
A Functional Reformulation of UnCAL Graph-Transformations
Or, Graph Transformation as Graph Reduction

Kazutaka Matsuda
Tohoku University, Japan
kztk@ecei.tohoku.ac.jp

Kazuyuki Asada
The University of Tokyo, Japan
asada@kb.is.s.u-tokyo.ac.jp

Abstract
This paper proposes FUnCAL, a functional redesign of the
graph transformation language UnCAL. A large amount of graph-
structured data are widely used, including biological database, XML
with IDREFs, WWW, and UML diagrams in software engineering.
UnCAL is a language designed for graph transformations, i.e.,
extracting a subpart of a graph data and converting it to a suitable
form, as what XQuery does for XMLs. A distinguished feature of
UnCAL is its semantics that respects bisimulation on graphs; this
enables us to reason about UnCAL graph transformations as recur-
sive functions, which is useful for reasoning as well as optimization.
However, there is still a gap to apply the program-manipulation
techniques studied in the programming language literature directly
to UnCAL programs, due to some special features in UnCAL, espe-
cially markers. In this paper, following the observation that markers
can be emulated by tuples and λ-abstractions, we transform UnCAL
programs to a restricted class of usual (thus, marker-free) functional
ones. By this translation, we can reason, analyze or optimize UnCAL
programs as usual functional programs. Moreover, we introduce
a type system for showing that a small modification to the usual
lazy semantics is enough to run well-typed functional programs as
finite-graph transformations in a terminating way.

Categories and Subject Descriptors D.1.1 [Programming Tech-
niques]: Applicative (Functional) Programming; D.3.2 [Program-
ming Languages]: Language Classifications—Applicative (func-
tional) language; H.2.3 [Database Management]: Languages—
Query languages

General Terms Languages

Keywords Graph Transformation, Functional Languages, Lazy
Evaluation, Bisimulation, Regular Trees, Termination

1. Introduction
A large amount of graph-structured data are widely used, including
biological information, XML with IDREFs, WWW, UML diagrams
in software engineering [16], and Object Exchange Model (OEM)
for exchanging arbitrary database structures [36]. In such circum-
stances, several languages, such as UnQL/UnCAL [7], Lorel [1],
and GraphLog [8], have been proposed mainly from the database

community for graph transformation or querying over such graph-
structured data—extracting a subpart of a graph and converting it to
some suitable form—similarly to what XQuery does for XMLs.

UnCAL is a prominent language designed for graph transforma-
tions [7]. Among its other nice features such as termination guaran-
tee and efficient execution by ε-edges [7], the most characteristic
feature of UnCAL is its semantics that respects bisimulation, under
which a graph can be seen as an infinite (regular) tree. Bisimulation-
based graph data structure has the merit of efficiency on equivalence
checking [10]. Moreover, with the bisimulation-respecting seman-
tics, UnCAL supports functional-programming-style reasoning: one
can reason about UnCAL graph transformations as recursive func-
tions that generate infinite trees, which is useful for verification [23]
as well as optimization [7, 20].

However, despite this similarity of UnCAL to functional lan-
guages, there is still a gap between UnCAL programs and functional
ones, which will be explained in more detail in Section 1.1. Due
to the gap, it is hard to apply program-manipulation techniques
studied in the programming language literature directly to UnCAL
programs. This is unfortunate to both communities; the database
community cannot enjoy well-studied programming-language tech-
niques, and the programming-language community loses chances to
contribute to the other community. Actually, several methods have
been proposed for UnCAL while there already have been similar
methods in the programming language literature. For example, the
key technique in the optimization in [7, 20] is quite similar to the
classic fold-fusion [30].

The purpose of this paper is to fill the gap between UnCAL and
usual functional languages so that we can directly apply program-
manipulation techniques studied in the programming-language com-
munity to the graph transformation problem. Specifically, this paper
proposes FUnCAL, a subset of a usual functional programming lan-
guage, and gives a translation from UnCAL programs to FUnCAL
ones so that we can reason about, manipulate and execute UnCAL
programs as functional ones.

1.1 Problem and Observation
The gap between UnCAL and usual functional languages, which
prevents us from directly importing existing program-manipulation
techniques, is markers that connect two graphs or construct cycles.
There are two sorts of markers: input and output. Roughly speaking,
input markers are names for multiple-roots and output markers are
names for holes. UnCAL also has expressions that connect nodes
indicated by input markers (input nodes) and those indicated by
output markers (output nodes) of the same names.

