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Abstract 

This paper concerns the algebraic specification of 
abstract data types. It introduces and motivates 
the recently-developed framework of unified algebras, 
and provides a practical notation for their modular 
specification. It also compares unified algebras with 
the well-known framework of order-sorted algebras, 
which underlies the OBJ specification language. 

1 Introduction 

This paper proposes a radically new framework for 
the algebraic specification of abstract data types, 
called unified algebras, together with a simple yet con- 
venient notation for modular specifications. 

Unified algebras challenge a dogma that has been 
accepted since the earliest work on algebraic specifica- 
tions: that the classification of elements into “sorts* 
and the elements themselves should be kept separate. 

The main features of unified algebras are as follows: 

Classifications of elements into sorts are repre- 
sented directly as values in the carriers of unified 
algebras. Operations for sort union and intersec- 
tion are provided, as well as the empty sort and 
subsort inclusions. 

Operations on elements extend naturally to 
subsort-preserving operations on sorts. For ex- 
ample, the successor operation maps the sort of 

l InLnternet address: pdm@daimi.DK. 

Permission to copy without fee all or part of this material is granted 
provided that the copies are not made or distributed for direct 
commercial advantage, the ACM copyright notice and the title of 
the publication and its date appear, and notice is given that copying 
is by permission of the Association for Computing Machinery. To 
copy otherwise, or to republish, requires a fee and/or specfic 
permission. 

0 1989 ACM O-89791-294-2/89/0001/0329 $1.50 

329 

all natural numbers to the (sub)sort of positive 
natural numbers. 

There is no distinction between an element and 
the sort classifying only that element. 

Both partial and non-strict operations are al- 
lowed. In fact the undefined result is represented 
by the empty sort. (The conditional if-then-else 
operation is a good example of a useful non-strict 
operation.) 

Nondeterminism is allowed. A nondeterminis- 
tic choice between some elements is not distin- 
guished from the sort consisting of just those el- 
ements. 

Sort constructions are ordinary operations. For 
example, consider an operation that maps an in- 
teger i to the sort of all integers up to i; or au 
operation that maps a natural number n and a 
sort s to the sort of all lists of length n with 
components of sort 9. 

Sorts may be subject to equations. Thus the 
sort of integers may be equated with the union 
of the natural numbers sort and the application 
of negation to that sort. (Union is idempotent, 
so zero does not get duplicated.) 

The signatures of unified algebras are very sim- 
ple: they give just the number of arguments of 
each operation. They do not distinguish con- 
stants that denote sorts from those that denote 
elements; nor do they indicate how the sort of the 
result of an operation depends on the sorts of its 
arguments. (Such information may specified by 
axioms.) 

The axioms used to specify unified algebras are 
quite general: Horn clauses, involving equality, 
sort inclusion, and classification of elements into 
sorts. 



AU operations are fully “polymorphic”, and may 
be applied to’ arbitrary operands without prior 
“instantiation”. However, operations may also 
be restricted so that they only give defined re- 
sults on certain sorts of arguments. For exam- 
ple, the if-then-else op’eration may be restricted 
so that the result is only defined when the first 
argument is a truth-v*slue, whereas the second 
and third arg,uments are left unrestricted. 

Constraints, analogbus to so-called “data con- 
straints”, can be used to restrict parts of unified 
algebras to be freely-4;enerated by other parts. 
For generic data types (such as lists) their p& 
rameters (such as the sort of components) are 
“loosely-specified” parts; instantiation is merely 
the specialization of such parts. 

Section 2 explains the conceptual basis of uniAed 
algebras, and then sketches the foundations. (More 
details may be found in [21].) However, the emphasis 
of the present paper is on pragmatics, rather than 
foundations: the aim is to show that unified algebraic 
specifications cant be just as concise tind modular as 
those in other frameworks. 

Section 3 introduces notation for basic specifica- 
tions, and shows how order-sorted specifications (as 
in OBJ [S]) can be regarded as specifications of unified 
algebras. 

Section 4 introduces a simple notation for modular 
specifications. Some pleasant pragmatic features of 
these modular specifications are: 

l Modules may be declared in any order, and may 
be mutually recursive. Moreover, module dec- 
larations may be split up and interleaved, so 
that information essential to users (ana1ogou.s to 
an “interface”) may be specified separately from 
definitional details (which are analogous to an 
“implement ation”). 

l Modules may be nested. A module may be split 
into sub-modules without affecting the use of the 
module. AIlso, a module may be “opened’?, so 
that the notation it specifies is tacitly made avail- 
able to other modules. 

l Basically, each operation symbol has a single in- 
terpretation throughout an entire specification: 
properties s.pecified in separate modules are sim- 
ply united. “Localization” of operation symbols 
may be ach.ieved by renaming. 

A direct semantics for “canonical” modular specifi- 
cation is given. It is shown how any modular specifi- 
cation can be reduced to canonical form, thus estab- 

liihing an indirect “transformational semantics” [l] 
for arbitrary modular specifications. 

Section 5 show how constraints are used to specify 
generic ty:pes, .with instantiation being just special- 
ization. 

Section 6 compares unified algebras and modules 
to related frameworks-in particular, to order-sorted 
algebras and OBJ, which largely inspired the devel- 
opment of unified algebras. 

Some concluding remarks report on the experience 
so far with using unified algebras and modules, and 
indicate where further development of the framework 
is needed. 

The reader is assumed to be familiar with the initial 
algebra approach to the specification of abstract data 
types [12, 2, 15, 32, 51. 

2 Unified Algebras 

To start with, let us recall the basic concepts of ab- 
stract data types, and relate them to unified algebras. 

2.1 Concepts 

A data type consists of a set of elements (such as 
numbers or lists) together with a collection of named 
operations between elements-i.e., an algebra. An 
abstract data type is a class of algebras that share 
some properties. 

In the so-called “algebraic” approach to specifica- 
tion of abstract data types, a basic specification con- 
sists of a signature and a set of logical sentences. The 
signature provides names for operations (constants 
are regarded as operations with no arguments). The 
satisfaction of the sentences provides properties of the 
operations. The specified class of algebras consists of 
all algebras that have (only) the named operations 
with the given properties. Note that the elements 
of these algebras may be any entities, abstract or 
concrete, provided that they are equipped with the 
proper operations. 

When specifying an abstract data type alge- 
braically, it is helpful to identify various cIassi$ca- 
tions of elements into sorts, and to give for each op- 
eration, the relation between the sorts of its argu- 
ments and the sort of its result. If the arguments of 
an operation are restricted to subsorts of the specified 
sorts, the result may also be restricted to a subsort. 
In particular, when arguments are restricted to single 
element sorts, the result sort may be restricted to the 
result of applying the operation to these elements. 

