
A case

Abstract

On and off over the period of

.

study in specifying the semantics of
a programming language

Ravi Sethi

Department of Computer Science

The University of Arizona

Tucson, Arizona 85721

about a year I have worked on a semantic specification for the C programming
language My objecti~e was to construct a readable and precise specification of C. aimed at compiler writers, maintamers,
and language pundm, This paper is a report on the project,

Introduction

C is a general purpose programming language in which most of the software running under the UNIX*

operating system N written. Notes on the development of the language may be found in [rit78].

1.1. What is C? The de facto standard for C is D. M. Ritchie’s compiler [rit79]. The portable C

compiler by S. C. Johnson tioh78] (which runs on a number of dissimilar machines) is remarkably close to

the Ritchie compiler. The compilers for C are permissive in that they compile and run more programs than

the C reference manual in [ker78] would allow. The permissiveness of the cornpders is balanced by a pro-

gram called /inf fioh79], which checks C programs and complains about dubious constructions ranging from

type mismatches to possibly non-portable constructions. /in? is restrictive in that it complains about pro-

grams that the C reference manual [ker78] allows.

The C programming language therefore lies somewhere between the compilers, /int, and the C refer-

ence manual.

1.2. Choice of semantic method. At one time or another three approaches towards defining the

semantics of realistic programming languages have been suggested: the operational or interpretive approach;

the denotational or mathematical approach; and the axiomatic approach that constructs a logic for the pro-

gramming language. While logics of programs are interesting in their own right, they are not a semantics for

the programming language. (See for example the discussion in [gre79, hoa78].)

Recent work on semantics has tended to use the denotational or mathematical approach [scs71]. In

fact after doing an operational semantics for PL/1 [1uc70] the “Vienna group” too has turned to dmrotational

semantics [bjo78]. The denotational method was chosen because it can yield abstract semantic specifications,

and because it has been used to specify the semantics of a number of programming languages: AIgol 60

[mos74, hen78]; Algol 68 [mi172]; Gedanken [ten76]; Pascal [ten77]: PLICV [cc,n79]; Snobol 4 [ten73]; Sal

[mi176].

1.3. The seque/. This paper reports on the application of the denotational method to the C program-

ming language.

The bulk of the paper deals with declarations. Initial drafts of the semantics of C treated all declara-

tions together — but this led to a specification that was hard to read. In section 2, two small language frag-

ments are used to gradually introduce the required concepts: the first allows simple data declarations of

arrays and pointers, while the second allows structures of a simple sort. Using the first fragment type deter-

mination and storage management are discussed. Using the second fragment I he extraction of recursively

defined information is discussed. Together, these two fragments allow the introduction of all the concepts

that are needed to specify the semantics of data declarations in C.

Since denotational semantics of statements and expressions have been discussed extensively in the
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literature (see for example [sto77]), only brief remarks about the semantics of statements and expressions

appear in sections 3 and 4.

A few language issues relevant to declarations are mentioned in section 5, and the final section 6 con-

tains some notes on the project.

1.4. Literature. Little of the folklore of the denotational method is available in print. Stoy [sto77] is

a general introductory reference. The best reference I have found for describing languages is the unpublished

set of lecture notes by Gordon [gor78]. As I progressed, I used [ten77] as a primary reference. The several

sources where the semantics of an actual language is given tend to contain little discussion of why the partic-

ular presentation was chosen.

The discussion of declarations in section 2 draws heavily on the folklore of denotational semantics. If

there is anything original in the section, it is in the way the material leads up to the semantics of data

declarations in a real language.

2. Declarations

By “declarations” we mean the part of a programming language that allows meaning to be associated

with identifiers. Identifiers are used not only to refer to basic values like characters, and data structures like

arrays, but also to executable “functions”, which take parameters and return values. A discussion of the

meaning of declarations must therefore address issues suggested by the following phrases: basic and derived

types; data declarations; type determination; block structure; storage allocation; function declarations.

2.1. Discussion of declarations. Rather than assume familiarity with C [ker78], we will introduce

declarations in the language through a sequence of examples.

