
Unified Algebras and Modules

Peter D. Mosses*

Computer Science Department, Aarhus University, Aarhus, Denmark

Abstract

This paper concerns the algebraic specification of
abstract data types. It introduces and motivates
the recently-developed framework of unified algebras,
and provides a practical notation for their modular
specification. It also compares unified algebras with
the well-known framework of order-sorted algebras,
which underlies the OBJ specification language.

1 Introduction

This paper proposes a radically new framework for
the algebraic specification of abstract data types,
called unified algebras, together with a simple yet con-
venient notation for modular specifications.

Unified algebras challenge a dogma that has been
accepted since the earliest work on algebraic specifica-
tions: that the classification of elements into “sorts*
and the elements themselves should be kept separate.

The main features of unified algebras are as follows:

Classifications of elements into sorts are repre-
sented directly as values in the carriers of unified
algebras. Operations for sort union and intersec-
tion are provided, as well as the empty sort and
subsort inclusions.

Operations on elements extend naturally to
subsort-preserving operations on sorts. For ex-
ample, the successor operation maps the sort of

l InLnternet address: pdm@daimi.DK.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of
the publication and its date appear, and notice is given that copying
is by permission of the Association for Computing Machinery. To
copy otherwise, or to republish, requires a fee and/or specfic
permission.

0 1989 ACM O-89791-294-2/89/0001/0329 $1.50

329

all natural numbers to the (sub)sort of positive
natural numbers.

There is no distinction between an element and
the sort classifying only that element.

Both partial and non-strict operations are al-
lowed. In fact the undefined result is represented
by the empty sort. (The conditional if-then-else
operation is a good example of a useful non-strict
operation.)

Nondeterminism is allowed. A nondeterminis-
tic choice between some elements is not distin-
guished from the sort consisting of just those el-
ements.

Sort constructions are ordinary operations. For
example, consider an operation that maps an in-
teger i to the sort of all integers up to i; or au
operation that maps a natural number n and a
sort s to the sort of all lists of length n with
components of sort 9.

Sorts may be subject to equations. Thus the
sort of integers may be equated with the union
of the natural numbers sort and the application
of negation to that sort. (Union is idempotent,
so zero does not get duplicated.)

The signatures of unified algebras are very sim-
ple: they give just the number of arguments of
each operation. They do not distinguish con-
stants that denote sorts from those that denote
elements; nor do they indicate how the sort of the
result of an operation depends on the sorts of its
arguments. (Such information may specified by
axioms.)

The axioms used to specify unified algebras are
quite general: Horn clauses, involving equality,
sort inclusion, and classification of elements into
sorts.

AU operations are fully “polymorphic”, and may
be applied to’ arbitrary operands without prior
“instantiation”. However, operations may also
be restricted so that they only give defined re-
sults on certain sorts of arguments. For exam-
ple, the if-then-else op’eration may be restricted
so that the result is only defined when the first
argument is a truth-v*slue, whereas the second
and third arg,uments are left unrestricted.

Constraints, analogbus to so-called “data con-
straints”, can be used to restrict parts of unified
algebras to be freely-4;enerated by other parts.
For generic data types (such as lists) their p&
rameters (such as the sort of components) are
“loosely-specified” parts; instantiation is merely
the specialization of such parts.

Section 2 explains the conceptual basis of uniAed
algebras, and then sketches the foundations. (More
details may be found in [21].) However, the emphasis
of the present paper is on pragmatics, rather than
foundations: the aim is to show that unified algebraic
specifications cant be just as concise tind modular as
those in other frameworks.

Section 3 introduces notation for basic specifica-
tions, and shows how order-sorted specifications (as
in OBJ [S]) can be regarded as specifications of unified
algebras.

Section 4 introduces a simple notation for modular
specifications. Some pleasant pragmatic features of
these modular specifications are:

l Modules may be declared in any order, and may
be mutually recursive. Moreover, module dec-
larations may be split up and interleaved, so
that information essential to users (ana1ogou.s to
an “interface”) may be specified separately from
definitional details (which are analogous to an
“implement ation”).

l Modules may be nested. A module may be split
into sub-modules without affecting the use of the
module. AIlso, a module may be “opened’?, so
that the notation it specifies is tacitly made avail-
able to other modules.

l Basically, each operation symbol has a single in-
terpretation throughout an entire specification:
properties s.pecified in separate modules are sim-
ply united. “Localization” of operation symbols
may be ach.ieved by renaming.

A direct semantics for “canonical” modular specifi-
cation is given. It is shown how any modular specifi-
cation can be reduced to canonical form, thus estab-

liihing an indirect “transformational semantics” [l]
for arbitrary modular specifications.

Section 5 show how constraints are used to specify
generic ty:pes, .with instantiation being just special-
ization.

Section 6 compares unified algebras and modules
to related frameworks-in particular, to order-sorted
algebras and OBJ, which largely inspired the devel-
opment of unified algebras.

Some concluding remarks report on the experience
so far with using unified algebras and modules, and
indicate where further development of the framework
is needed.

The reader is assumed to be familiar with the initial
algebra approach to the specification of abstract data
types [12, 2, 15, 32, 51.

2 Unified Algebras

To start with, let us recall the basic concepts of ab-
stract data types, and relate them to unified algebras.

2.1 Concepts

A data type consists of a set of elements (such as
numbers or lists) together with a collection of named
operations between elements-i.e., an algebra. An
abstract data type is a class of algebras that share
some properties.

In the so-called “algebraic” approach to specifica-
tion of abstract data types, a basic specification con-
sists of a signature and a set of logical sentences. The
signature provides names for operations (constants
are regarded as operations with no arguments). The
satisfaction of the sentences provides properties of the
operations. The specified class of algebras consists of
all algebras that have (only) the named operations
with the given properties. Note that the elements
of these algebras may be any entities, abstract or
concrete, provided that they are equipped with the
proper operations.

When specifying an abstract data type alge-
braically, it is helpful to identify various cIassi$ca-
tions of elements into sorts, and to give for each op-
eration, the relation between the sorts of its argu-
ments and the sort of its result. If the arguments of
an operation are restricted to subsorts of the specified
sorts, the result may also be restricted to a subsort.
In particular, when arguments are restricted to single
element sorts, the result sort may be restricted to the
result of applying the operation to these elements.

In general, however, few of the possible classifica-
tions are useful enough to merit the introduction of

330

special names for them. For instance, consider the
abstract data type of integers: apart from the sort
of all integers, the sort of natural numbers is cer-
tainly useful enough, being closed under several inte-
ger operations; but how about the positive integers,
the negative integers, the non-positive integers, the
even integers, etc., etc.?

In unified algebras, sorts have the same status as
elements-in particular, operations may be applied to
sorts as well as to elements. It turns out that many
classifications of secondary importance can be ex-
pressed by applying “elementary” operations to sort
constants. For instance, the sort of positive integers
is expressed by the application of the successor oper-
ation to the sort of natural numbers; the sort of neg-
ative integers is given by applying negation to that
sort; and so on. Thus it is not necessary to compli-
cate signatures with constants that name such sorts.