In general, however, few of the possible classifica- 
tions are useful enough to merit the introduction of 
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special names for them. For instance, consider the 
abstract data type of integers: apart from the sort 
of all integers, the sort of natural numbers is cer- 
tainly useful enough, being closed under several inte- 
ger operations; but how about the positive integers, 
the negative integers, the non-positive integers, the 
even integers, etc., etc.? 

In unified algebras, sorts have the same status as 
elements-in particular, operations may be applied to 
sorts as well as to elements. It turns out that many 
classifications of secondary importance can be ex- 
pressed by applying “elementary” operations to sort 
constants. For instance, the sort of positive integers 
is expressed by the application of the successor oper- 
ation to the sort of natural numbers; the sort of neg- 
ative integers is given by applying negation to that 
sort; and so on. Thus it is not necessary to compli- 
cate signatures with constants that name such sorts. 

Let us henceforth refer to sorts and elements to- 
gether as choices. (In fact the development of uni- 
fied algebras started from the observation that there 
is a close correspondence between sorts and non- 
deterministic choices. See [19] for more discussion of 
the treatment of nondeterminism in unified algebras.) 

Unified algebras do not necessarily provide all pos- 
sible choices between elements. However, the set of 
choices provided by a unified algebra always includes 
the vacuous choice, Hobson’s choices’ of single ele- 
ments, and all finite choices. The set of choices is 
always closed under (finitary) union and intersection. 

Choices are partially ordered by inclusion: if c, 
and c, are choices, then ‘c, 5 c,’ asserts that c, is 
included in c,. An important special case of inclu- 
sion is classification: ‘c, : c,’ asserts that c, is the 
Hobson’s choice of a single element, included in c,. 
Different Hobson’s choices are incomparable in the 
partial order. The vacuous choice, denoted ‘nothing’, 

is least in the partial order. The choice between two 
choices c,, c,, denoted ‘c, 1 c,‘, is their least upper 
bound; their “agreement”, denoted ‘c,&c,‘, is their 
greatest lower bound. 

The set of choices between elements forms a dis- 
tributive lattice with a bottom. Note that the Hob- 
son’s choices need not be the so-called “atoms” of the 
lattice (i.e., “just above” the bottom); but choices be- 
tween them and the bottom are not much use, as they 
cannot include any elements. More generally, choices 
need not be “extensional”: two distinct choices may 
classify the same set of elements. 

‘For the benefit of readers unfamiliar with this idiom: 
“Hobson’s choice: option of talcmg the one offered or noth- 
ing [from T. Hobson, Cambridge carrier (d. 1631) who let out 
horses on this basis].” [4] 

NB! Choice inclusion must not be confused with 
computational approximation in Scott domains; in 
fact lattices here are not usually cpos. 

As well as a set of choices, a unified algebra has con- 
stants that distinguish particular choices, and opera- 
tions that map choices to choices-preserving choice 
inclusion. Thus operations are monotonic, but not 
necessarily continuous. 

For example, consider the usual type of natural 
numbers, with elements 0, 1, 2, . . . . This type can be 
represented by a unified algebra whose set of choices 
includes all finite and cojiniie choices between these 
elements, together with the following constants and 
operations: 

‘O’, denoting the Hobson’s choice of the single 
element 0; 

‘Natural’, denoting the infinite choice between all 
the elements; 

‘successor-‘, denoting the operation that maps 
each element to its successor-and maps any 
choice between elements to the choice between 
their successors: ‘Natural’ is mapped to the 
choice between all non-zero natural numbers, 
‘nothing’ is mapped to ‘nothing’; 

‘predecessor-‘, analogous to ‘successor-‘, except 
that ‘0’ is mapped to ‘nothing’, and ‘Natural’ is 
mapped to ‘Natural’. 

(Other operations would require further infinite 
choices, e.g., ‘double,’ would require choices between 
infinite sets of even numbers, etc.) 

By the way, note that properties of operations 
do not always extend from elements to multiple 
choices-nor to the vacuous choice. For example, sup- 
pose that a unified algebra representing a data type 
of natural numbers has binary operations for addition 
and multiplication. The multiplication of a choice c 
by (the Hobson’s choice of) 2 is not the same as the 
addition of c to c when c is a multiple choice; and 
the multiplication of ‘nothing’ by 0 is ‘nothing’, rather 
than 0. 

So much for the concepts underlying unified alge- 
bras. Let us now consider their formalization. 

2.2 Formalities 

Before defining unified signatures and algebras, let us 
specialize the conventional notation for heterogeneous 
algebras to homogeneous algebras (eradicating sort- 
indexed sets). 
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First, let Symbol be the set of symbols used to 
name constants and operations, partitioned into dis- 
joint subsets Symbol,, n > 0. Let Variable be a set of 
variables, disjoint from Symbol. 

A homogeneows algebraic signatwe is simply a sub- 
set C of Symbol. We write C, for C n Symbol,,, for 
n > 0. A homogeneous alg’ebraic signature morphism 
u : C --+ C’ is a .&mily of maps a, : C, -+ CL. We 
write u(f) for b,,(f), where f E C,. 

A homogeneons C-algebra A consists of a set IAl 
(of choices) and for each f E C, a function f~ : 
IAl” --t IAl (called a constant when n = 0, otherwise 
an opemtion). A. C-homomorphism h : A + B is a 
function from IAl to IBI such that for any f E C, and 

a19 ---,a, E IAl 

h(fA(%“” ,%a)) = fB(q-4, * - *, %d). 

So much for homogeneous algebras. Now for uni- 
fied algebras. 

A unified signature is a homogeneous algebraic sig- 
nature that includes the constant symbol ‘nothing’ 

and the binary operation symbols ‘_ I_’ and ‘-%-‘. 
(Unified signature morphisms are homogeneous sig- 
nature morphisms that preserve the given symbols.) 
We write UniSign for the set of unified signatures. 
Henceforth, let 1; always be a unified signature. 

A C-unified s’entence is a universal Horn clause 
with variables from Variable, operation symbols from 
X, and binary predicate symbols ‘=‘, ‘I’, and ‘:‘. We 
write UniSen(X) for the set of C-unified sentences. 

A C-unified al,gebra A is a homogeneous C-algebra 
A such that: 

IAl is a distributive lattice with _ 1 -A as join, 
-&-A as meet, and nothingA as bottom. Let IA 
denote the partial order of the lattice. 

There is a dlistinguished subset of incomparable 
values, EA <; IAl (the elements of A). Note that 
EA need not be the “atoms” of the lattice. 

For each f E c, the function fA is monotone 
with respect to <A. 