For the moment, the terms “type” and “location” will be used informally. Think of there being a set

Ty, whose elements are called types. Included in Ty are basic types like integer, and derived types like array

of 8 integers. One of the purposes of a data declaration is to associate a type with an identifier. The term

location corresponds to a storage cell in a machine, except that a location can hold any basic value. A loca-

tion will be associated with each identifier representing a basic value. This basic value will be determined

from the identifier in two stages: first the location for the identifier will be determined, and then the value

held in the location will be looked up.

Syn[ax. The following program fragment suggests the syntax of declarations in C.

int n = 3;

char select(xrc,d)

int x; char c; char d;

(

char e;

if(x>n) e=c; else e=d;

return (e);

We take a program in C to consist of a sequence of data declarations like

int n = 3;

followed by a sequence of one or more function declarations. C-functions like select are similar to functions

and subroutines in Fortran, or to procedures in Pascal, except that function declarations cannot be nested.

As in Algol 60, the char in

char select(x,c,d)

specifies that select is a C-function that returns a character. Declarations of the formal parameters x, c, and

d precede the body of the C-function.

The identifier n is external to all function declarations. External identifiers can be referenced inside

any function without being explicitly redeclared. We assume that inside a C-function any declarations, like

that of e, precede all statements within the function.

Declaratory. The syntax of an identifier declaration in C mimics the syntax of expressions in which

the identifier might appear. For example,

float xyz[3][5];

says that, in an expression, xy.z[m][n] represents a value of type float. Then, xyz[m] must represent an array
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of five elements of type float. xyz is therefore declared to be an array of three subarrays; each subarray

being an array of five elements of type float.

The declaration

int *px;

says that the construction *px represents an integer. The * operator “dereferences” a pointer, so px is

declared to be a pointer to an integer.

The constructions xyz[3][5] and “px in the above declarations are instances of declurators.

Structures. The essential difference between an array and a “structllre” is that an array contains a

fixed number of members of the same type, while a structure contains a fixed number of members of possi-

bly different types. There is another, more subtle, difference: a structure may contain a pointer to its own

type so we must deal with recursively defined types.

A structure contains a fixed number of members. Each member has u name, and may have any type.

We illustrate structures by declaring a “complex number” z and a pointer to a complex number zp. The

identifier com p Iex in the following declarations is referred to as a srruct ure tag.

struct complex {float re; float ire;};

The declaration of a structure tag and its use to declare another identifier can be combined in C, so z

and zp can also be declared by

struct complex {float re; float ire;] z, *zp;

Declarations like the above not only reserve storage for z and zp, they have the side effect c~f associating a

type with the structure tag complex.

2.2. Simple data declarations. A number of programming Ianguagc concepts must be understood

before we can give the semantics of even a simple declaration like

char ab[7];

In this section we will consider declarations that declare identifiers to be: integers, characters, or some

other basic type; arrays of a fixed number of elements of some type; or, pointers to some type. The syntax

is as follows

declaration:

basic--specl~ier declaratory ;

We will not specify the syntax of basic~pecl~er any further.

A declaratory (e.g. *PX and XYZ[3][5]) contains the identifier being declared. Declaratory have the syn-

tax:

declaratory:

identl~ier

( declaratory )

declaratory [ constant ]

“ declaratory

The * operator in a declaratory has lower precedence than all other operators, so *ap~7] will be parsed as

*(apc[7]).

Semantic domains. All the semantic domains we will refer to here are defined in Figure 2.1.

We will take a very simplistic view of the term “type”. Informally speaking, a type will be just an

abstract entity that permits us to distinguish between identifiers that are declared differently eg, distinguish

between an integer and a pointer to an integer.

The domain Ty of types will be the sum of the domain Tb of basic types and domains eorresponding

to each way of constructing derived types. For example, the element of Ty corresponding to array of seven

characters will be a triple (array,7, character): array, the only element of the domain {array}, serves as a

“keyword” and is included for clarity; 7 is an element of the domain N of integers; and, chararter is an ele-

ment of Ty,

The association of types with identifiers will be performed by elements of the domain Ent of type

environments. The term “environment” applies to any function that maps an identifier to something



Semantic Domains

Tb

le Ty = Tb + {array] x N x Ty + {pointer} x Ty

ent e Ent = Ide - Ty

[e L

[6 VI= L+ [N-W]

enl e Enl = Ide - W

Vb

Vs=Vb+Vl

Ve V= VS+ [N-V]

se S = L - [Vs + {grb) + {unused}]

basic types

types

type environments

locations

lvalues

lvalue environments

basic values

storable values

values

states

Figure 2.1: Semantic domains for simple data declarations.

associated with the identifier. Since the same identifier may have a type and also some storage associated

with it, there will be more than one kind of environment.