Let us henceforth refer to sorts and elements to-
gether as choices. (In fact the development of uni-
fied algebras started from the observation that there
is a close correspondence between sorts and non-
deterministic choices. See [19] for more discussion of
the treatment of nondeterminism in unified algebras.)

Unified algebras do not necessarily provide all pos-
sible choices between elements. However, the set of
choices provided by a unified algebra always includes
the vacuous choice, Hobson’s choices’ of single ele-
ments, and all finite choices. The set of choices is
always closed under (finitary) union and intersection.

Choices are partially ordered by inclusion: if c,
and c, are choices, then ‘c, 5 c,’ asserts that c, is
included in c,. An important special case of inclu-
sion is classification: ‘c, : c,’ asserts that c, is the
Hobson’s choice of a single element, included in c,.
Different Hobson’s choices are incomparable in the
partial order. The vacuous choice, denoted ‘nothing’,

is least in the partial order. The choice between two
choices c,, c,, denoted ‘c, 1 c,‘, is their least upper
bound; their “agreement”, denoted ‘c,&c,‘, is their
greatest lower bound.

The set of choices between elements forms a dis-
tributive lattice with a bottom. Note that the Hob-
son’s choices need not be the so-called “atoms” of the
lattice (i.e., “just above” the bottom); but choices be-
tween them and the bottom are not much use, as they
cannot include any elements. More generally, choices
need not be “extensional”: two distinct choices may
classify the same set of elements.

‘For the benefit of readers unfamiliar with this idiom:
“Hobson’s choice: option of talcmg the one offered or noth-
ing [from T. Hobson, Cambridge carrier (d. 1631) who let out
horses on this basis].” [4]

NB! Choice inclusion must not be confused with
computational approximation in Scott domains; in
fact lattices here are not usually cpos.

As well as a set of choices, a unified algebra has con-
stants that distinguish particular choices, and opera-
tions that map choices to choices-preserving choice
inclusion. Thus operations are monotonic, but not
necessarily continuous.

For example, consider the usual type of natural
numbers, with elements 0, 1, 2, This type can be
represented by a unified algebra whose set of choices
includes all finite and cojiniie choices between these
elements, together with the following constants and
operations:

‘O’, denoting the Hobson’s choice of the single
element 0;

‘Natural’, denoting the infinite choice between all
the elements;

‘successor-‘, denoting the operation that maps
each element to its successor-and maps any
choice between elements to the choice between
their successors: ‘Natural’ is mapped to the
choice between all non-zero natural numbers,
‘nothing’ is mapped to ‘nothing’;

‘predecessor-‘, analogous to ‘successor-‘, except
that ‘0’ is mapped to ‘nothing’, and ‘Natural’ is
mapped to ‘Natural’.

(Other operations would require further infinite
choices, e.g., ‘double,’ would require choices between
infinite sets of even numbers, etc.)

By the way, note that properties of operations
do not always extend from elements to multiple
choices-nor to the vacuous choice. For example, sup-
pose that a unified algebra representing a data type
of natural numbers has binary operations for addition
and multiplication. The multiplication of a choice c
by (the Hobson’s choice of) 2 is not the same as the
addition of c to c when c is a multiple choice; and
the multiplication of ‘nothing’ by 0 is ‘nothing’, rather
than 0.

So much for the concepts underlying unified alge-
bras. Let us now consider their formalization.

2.2 Formalities

Before defining unified signatures and algebras, let us
specialize the conventional notation for heterogeneous
algebras to homogeneous algebras (eradicating sort-
indexed sets).

331

First, let Symbol be the set of symbols used to
name constants and operations, partitioned into dis-
joint subsets Symbol,, n > 0. Let Variable be a set of
variables, disjoint from Symbol.

A homogeneows algebraic signatwe is simply a sub-
set C of Symbol. We write C, for C n Symbol,,, for
n > 0. A homogeneous alg’ebraic signature morphism
u : C --+ C’ is a .&mily of maps a, : C, -+ CL. We
write u(f) for b,,(f), where f E C,.

A homogeneons C-algebra A consists of a set IAl
(of choices) and for each f E C, a function f~ :
IAl” --t IAl (called a constant when n = 0, otherwise
an opemtion). A. C-homomorphism h : A + B is a
function from IAl to IBI such that for any f E C, and

a19 ---,a, E IAl

h(fA(%“” ,%a)) = fB(q-4, * - *, %d).

So much for homogeneous algebras. Now for uni-
fied algebras.

A unified signature is a homogeneous algebraic sig-
nature that includes the constant symbol ‘nothing’

and the binary operation symbols ‘_ I_’ and ‘-%-‘.
(Unified signature morphisms are homogeneous sig-
nature morphisms that preserve the given symbols.)
We write UniSign for the set of unified signatures.
Henceforth, let 1; always be a unified signature.

A C-unified s’entence is a universal Horn clause
with variables from Variable, operation symbols from
X, and binary predicate symbols ‘=‘, ‘I’, and ‘:‘. We
write UniSen(X) for the set of C-unified sentences.

A C-unified al,gebra A is a homogeneous C-algebra
A such that:

IAl is a distributive lattice with _ 1 -A as join,
-&-A as meet, and nothingA as bottom. Let IA
denote the partial order of the lattice.

There is a dlistinguished subset of incomparable
values, EA <; IAl (the elements of A). Note that
EA need not be the “atoms” of the lattice.

For each f E c, the function fA is monotone
with respect to <A.

A C-unified homomorphism is a C-homomorphism
that respects th.e partial order and maps elements
to elements. We write UniAlg(C) for the class of
C-unified algebras.

The binary predicate symbols ‘=‘, ‘L’, and ‘:’ are
interpreted as follows in a unified algebra A:

l z = y holds iff z is identical to y;

l 2 5 y holds iff z <A y;

l z:yholdsiffzEEAandzsAy.

The institution UN1 of unified algebras is defined
in the usu.al way, in terms of the obvious categories of
unified signatures, unified algebras, and the standard
notion of satisfaction for universal Horn clauses.

By establishing the institution of unified alge-
bras, not only do we identify alI the relevant ba-
sic components of our framework, but also we make
available the full power of Sannella and Tarlecki’s
institution-independent specification notation [26]
(which doesn’t seem to have a name-let’s refer to
it as ‘S&T’ here).

However, S&T is not intended as a practical speci-
fication language: it is a powerful kernel upon which
practical specification languages may be built. For
one thing, it does not provide notation for naming
modules of specifications.

The following sections introduce a rather simple-
yet quite practical-specification language. It would
be possible to define the semantics of this language
by reducing it to S&T; but that would be somewhat
hard on readers who are not familiar with the de-
tails of S&T. Instead we give a direct definition of
the semantics of “canonical” specifications, and show
how arbitrary specifications can be reduced to canoni-
cal ones; this reduction provides a “transformational”
semantics for our specifications. (In a more thor-
ough treatment, a denotational semantics for the full
specification language would be defined, and it would
be proved that the given reduction preserves denota-
tions.)