Let us review how markers are used in UnCAL. First, we explain
UnCAL expressions that do not use any markers. Without markers,
graphs in UnCAL are similar to records, as below.

{name : Alice, email : alice}

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.

PEPM’17, January 16–17, 2017, Paris, France
c© 2017 ACM. 978-1-4503-4721-1/17/01...$15.00

http://dx.doi.org/10.1145/3018882.3018883

71

Markers are used as an interface for connecting other graphs. In the
following graph, we can plug a graph into output node &x.

{name : Alice, friend : &x}
A graph to be substituted to the output node must have the corre-
sponding input maker, which can be assigned by . as below.

&x . {name : Bob, friend : &y}
Then, we can connect the two graphs by @; for example, by writing

{name : Alice, friend : &x}
@ (&x . {name : Bob, friend : &y})

we get the following graph.

{name : Alice, friend : {name : Bob, friend : &y}}
Cyclic graphs can be constructed by cycle(g) that connects input
nodes and output nodes in g, as follows.

cycle

(
&y .

(
{name : Alice, friend : &x}
@ (&x . {name : Bob, friend : &y})

))
The obtained graph represents that Alice and Bob are friends to
each other.

All graph transformations in UnCAL are defined by srec, a
structural recursion on graphs. With its bisimulation-respecting
semantics, srec can be viewed as if it were defined recursively
as:
srec(e)({a1 : G1, . . . , an : Gn}) =
(e(a1, G1) @ srec(e)(G1)) ∪ . . . ∪ (e(an, Gn) @ srec(e)(Gn))

Here, ∪ is the record concatenation; actually {x : s, y : t} is a
shorthand notation for {x : s} ∪ {y : t}. The following example
returns people named Bob in db where db is a variable that stores a
record of the form of {person : p1, . . . , person : pn}.
srec(λ(, p). srec(λ(l, n).&r .

if l = name then
srec(λ(l′,).if l′=Bob then {person : p} else {})(n) ∪ &r
else
&r)(p))(db)

The output node &r represents the result of the recursive call of the
second-outermost srec.

One might have noticed that these behaviors of input/output
markers, @, and cycle can be emulated by λ-abstractions and
letrec. For example, the UnCAL expression above that constructs
the cyclic graph can be written as below.

letrec y = (λx. {name : Alice, friend : x})
{name : Both, friend : y} in y

The one also would have noticed that the behavior of srec could be
expressed by a paramorphism [29] para that behaves like:

para f {a1 : G1, . . . , an : Gn}
= (f a1 G1 (para f G1)) ∪ . . . ∪ (f an Gn (para f Gn))

It would seem that reasoning and execution of UnCAL programs as
functional ones would look straightforward.

The straightforward translation is, however, unsatisfactory be-
cause the translation can map terminating UnCAL expressions to
nonterminating ones. This is problematic if we apply optimization
techniques such as fusion [30] to UnCAL programs because we may
not execute optimized translated programs, although the translation
still is useful in reasoning of UnCAL programs. For example, the
translation converts cycle(&x . &x), which results in the singleton
graph {} in UnCAL, to letrec x = x in x, which leads to an infinite
loop in usual languages. Although the expression cycle(&x . &x)
itself is rarely seen in practice, a similar problem arises when we
write graph transformations by srec. For example, let us consider

the following UnCAL expression that eliminates all the edges from
db and thus returns a singleton graph for any db.

srec(λ(,).&r . &r)(db)

The transformation can be seen as a simplified version of the above
transformation that searches Bob, in the sense that it models the
behavior of the second-outermost srec of the transformation when
it is applied to a graph with no names. Here comes a problem. The
behavior of the transformation differs after the translation if we apply
it to a cyclic graph like that obtained by cycle(&x . {a : &x}). The
UnCAL expression

srec(λ(,).&r . &r)(cycle(&x . {a : &x}))
terminates and returns a singleton graph while the corresponding
functional program

para (λ .λ .λr.r) (letrec x = {a : x} in x)

goes into an infinite loop. Another but related issue is that we want
to obtain finite graphs as evaluation results, instead of infinite trees,
because our goal is “graph” transformation.

In summary, we have to deal with these problems in order to
apply the program-manipulation techniques studied in the program-
ming language community to the graph transformation problem.