A C-unified homomorphism is a C-homomorphism 
that respects th.e partial order and maps elements 
to elements. We write UniAlg(C) for the class of 
C-unified algebras. 

The binary predicate symbols ‘=‘, ‘L’, and ‘:’ are 
interpreted as follows in a unified algebra A: 

l z = y holds iff z is identical to y; 

l 2 5 y holds iff z <A y; 

l z:yholdsiffzEEAandzsAy. 

The institution UN1 of unified algebras is defined 
in the usu.al way, in terms of the obvious categories of 
unified signatures, unified algebras, and the standard 
notion of satisfaction for universal Horn clauses. 

By establishing the institution of unified alge- 
bras, not only do we identify alI the relevant ba- 
sic components of our framework, but also we make 
available the full power of Sannella and Tarlecki’s 
institution-independent specification notation [26] 
(which doesn’t seem to have a name-let’s refer to 
it as ‘S&T’ here). 

However, S&T is not intended as a practical speci- 
fication language: it is a powerful kernel upon which 
practical specification languages may be built. For 
one thing, it does not provide notation for naming 
modules of specifications. 

The following sections introduce a rather simple- 
yet quite practical-specification language. It would 
be possible to define the semantics of this language 
by reducing it to S&T; but that would be somewhat 
hard on readers who are not familiar with the de- 
tails of S&T. Instead we give a direct definition of 
the semantics of “canonical” specifications, and show 
how arbitrary specifications can be reduced to canoni- 
cal ones; this reduction provides a “transformational” 
semantics for our specifications. (In a more thor- 
ough treatment, a denotational semantics for the full 
specification language would be defined, and it would 
be proved that the given reduction preserves denota- 
tions.) 

The various constructs of the specification language 
are introduced gradually, “bottom-up,,. First come 
basic specifications, which are essentially monolithic 
specifications of signatures and sentences. Then come 
modular specifications, where a specification is split 
into named parts, allowing the dependence of these 
parts upon each other to be made explicit. Finally 
come constraints, a special kind of sentences used to 
specify “standard” models and “generic” data types. 

We don’t bother to give an unambiguous concrete 
syntax for our specification language. Instead, we 
use ambiguous grammars to define its abstract syn- 
taz. The grammars are written in a minor variant 
of BNF: ‘2 ’ stands for “produces,,, ‘ 1 ’ stands for 
“alternatively”, and terminal symbols are enclosed in 
quotation marks. 

Each non-terminal of a grammar generates a set 
of strings (of terminal symbols); the derivation trees 
for these strings-equipped with the tree construc- 
tion operations-are (essentially) the desired abstract 
syntactic entities. For writing examples of specifica- 
tions, we use parentheses and indentation to indicate 
which abstract syntactic entities are intended, when 
this is not clear from the context. 
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3 Basic Specifications 

In this section we first define the syntax and seman- 
tics of canonical basic specifications, which corre- 
spond directly to unified signatures and sentences. 
Such specifications are adequate in theory, but some- 
what tedious to use in practice. Therefore we ex- 
tend the syntax with some convenient abbreviations, 
which allow us to write specifications that resem- 
ble the order-sorted signatures and sentences used in 
OBJ. Finally, we show how the grammars that we 
use to define the syntax of basic specifications 
themselves be regarded as basic specifications. 

CS.Il 

3.1 Canonical Basic Specifications 

The abstract syntax of canonical basic specifications 
is defined by the grammar given below. 

Basic 1 

Clause 2 

Formula 1 

Relator 2 

Term 2 

Terms1 2 

Termsp+l 1 

“constant” Symbolo 1 

“operation” Symbo& 1 

Clause 1 Basic Basic ; 

Formula 1 Formula 

Term Relator Term 
r,=rr 1 US” 1 u:r, 

Variable I Symbol0 

Symbol, Term% 

Term ; 

Term I‘,” Termsp 

“d” Clause ; 

The grammar does not define the micro-syntax of 

; 

I 

symbols (‘Symbol,‘, n 2 0) and variables (‘Variable’). 

For symbols, let us use strings of characters in this 

sans serif font, with the number of occurrences of the 
place-holder character ‘-’ determining the index (i.e., 
rank) of the symbol. For variables, let us use strings 
of letters in this italic font, optionally distinguished 
by numerical subscripts and/or primes. 

Notice that the grammar is not quite context-free: 
the indices on the nonterminal symbols ‘Symbol’ and 
‘Terms’ ensure that operation symbols are only ap- 
plied to the number of arguments indicated by their 
indices. Each ‘Symbol,’ (for n > 0) and ‘Term% (for 
p 1 1) may be regarded as a distinct nonterminal 
symbol, if desired. 

A simple example of a canonical basic specification 

is given below. 

constant Truth-Value 

constant true 

constant false 

true : Truth-Value 

false : Truth-Value 

Truth-Value = true I false 

operation if-then-else- 

T 5 Truth-Value =+ 

(if T then X else Y) 5 (X I Y) 

if true then X else Y = X 

if false then X else Y = Y 

if nothing then X else Y = nothing 

if (t I U) then X else Y = 

(if t then X else Y) I (if 1~ then X else Y) 

T & Truth-Value = nothing _ 

(if T then X else Y) = nothing 

There is no need to disambiguate the grouping of the 
basic specifications, as it is semantically irrelevant (in 
fact, so is the order). We exploit “mix-fix” notation 
(much as in OBJ) to write the application of an op- 
eration symbol ‘S,- . . . 2,’ to terms ‘TX. . . ., T,,’ as 
‘SOT, . . . T,,S,,‘; e.g., we write ‘if-then-else-(t,X, Y)’ 
as ‘if t then X else Y’. 

The effect of specifying ‘t : t’ is to insist that t is 
the Hobson’s choice of a single element. More gener- 
ally, a formula ‘z : U’ insists that U includes some el- 
ement, which (in a non-trivial specification) prevents 
U Corn being ‘nothing’. (In general, let us follow 
the convention of writing constants and variables that 
necessarily stand for single elements in lower case.) 

Caveat: the examples given in this paper are in- 
tended mainly to illustrate the form of specifications; 
the choice of which operations and properties to spec- 
ify is not always that which might be best in a prac- 
tical specification. Moreover, unified algebraic spec- 
ifications are no less prone to mistakes than many- 
sorted or order-sorted ones, and there has not been 
time to prove that the examples given here actually 
specify the intended classes of unified algebras. 