The value of an identifier y can be changed either by an explicit assignment to y, or by an indirect

assignment through a pointer to y. The presence of pointers makes it convenient to have a two-stage map-

ping from identifiers to their values,

An identifier in a data declaration will be mapped by an “lvalue environment” enl to an “lvalue”. For

an identifier of basic or pointer type, this lvalue will be a “location”. Locations are analogous to storage

cells. Every location is included in the class of lvalues, but the lvalue for an array will not be a location.

For example, after the declaration

char pair[2];

locations will be reserved for pa ir[o] and pa ir[’1 ]. Let these locations be 10and 11. The lvalue corresponding

to the identifier pair, by itself, is a function mapping 0 to 10 and 1 to 11, and is not a location. In general,

the members of an array may themselves be arrays, so there will be Ivalues rather than locations for the

members.

Making the lvalue of an array identifier a function from integers to lvalues makes it easy to determine

the lvalues of the array members e.g. if the lvalue for ab is /, then the lvalue for ab[5] will be 1(5).

Following Strachey [str72], a useful distinction is often made between values that can be stored,

denoted by identifiers, expressed by expressions, passed as parameters, can appear on right hand sides of

assignments, can appear on left hand sides of assignments, and so on. For example, in most languages, even

if an identifier like xyz in

float XYZ[3][5];

has a value, the value cannot be stored. What is stored are the values of xyzIO][O], XYZIOIII 1, ~ . One

situation in which the identifier XyZ by itself will have a value is if array values are returned by procedures in

the language.

Corresponding to each basic type is a domain of basic values of that type. We sum all these domains

together into the domain Vb of basic values. Included in Vb is the domain N of integers.

In addition to basic values there are values associated with pointers and arrays. Since the assignment

px=&x; assigns the lvalue of x to px, the value of an identifier may sometimes be an lvalue. We therefore

include W in the domain V of values. An array value in V will be a function from integers to values. Array

values are not be storable,

A “state” maps a location to a storable value. In addition there will be two special values: grb a gar-

bage value corresponding to an uninitialized location, and unused corresponding to a location that is
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Semantic Rules

Udeclaratorllt c IdexTy

I identifier

$ (ident2j7er,l )

I ( declaratory )

~ Udeclarator](t)

I declaratory [ constant ]

~ letn = [cons/ant n; t’= arr(n J ); in Udeclaratorn(t’)

1 * declaratory

~ let r’ =poin~ (t ); in [declaraforn(t’)

dtudeclarafion ](ent )6 Ent

~ basic~pecfier declaratory ;

$ let t= ~basic-spec~iern; (id,t’) = ~declarator]t; in err?[t’/id]

dsudeclararion ](enl,s )C Enl x S

I basic-specfier declaratory ;

~ let t= ubasic~peczjlerJ:

(id,t’) = [decfarator nt;

(1,s’) = new (t’,s);

enl’ = errl[l/id];

in (errl’,s’)

Figure 2.2: Semantic rules fordeclarators and declarations inthe language of simple data declarations.

Lines beginning with ``l'' specify thesyntactic rules, andarefollowed bylines beginning with ``]'' which

give thecorresponding semantic rules. Wewrite en/[l/id] forthe new environment erd’ satisfying

enl’ (x ) = if x=id then / else enl(x )

unallocated.

Semantic rules. The meaning of declaratory can be explained by considering the declarations

char *( apd7] ); int ( *pai )[7];

From the discussion earlier in this section, a construction like *( apc[m] ) can appear in any context where a

character is expected, and a construction like ( *pa i )[ n] can appear in any context where an integer is

expected. Reading the declaratory inside-out, apc is declared to be an array of seven pointers to — from the

type specifier char — characters. Similarly, pa i is a pointer to an array of seven integers.