The various constructs of the specification language
are introduced gradually, “bottom-up,,. First come
basic specifications, which are essentially monolithic
specifications of signatures and sentences. Then come
modular specifications, where a specification is split
into named parts, allowing the dependence of these
parts upon each other to be made explicit. Finally
come constraints, a special kind of sentences used to
specify “standard” models and “generic” data types.

We don’t bother to give an unambiguous concrete
syntax for our specification language. Instead, we
use ambiguous grammars to define its abstract syn-
taz. The grammars are written in a minor variant
of BNF: ‘2 ’ stands for “produces,,, ‘ 1 ’ stands for
“alternatively”, and terminal symbols are enclosed in
quotation marks.

Each non-terminal of a grammar generates a set
of strings (of terminal symbols); the derivation trees
for these strings-equipped with the tree construc-
tion operations-are (essentially) the desired abstract
syntactic entities. For writing examples of specifica-
tions, we use parentheses and indentation to indicate
which abstract syntactic entities are intended, when
this is not clear from the context.

332

3 Basic Specifications

In this section we first define the syntax and seman-
tics of canonical basic specifications, which corre-
spond directly to unified signatures and sentences.
Such specifications are adequate in theory, but some-
what tedious to use in practice. Therefore we ex-
tend the syntax with some convenient abbreviations,
which allow us to write specifications that resem-
ble the order-sorted signatures and sentences used in
OBJ. Finally, we show how the grammars that we
use to define the syntax of basic specifications
themselves be regarded as basic specifications.

CS.Il

3.1 Canonical Basic Specifications

The abstract syntax of canonical basic specifications
is defined by the grammar given below.

Basic 1

Clause 2

Formula 1

Relator 2

Term 2

Terms1 2

Termsp+l 1

“constant” Symbolo 1

“operation” Symbo& 1

Clause 1 Basic Basic ;

Formula 1 Formula

Term Relator Term
r,=rr 1 US” 1 u:r,

Variable I Symbol0

Symbol, Term%

Term ;

Term I‘,” Termsp

“d” Clause ;

The grammar does not define the micro-syntax of

;

I

symbols (‘Symbol,‘, n 2 0) and variables (‘Variable’).

For symbols, let us use strings of characters in this

sans serif font, with the number of occurrences of the
place-holder character ‘-’ determining the index (i.e.,
rank) of the symbol. For variables, let us use strings
of letters in this italic font, optionally distinguished
by numerical subscripts and/or primes.

Notice that the grammar is not quite context-free:
the indices on the nonterminal symbols ‘Symbol’ and
‘Terms’ ensure that operation symbols are only ap-
plied to the number of arguments indicated by their
indices. Each ‘Symbol,’ (for n > 0) and ‘Term% (for
p 1 1) may be regarded as a distinct nonterminal
symbol, if desired.

A simple example of a canonical basic specification

is given below.

constant Truth-Value

constant true

constant false

true : Truth-Value

false : Truth-Value

Truth-Value = true I false

operation if-then-else-

T 5 Truth-Value =+

(if T then X else Y) 5 (X I Y)

if true then X else Y = X

if false then X else Y = Y

if nothing then X else Y = nothing

if (t I U) then X else Y =

(if t then X else Y) I (if 1~ then X else Y)

T & Truth-Value = nothing _

(if T then X else Y) = nothing

There is no need to disambiguate the grouping of the
basic specifications, as it is semantically irrelevant (in
fact, so is the order). We exploit “mix-fix” notation
(much as in OBJ) to write the application of an op-
eration symbol ‘S,- . . . 2,’ to terms ‘TX. . . ., T,,’ as
‘SOT, . . . T,,S,,‘; e.g., we write ‘if-then-else-(t,X, Y)’
as ‘if t then X else Y’.

The effect of specifying ‘t : t’ is to insist that t is
the Hobson’s choice of a single element. More gener-
ally, a formula ‘z : U’ insists that U includes some el-
ement, which (in a non-trivial specification) prevents
U Corn being ‘nothing’. (In general, let us follow
the convention of writing constants and variables that
necessarily stand for single elements in lower case.)

Caveat: the examples given in this paper are in-
tended mainly to illustrate the form of specifications;
the choice of which operations and properties to spec-
ify is not always that which might be best in a prac-
tical specification. Moreover, unified algebraic spec-
ifications are no less prone to mistakes than many-
sorted or order-sorted ones, and there has not been
time to prove that the examples given here actually
specify the intended classes of unified algebras.

Now let us define the semantics of canonical basic
specifications. First of all, a basic specification is said
to be complete when all the (constant and operation)
symbols occurring in termsexcept for the reserved
symbols ‘nothing’, ‘- I -‘, and ‘-&-‘-are declared by
‘constant S’ or ‘operation S’. We do not care to give
a semantics for incomplete specifications (although it
could be done).

333

The semantics of a complete basic specification B
consists of two components: Sig[BJ, the unified sig-
nature specified by B; and Alg[BI], the class of unified
algebras specified by B. Vie define:

Sig[B] = (5: E Symbol 1 S occurs in B} U

{‘nothing’, ‘- I-‘, ‘JL’}

Alg[rB]I = {A E UniA.lg(Sig[B]) 1
A satisfies all the clauses in B).

3.2 Abbreviations

As may be seen from the specification of truth-values
above, canonical basic specifications are a bit tedious.
Let us introduce some abbreviations.

Actually, the first abbreviations we introduce
would not shortlen our specification of truth-values,
but they are often convenient. The syntax is as fol-
lows (extending the previously given grammar):

Clause 2 Clause “;‘I Clause ;

Formula 2 Formula “;” Formula ;

Relator 2
.y, , ‘,:_,,

The symbol I‘;” !stands for conjunction in clauses and
formulae. The relators “2” and ‘2-” stand for the re-
versals of the relations ‘5’ and ‘:‘, respectively. It is
straightforward to reduce any clause using these con-
structs to a combination of canonical (Born) clauses;
we omit the details.

Now consider the following extensions, which en-
able us to write basic specifications resembling those
in OsJ-and more!