1.2 Contributions
First, after a brief review of UnCAL (Section 3), we formalize
a translation from UnCAL programs—which manipulate finite
graphs—to functional programs that manipulate infinite trees (Sec-
tion 4). We name the target language of the transformation FUnCAL.
The translation just follows the idea shown in Section 1.1. The pur-
pose of Section 4 is to clarify the relationship between UnCAL
programs and usual functional programs. This translation is useful
also to reason about UnCAL programs as functional ones, which is
useful for importing verification techniques (Section 2.1). Next, to
optimize UnCAL programs as functional ones, we give a semantics
(Section 5) and a type system (Section 6) for FUnCAL, so that a
well-typed functional program under the type system can be ex-
ecuted as a finite-graph transformation under the semantics with
termination guarantee (Section 7). We also show that the translated
functional programs are well-typed, and that semantics in Section 4
and that in Section 5 “coincide”. Thanks to the type system, users
can freely optimize translated programs and finally run them as
graph transformations, as long as the optimization keeps typeability
(Section 2.2). Note that our semantics itself is not new and nothing
special; it is just the lazy semantics [32] with the black hole [2, 3, 32]
and memoization. This helps us to implement the semantics easily,
which runs faster than the existing implementation of UnCAL [22]
(Section 2.3). In summary, in this paper:

• We formalize the transformation from UnCAL to functional
ones (in FUnCAL) to support reasoning of UnCAL programs as
functional ones (Section 4).
• We give the semantics and the type system of FUnCAL so that

we can optimize the translated functional programs and execute
them as graph transformations (Sections 5, 6 and 7).
• We show some applications of the proposed translation, seman-

tics, and type system (Section 2).

Due to the space limitation, we omit some proofs, which can be
found in the full version available from http://www2.sf.ecei.
tohoku.ac.jp/~kztk/papers/funcal_full.pdf.

2. Benefits
We start the paper by discussing the benefits of our results, i.e.,
the translation from UnCAL to functional programs so that we can

72

reason about UnCAL programs as functional ones, and the semantics
and type system to support optimization and execution of UnCAL
programs via functional ones.

2.1 Verification
A verification problem of graph transformation is, given sets A
and B and a transformation f , to check if ∀a ∈ A.f(a) ∈ B
holds or not. For XML transformations, these sets A and B are
usually described in DTD, XML Schema, or RELAX NG. For
model transformations seen in software engineering, they are often
described in KM3 [26].

A few but interesting results are known for the verification
problem on UnCAL. Buneman et al. [6] represent graph schemata
(A and B above) again in graphs so that they can directly compute
the image f(A) by simply applying f to (a graph of) A. Inaba et al.
[23] reduce the problem to the validity checking of monadic second-
order logic (MSO) formulae when A and B are also given in MSO
(fragments that respect bisimilarity), with some type annotations to
a program f by users.

Our translation from UnCAL programs to functional ones en-
ables us to access alternative methods, because the translation also
reduces the verification problem for UnCAL programs to that for
functional ones, which manipulate infinite trees instead of graphs.
For example, thanks to our translation, we can use a verification
method by Unno et al. [39], which is originally designed for tree
transformations written in (higher-order) functional programs where
the trees can be infinite, for graph transformations.

Although Inaba et al. [23]’s method is well tailored to UnCAL
and thus the benefits are rather small for the “current” UnCAL,
the advantage of our translation becomes clearer when we extend
UnCAL. For example, if we extend UnCAL to include higher-order
functions to improve the programmability as in [21], then Inaba
et al. [23]’s method becomes no longer applicable. In contract, the
method by Unno et al. [39] is applicable for such extensions because
it originally targets higher-order functional programs.

2.2 Optimization
Optimization is also important in graph transformation. There have
been a few approaches for optimization of UnCAL programs [7, 20].
The basic idea of these approaches is to elaborate the fact that
UnCAL transformations respect bisimilarity and to rewrite srec as if
it were defined as a recursive function on infinite trees as mentioned
in Section 1.1. Hidaka et al. [20], in addition to the basic idea, focus
on manipulations of markers; for example, for e @ (&x . e′), their
transformation statically or dynamically computes the plugging-in
operation by substituting &x in e by e′; especially when e does not
contains the output marker &x, this replacement results in e,

The relationship between these UnCAL-specific techniques and
optimization techniques for functional programs becomes clearer by
our translation. Since our translation maps srec to fold on graphs as
will be shown in Section 4, we can reinterpret the basic idea of their
optimization as a special case of the classical fold-fusion [30]. Since
the expression e@ (&x . e′) is converted to expression (λx.e) e′ by
our translation, we can regard Hidaka et al. [20]’s optimization as
simplification by β-reduction. Both techniques are well understood
in the programming language community.