After a declaratory has been examined, in addition to uncovering the embedded identifier, the type of

this identifier will also be known. The meaning of a declaratory will therefore be a function from a type to an

identifier and its type. In Figure 2.2, the meaning of the nonterminal declaratory is represented by ~declara-

tor m. Similarly, the meaning of basic_specif ier, is represented by ~basic_specifier ], and will be a type.

Since the semantic rules associated with syntactic rules, we must follow the syntax and read declara-

tory “outside-in” rather than “inside-out” as in the discussion above. Proceeding outside-in, we start with the

type t from the type specifier and build up the type associated with the embedded identifier.

New types are built from old using the functions point and arr: arr maps an integer n and a type t to

a ncw type r’ corresponding to array of n members of type r; poiru maps a type r to f’ corresponding to

pointer to type t.
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Having considered declaratory we now turn to declarations. There are two kinds of meanings for

declarations: one associates a type and the other an lvalue with an identifier. We distinguish between these

two types of meanings by writing dt~declaration ] for the first and dsudeclaration n for the second. dt and ds

are actually functions which map the semantic object declaration to appropriate semantic objects. Such

functions are called valuations.

According to the semantic rules in Figure 2.2, under valuation dt, each declaration modifies the type

environment by associating a type with the declared identifier. Under valuation ds a declaration associates

an lvalue with an identifier. Before explaining valuation ds we need to clarify the handling of storage alloca-

tion.

Auxiliary Function

rrew(f,s) 6 Vlx S

new (t ,s ) =

scalar (1) -

let s (l)= unused; s’= s[grb/l]; in (1,s’)

t= arr(n, t’) -

let (lo,so)=new (t’,s); . . . (L-l, s-l) =new(l’, sn-z);

f =Ai. 1;

“fo=f[lo/o]; ~ ~ f.-l=f.-2[Ln/l];];

in (J~-l,s.-r)

Figure 2.3: The auxiliary function new allocates an lvalue for a given type.

Allocation, Given a type t and a state s, the auxiliary function new in Figure 2.3 returns an lvalue,

and changes the state to s’. In the changed state, all locations in the returned lvalue are initialized to the

special garbage value grb.

A type t is said to be scalar if t is basic i.e. t cTb, or if t is a pointer i.e. t=point (t’) for some t’. We

use the auxiliary function scalar (t) which yields true if t is scalar, and false otherwise.

If a type t is scalar, then new (t ,s ) will return an lvalue that is a location. If the type t is an array

type, then new is invoked recursively to determine lvalues for each member of the array. If these lvalues are

10,1I,. ~ ~ ,/H-I, then the lvalue for the array will be a function that yields 1, when applied to i, for

(EZ=n– 1. This function is constructed by starting with a function ~ that maps every integer to an unde-

fined value 1. ~ is successively modified to yield -fo,~ 1,. . ~ ,~~-1, where j~-l(i) is 1, for &i<n-l and is 1

otherwise. fn –Z and an appropriate state are returned by the new function.

2.3. Recursively defined types. We will be concerned only with type determination in this section

since the storage aspects of structure declarations are just like those of array declarations. The determination

of types here is a good illustration of the extraction of recursively defined information from a program.

(Other examples of recursively defined meanings are those of recursive procedures and statement labels.)

Syruax. The syntax and semantics of declaratory are as in section 2.2, The only purpose of the non-

terminal aU_decl is to collect all the declarations together.
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all_decl:

declaration

declaration:

swuct ident~ier { member_decl );

type_specl~ier declaratory ;

declaration declaration

member..decl:

type-specifier declaratory ;

member_decl memberdecl

type-specz~ier:

basic~pecl~ier

struct identl~ier

Semantic domains. In addition to the basic, pointer, and array types of section 2.2 we now need a

structure type. The structure tag, the names and types of the members, and the order in which the members

appear, are all significant. A structure type will therefore include the structure tag and the sequence of

member names and types.