I n : Natural ; p : Positive

I.
Basic 1

Clause 1

Terms2 2

Functionalityp

2

Attributes 2

Attributer, >

“constant” Symbol. Relator Term 1

“operation” Symbolp “I” Functionalityp

Symbo& “:lr Functionalityp ;

Term ‘12” ;

Termsp I’+” Term 1

Terms, “IQ” Term 1

Terms, ‘3” Term 1 Attribut% 1

Functionalityp Functionality, ;

“associative” 1 “commutative” 1

“idempotent” 1 “unit” Term ;

“strict” 1 “defined” 1 “elementary”

Using the above constructs, we may abbreviate the
specification of truth-values as follows:

constant Truth-Value = true 1 false

constant true : Truth-Value

constant false : Truth-Value

operation if-then-else- :
Truth-Value, X, Y =+ (X 1 Y)
nothing, X, Y -+ nothing
defined elementary

if true then X else Y = X

if false then X else Y = Y

T & Truth-Value = nothing _

(if T then X else Y) = nothing

Consider also the following abbreviated specification
of natural numbers:

constant Natural = 0 1 successor Natural

constant 0 : Natural

operation successor- : Natural --f Natural

constant Positive = successor Natural

operation natural predecessor- :
Natural u Natural

Positive --+ Natural
0 -+ nothing

N 2 Natural =+

natural predecessor(successor N) = N

operation sum(+) :
Natural2 -+ Natural
Positive, Natural --+ Positive
associative commutative unit(O)

operation product(-,-) :
Natural’ ---f Natural
Positive2 --t Positive
0, Natural -+ 0
associative commutative
unit(successor 0)

2
: Natural ; n : Natural

sum(m, successor n) =

successor sum(m,n) ;

product(m, successor n) =

sum(m, product(m,n))

Now, such specifications look quite nice-to the au-
thor, at least-but what is their semantics? Let US

see how to reduce them to canonical basic specifica-
tions .

334

The construct ‘constant S R T’ merely abbreviates
the combination of the declaration ‘constant S’ and
the clause ‘S R T’. Likewise, ‘operation S : P’ abbre-
viates the combination of ‘operation 5” and the clause
abbreviation ‘S : F’, where F is a “functionality”.
Thus what appear to be order-sorted signature dec-
larations are really abbreviations for combinations of
(unsorted) unified signature declarations and clauses.

There are three main forms of functionality, con-
cerned with so-called “total”, “partial”, and “gen-
eral” operations. Total and partial functionalities
may be explained in terms of general functionalities
and “attributes” , which we consider first.

The functionality ‘S : T, ,. . . , TP + T’ abbreviates
the clause (actually, formula) ‘S(T,,. . . , TP) < T’.
The monotonicity of all operations gives as a conse-
quence that applying the operation S to any choices
(or elements) included in the Ti always gives a result
included in T.

Any attributes specified along with such a general
functionality enhance it as follows (assuming all ar-
guments are included in the Ti):

‘strict’ asserts that when any argument is ‘noth-

ing’, the result is ‘nothing’;

‘defined’ asserts that when the result is ‘nothing’,
at least one argument must be ‘nothing’;

‘elementary’ asserts that when all the arguments
are elements, the result is either an element or
‘nothing’, and, moreover, that the operation is
“linear”, preserving ‘- I-’ and ‘-&-’ in each argu-
ment separately;

‘associative’, ‘commutative’, ‘idempotent’, and
‘unit T” assert the obvious properties for bi-
nary operations. (By the way, ‘Ta’ abbreviates
‘ T, T’.)

Now it is easy to explain the “total” and “partial”
functionalities:

a ‘S : T,,...,T, -t T’ abbreviates
‘5’ : T,,..., TP j T strict defined elementary’

(the combination of ‘defined’ and ‘elementary’

implies that elements get mapped to elements,
hence choices that include elements get mapped
to choices that include elements);

l ‘S : T,,...,T, Q T’ abbreviates
‘S : T,,..., TP 3 T strict elementary’ (so ele-
ments may get mapped to ‘nothing’).

In practice, it is convenient to extend almost all op-
erations from elements to choices by using “total” or

“partial” functionalities. The “general” functional-
ities are needed only for non-strict operations (like
‘if-then-else-‘) and for operations that are non-linear
(like a sort constructor mapping sorts of components
to sorts of lists).

As in order-sorted algebras, an operation may have
more than one functionality: the clause ‘S : F, F,’
abbreviates the conjunction ‘S : F:; S : FL’, where
F: and Fi each contain all the attributes of F, and
F2, and together contain all their total, partial, and
general functionalities.

It is claimed that any clause of the form ‘S : F’ can
be reduced to a conjunction of clauses not involving
functionalities, corresponding to the above informal
descriptions. A formal specification of this reduction
would define the semantics of all basic specifications;
here the details are left to the reader’s imagination.

3.3 Unified Abstract Syntax

The grammars used above to define the abstract syn-
tax of basic specifications look a lot like basic speci-
fications themselves. Let us see how such a grammar
can be regarded as a formal abbreviation for a com-
plete basic specification whose semantics (i.e., a class
of unified algebras) corresponds to the intended ab-
stract syntax.

First, consider the nonterminal symbols of the
grammar. The unindexed nonterminal symbols, such
as ‘Basic’, may be regarded as constants that stand
for sorts of abstract syntactic entities. Indexed non-
terminal symbols, such as ‘Term%‘, may be regarded
as operations from index elements to syntactic sorts
(which would not be possible with conventional alge-
bras). By the way, such operations extend naturally
to index sorts, so we may express the union of all the
‘Term+’ by ‘Terms Positive’.

Next, consider the alternatives on the right-hand-
sides of the productions. We have agreed that non-
terminal symbols stand for sorts; so each alternative
must be the application of an operation to sorts (or
just a constant, if there are only terminal symbols in
the alternative). The operation symbol may be ob-
tained by replacing all the sort arguments by place-
holders. (Notice that the device of enclosing terminal
symbols in quotation marks helps to prevent confu-
sion between the implicit syntactic operation symbols
and the operation symbols of other data types.) The
sorts used in the alternative, together with the sort
on the left-hand-side of the production, determine an
appropriate (total) finctionality for the operation.

However, “chain productions”, such as ‘Basic 2
Clause’, would involve an operation named by the in-
visible operation symbol ‘-‘. It is preferable to avoid

335

introducing this symbol, rurd to regard chain produc-
tions as specifying no more than the given sort inclu-
sion.

The whole right-hand-side of a production is now
a choice between sorts cor,cesponding to the alterna-
tives. As choice is sort union, the production specifies
that each of the alternatives is included in the sort
corresponding to the nont.erminal on the left-hand-
side.

An example may help. Consider the following
grammar:

Clause 2 Formula 1 Formula “e” Clause ;

Formula 1 Term Relator Term ;

Relator p rr=rr , ,y , y ;

Term 1 “nothing”

The corresponding constants and operations are spec-
ified 8s follows:

constant Clause 1 Formula

constant Formula

constant Relator

constant Term

operation _ “=a” _ : Formula, Clause --t Clause

operation _ _ _ : Term, Relator, Term + Formula

constant “=I’ : Relator

constant “I” : Relator

constant “I” : Relator

constant “not.hing” : Term

Combining this basic specification with the original
grammar, we get a compl.ete specification whose se-
mantics may be regarded as an abstract syntax. The
constraints introduced in Section 5 can be used to re-
strict the class of unified algebras to those whose only
elements are those implied by the above specification
(even leaving some parts of the syntax unconstrained,
for later specialization).

4 Modular Specifications

Here, a module comprises an identification, together
with 8 body, which is a complete specification. A
modular specijloation is a basic specification that is
divided into such modules. If one forgets the module
identifications, the semantics of a modular specifica-
tion is just the s,ame 8s that of the combination of its
module bodies.