Now let us define the semantics of canonical basic 
specifications. First of all, a basic specification is said 
to be complete when all the (constant and operation) 
symbols occurring in termsexcept for the reserved 
symbols ‘nothing’, ‘- I -‘, and ‘-&-‘-are declared by 
‘constant S’ or ‘operation S’. We do not care to give 
a semantics for incomplete specifications (although it 
could be done). 
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The semantics of a complete basic specification B 
consists of two components: Sig[BJ, the unified sig- 
nature specified by B; and Alg[BI], the class of unified 
algebras specified by B. Vie define: 

Sig[B] = (5: E Symbol 1 S occurs in B} U 

{‘nothing’, ‘- I-‘, ‘JL’} 

Alg[rB]I = {A E UniA.lg(Sig[B]) 1 
A satisfies all the clauses in B). 

3.2 Abbreviations 

As may be seen from the specification of truth-values 
above, canonical basic specifications are a bit tedious. 
Let us introduce some abbreviations. 

Actually, the first abbreviations we introduce 
would not shortlen our specification of truth-values, 
but they are often convenient. The syntax is as fol- 
lows (extending the previously given grammar): 

Clause 2 Clause “;‘I Clause ; 

Formula 2 Formula “;” Formula ; 

Relator 2 
.y, , ‘,:_,, 

The symbol I‘;” !stands for conjunction in clauses and 
formulae. The relators “2” and ‘2-” stand for the re- 
versals of the relations ‘5’ and ‘:‘, respectively. It is 
straightforward to reduce any clause using these con- 
structs to a combination of canonical (Born) clauses; 
we omit the details. 

Now consider the following extensions, which en- 
able us to write basic specifications resembling those 
in OsJ-and more! 

I n : Natural ; p : Positive 

I. 
Basic 1 

Clause 1 

Terms2 2 

Functionalityp 

2 

Attributes 2 

Attributer, > 

“constant” Symbol. Relator Term 1 

“operation” Symbolp “I” Functionalityp 

Symbo& “:lr Functionalityp ; 

Term ‘12” ; 

Termsp I’+” Term 1 

Terms, “IQ” Term 1 

Terms, ‘3” Term 1 Attribut% 1 

Functionalityp Functionality, ; 

“associative” 1 “commutative” 1 

“idempotent” 1 “unit” Term ; 

“strict” 1 “defined” 1 “elementary” 

Using the above constructs, we may abbreviate the 
specification of truth-values as follows: 

constant Truth-Value = true 1 false 

constant true : Truth-Value 

constant false : Truth-Value 

operation if-then-else- : 
Truth-Value, X, Y =+ (X 1 Y) 
nothing, X, Y -+ nothing 
defined elementary 

if true then X else Y = X 

if false then X else Y = Y 

T & Truth-Value = nothing _ 

(if T then X else Y) = nothing 

Consider also the following abbreviated specification 
of natural numbers: 

constant Natural = 0 1 successor Natural 

constant 0 : Natural 

operation successor- : Natural --f Natural 

constant Positive = successor Natural 

operation natural predecessor- : 
Natural u Natural 

Positive --+ Natural 
0 -+ nothing 

N 2 Natural =+ 

natural predecessor(successor N) = N 

operation sum(+) : 
Natural2 -+ Natural 
Positive, Natural --+ Positive 
associative commutative unit(O) 

operation product(-,-) : 
Natural’ ---f Natural 
Positive2 --t Positive 
0, Natural -+ 0 
associative commutative 
unit(successor 0) 

2 
: Natural ; n : Natural 

sum(m, successor n) = 

successor sum(m,n) ; 

product(m, successor n) = 

sum(m, product(m,n)) 

Now, such specifications look quite nice-to the au- 
thor, at least-but what is their semantics? Let US 

see how to reduce them to canonical basic specifica- 
tions . 
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The construct ‘constant S R T’ merely abbreviates 
the combination of the declaration ‘constant S’ and 
the clause ‘S R T’. Likewise, ‘operation S : P’ abbre- 
viates the combination of ‘operation 5” and the clause 
abbreviation ‘S : F’, where F is a “functionality”. 
Thus what appear to be order-sorted signature dec- 
larations are really abbreviations for combinations of 
(unsorted) unified signature declarations and clauses. 

There are three main forms of functionality, con- 
cerned with so-called “total”, “partial”, and “gen- 
eral” operations. Total and partial functionalities 
may be explained in terms of general functionalities 
and “attributes” , which we consider first. 

The functionality ‘S : T, ,. . . , TP + T’ abbreviates 
the clause (actually, formula) ‘S( T,,. . . , TP) < T’. 
The monotonicity of all operations gives as a conse- 
quence that applying the operation S to any choices 
(or elements) included in the Ti always gives a result 
included in T. 

Any attributes specified along with such a general 
functionality enhance it as follows (assuming all ar- 
guments are included in the Ti): 

‘strict’ asserts that when any argument is ‘noth- 

ing’, the result is ‘nothing’; 

‘defined’ asserts that when the result is ‘nothing’, 
at least one argument must be ‘nothing’; 

‘elementary’ asserts that when all the arguments 
are elements, the result is either an element or 
‘nothing’, and, moreover, that the operation is 
“linear”, preserving ‘- I-’ and ‘-&-’ in each argu- 
ment separately; 

‘associative’, ‘commutative’, ‘idempotent’, and 
‘unit T” assert the obvious properties for bi- 
nary operations. (By the way, ‘Ta’ abbreviates 
‘ T, T’.) 

Now it is easy to explain the “total” and “partial” 
functionalities: 

a ‘S : T,,...,T, -t T’ abbreviates 
‘5’ : T,,..., TP j T strict defined elementary’ 

(the combination of ‘defined’ and ‘elementary’ 

implies that elements get mapped to elements, 
hence choices that include elements get mapped 
to choices that include elements); 

l ‘S : T,,...,T, Q T’ abbreviates 
‘S : T,,..., TP 3 T strict elementary’ (so ele- 
ments may get mapped to ‘nothing’). 

In practice, it is convenient to extend almost all op- 
erations from elements to choices by using “total” or 

“partial” functionalities. The “general” functional- 
ities are needed only for non-strict operations (like 
‘if-then-else-‘) and for operations that are non-linear 
(like a sort constructor mapping sorts of components 
to sorts of lists). 

As in order-sorted algebras, an operation may have 
more than one functionality: the clause ‘S : F, F,’ 
abbreviates the conjunction ‘S : F:; S : FL’, where 
F: and Fi each contain all the attributes of F, and 
F2, and together contain all their total, partial, and 
general functionalities. 

It is claimed that any clause of the form ‘S : F’ can 
be reduced to a conjunction of clauses not involving 
functionalities, corresponding to the above informal 
descriptions. A formal specification of this reduction 
would define the semantics of all basic specifications; 
here the details are left to the reader’s imagination. 