In addition, our translation enables us to access heavier or lighter
alternatives, such as supercompilation [37], short-cut fusion [15]
and lightweight fusion [35]. Notice that we can freely optimize
programs as long as the optimization keep typeability with respect
to the type system in Section 6.

2.3 Implementation
Since our semantics (Section 5) is (a variant) of the usual lazy se-
mantics, we can reuse existing implementation techniques. Here, we

|V | |E| Ours GRoundTram (bulk) —- (rec)
Class2RDB 70 73 2.1 ms 39 s 58 ms
PIM2PSM 58 58 1.8 ms 6.7 s 12 ms
C2O_Sel 42 45 1.4 ms 0.93 s 4.6 ms
a2d_xc S30k 30000 29999 0.62 s 1.3 s 1.7 s
a2d_xc M200 40000 80000 1.8 s 2.1 s T/O
a2d_xc C200 201 40200 0.9 s 0.79 s T/O

Table 1. Experimental results (running time is in CPU time, the
timeout is 60 seconds).

report our experimental results, which show that UnCAL programs
are executed significantly faster by our translation, for small graphs
that can be loaded into a memory.

We implemented our semantics in Section 5 as an embedded DSL
on Haskell;1 inspired by [14], we represented laziness explicitly by a
monad, and used a reference holding either a monadic computation
or a pure value to represent a thunk and its evaluation result. An
expected speed-up is reduction of the overhead of directly handling
sets of nodes and edges, or more precisely (V,E, I,O) quadruples
as will be shown in Section 3; especially, any ε-edges [7] (see
Section 3) are not used in our semantics.

We measured execution time of a few transformations and com-
pared the execution time with GRoundTram 0.9.3 [19, 20, 22]2, an
UnCAL implementation using OCaml. GRoundTram implements
two evaluation strategies: bulk semantics [7] that evaluates recur-
sions as map-like operations on edges, and recursive semantics
that uses memoized recursions to realize srec, both equipped with
some optimizations [7, 20]. The experiments were held on MacOSX
10.11.6 over MacBook Pro 13-inch with 2.6 GHz Intel Core i5 CPU
and 8 GB memory. We used GHC 8.0.1 (with LLVM 3.7) for Haskell
and ocaml 4.03.0 for OCaml. Since GRoundTram is implemented
as an interpreter, for fair comparison, we did not compile the tested
programs and graphs; we used the interpreter runhaskell instead
while we compiled our embedded library providing the primitive
graph operations. The examined programs were: Class2RDB is a
benchmarking model transformation [4], PIM2PSM (from [20]) con-
verts a platform independent model to a platform specific model,
and C2O_Sel (from [20]) converts a customer-order database from
a customer-oriented representation to a order-oriented representa-
tion with some extraction, and a2d_xc (from [19]) renames A to
D and contracts C. The program codes of Class2RDB, PIM2PSM
and C2O_Sel are mechanically generated; they are originally writ-
ten in UnQL+ [22] and converted to UnCAL. For a2d_xc, we
used the three graphs as input: S30k is a 30000-long sequence
of ◦ ◦ . . . ◦�� A // A // A // , M200 is a lattice-like graph of 40000 nodes in
which the i-th node connects to the (i+1)-th and (i+200)-th nodes
modulo 40000 by A, and C200 is a graph of 201 nodes in which
every node connects to the other nodes by A. Since our semantics
is lazy, we used isEmpty (elim e) for deep evaluation (Section 5.3).
For GRoundTram, we used options “-oa -rw -cb” for the former
three experiments and “-oa -rw -lu -le” for the latter three. Ad-
ditionally, for each experiment, we examined combination of the
options -as and -ht and chose the fastest one.

Table 1 shows the experimental results. The results show that
the bulk semantics (“bulk” in the table) in GRoundTram scales
well for both node and edge size of a graph while its recursive
semantics (“rec” in the table) scales well for the size of a query
(Class2RDB, PIM2PSM and C2O_Sel contain 57, 37 and 14 srecs,
respectively). Though our semantics is also based on the recursive
nature of UnCAL’s structural recursions, our implementation scaled
enough well for both directions. This speed-up might be caused by

1 https://bitbucket.org/kztk/funcal
2 http://www.biglab.org/download.html

73

the simplicity of the data structure used for a graph (thunks and con-
structors, as usual lazy evaluation). Especially, our semantics does
not introduce any ε-edges intermediately, and thus, in general, the
sizes of intermediate graphs are smaller than those in GRoundTram,
even for the case where the whole intermediate graphs are demanded.
However, unions represented as constructors in our system play sim-
ilar roles to ε-edges, which explains our implementation does not
scale well for non sparse graphs as C200.