The modularization of specifications has sev-
eral pragmatic benefits. First, it exhibits sub-
specifications that have an independent meaning,
which usually improves comprehensibility. Second,
a sub-specification that is included in another may
be replaced by a reference to the identification of
the corresponding module; this allows Te-use of sub-
specifications within a specification, which usually fa-
cilitates making changes, and which also exhibits the
dependency relation between modules. Last, it per-
mits the Te-use of parts of one specification in another
specification, which would be essential for a specifica-
tion “library” consisting of many independent parts
specifying standard abstract data types.

We start by introducing canonical modular speci-
fications, where modules do not refer to each other.
Then we allow recursive specifications, with the possi-
bility of mutual reference between modules. Next, we
let modules be textually and logically nested. Finally,
we introduce notation for translating and localizing
modules. Note that we do not need to consider pa-
rameterized modules: generic data types are specified
using constraints, as described in the next section.

4.1 Canonical Modular Specifications

The abstract syntax of canonical modular specifica-
tions is defined by the following grammar, which ex-
tends the grammar of basic specifications:

Modules 2 Identification ‘I.” Basic 1

Modules Modules

The micro-syntax of identifications is not specified; in
examples, we use words in this bold font.

The grouping and order of modules is irrelevant.
For a modular specification to be called canonical,
the identifications of all the modules must be distinct,
and the bodies of all the modules must be complete.

For example, consider a specification with modules
corresponding to truth-values and natural numbers:

Truth Values.

I . . .
Numbers. Naturals.

I . . .
(where the bodies of the modules have been elided).

The semantics of a canonical modular specification
M is an environment, mapping module identifications
to the semantics of the corresponding module bodies.
We define

Env[lM] = (I H (Sig[B],Alg[B]) 1 ‘1.B’ occurs in M}.

336

We may also extend Sig[-] and Alg[J from basic spec-
ifications to modules:

Sig[B] = u(Sig[l?] 1 B occurs in M)

AlgfB] = U{A’ E UniAlg(Sig[M]) 1
A’ t (Sig[B] c-t Sig[rM]) E AIg[B]
for all B that occur in M}.

where for any C C C’ and A’ E UniAlg(C’), the
C-algebra A’ t (C c+ C’) is obtained from A’ by for-
getting the operations of C’ \ C, but keeping the same
set of choices.

Notice that Sig[M] and Alg[Mn could be defined
in terms of Env[Mn; but the given definitions make it
obvious that they do not depend at all on the identi-
fications of the modules, only on the bodies.

4.2 Recursive Modules

Obviously, canonical modular specifications would be
tedious to use directly: notation that is used in sev-
eral different modules has to be specified afresh in
each of them. So let us allow module bodies to spec-
ify the inclusion of the bodies of other modules by
referring to the corresponding identifications. The
syntax for such references is:

Basic 2 “use” Identification

It is not necessary to put any restriction on the us-
age of “use” . In particular, mutual reference (i.e.,
recursion) is allowed. Duplicate references in a body
may always be eliminated; likewise, any self-reference
may be removed: all the notation specified by such a
reference is already available!

For a simple example, consider the following mod-
ular specification:

Numbers. Naturals.

I . . .

Numbers. Integers.

I

use Numbers. Naturals

. . .

The order of the modules is irrelevant, as with canon-
ical modular specifications,

The semantics of specifications involving “use” is
given by defining their reduction to canonical mod-
ular specifications. The following algorithm exploits
the fact that basic specifications are essentially just
sets of operation symbols and clauses; basic specifi-
cations with references to module identifications may
therefore be regarded as monotonic functions from
basic specifications to basic specifications.

Let M be a (recursive) modular specification. Let
MO be obtained from M by replacing each module
body by the vacuous trivial specifications. For n 2
0, let &+I be obtained from M by replacing each
‘use I’ by whatever I identifies in M,,, then removing
any duplicate parts of the resulting bodies. Clearly,
the M, form a non-decreasing chain. But the set of
symbols and clauses in each module body is bounded
by the set of all the symbols and clauses in M. Thus
(as there are only a finite number of modules) the M,,
must stabilize at some finite value of n; let M’ denote
the resulting modular specification.

We now regard M as complete if the module bodies
in M’ are complete (basic specifications). Thus for
any complete recursive specification M, M’ gives its
reduction to a canonical modular specification.

A direct denotational semantics for recursive mod-
ular specifications would require making environ-
ments into a cpo and using least fixed points of con-
tinuous functions.

Before we add more syntax to our modular speci-
fication language, let us relax our requirements con-
cerning the uniqueness of module identifications and
the completeness of module bodies.

The idea is to allow the textual separation of “in-
terfaces” from “details”. Here, an interface does not
“hide” anything; it merely draws attention to some
particular operation symbols and (perhaps) proper-
ties. In practice, this rather trivial form of interface
seems to be quite useful.

A specification with separated modules is reduced
by combining the bodies of modules that have the
same identification. This defines the semantics of
those separated modular specifications that reduce to
canonical modular specifications.

For an example consider

Numbers. Naturals.

I . . . the interface

Numbers. Integers.

use Numbers. Naturals

. . . the interface

. . . some other modules

Numbers. Naturals.

I , . . the details

Numbers. Integers.

‘use Numbers. Naturals ’ need not be repeated

. . . the details

2which we may write as ‘constant nothing’.

337

4.3 Nested Modules

Let us next allow modules to be grouped together
in nests, so that the identification of the nest may
be used to refer to all the modules in the nest. To
start with, we enhance the syntax of module iden-
tifications, to allow what we call “logical nesting”;
afterwards, we permit module bodies to be bodies., to
allow the “textual nesting” of modules.

The syntax for identifications reflects a convention
that has been used in the examples above: identifica-
tions are essentially sequences of basic identifications.

Identification > Identification “.” Identification

Now we may regard ‘use I’ as an abbreviation for the
combination of ‘use I. I” for every (relevant) ide:nti-
fication I’.

For example, given the above examples, we may
write just ‘use Numbers’ instead of

use Numbers. Naturals ;

use Numbers. Integers.

Moreover, if we forbid identifications where the
same sub-identification occurs more than once, we
may unambiguously abbreviate references by omit-
ting a common Iprefix of the “source” and “target”
identification of lthe reference. Thus ‘use I’ occur:ring
in a module badly with identification I’ abbreviates
‘use I”. I’ for some unique prefix I” of I’. (Such ab-
breviations are context-dependent, so they must be
eliminated before module bodies are substituted for
references.)

For example, the ‘use Numbers. Naturals’ in the
module ‘Numbers. Integers’ may be abbreviated
to ‘use Naturals’.

Now for textual nesting, which can be useful for
emphasizing the “logical” nesting implied by the
structure of iden.tifications. The syntax is just

Modules > Identification “.I‘ Modules

The semantics o:f ‘I. M’ is very simple: it is the same
environment as that specified by M, except that all
the identifications are prefixed by I. Obviously, :such
constructs can be eliminated syntactically, by dis-
tributing ‘I.’ in M.

We may now exhibit the nesting structure of

‘Numbers’ by

Numbers.

I
Naturals.

iI . . .
Integers.

use Naturals

.