3.3 Unified Abstract Syntax 

The grammars used above to define the abstract syn- 
tax of basic specifications look a lot like basic speci- 
fications themselves. Let us see how such a grammar 
can be regarded as a formal abbreviation for a com- 
plete basic specification whose semantics (i.e., a class 
of unified algebras) corresponds to the intended ab- 
stract syntax. 

First, consider the nonterminal symbols of the 
grammar. The unindexed nonterminal symbols, such 
as ‘Basic’, may be regarded as constants that stand 
for sorts of abstract syntactic entities. Indexed non- 
terminal symbols, such as ‘Term%‘, may be regarded 
as operations from index elements to syntactic sorts 
(which would not be possible with conventional alge- 
bras). By the way, such operations extend naturally 
to index sorts, so we may express the union of all the 
‘Term+’ by ‘Terms Positive’. 

Next, consider the alternatives on the right-hand- 
sides of the productions. We have agreed that non- 
terminal symbols stand for sorts; so each alternative 
must be the application of an operation to sorts (or 
just a constant, if there are only terminal symbols in 
the alternative). The operation symbol may be ob- 
tained by replacing all the sort arguments by place- 
holders. (Notice that the device of enclosing terminal 
symbols in quotation marks helps to prevent confu- 
sion between the implicit syntactic operation symbols 
and the operation symbols of other data types.) The 
sorts used in the alternative, together with the sort 
on the left-hand-side of the production, determine an 
appropriate (total) finctionality for the operation. 

However, “chain productions”, such as ‘Basic 2 
Clause’, would involve an operation named by the in- 
visible operation symbol ‘-‘. It is preferable to avoid 
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introducing this symbol, rurd to regard chain produc- 
tions as specifying no more than the given sort inclu- 
sion. 

The whole right-hand-side of a production is now 
a choice between sorts cor,cesponding to the alterna- 
tives. As choice is sort union, the production specifies 
that each of the alternatives is included in the sort 
corresponding to the nont.erminal on the left-hand- 
side. 

An example may help. Consider the following 
grammar: 

Clause 2 Formula 1 Formula “e” Clause ; 

Formula 1 Term Relator Term ; 

Relator p rr=rr , ,y , y ; 

Term 1 “nothing” 

The corresponding constants and operations are spec- 
ified 8s follows: 

constant Clause 1 Formula 

constant Formula 

constant Relator 

constant Term 

operation _ “=a” _ : Formula, Clause --t Clause 

operation _ _ _ : Term, Relator, Term + Formula 

constant “=I’ : Relator 

constant “I” : Relator 

constant “I” : Relator 

constant “not.hing” : Term 

Combining this basic specification with the original 
grammar, we get a compl.ete specification whose se- 
mantics may be regarded as an abstract syntax. The 
constraints introduced in Section 5 can be used to re- 
strict the class of unified algebras to those whose only 
elements are those implied by the above specification 
(even leaving some parts of the syntax unconstrained, 
for later specialization). 

4 Modular Specifications 

Here, a module comprises an identification, together 
with 8 body, which is a complete specification. A 
modular specijloation is a basic specification that is 
divided into such modules. If one forgets the module 
identifications, the semantics of a modular specifica- 
tion is just the s,ame 8s that of the combination of its 
module bodies. 

The modularization of specifications has sev- 
eral pragmatic benefits. First, it exhibits sub- 
specifications that have an independent meaning, 
which usually improves comprehensibility. Second, 
a sub-specification that is included in another may 
be replaced by a reference to the identification of 
the corresponding module; this allows Te-use of sub- 
specifications within a specification, which usually fa- 
cilitates making changes, and which also exhibits the 
dependency relation between modules. Last, it per- 
mits the Te-use of parts of one specification in another 
specification, which would be essential for a specifica- 
tion “library” consisting of many independent parts 
specifying standard abstract data types. 

We start by introducing canonical modular speci- 
fications, where modules do not refer to each other. 
Then we allow recursive specifications, with the possi- 
bility of mutual reference between modules. Next, we 
let modules be textually and logically nested. Finally, 
we introduce notation for translating and localizing 
modules. Note that we do not need to consider pa- 
rameterized modules: generic data types are specified 
using constraints, as described in the next section. 

4.1 Canonical Modular Specifications 

The abstract syntax of canonical modular specifica- 
tions is defined by the following grammar, which ex- 
tends the grammar of basic specifications: 

Modules 2 Identification ‘I.” Basic 1 

Modules Modules 

The micro-syntax of identifications is not specified; in 
examples, we use words in this bold font. 

The grouping and order of modules is irrelevant. 
For a modular specification to be called canonical, 
the identifications of all the modules must be distinct, 
and the bodies of all the modules must be complete. 

For example, consider a specification with modules 
corresponding to truth-values and natural numbers: 

Truth Values. 

I . . . 
Numbers. Naturals. 

I . . . 
(where the bodies of the modules have been elided). 

The semantics of a canonical modular specification 
M is an environment, mapping module identifications 
to the semantics of the corresponding module bodies. 
We define 

Env[lM] = (I H (Sig[B],Alg[B]) 1 ‘1.B’ occurs in M}. 
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We may also extend Sig[-] and Alg[J from basic spec- 
ifications to modules: 

Sig[B] = u(Sig[l?] 1 B occurs in M) 

AlgfB] = U{A’ E UniAlg(Sig[M]) 1 
A’ t (Sig[B] c-t Sig[rM]) E AIg[B] 
for all B that occur in M}. 

where for any C C C’ and A’ E UniAlg(C’), the 
C-algebra A’ t (C c+ C’) is obtained from A’ by for- 
getting the operations of C’ \ C, but keeping the same 
set of choices. 

Notice that Sig[M] and Alg[Mn could be defined 
in terms of Env[Mn; but the given definitions make it 
obvious that they do not depend at all on the identi- 
fications of the modules, only on the bodies. 

4.2 Recursive Modules 

Obviously, canonical modular specifications would be 
tedious to use directly: notation that is used in sev- 
eral different modules has to be specified afresh in 
each of them. So let us allow module bodies to spec- 
ify the inclusion of the bodies of other modules by 
referring to the corresponding identifications. The 
syntax for such references is: 

Basic 2 “use” Identification 

It is not necessary to put any restriction on the us- 
age of “use” . In particular, mutual reference (i.e., 
recursion) is allowed. Duplicate references in a body 
may always be eliminated; likewise, any self-reference 
may be removed: all the notation specified by such a 
reference is already available! 

For a simple example, consider the following mod- 
ular specification: 

Numbers. Naturals. 

I . . . 

Numbers. Integers. 

I 

use Numbers. Naturals 

. . . 