Ty = Tb + {array] x N x Ty + {pointer] x Ty

+ {struct} x Ide X [Ide X Ty]+

Furthermore, the operator srr, applied to a structure tag and a list of pairs of member identifiers and

associated types, yields a type t’corresponding to a structure with the appropriate tag and meknbers. For

example, associated with the tag complex is the type

str (complex, (re,Jloat ).(im,~loat ))

After the declarations

struct complex {float re; float ire;);

struct complex z;

both complex and z have the type structure with tag complex containing members named re and im of type

float.

But there is a difference. complex is a tag, while z is a structure. We will need to distinguish between

these two ways of associating types with identifiers by suitably defining the type environment

Ent = Ide - [Ty + {tag} x Ty] type environments

Meaning of member declarations. A type specifier must clearly yield a type. In order to determine

this type, we may need to refer to the environment for the types associated with previously declared structure

tags. Thus the meaning of a type specifier is a function from an environment to a type.

~type-specfier~ent E Ty

I basic-xpec+er

~ ~basicspecijier~

I struct identfier

~ t where (tag,t ) = ent (identifier)

In the above rule, identfier is a structure tag, which is mapped by the environment to a pair consisting

of a special marker tag and a type t. The marker tag is ignored here. Later in this section we discuss what

happens if the structure tag has not already been declared,

From the member declarations in a structure we need to extract the member names and their associ-

ated types. The meaning of member>ecl is a function from a type environment to a sequence, pairlis~, con-
taining the pairs of member names and types.

~member-dec[ lent E [IdexTy] +

123



\ type~pecifier declaratory ;

$ \et t = ~typelpeclj_ierJent;

pair = udeclarator ](t );

in pair

~ memberdecl I memberdeclz

~ let pairlist 1 = fmember-decl ~Jent;

pairlist 2 = ~memberJeclsJent ;

in pairlist 1. pairlist 2

The meaning of a basic specifier is assumed to be an appropriate element of the domain Tb of basic

types, and will not be specified any further.

Recursively dej?ned types. The structure tag z below, is used to declare one of the structure members

so the type of z is recursively defined.

struct z { int count; struct z *p; };

Informally, the type t associated with tag z will be structure with tag z containing member count of

type integer and member p of type pointer to t. We therefore have the following recursive definition of 1:

t = str (z, (count, integer )(p,point (t )) )

A slightly more complex case is that of the types of x and y in:

struct x { int count; struct y *py; );

struct y { int count; struct x *px; ];

This time we get a pair of mutually recursive definitions:

tx = str (x, (count, integer )(py,point (ly )) )

ty = str (y, (cou nt,irrteger )(px,poirrt (tx )) )

The key problem in determining types is that of setting up the mutually recursive equations for these

types. Actually, instead of setting up equations for types, we will recursively determine the environment that

will map identifiers to types.

Updating environments. Valuation de enters the type of the declared identifier into the environment.

The first rule that follows is for a data declaration similar to the ones in section 2.2, and this rule for valua-

tion de is very similar to the corresponding rule for valuation dt in Figure 2.2.

deudeclaration ]ent E Ent

~ type~pecijier declaratory ;

~ let t= utypedpecz~ier] ent;

(id,t’) = Udeclaratorn(t );

in ent[t’/id]

~ declaration I declaration 2

~ deudeclaration 21( de~declaration I]ent )

If the declared identifier is a structure tag, then an ordered pair (tag,t ), where t is the type associated

with the tag, is entered into the environment.

I struct iderm

$ let

in em

?er { member~ecl } ;

pairlist = ~member-decl Jent;

t = str (identljler,pairlist );

t’ = (tag,r );

t’/identl~ier]
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Let us consider what happens when the above rule is applied to the declaration:

struct z { int count; struct z *P; };

Suppose that the environment ent is such that ent (z)=/z. Using the environment

member declarations will yield the pairlist:

(count, integer )(p,poinl(tz))

ent, the valuation for

Then, the following type will be constructed:

t = str (z, (count, integer )(p,poinl ([z)) )

If tz is an approximation to the type of z, then t above is a better approximation tcl the type of z. In fact, if

to = 1, and

ii+] = srr(z, (count, inleger)(p,point (ti)))

then the least upper bound of the chain to, . . ,ti, . . . is the desired type of z.

