gorithm against the type system requires a significant 
elfort [16]. The key complication there is the presence 
of free and bound type variables, which requires com- 
plex reasoning about substitutions. VanInwegen [22] 
reports similar difficulties in her formalization of the 
type system and the semantics of ML. 

l Theorem provers, and Isabelle is no exception, require 
a certain learning elfort due to the machine-oriented 
proof style. Recent moves towards a more human- 
oriented proof style lie Syme’s DECLARE system [20] 
promise to lower this barrier- However, as Harrison [13] 
points out, both proof styles have their merits, and we 
are currently investigating a combination of both. 

In a nutshell: although machine-checked language designs 
for the masses are still some way off, this paper demonstrates 
that they have definitely become a viable option for the 
expert. 
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