The order of the modules is irrelevant, as with canon- 
ical modular specifications, 

The semantics of specifications involving “use” is 
given by defining their reduction to canonical mod- 
ular specifications. The following algorithm exploits 
the fact that basic specifications are essentially just 
sets of operation symbols and clauses; basic specifi- 
cations with references to module identifications may 
therefore be regarded as monotonic functions from 
basic specifications to basic specifications. 

Let M be a (recursive) modular specification. Let 
MO be obtained from M by replacing each module 
body by the vacuous trivial specifications. For n 2 
0, let &+I be obtained from M by replacing each 
‘use I’ by whatever I identifies in M,,, then removing 
any duplicate parts of the resulting bodies. Clearly, 
the M, form a non-decreasing chain. But the set of 
symbols and clauses in each module body is bounded 
by the set of all the symbols and clauses in M. Thus 
(as there are only a finite number of modules) the M,, 
must stabilize at some finite value of n; let M’ denote 
the resulting modular specification. 

We now regard M as complete if the module bodies 
in M’ are complete (basic specifications). Thus for 
any complete recursive specification M, M’ gives its 
reduction to a canonical modular specification. 

A direct denotational semantics for recursive mod- 
ular specifications would require making environ- 
ments into a cpo and using least fixed points of con- 
tinuous functions. 

Before we add more syntax to our modular speci- 
fication language, let us relax our requirements con- 
cerning the uniqueness of module identifications and 
the completeness of module bodies. 

The idea is to allow the textual separation of “in- 
terfaces” from “details”. Here, an interface does not 
“hide” anything; it merely draws attention to some 
particular operation symbols and (perhaps) proper- 
ties. In practice, this rather trivial form of interface 
seems to be quite useful. 

A specification with separated modules is reduced 
by combining the bodies of modules that have the 
same identification. This defines the semantics of 
those separated modular specifications that reduce to 
canonical modular specifications. 

For an example consider 

Numbers. Naturals. 

I . . . the interface 

Numbers. Integers. 

use Numbers. Naturals 

. . . the interface 

. . . some other modules 

Numbers. Naturals. 

I , . . the details 

Numbers. Integers. 

‘use Numbers. Naturals ’ need not be repeated 

. . . the details 

2which we may write as ‘constant nothing’. 
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4.3 Nested Modules 

Let us next allow modules to be grouped together 
in nests, so that the identification of the nest may 
be used to refer to all the modules in the nest. To 
start with, we enhance the syntax of module iden- 
tifications, to allow what we call “logical nesting”; 
afterwards, we permit module bodies to be bodies., to 
allow the “textual nesting” of modules. 

The syntax for identifications reflects a convention 
that has been used in the examples above: identifica- 
tions are essentially sequences of basic identifications. 

Identification > Identification “.” Identification 

Now we may regard ‘use I’ as an abbreviation for the 
combination of ‘use I. I” for every (relevant) ide:nti- 
fication I’. 

For example, given the above examples, we may 
write just ‘use Numbers’ instead of 

use Numbers. Naturals ; 

use Numbers. Integers. 

Moreover, if we forbid identifications where the 
same sub-identification occurs more than once, we 
may unambiguously abbreviate references by omit- 
ting a common Iprefix of the “source” and “target” 
identification of lthe reference. Thus ‘use I’ occur:ring 
in a module badly with identification I’ abbreviates 
‘use I”. I’ for some unique prefix I” of I’. (Such ab- 
breviations are context-dependent, so they must be 
eliminated before module bodies are substituted for 
references.) 

For example, the ‘use Numbers. Naturals’ in the 
module ‘Numbers. Integers’ may be abbreviated 
to ‘use Naturals’. 

Now for textual nesting, which can be useful for 
emphasizing the “logical” nesting implied by the 
structure of iden.tifications. The syntax is just 

Modules > Identification “.I‘ Modules 

The semantics o:f ‘I. M’ is very simple: it is the same 
environment as that specified by M, except that all 
the identifications are prefixed by I. Obviously, :such 
constructs can be eliminated syntactically, by dis- 
tributing ‘I.’ in M. 

We may now exhibit the nesting structure of 

‘Numbers’ by 

Numbers. 

I 
Naturals. 

iI . . . 
Integers. 

use Naturals 

*.* 

The analogy between this notation for nested mod- 
ular specifications and hierarchical file systems is 
rather obvious. 

Actually, with the above syntax for modules, it 
is not always possible to convert canonical modular 
specifications into “fully-nested” modular specifica- 
tions with unique identifications at each nesting level. 
The problem arises when the identification of one ba- 
sic specification is a proper prefix of that of another 
basic specification: the body identified by the shorter 
identification would be a mixture of a basic specifica- 
tion and an identified module, which is not allowed 
by our syntax so far. 

It is a simple matter to extend the syntax to remove 
this problem: 

Modules >_ Basic 

but the semantics requires careful consideration. The 
question is whether the notation declared in a basic 
specification at some level of nesting is made avail- 
able to the identified sub-modules of that level, or 
not. By analogy with block structure in programming 
languages, we may expect that it should be. The 
semantics may then be defined by a reduction that 
distributes basic specifications at outer levels into all 
identified sub-modules. 

But this weakens the modularization discipline 
somewhat: it is no longer the case that the notation 
used (but not declared) in a module comes entirely 
from explicitly-referenced modules: it may come from 
enclosing modules as well. In particular, notice that 
our modules may now consist of sequences of basic 
specifications and identified modules-and that ‘use 
I’ is a basic specification. So we may specify 

Truth Values. 

I . . . 
use Truth Values 

As usual, ‘use Truth Values’ references the corre- 
sponding basic specification. Thus the notation for 
truth-values is made available to all the other mod- 
ules in the specification-just as if it were “built in”. 
The benefit of allowing this specification seems to out- 
weigh the weakening of the modularization. 
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4.4 Translation and Localization 

Sometimes it is convenient to specify several different 
abstract data types on the basis of a common part- 
for instance, flat lists and nested lists on the basis 
of general lists. But although such related data types 
may sensibly use the same symbols for “polymorphic” 
operations (such as ‘cons(-,-)‘) and for constants that 
have the same interpretation (such as ‘nil’), it would 
be inconsistent for them to use the same notation 
(such as ‘List’) for the classifications of their respec- 
tive elements into sorts. 

in the operation symbol. In practice, identificatiors 
would never be written explicitly in operation sym- 
bols, so there is no conflict between the local opera- 
tions of different modules. 

A translation allows us to make a copy of a specifi- 
cation with some changes to the symbols. The syntax 
is as follows: 

n : Natural 
L 

Basic 1 Basic Translation ; 

Translation > Symbol,, “:=‘I Symbol, 1 

Translation “;” Translation 

Let us restrict translations to ‘S%:=S:; . . .; $:=SL’ 
where the Si are all different-and do not include 
‘nothing’, ‘- 1 -‘, or ‘ &-‘. The order and grouping in 
translations is irrelevant. 