We examined performance of application of an involved trans-
formation to a non tiny graph. We artificially generated a graph that
contains 1000 customers, each with 5 orders; the graph has 23006
nodes, and 45006 edges. Then, we applied C2O_Sel to the graph.
Our system took 3.1 CPU seconds, while GRoundTram’s bulk se-
mantics (with options -oa -rw -cb -as -ht) took 30 CPU min-
utes and its recursive semantics caused the stack overflow. This
slowdown of GRoundTram would come from the elimination of
ε-edges produced by each srec. However, disabling ε-elimination,
GRoundTram ran out 8 GB memory after 30 minutes due to the size
of intermediate graphs.

3. Brief Overview of UnCAL
In this section, we briefly overview UnCAL [7], a first-order
functional programming language that manipulates graphs. UnCAL
is an internal language of UnQL [7] and UnQL+ [22], in which users
can write queries like SQL; for example, the query that extracts a
person named Bob shown in Section 1.1 can be written as follows.

select {person:$p} where
{person:$p} in $db, {name:$n, friend:$f} in $p,
{$label:{}} in $n, $label = Bob

Once a query is written in UnQL/UnQL+, it is converted to an
UnCAL program and executed. This means, our translation is also
beneficial to UnQL/UnQL+. Recently, UnCAL has been applied
to bidirectional model-driven software development [19, 22, 40],
where the structure of software is modeled as graphs in different
levels of abstractions and their relationships are described by graph
transformations.

3.1 Graphs in UnCAL
UnCAL deals with multi-rooted, directed, and edge-labeled graphs
with no order on outgoing edges. The characteristic points of the
UnCAL graphs are: (1) the UnCAL graphs can have markers that
indicate roots and holes, (2) the UnCAL graphs can have ε-edges
that have similar behaviors to ε-transitions in automata, and (3) the
equivalence of the UnCAL graphs are defined by bisimulation.

As mentioned in Section 1.1, markers are used in the two ways:
input and output. Input markers are names for multiple roots, and
output markers are names for holes. Nodes may be marked with
input and output markers (input nodes and output nodes), and they
can be connected to produce other graphs; e.g., one can construct
cycles by connecting nodes with input markers to that of output
markers of the same names in the same graph.

UnCAL graphs can contain ε-edges representing “short-cuts”,
similarly to the ε-transitions in automata. For example, if a node v
is connected to a node u by an ε-edge, it means that the edges of u
are also edges of v (the converse is not necessarily true because v
can have other edges than this ε-edge). UnCAL uses ε-edge to delay
some graph operations for efficiency [7].

Formally, UnCAL graphs are defined as follows. Let M be
a set of markers and L be a certain set of labels. An UnCAL
graph G is a quadruple (V,E, I,O), where V is a set of nodes,
E ⊆ V × (L ∪ {ε}) × V is a set of edges, I ⊆ M× V is a set
of pairs of input markers and the corresponding input nodes, and
O ⊆ V ×M is a set of pairs of output nodes and associated output
markers. In addition, we require that, for each marker &x ∈ M,

g ::= {} | {a : g} | g1 ∪ g2 (graph constructors)
| &x . g | &y | () | g1 ⊕ g2

| g1 @ g2 | cycle(g)
| srec(λ(l, t).g1)(g2) (structural recursion)
| t (graph variable)

a ::= l | a

Figure 1. The syntax of the positive subset of UnCAL

there is at most one node v such that (&x, v) ∈ I . In other words, I is
a partial function from markers to nodes and is sometimes denoted as
such. For a singly-rooted graph, the default marker & is often used to
indicate the root. We call the markers in the sets {&x | (&x,) ∈ I}
and {&x | (, &x) ∈ O} input and output markers, respectively.
Throughout this paper, we fix the (denumerable) set of labels L.