Rather than setting up a recursive definition that allows ti+l to be determined from t;,valuation de is

used to construct a sequence of environments ent o,ent 1,. . in which enti (z) = ti. The starting environment

ento will map all declared identifiers to 1, the least defined type. *

A valuation dz will be used to construct ento. There is another use for a valuation like dz: the iden-

tifier z may be used for some other purpose outside the current C-function and we need to ensure that on

entering a function, the types of any identifiers declared in the current function are “reset”.

Initial environments in a ‘[block”. For each identifier with which a type is associated in the current set

of declarations valuation dz will enter 1 as the type of the identifier.

dzudeclaration lent e Ent

~ type~pecijier declaratory ;

$ let t = Utype-spec2~iernent;

(id,t’) = ~declaratorll(t );

in ent [l/id]

I struct identifier{ memberdecl ) ;

$ ent [1/identijler]

I declaration 1 declaration 2

~ dzudeclaration 21( dzudeclaration tnent )

Sequence of environments. The ingredients for determining the types of structure tags have idl been

assembled. On collecting all the declarations under alldecl the valuation dz is applied to the starting

environment ent, to reset the types for all declared identifiers. The valuation de is theri used repeatedly to

construct the sequence of environments ento, ent I, . 0 . mentioned above. The desired environment is the

least upper bound of thesequence ento,enti, . . . :

ento = dz~all_decl Jent,

enti+l = d~declaration l_J(enti) i~o

entf =Ll{enti I i>O]

Fix closure. The above least upper bound issimilar enough to the least upper bounds while determin-

ing least fixed points that the reader might be tempted to equate entf with the least fixed point of

deudeclara~ionll, Note however that entois not l(in a more general setting enrowill contain valuable infer-

mation about external identifiers).

* The usual approach (see for example the treatment of statement labels in Milne and Stmchey [mi176,pp. 52,54] or[gor7S]) is
to first determine the identifiers declared in a block. Once the identifiers have been determined, a k-tuple is constructed from

these identifiers. Then. using a valuation like de, we determine the type associated with each identifier. But instead of entering

the type in the environment — as done by valuation de — a k-tuple of types associated with the k-tuple c)f identifiers is con-

structed. We start with with ak-tuple giving las the type of each identified the valuation successively determinest uplesoftypes

that are better approximations to the final types.
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We therefore introduce a new operator C1O(from fix closure)* such that given a function nD - D

and XCD,

CIO(X)(T)=IJ{ Ti(x) / i21)

Using cloweget the semantic rule:

Uall>ecllent, c Ent

I declaration

~ clo(errto)(deudeclarationl) where ento=dzudeclaration ]ent,

2.4. Data declarations. The approach of the last two sections suffices to treat all data declarations in

C. Types can be determined as In section 2.3 even if the declaration of structure tags is nested, or if the

declaration of a structure tag is combined with the use of the tag to declare another identifier. Some of the

rules change because a type specifier may contain the declaration of a structure tag so a type specifier can

have the side effect of changing the environment.

3. Statements

Since C contains goto’s, the semantics of statements were given using continuations [abd75, mor70,

stw74]. The section containing the semantics of statements was written by editing section 9 of the C refer-

ence manual [ker78]. English descriptions of the various constructs were retained, and subsections contain-

ing semantic rules were added,

The reader can easily reconstruct the semantics of statements after reading [gor78] or [sto77].

Alternatives tocontinuations forhandling goto statements have been proposed intion78] and[ros77].

The basic idea of the exit approach ~on78, pp.285] is to associate with each statement a function from a

state to a state-label pair. If evaluation proceeds normally, then the label is “NIL’’and is ignored; otherwise

the label gives the target of the jump. In [ros77, pp.41], entries (embedded labels within a statement that can

be jumped to) and exits (targets ofjumps from within the statement) are explicitly identified, and rather than

the meaning of a statement, the meaning of an entry-statement-exit triple is considered. We have not

explored the use of these alternatives to continuations.

4. Expressions

C has a rich set of operators. In addition to the expected operators are a class of assignment opera-

tors of the form op=. The behaviour of expi op= exp2 is roughly equivalent to exp[ = expl op exp~,

except that expl is evaluated just once.