The analogy between this notation for nested mod-
ular specifications and hierarchical file systems is
rather obvious.

Actually, with the above syntax for modules, it
is not always possible to convert canonical modular
specifications into “fully-nested” modular specifica-
tions with unique identifications at each nesting level.
The problem arises when the identification of one ba-
sic specification is a proper prefix of that of another
basic specification: the body identified by the shorter
identification would be a mixture of a basic specifica-
tion and an identified module, which is not allowed
by our syntax so far.

It is a simple matter to extend the syntax to remove
this problem:

Modules >_ Basic

but the semantics requires careful consideration. The
question is whether the notation declared in a basic
specification at some level of nesting is made avail-
able to the identified sub-modules of that level, or
not. By analogy with block structure in programming
languages, we may expect that it should be. The
semantics may then be defined by a reduction that
distributes basic specifications at outer levels into all
identified sub-modules.

But this weakens the modularization discipline
somewhat: it is no longer the case that the notation
used (but not declared) in a module comes entirely
from explicitly-referenced modules: it may come from
enclosing modules as well. In particular, notice that
our modules may now consist of sequences of basic
specifications and identified modules-and that ‘use
I’ is a basic specification. So we may specify

Truth Values.

I . . .
use Truth Values

As usual, ‘use Truth Values’ references the corre-
sponding basic specification. Thus the notation for
truth-values is made available to all the other mod-
ules in the specification-just as if it were “built in”.
The benefit of allowing this specification seems to out-
weigh the weakening of the modularization.

338

4.4 Translation and Localization

Sometimes it is convenient to specify several different
abstract data types on the basis of a common part-
for instance, flat lists and nested lists on the basis
of general lists. But although such related data types
may sensibly use the same symbols for “polymorphic”
operations (such as ‘cons(-,-)‘) and for constants that
have the same interpretation (such as ‘nil’), it would
be inconsistent for them to use the same notation
(such as ‘List’) for the classifications of their respec-
tive elements into sorts.

in the operation symbol. In practice, identificatiors
would never be written explicitly in operation sym-
bols, so there is no conflict between the local opera-
tions of different modules.

A translation allows us to make a copy of a specifi-
cation with some changes to the symbols. The syntax
is as follows:

n : Natural
L

Basic 1 Basic Translation ;

Translation > Symbol,, “:=‘I Symbol, 1

Translation “;” Translation

Let us restrict translations to ‘S%:=S:; . . .; $:=SL’
where the Si are all different-and do not include
‘nothing’, ‘- 1 -‘, or ‘ &-‘. The order and grouping in
translations is irrelevant.

The semantics of ‘B T’, where B is a canonical
basic specification and T is a translation ‘S, :=Si; . . . ;
&:=SL’, is the same as that of the canonical basic
specification obtained by replacing all occurrences of
the Si in B by the corresponding S/ (leaving other
symbols alone).

Notice that in practice, a translation is usually ap-
plied to a reference ‘use I’. The semantics of such
basic translations is determined by the given reduc-
tion of recursive modular specifications to canonical
modular specifications.

The final syntactic construct for modules intro-
duced here provides a simple form of “hiding”, called
localization:

Basic > “local” Basic ;

Symbol, > Identification “.” Symbol,

The idea is to allow the introduction of auxiliary no-
tation in a module, but without the danger that its
specified properties might “conflict” with properties
specified in other modules.

The semantics of ‘local B’ is given by reducing it
to a translation ‘B T’. The translation T trans-
lates every operation symbol in B to the same sym-
bol prefixed by the identification of the module di-
rectly enclosing the localization. It is possible to
specify properties of the translated operations in an-
other module-but only by including an identification

Note that the reduction of localization to transla-
tion depends on (the identification of) the context,
so it must be made before substituting the enclosing
module for references to it-and before distributing
basic specifications into identified modules.

5 Constraints

So far, the sentences allowed in basic specifications
are (essentially) restricted to first-order universal
Horn clauses involving predicates for equality, inclu-
sion, and classification. It is well-known that Horn
clauses are the most general sentences that can be
used if one wants to exploit the so-called “initial alge-
bra approach” to specification of abstract data types,
where algebras with “junk” and “confusion” are elim-
inated by taking only the initial algebra of the spec-
ified class, as in [12] (see also [15]), or more gener-
ally by using “data constraints” [3, 9, lo] or “initial
constraints” [24, 251. (An alternative to the initial al-
gebra approach is to allow first-order sentences that
express inequality, to use them to specify away all
possibility of “confusion”, and then to impose “gen-
erating” or “reachability” constraints, see [26].)

The main idea of a data constraint on a specified
class of algebras is that it restricts the class to those
algebras where a certain “part” is “freely-generated”
by another part. These parts may be identified by
sub-specifications, where the specification of the gen-
erating part is a sub-specification of that of the gen-
erated part. (For full generality, a translation of the
sub-specifications is allowed.) When freely-generated
algebras determined by specification inclusions (tech-
nically, “theory morphisms”) always exist, data con-
straints can be treated as sentences.

Usually, data constraints cannot be satisfied in ho-
mogeneous algebras: the class of algebras satisfy-
ing a homogeneous data constraint is empty. The
problem is that the so-called “forgetful functor” _ t u
determined by a homogeneous signature morphism
Q doesn’t forget any values at all--only operations!
(With heterogeneous algebras, forgetful functors may
forget whole sorts of values.)

However, it turns out that the classification relation
of unified algebras can be exploited to define a “more
forgetful functor”, which forgets values unless they
are (or are generated by) elements included in a de-
notable value-which is quite analogous to the special
way sorts are treated in heterogeneous algebras. This

339

more forgetful functor can be used to define so-called
“bounded data constraints” for unified algebras; the
details are sketched in [21].

Our syntax for bounded data constraints assumes
that the sub-specifications involved are always iden-
tified as modules:

Basic 2 “constrain” Identification 1

“constrain” Identification

“over’” Identification

Let us consider some examlpies. First,

Truth Values.

Base.

constant Truth-Value -= true 1 false

constant true : Truth-Value

constant false : Truth-Value

constrain Base

Rest.

use Base

operation if-then-else- :

Truth-Value, X, Y =S (X 1 Y)

The constraint restricts the specified class of aige-
bras to those where the Base-part has no “junk”
or “confusion”. Here, the Base-part of an arbi-
trary Sig[TCkuth Values&unified algebra A consists
of those elements that are included in the choice
Truth-ValueA, together with the choices denoted by
terms built from the Base signature. Thus Rest
must not contradict this constraint by adding further
elements classified by ‘Truth-Value’ (although it may
add new choices included in ‘Truth-Value’), nor by
causing Base-denotabie values to be identified. By
the way, the operation ‘if-then-else? does not gener-
ate new elements, of any sort, so it may be specified
in the Rest of Truth Values.

Finally, consider the specification of generic lists
below. The constraint ensures that, whatever the ei-
ements of the so;ct ‘Data’ might be, the elements of
sort ‘List’ are all Cnite lists of them. Without making
the constraint relative to ‘Data’, we would only get
the empty list, si.nce there are no elements specified

to be included :in ‘Data’.