The semantics of ‘B T’, where B is a canonical 
basic specification and T is a translation ‘S, :=Si; . . . ; 
&:=SL’, is the same as that of the canonical basic 
specification obtained by replacing all occurrences of 
the Si in B by the corresponding S/ (leaving other 
symbols alone). 

Notice that in practice, a translation is usually ap- 
plied to a reference ‘use I’. The semantics of such 
basic translations is determined by the given reduc- 
tion of recursive modular specifications to canonical 
modular specifications. 

The final syntactic construct for modules intro- 
duced here provides a simple form of “hiding”, called 
localization: 

Basic > “local” Basic ; 

Symbol, > Identification “.” Symbol, 

The idea is to allow the introduction of auxiliary no- 
tation in a module, but without the danger that its 
specified properties might “conflict” with properties 
specified in other modules. 

The semantics of ‘local B’ is given by reducing it 
to a translation ‘B T’. The translation T trans- 
lates every operation symbol in B to the same sym- 
bol prefixed by the identification of the module di- 
rectly enclosing the localization. It is possible to 
specify properties of the translated operations in an- 
other module-but only by including an identification 

Note that the reduction of localization to transla- 
tion depends on (the identification of) the context, 
so it must be made before substituting the enclosing 
module for references to it-and before distributing 
basic specifications into identified modules. 

5 Constraints 

So far, the sentences allowed in basic specifications 
are (essentially) restricted to first-order universal 
Horn clauses involving predicates for equality, inclu- 
sion, and classification. It is well-known that Horn 
clauses are the most general sentences that can be 
used if one wants to exploit the so-called “initial alge- 
bra approach” to specification of abstract data types, 
where algebras with “junk” and “confusion” are elim- 
inated by taking only the initial algebra of the spec- 
ified class, as in [12] (see also [15]), or more gener- 
ally by using “data constraints” [3, 9, lo] or “initial 
constraints” [24, 251. (An alternative to the initial al- 
gebra approach is to allow first-order sentences that 
express inequality, to use them to specify away all 
possibility of “confusion”, and then to impose “gen- 
erating” or “reachability” constraints, see [26].) 

The main idea of a data constraint on a specified 
class of algebras is that it restricts the class to those 
algebras where a certain “part” is “freely-generated” 
by another part. These parts may be identified by 
sub-specifications, where the specification of the gen- 
erating part is a sub-specification of that of the gen- 
erated part. (For full generality, a translation of the 
sub-specifications is allowed.) When freely-generated 
algebras determined by specification inclusions (tech- 
nically, “theory morphisms”) always exist, data con- 
straints can be treated as sentences. 

Usually, data constraints cannot be satisfied in ho- 
mogeneous algebras: the class of algebras satisfy- 
ing a homogeneous data constraint is empty. The 
problem is that the so-called “forgetful functor” _ t u 
determined by a homogeneous signature morphism 
Q doesn’t forget any values at all--only operations! 
(With heterogeneous algebras, forgetful functors may 
forget whole sorts of values.) 

However, it turns out that the classification relation 
of unified algebras can be exploited to define a “more 
forgetful functor”, which forgets values unless they 
are (or are generated by) elements included in a de- 
notable value-which is quite analogous to the special 
way sorts are treated in heterogeneous algebras. This 
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more forgetful functor can be used to define so-called 
“bounded data constraints” for unified algebras; the 
details are sketched in [21]. 

Our syntax for bounded data constraints assumes 
that the sub-specifications involved are always iden- 
tified as modules: 

Basic 2 “constrain” Identification 1 

“constrain” Identification 

“over’” Identification 

Let us consider some examlpies. First, 

Truth Values. 

Base. 

constant Truth-Value -= true 1 false 

constant true : Truth-Value 

constant false : Truth-Value 

constrain Base 

Rest. 

use Base 

operation if-then-else- : 

Truth-Value, X, Y =S (X 1 Y) 

The constraint restricts the specified class of aige- 
bras to those where the Base-part has no “junk” 
or “confusion”. Here, the Base-part of an arbi- 
trary Sig[TCkuth Values&unified algebra A consists 
of those elements that are included in the choice 
Truth-ValueA, together with the choices denoted by 
terms built from the Base signature. Thus Rest 
must not contradict this constraint by adding further 
elements classified by ‘Truth-Value’ (although it may 
add new choices included in ‘Truth-Value’), nor by 
causing Base-denotabie values to be identified. By 
the way, the operation ‘if-then-else? does not gener- 
ate new elements, of any sort, so it may be specified 
in the Rest of Truth Values. 

Finally, consider the specification of generic lists 
below. The constraint ensures that, whatever the ei- 
ements of the so;ct ‘Data’ might be, the elements of 
sort ‘List’ are all Cnite lists of them. Without making 
the constraint relative to ‘Data’, we would only get 
the empty list, si.nce there are no elements specified 

to be included :in ‘Data’. 

Lists. 

Data. 

I constant Data 

Base. 

use Data 

constant List = nil 1 cons(Data,List) 

operation -(of -) : List, Data + List 

constant nil : List(of nothing) 

operation cons(-,-) : Data, List --t List 

D < Data _ nil(of D) = nil 

b: Data ; I : List ; D < Data 

1 cons(d,Z)(of D) = cons(d&D, Z(of D)) 

constrain Base over Data 

Rest. 

use Base 

operation head- : List --+ Data 

operation tail- : List ++ List 

head nil = nothing 

tail nil = nothing 

12: Data ; Z : List 

head cons(d,Z) = d ; 

tail cons(d,Z) = Z 

Note that we may (independently) specialize the 
module ‘Data’ to include various elements, such as 
numbers; we may even constrain it to preclude further 
specialization. For instance: 

Lists of Numbers. 

use Lists 

use Numbers 

Natural 5 Data 

constrain Lists of Numbers 

(It might be as well to translate the constants ‘List’ 
and ‘Data’, if other instantiations are contemplated.) 