The semantics of expressions are relatively straightforward. Some points of interest are noted below.

4.1. Side effects and order of evaluation. The C reference manual leaves unspecified the order of

evaluation, and the same expression may be evaluated differently on different machines. Since assignments

may be embedded within expressions, the value of an expression depends on the evaluation order. In prac-

tice, this does not present a problem, since programmers tend to stay away from such expressions.

The principle we have used is: only those expressions that are not sensitive to the order ofevahration

are legal.

Unfortunately there is no way of checking if a given expression conforms to this principle. So we

have picked a particular order of evaluation in the semantic specification. For all legal expressions any

order of evaluation gives the right value, so the semantic specification will clearly give the right value. There

remains the problem of ruling out non-legal expressions. The best we can do is to devise a heuristic in the

spirit of lint fioh79], which will complain if the value of an expression is likely to depend on the order of

evaluation.

4.2. Checks: error, type, .. . This point actually applies to the whole language, but this isa good place

to discuss it.

* For the unsophisticated reader it is just as easy to explain the CIO operator as it is the least fixed point operator. Use of the

CIO operator simplifies some of the rules. The alternative, using least fixed points, employed by Tennent in hls Pascal specifica-

tion [ten77], requires the initial envmonment to be supplied as an extra argument, so the rules contain two environments at the

same time. However. care mmt be exercised in using the cio operator: before writing clo(.Y )(~) it is important to show that

.x~T(.Y). By inserting Jfor the type of each identifier declared in the current block, valuation dz ensures that ento is weaker that

de[d<ckrafion] ozftl. Welater learnt that the theoretical properties of clohave been studied in[cou79].
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Speaking operationally, it is convenient to take the view that an error causes execution to terminate

with an appropriate message. (This remark applies only to the semantic specification: the compiler certainly

does not have to work this way.) The ahernative to terminating execution is to propagate errors i.e. any

operator applied to an error value yields an error value, so when the program fina]lycnds, the rror value is
f

produced. The disadvantage with propagating errors is that the various operators have to be extended to

apply to error vahtes, and this may complicate the specifications for the operators.

As in [gor78, ten77], it is more convenient to separate thesemantics ofchecks from thesemantic:~ that

assumes that nothing goes wrong, It is then possible to use different methods for these two kinds of seman-

tics. In particular, treating errors as jumps to the end of the program, we use continuations in the semantics

that performs checks; but it is not necessary to use continuations inthe’’normal’’ semantics.

A more concrete example is as follows. With one minor exception — the sizec)f operator — it is not

necessary to carry around the type of each identifier when nothing goes wrong. (Structure tags will continue

to be mapped to types by the environment, but all other identifiers will be mapped to locations or lvalues.)

When type checking is performed, we need to know the types of identifiers, but the storage aspects need not

reconsidered. Thus modularizing checking andrun-time semantics isquite natural in this case. The sizeof

operator maps an identifier to an integer equal to the “size” of the storage for the identifier. (We can for-
malize size by defining it to be the number of locations in the lvalue for the identifier. ) Since the size is

determined by the type of an identifier, the semantics of the sizeof operator are given separately from the

run-time semantics. Since continuations are not needed for the semantics of the sizeof operator, its seman-

tics can beseparated from the semantics of type checks as well.

Exception: since the types of the arguments of a function need not bedeclared fully, the checking for

compatibility between the types of formal and actual parameters cannot be separated from the run-time

semantics.

5. Language issues

Much of the time devoted to specifying C was spent in learning the language. Here we mention:some

of the considerations that arose in the process. (The compiler writers were most helpful in volunteering

information about known troublespots.)

5.1. Blocks versus unrestricted jumps. The C reference manual [ker78] allows a goto to jump any-

where within the current function, even if the jump is into the middle of a compound statement containing

declarations. The compilers for C fioh78, rit79] resolve the issue of jumps into blocks by preprocessing

blocks away: declarations of local identifiers are moved to the head of the function in which the declarations

appear, after suitably renaming identifiers and converting initializations into explicit assignments.