Lists.

Data.

I constant Data

Base.

use Data

constant List = nil 1 cons(Data,List)

operation -(of -) : List, Data + List

constant nil : List(of nothing)

operation cons(-,-) : Data, List --t List

D < Data _ nil(of D) = nil

b: Data ; I : List ; D < Data

1 cons(d,Z)(of D) = cons(d&D, Z(of D))

constrain Base over Data

Rest.

use Base

operation head- : List --+ Data

operation tail- : List ++ List

head nil = nothing

tail nil = nothing

12: Data ; Z : List

head cons(d,Z) = d ;

tail cons(d,Z) = Z

Note that we may (independently) specialize the
module ‘Data’ to include various elements, such as
numbers; we may even constrain it to preclude further
specialization. For instance:

Lists of Numbers.

use Lists

use Numbers

Natural 5 Data

constrain Lists of Numbers

(It might be as well to translate the constants ‘List’
and ‘Data’, if other instantiations are contemplated.)

How about nested lists? Well, it is tempting just to
add ‘List 5 Data’ to the above instantiation. Unfor-
tunately, this conflicts with the constraint in ‘Lists’:
the lists would no longer be freely generated by the
elements of data. Instead, we should specify an un-
constrained module, say ‘General Lists’, much as
‘Lists’, only we weaken the equation for ‘List’ to ‘List
2 nil 1 cons(Data,List)‘; then both flat lists and nested

340

R : Natural ; p :

*

Modules

Basic

Identification

Translation

Symbol,

Clause

Formula

Relator

Term

Terms1

Terms2

Term%+1

Functionality,

Attribute2

Attribute,

Positive

1 Basic 1 Identification “.” Modules 1 Modules Modules ;

2 “use” Identification 1 Basic Translation 1 “local” Basic I

“constant” Symboln I “operation” Symbol, I Clause I Basic Basic I

“constant” Symbolo Relator Term I “operation” Symbol, ‘I:” FunctionalityP 1

“constrain” Identification I “constrain” Identification “over” Identification ;

> Identification ‘I.” Identification ;

2 Symbol, “I=” Symbol,, I Translation ‘I;” Translation ;

1 Identification ‘I.” Symbol, ;

1 Formula I Formula “a” Clause I Clause “;l, Clause I Symbolp ‘Y Functionalityp ;

1 Term Relator Term \ Formula ‘I;,1 Formula ;

L
‘r&r 1 UI” 1 u,,, 1 Us, 1 ,r:-rr ;

1 Variable I Symbolo I Symboll, Termsp ;

1 Term ;

> Term ““’ ;

2 Term ‘I,” Terms, ;

1 Termsp “4’ Term I Terms, “*I’ Term I

Term% “3” Term I Attribut+, I Functionality, Functionality, ;

1 “associative” I “commutative” I “idempotent” I “unit” Term ;

1 “strict” 1 “defined” I “elementary”

Figure 1: Abstract Syntax of the Modular Specification Language

lists can be obtained by specializing and constraining
general lists. For example,

Nested Lists. Base.

use General Lists (List := Nested-List)

cons(,,,) : Nested-List, Nested-List + Nested-List

constrain Base over Lists. Data

(Some minor extensions are needed to the ‘Rest’ to
define ‘head-’ and ‘tail-’ on nested lists.)

6 Related Work

Our notation for the modular specification of unified
algebras may be compared with the OBJ specific8
tion language, which is based on the framework of
order-sorted algebras. (The reader is now assumed
to be familiar with order-sorted algebras [7, 11, 311
and OBJ [6, 8, 131.) There 8re substantial differences
between the approaches, both at the technical and at

the pragmatic level. First, some comments on order-
sorted algebras:

8 The signatures of order-sorted algebras are com-
plex objects, giving the sorts of operation ar-
guments and results separately for each “ver-
sion” of polymorphic operations, subject to some
constraints that guarantee that terms have least
sorts.

l Order-sorted algebras do not allow sort construc-
tors, nor sort union and intersection. Sort in&-
sions are allowed only in signatures, not in con-
ditional axioms.

l Partial operations are represented in order-
sorted algebras by the disciplined use of a con-
stunt that denotes a particular element. No-
tational conventions are required to ensure the
proper treatment of this element (e.g., it is not
allowed to test for equality with it).

341

One could in fact simulate unified algebras using
order-sorted algebras: by introducing values that are
tokens for sorts, and defining truth-valued operations
on these values corresponding to inclusion and classi-
fication. But it is not clear ,that this simulation would
be convenient enough for practical use.

Smolka [29] gave a reduc:tion of order-sorted Horn
logic to unsorted Horn logic using tokens for sorts,
and treating inclusion and classification as predicates.
Recently he has developed an unsorted Horn clause
“type logic” [30] which is closely related to unified
algebras. The main difference is that his framework
is based on partial algebras, so only strict operations
are considered; also, he leaves union and intersection
of types to be spe’cified by the user, rather than build-
ing them into the framework (one could do that with
unified algebras too, but that would make unified
specifiations mor,e tedious). Scollo has reported [27]
that Manta and Salibra [1.6] have recently proposed
a framework somewhat similar to that of Smolka. It
will be interesting to see whether a useful notion of
data constraint can be provided for these partial al-
gebra frameworks.

Next, consider how generic types are specified in
OBJ by parameterized modules:

l Explicit instantiation is needed, usually with
translation of notation, which prevents instances
from being regarded as subtypes (note also that
OBJ’S conditional operation needs to be a “built-
in”, otherwise every module using it would have
to instantiate its parameterized specification).

l Generic types cannot be combined without spec-
ifying a new parameterized module.

l Elements can only be used as parameters of mod-
ules by introducing new modules just for them.

Finally, regarding module declarations in OBJ:

They are sequential--mutual recursion is not
possible;.

They cannot be split into “interfaces” and “def-
initions”.

The default is for imported notation to be ex-
ported, and it is tedious to override this default.

Artificial mlodules are needed to avoid uninten-
tional duplication, when several modules are to
share notation.

Against these rather negative comments should be
set the fact that order-sorted algebras and OBJ are
a great advance over many-sorted algebras and ear-
lier specification languages; also that OBJ has been

implemented and has been shown to be a useful tool.
Indeed, this author previously adopted OBJ as the
basis for specifying the action notation used in Ac-
tion Semantics [20, 221, and used an early version of
OBJ3 [13] to (partially) check an equational specifica-
tion of functional actions. The development of unified
algebras and modules took order-sorted algebras and
OBJ as the starting point.

Finally, it should be noted that there are many
other frameworks where “types” may be treated in
the same way as elements, with operations on types;
most of them originate from Scott’s domain theory
[28] or from Martin-Lijf’s type theory [17]. The foun-
dations of these frameworks seem to be essentially
different from those of unified algebras. Moreover,
they cater for higher-order functions, and it seems
difficult to combine higher-order functions with type
inclusion and monotonicity [18].