The equivalence between UnCAL graphs is defined by bisimu-
lation extended with ε-edges. Intuitively, two UnCAL graphs are
equivalent if the infinite trees obtained by unfolding sharings and
cycles are identical, after short-cutting all the ε-edges. Let us de-
fine the bisimilarity between graphs formally. We write v l→ u if
there is an edge (v, l, u) ∈ E between nodes v, u ∈ V in a graph
G = (V,E, I,O), and write ε→∗ for the reflexive transitive closure
of ε→. A bisimulation X between a graph G1 = (V1, E1, I1, O1)
andG2 = (V2, E2, I2, O2) is a relation satisfying the following con-
ditions: (1) if (v1, v2) ∈ X , for any path satisfying v1

ε→∗ w1
a→ u1

there is a path satisfying v2
ε→∗ w2

a→ u2 and (u1, u2) ∈ X , and
for any path u2 satisfying v2

ε→∗ w2
a→ u2 there is a path satisfying

v1
ε→∗ w1

a→ u1 and (u1, u2) ∈ X ; (2) if (v1, v2) ∈ X , for any
path v1

ε→∗ u1 such that (u1, &x) ∈ O, there is a path v2
ε→∗ u2

such that (u2, &x) ∈ O, and conversely, for any path v2
ε→∗ u2 such

that (u2, &x) ∈ O, there is a path v1
ε→∗ u1 such that (u1, &x) ∈ O;

and (3) dom(I1) = dom(I2) and (I1(&x), I2(&x)) ∈ X for any
&x ∈ dom(I1) = dom(I2). Two graphs G1 and G2 are called
bisimilar, denoted by G1 ∼ G2, if there is a bisimulation between
G1 and G2.

Note that the graph bisimulation is different from weak bisimula-
tion [31] or the language equivalence of automata, as demonstrated
by the following examples.

◦ ◦
◦
◦
◦��

ε
((

ε 66

a
//

b //
∼ ◦ ◦

◦��
a ,,
b 22

◦ ◦
◦
◦
◦��

c
((

c 66

a
//

b //
6∼ ◦ ◦ ◦

◦��
c
//
a
((

b 66

The bisimilarity of the first two examples shows the difference from
weak bisimulation; recall that ε-edges represent shortcuts. The non-
bisimilarity of the last two examples shows the difference from the
equivalence of the trace sets, or the equivalence of automata.

3.2 Syntax and Semantics
Figure 1 shows the positive [7] subset of UnCAL that we mainly
target in this paper. The subset of UnCAL consists of the nine graph
constructors and srec for a structural recursion. Compared with
full UnCAL [7], the subset does not contain if -expressions and the
isEmpty operator that checks if a graph has at least one non-ε-edge
accessible from the roots or not. The former restriction is just for
simplicity; we can extend our discussions straightforwardly to if -
expressions. In contrast, a careful discussion is needed for isEmpty,
as there is no computable counterpart of isEmpty in general func-
tional programs, and it must be converted to an productivity-test
oracle (Section 4). However, unlike that in Section 4, the discussions
in Sections 5, 6 and 7 can be easily extended to isEmpty because
isEmpty becomes computable for FUnCAL programs thanks to the
type system in Section 6.

3.2.1 Graph Constructors
UnCAL has the nine graph constructors, {}, { : }, ∪, &x .

, &y, (), ⊕, @, and cycle. Some of them are already men-

74

{} {a : G}
G

a

G
&x G

&x

()

&x1 ... &xk

&y1 ... &yn

&x’1 ... &x’m

&y1 ... &yn

G1 G2

G1♁G2 G1@G2

&x1 ... &xk

&y1 ... &ym
G1

&z1 ... &zn

&y1 ... &ym

G2

ε ε

cycle (G)

&x1 ... &xm

&x1 ... &xm

ε ε

G

&y

&y

G1 ∪ G2

G1 G2

&x1 ... &xm

&y1 ... &yn

Figure 2. Graph Constructors

tioned in Section 1.1. A record notation shown in Section 1.1
such as {name : Alice, email : alice} is a syntax sugar for
{name : {Alice : {}}} ∪ {email : {alice : {}}}. Figure 2 illus-
trates their intuitive behaviors. In what follows, we introduce the
formal definitions of these nine constructors each by each.

Singleton Graph The expression {} constructs a (single) root-only
graph, of which semantics J{}K is defined by:

J{}K = ({v} , ∅, {& 7→ v} , ∅)

Here v is a fresh node.

Edge Extension The expression {a : g} constructs a graph by
adding an edge with label a pointing to the root of the graph JgK;
formally, its semantics is defined by:

J{a : g}K = (V ∪ {u} , E ∪ {(u, a, v)} , {& 7→ u} , O)
where (V,E, {& 7→ v} , O) = JgK

Here, u is a fresh node.