Several drafts of the semantics of statements attempted to stay close to the language as it is innple-

mented by preprocessing blocks away. However, we later discovered that the compilers overlay storage for

independent nested blocks. Thus preprocessing declarations by assigning distinct new “names” to distinct

uses of an identifier was also not consistent with the implementations. We have therefore specified semantics

assuming that the language has blocks in the usual sense. Even if goto’s are restricted from jumping into

blocks, this is not quite accurate, since the compilers presently disallow a label from being redeclared in an

inner block.

5.2. ~vpes oj structures. Structure members were originally implemented as offsets from the address

of a strudture, and there is a description of the restrictions on member names in the reference manual

[ker78]. The first attempt at specifying the semantics of structure references was an abstraction of the

description in [ker78], The attempt shared a problem with the compilers. Suppose thai in an outer block we

have a structure declaration:

struct tnode { int header; int count; ] fat;

and in an inner block there is a declaration

struct confuse { int count; char info[37]; };

Since count refers to a different offset in the inner block (from the offset in the outer block), all references

to fat.count in the inner block will incorrectly refer to the first component of the structure fat.

The compilers now keep member names with the structure, and member names can be redeclared in

inner blocks without running into the problem mentioned above.

5.3. One pass nature. Except in structure declarations, all identifiers must be declared before they are

used. This is also true of identifiers that are declared to be synonyms for types by typedef declarations. (In
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the typedef declaration that follows, PX is declared to be a synonym for the type corresponding to: pointer

to structure with tag x.) Thus the following declarations are legal, but reordering the declarations, or trying

to combine them into one declaration is not allowed.

typedef struct x *PX;

struct x { Int count; PX point; ];

The semantic specification does not attempt to be faithful to the compilers and would allow the order

of the above declarations to be changed.

The one pass nature of the compilers also shows up in the fact that the scope of a declared identifier

seems to be from the point of declaration to the end of the block. Thus if x is a structure tag in an outer

block, it can still be used to declare structures in and inner block until it is redeclared to be something else.

We chose to take the scope of an identifier to be the entire block in which the declaration of the identifier

appears.

6. Notes

6.1. Metalanguage. A subsidiary goal was to study the metalanguage needed to specify a language

like C. Recent work on the automatic construction of interpreters from semantic specifications has used

denotational semantics as a starting point [mos78, bjo78, don78]. We therefore decided to construct a deno-

tational specification of C, and wanted to see where in the specification the various “features” of the

metalanguage were needed. The style of the semantic rules was motivated by the translator generator yacc

~oh75]. Except for the avoidance of Greek letters, the metalanguage is essentially that of the Oxford school.

Using the same nonterminal names, with essentially the same meaning, as in the reference manual [ker78]

contributed materially to thez6readability of the semantic Specification.

6.2. Supporting documents. Since no prior knowledge of denotational semantics was assumed, a

detailed introduction to denotational semantics was circulated. The need for a formal notation was

motivated by mentioning a familiar construct whose meaning is hard to specify in English: the reference

manual [ker78] deliberately bows to readability when it gives the meaning of the for statement in terms of a

code fragment; this code fragment misrepresents the meaning of the for when the body of the for has a con-

t Inue statement in it.

In retrospect, it would have been better to have focused on declarations before launching into state-

ments. The simple data declarations discussed in section 2.2 are an excellent vehicle for introducing the

notations and conventions. With statements on the other hand, continuations were used because of goto,

break, and contl n ue statements, and fixed points were used for while statements.

6.3. Sublanguages for declarations. The order of presentation of the semantics of declarations (sec-

tion 2) was selected after the early draft doing the semantics of all declarations together was taken on faith

by all who read it.

6.4. static or own identifiers. The denotational semantics of own identifiers [gor78] is inelegant.

Such Identifiers were therefore preprocessed away by making them external to all C-functions, and suitably

renaming identifiers to separate scopes. This is essentially what the denotational semantics does, but it is

cleaner to algorithmically specify a preprocessor.

6.4. Expressions. The finiteness of machine arithmetic and the order of evaluation in the presence of

side effects led to more discussions than we care to recall. Once we began to understand declarations and

get a feel for the whole language these problems faded in prominence, although they did not go away.
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