How about nested lists? Well, it is tempting just to 
add ‘List 5 Data’ to the above instantiation. Unfor- 
tunately, this conflicts with the constraint in ‘Lists’: 
the lists would no longer be freely generated by the 
elements of data. Instead, we should specify an un- 
constrained module, say ‘General Lists’, much as 
‘Lists’, only we weaken the equation for ‘List’ to ‘List 
2 nil 1 cons( Data,List)‘; then both flat lists and nested 
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R : Natural ; p : 

* 

Modules 

Basic 

Identification 

Translation 

Symbol, 

Clause 

Formula 

Relator 

Term 

Terms1 

Terms2 

Term%+1 

Functionality, 

Attribute2 

Attribute, 

Positive 

1 Basic 1 Identification “.” Modules 1 Modules Modules ; 

2 “use” Identification 1 Basic Translation 1 “local” Basic I 

“constant” Symboln I “operation” Symbol, I Clause I Basic Basic I 

“constant” Symbolo Relator Term I “operation” Symbol, ‘I:” FunctionalityP 1 

“constrain” Identification I “constrain” Identification “over” Identification ; 

> Identification ‘I.” Identification ; 

2 Symbol, “I=” Symbol,, I Translation ‘I;” Translation ; 

1 Identification ‘I.” Symbol, ; 

1 Formula I Formula “a” Clause I Clause “;l, Clause I Symbolp ‘Y Functionalityp ; 

1 Term Relator Term \ Formula ‘I;,1 Formula ; 

L 
‘r&r 1 UI” 1 u,,, 1 Us, 1 ,r:-rr ; 

1 Variable I Symbolo I Symboll, Termsp ; 

1 Term ; 

> Term ““’ ; 

2 Term ‘I,” Terms, ; 

1 Termsp “4’ Term I Terms, “*I’ Term I 

Term% “3” Term I Attribut+, I Functionality, Functionality, ; 

1 “associative” I “commutative” I “idempotent” I “unit” Term ; 

1 “strict” 1 “defined” I “elementary” 

Figure 1: Abstract Syntax of the Modular Specification Language 

lists can be obtained by specializing and constraining 
general lists. For example, 

Nested Lists. Base. 

use General Lists (List := Nested-List) 

cons(,,,) : Nested-List, Nested-List + Nested-List 

constrain Base over Lists. Data 

(Some minor extensions are needed to the ‘Rest’ to 
define ‘head-’ and ‘tail-’ on nested lists.) 

6 Related Work 

Our notation for the modular specification of unified 
algebras may be compared with the OBJ specific8 
tion language, which is based on the framework of 
order-sorted algebras. (The reader is now assumed 
to be familiar with order-sorted algebras [7, 11, 311 
and OBJ [6, 8, 131.) There 8re substantial differences 
between the approaches, both at the technical and at 

the pragmatic level. First, some comments on order- 
sorted algebras: 

8 The signatures of order-sorted algebras are com- 
plex objects, giving the sorts of operation ar- 
guments and results separately for each “ver- 
sion” of polymorphic operations, subject to some 
constraints that guarantee that terms have least 
sorts. 

l Order-sorted algebras do not allow sort construc- 
tors, nor sort union and intersection. Sort in&- 
sions are allowed only in signatures, not in con- 
ditional axioms. 

l Partial operations are represented in order- 
sorted algebras by the disciplined use of a con- 
stunt that denotes a particular element. No- 
tational conventions are required to ensure the 
proper treatment of this element (e.g., it is not 
allowed to test for equality with it). 
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One could in fact simulate unified algebras using 
order-sorted algebras: by introducing values that are 
tokens for sorts, and defining truth-valued operations 
on these values corresponding to inclusion and classi- 
fication. But it is not clear ,that this simulation would 
be convenient enough for practical use. 

Smolka [29] gave a reduc:tion of order-sorted Horn 
logic to unsorted Horn logic using tokens for sorts, 
and treating inclusion and classification as predicates. 
Recently he has developed an unsorted Horn clause 
“type logic” [30] which is closely related to unified 
algebras. The main difference is that his framework 
is based on partial algebras, so only strict operations 
are considered; also, he leaves union and intersection 
of types to be spe’cified by the user, rather than build- 
ing them into the framework (one could do that with 
unified algebras too, but that would make unified 
specifiations mor,e tedious). Scollo has reported [27] 
that Manta and Salibra [1.6] have recently proposed 
a framework somewhat similar to that of Smolka. It 
will be interesting to see whether a useful notion of 
data constraint can be provided for these partial al- 
gebra frameworks. 

Next, consider how generic types are specified in 
OBJ by parameterized modules: 

l Explicit instantiation is needed, usually with 
translation of notation, which prevents instances 
from being regarded as subtypes (note also that 
OBJ’S conditional operation needs to be a “built- 
in”, otherwise every module using it would have 
to instantiate its parameterized specification). 

l Generic types cannot be combined without spec- 
ifying a new parameterized module. 

l Elements can only be used as parameters of mod- 
ules by introducing new modules just for them. 

Finally, regarding module declarations in OBJ: 

They are sequential--mutual recursion is not 
possible;. 

They cannot be split into “interfaces” and “def- 
initions”. 

The default is for imported notation to be ex- 
ported, and it is tedious to override this default. 

Artificial mlodules are needed to avoid uninten- 
tional duplication, when several modules are to 
share notation. 

Against these rather negative comments should be 
set the fact that order-sorted algebras and OBJ are 
a great advance over many-sorted algebras and ear- 
lier specification languages; also that OBJ has been 

implemented and has been shown to be a useful tool. 
Indeed, this author previously adopted OBJ as the 
basis for specifying the action notation used in Ac- 
tion Semantics [20, 221, and used an early version of 
OBJ3 [13] to (partially) check an equational specifica- 
tion of functional actions. The development of unified 
algebras and modules took order-sorted algebras and 
OBJ as the starting point. 

Finally, it should be noted that there are many 
other frameworks where “types” may be treated in 
the same way as elements, with operations on types; 
most of them originate from Scott’s domain theory 
[28] or from Martin-Lijf’s type theory [17]. The foun- 
dations of these frameworks seem to be essentially 
different from those of unified algebras. Moreover, 
they cater for higher-order functions, and it seems 
difficult to combine higher-order functions with type 
inclusion and monotonicity [18]. 

Conclusion 

The framework of unified algebras and modules seem 
to have some attractive features, compared to alter- 
native frameworks. However, it is too early to tell 
whether the unified framework will be useful enough 
in practice to justify its rather presumptuous name. 
So far, the only experience of using the framework 
is my own efforts to specify the abstract data and 
process types of “action notation”, which is a (pro- 
foundly) polymorphic notation for use in Action Se- 
mantics [22]. 

One topic that needs to be investigated thoroughly 
is the right notion of “implementation” for unified 
algebras. As sorts correspond to non-deterministic 
choices, it seems natural to let implementations be 
more deterministic than specifications by contracting 
sorts. 

Note that it is easy to extend unified algebras to 
allow the specification of predicates as well as opera- 
tions; then so-called “Structural Operational Seman- 
tics” [23], also known as “Natural Semantics” [14], 
can be specified in the unified framework. 
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