Edge-set Union The expression g1 ∪ g2 adds two ε-edges from
the new root to the roots of G1 and G2, where G1 and G2

are evaluation results of g1 and g2, respectively. Formally, its
semantics is defined by:3

Jg1 ∪ g2K = (V1 ∪ V2 ∪ {v} , E, {& 7→ v} , O1 ∪O2)
where (V1, E1, I1, O1) = Jg1K

(V2, E2, I2, O2) = Jg2K
E = E1 ∪ E2 ∪ {(v, ε, I1(&)), (v, ε, I2(&))}

Here, v is a fresh node, and V1 and V2 are assumed to be disjoint.

Named Hole The expression &y constructs a graph with a single
node marked with an output marker &y, of which semantics is
defined by:

J&yK = ({v} , ∅, {& 7→ v} , {(v, &y)})

Here v is a fresh node.

Naming Root The expression &x . g names the root of JgK by &x,
of which semantics is defined by:

J&x . gK = (V,E, {&x 7→ v} , O)
where (V,E, {& 7→ v} , O) = JgK

Unlike the original definition [7], we restrict that the input
markers of g must be the singleton {&} for simplicity.

3 In the definition, we restrict that gi (i = 1, 2) has only one root while the
original definition allows g1 and g2 to have multiple roots. This is handy
when we convert UnCAL to functional programs. This restriction does not
lose the expressive power; for g1 and g2 with input markers &x1, . . . , &xn,
the original g1 ∪ g2 can be rewritten as (&x1 . ((&x1@g1)∪(&x1@g2)))⊕
. . .⊕(&xn .((&xn@g1)∪(&xn@g2))), in which ∪ satisfies this restriction.

Root-set Union The expression g1 ⊕ g2 combines two graphs Jg1K
and Jg2K with different sets of input markers, of which semantics
is defined by:

Jg1 ⊕ g2K = (V1 ∪ V2, E1 ∪ E2, I1 ∪ I2, O1 ∪O2)
where (V1, E1, I1, O1) = Jg1K

(V2, E2, I2, O2) = Jg2K

Here, we assume that V1 and V2 are disjoint, and require that
dom(I1) and dom(I2) are disjoint.

Empty Graph The expression () represents a graph with no nodes
or edges, i.e.,

J()K = (∅, ∅, ∅, ∅)

Plugging In The expression g1 @ g2 replaces holes in Jg1K with
roots of Jg2K that share the same names, of which semantics is
defined by:

Jg1 @ g2K = (V1 ∪ V2, E, I1, O2)
where (V1, E1, I1, O1) = Jg1K

(V2, E2, I2, O2) = Jg2K
E = E1 ∪ E2 ∪ {(v, ε, I2(&x)) | (v, &x) ∈ O1}

Here, we assume that V1 and V2 are disjoint, and require
ran(O1) ⊆ dom(I1).

Cycle The expression cycle(g) constructs cycles by replacing
holes with roots in JgK that share the same names, of which
semantics is defined by:

Jcycle gK = (V,E′, I, {(v, &x) ∈ O | &x 6∈ dom(I)})
where (V,E, I,O) = JgK

E′ = E ∪ {(v, ε, I(&x)) | (v, &x) ∈ O}

Some examples have been shown already in Section 1. The fol-
lowing is an alternative way to define the cyclic graph in Section 1.

&a@ cycle((&a . ({name : {Alice : {}}} ∪ {friend : &b}))
⊕ (&b . ({name : {Bob : {}}} ∪ {friend : &a})))

Structural Recursion The expression srec(λ(l, t).g)() repre-
sents a structural recursion in the sense that a function f(x) =
srec(λ(l, t).g)(x) satisfies the following laws [7].

f({}) = {} (SR1)
f({a : G}) = g[a/l,G/t] @ f(G) (SR2)
f(G1 ∪G2) = f(G1) ∪ f(G2) (SR3)

Thanks to srec, UnCAL can express many graph transformations
in an efficient way, with guarantee of termination [7, 22].