Conclusion

The framework of unified algebras and modules seem
to have some attractive features, compared to alter-
native frameworks. However, it is too early to tell
whether the unified framework will be useful enough
in practice to justify its rather presumptuous name.
So far, the only experience of using the framework
is my own efforts to specify the abstract data and
process types of “action notation”, which is a (pro-
foundly) polymorphic notation for use in Action Se-
mantics [22].

One topic that needs to be investigated thoroughly
is the right notion of “implementation” for unified
algebras. As sorts correspond to non-deterministic
choices, it seems natural to let implementations be
more deterministic than specifications by contracting
sorts.

Note that it is easy to extend unified algebras to
allow the specification of predicates as well as opera-
tions; then so-called “Structural Operational Seman-
tics” [23], also known as “Natural Semantics” [14],
can be specified in the unified framework.

Acknowledgments. Inspiration for unified alge-
bras came from the work. of Goguen and Meseguer,
Smolka, Ai’t-Kaci, and Wadge. The modules were in-
spired by the work of Biloit, Burstall and Goguen,
Clerici and Orejas, Reicl.el, Sannella, Tarlecki, and
Wirsing. Thanks for correction and guidance dur-
ing the development of unified algebras to Hartmut
Ehrig, Joseph Goguen, Gert Smolka, and Andrzej
Tarlecki, and for suggest.ons and encouragement to
Brian Mayoh, Bernd Mal.r, and David Watt.

342

References

PI

PI

[31

[41

Fl

PI

PI

PI

PI

PI

WI

P31

[I41

[I51

t161

M. Broy, P. Pepper, and M. Wirsing. On the al-
gebraic definition of programming languages. ACM
Trans. Prog. Lang. Syst., 9:54-99, 1987.

R. M. Burstall and J. A. Goguen. Putting theories
together to make specifications. In Proc. 5th IJCAI,
1977.

R. M. Burstall and J. A. Goguen. The semantics of
CLEAR, a specification language. In Proc. Winter
School on Abstract Software Specifications (Copen-
hagen, 1979). Springer-Verlag (LNCS 86), 1980.

The Concise Oxford dictionary of current English.
Oxford University Press, sixth edition, 1976.

H. Ehrig and B. Mahr. Fundamentals of Algebraic
Specification 1: Equations and Initial Semantics, vol-
ume 6 of EATCS Monographa on Theoretical Com-
puter Science. Springer-Verlag, 1985.

K. Futatsugi, J. A. Goguen, J.-P. Jouannaud, and
J. Meseguer. Principles of OBJ2. In Proc, POPL’85.
ACM, 1985.

J. A. Gogucn. Order sorted algebra, Semantics and
Theory of Computation Report 14, UCLA Computer
Science Dept., 1978.

J. A. Goguen. Higher order functions considered un-
necessary for higher order programming. Technical
Report SRI-CSL-88-1, Computer Science Lab., SRI
International Jan. 1988.

J. A. Goguen and R. M. Burstall. Introducing insti-
tutions. In Proc. Logics of Programming Workshop,
pages 221-256. Springer-Verlag (LNCS 164), 1984.

J. A. Goguen and R. M. Burstall. Institutions: Ab-
stract model theory for computer science. Report
CSLI-85-30, CSLI, Stanford University, 1985.

J. A. Goguen and J. Meseguer. Order-sorted algebra
I: Partial and overloaded operators, errors and in-
heritance. Technical report, Computer Science Lab.,
SRI International, 1987.

J. A. Goguen, J. W. Thatcher, and E. G. Wagner.
An initial algebra approach to the specification, cor-
rectness, and implementation of abstract data types.
In R. T. Yeh, editor, Current Trends in Programming
Methodology, Volume IV. Prentice-Hall, 1978.

J. A. Goguen and T. Winkler. Introducing OBJ3.
Technical Report SRECSL-88-9, Computer Science
Lab., SRI International, 1988.

G. Kahn. Natural semantics. In Proc. STACS’87.
Springer-Verlag (LNCS 24?), 1987.

B. Mahr and J. A. Makowsky. Characterizing specifi-
cation languages which admit initial semantics. The-
oretical Comput. Sci., 31:49-59, 1984.

V. Manta and A. Salibra. On the power of equational
logic: Applications and extensions. In Proc. 1st Int.
Conf. on Algebraic Logic (Budapest, August 1988).
To appear.

D71

P81

P91

PO1

Pll

WI

I231

I241

I251

WI

1271

WI

WI

PO1

WI

I321

P. Martin-Liif. An iutuitionistic theory of types:
Predicative part. In Proc. Logic Colloquium ‘73.
North-Holland, 1975.

J. C. Mitchell. Polymorphic type inference and con-
tainment. Information and Computation, 76:211-
249, 1988.

P. D. Mosses. Unified algebras and action semantics.
In Proc. STACS’89. Springer-Verlag. To appear.

P. D. Mosses. A basic abstract semantic alge-
bra. In Proc. lnt. Symp. on Semantics of Data
Types (Sophia-Antipolis). Springer-Verlag (LNCS
173), 1984.

P. D. Mosses. Unified algebras and institutions (ex-
tended abstract). Internal Report DAIMI IR-83,

Computer Science Dept., Aarhus University, 1988.
Available from the author; full version in prepara-
tion.

P. D. Mosses and D. A. Watt. The use of action
semantics. In Proc. IFIP TC2 Working Conference
on Formal Description of Programming Concepts III
(Gl. Auernas, 1986). North-Holland, 1987.

G. D. Plotkin. A structural approach to operational
semantics. DAIMI FN-19, Computer Science Dept.,
Aarhus University, 1981. Available only from Uni-
versity of Edinburgh.

H. Reichel. Initially-restricting algebraic theories.
In Proc. MFCS’BO, pages 504-514. Springer-Verlag
(LNCS 88), 1980.

H. Reichel. Initial Computability, Algebraic Specifi-
cations, and Partial Algebras, volume 2 of The hter-
national Series of Monographs on Computer Science.
Oxford University Press, 1987.

D. Sannella and A. Tarlecki. Specifications in an
arbitrary institution. Information and Computation,
76:165-210, 1988.

G. Scollo. Typed equational types: Pragmatics.
Talk at 6th ADT Workshop, Berlin, Aug. 1988.

D. S. Scott. Data types as lattices. SIAM J. Com-
put., 5(3):522-587, 1976.

G. Smolka. Order-sorted Horn logic: Semantics and
deduction. SEKI Report SR-86-17, FB Informatik,
UniversitBt Kaiserslautern, 1986.

G. Smolka. Type logic. Abstract for 6th ADT Work-
shop, Berlin, Aug. 1988.

G. Smolka, W. Nutt, J. A. Goguen, and J. Meseguer.
Order-sorted equational computation. SEKI Re-
port SR-87-14, FB Informatik, Universitiit Kaiser-
slautern, 1987.

A. Tarlecki. On the existence of free models in ab-
stract algebraic institutions. Theoretical Cornput.
Sci., 37:269-304, 1985.

343