Formally, its semantics (the bulk semantics [7]) is defined by:

Jsrec(λ(l, t).g)(g′)K = (V ′ ∪
⋃
ζ∈E Vζ , E

′ ∪
⋃
ζ∈E Eζ ,

{&x 7→ uv0,&x | &x ∈ Z} , ∅)
where

(V,E, {& 7→ v0} , ∅) = Jg′K
(Vζ , Eζ , Iζ , Oζ) = Jg[a/l, (V,E, {& 7→ v} , ∅)/t]K

(ζ = (, a, v))
V ′ = {uv,&x | v ∈ V, &x ∈ Z}
E′ =

{
(v′, ε, uv,&x) | ∃a, u. (v′, &x) ∈ O(u,a,v)

}
∪
{

(uv,&x, ε, v
′) | ∃a, u. I(v,a,u)(&x) = v′

}
Here, V ′ are fresh nodes, and Z = dom(Iζ) and ran(Oζ) ⊆ Z
for each ζ ∈ E. We assume that dom(Iζ) = dom(Iζ′) for all
ζ, ζ′ ∈ E, and Vζ and Vζ′ are disjoint for different ζ, ζ′ ∈ E.
Intuitively, the semantics computes g[a/l,G/t] for each edge in
Jg′K, and connects them by ε-edges which corresponds to (SR2)
and (SR3). Unlike the original definition [7], we require the graph
Jg′K to have only one root named & and no holes. The former
restriction is just for simplicity. For typed UnCAL [7], we can
convert UnCAL programs to ones that satisfy the condition. In

75

e ::= x | λx.e | e1 e2 (λ-terms)
| πni e | (e1, . . . , en) (projections and tuples)
| a (labels)
| e1 : e2 | e1 ∪ e2 | • (tree constructors)
| fixG e (first-order fixed-point operator)
| foldne (structural recursion for graphs)

Figure 3. The syntax of FUnCAL

contrast, the latter restriction reduces the expressive power to some
extent. However, UnCAL programs that violate the latter restriction
are rare in practice. For example, UnCAL programs obtained from
the surface languages UnQL and UnQL+ satisfy the restriction.

3.3 Types
One would have noticed that there are some conditions on markers
to perform some graph constructions such as ∪. To guarantee these
conditions, UnCAL has a type system concerning markers [5, 20],
in which a graph type is of the form DBXY . A type DBXY represents
a set of the graphs whose input markers are exactly X , and whose
output markers are contained in Y . For example, expression &y can
have type DBXY where X = {&} and Y ⊇ {&y}. Recall that &
is the marker to refer roots obtained from {}, { : } and &y. We
shall omit the typing rules, because it is straightforward and one can
extract the typing rules from the conversion rules from UnCAL to
functional programs, which will be shown in the next section.

4. UnCAL Programs to Functional Programs
This section formally describes our translation from UnCAL pro-
grams to functional ones, whose idea has been roughly explained
in Section 1.1. The translation enables us to reason about UnCAL
programs as functional ones, which would be useful to import veri-
fication techniques for functional programs (Section 2).

The idea of the translation is to convert an UnCAL program
concerning graphs to a functional one concerning infinite trees, by
emulating the UnCAL specific features, markers and their manip-
ulation, by standard notions in functional programming languages.
Specifically, we emulate input markers—names for roots—by tuples,
and output markers—names for holes—by λ-abstractions.

Here, we allow that a translated functional program may not
terminate; for example, an UnCAL expression cycle(&) satisfying

Jcycle(&)K = ◦�� εaa ∼ J{}K
is converted to fixG (λx.x) that diverges. However, this is rather
natural and not problematic in the bisimulation-based reasoning,
which will be shown in Section 4.2. Recall that, in process calculi,
(strong or weak) bisimilarity cannot distinguish a terminating
process from a nonterminating process if each of them does not
interact other processes. How to execute the translated programs as
graph transformations will be discussed in Sections 5, 6 and 7.

Recall that g of srec(. . .)(g) is restricted not to contain
output markers. This is a key to regarding output markers as
holes. For example, in the original UnCAL without the restric-
tion, srec(λ(l, t).g′)(&y) = &y holds for g′ with type DB

{&}
{&}. This

behavior is different from that of holes; if the output markers are
holes, a graph substituted to a hole must be traversed by the srec.

4.1 Translation
The syntax of the target language of our translation is given in Fig-
ure 3. We call the language FUnCAL; at this point, we assume
the standard call-by-name semantics for it. FUnCAL contains λ-
expressions, tuples (where πni is the projection of the ith element
from an n tuple), (infinite) tree constructors, and the (first-order)
fixed-point operator fixG, and structural recursions foldn f . Tree

constructors consist of a leaf •, edge extension (:), and branch con-
struction ∪. For simplicity, we shall write a : b for {a : b} hence-
forth. We use fixG instead of letrec that appeared in Section 1.1,
since it is handy to discuss reductions. The structural recursion
foldn f is “fold” for the tree constructors defined recursively as:

foldn f • = (•, . . . , •) (Fold1)
foldn f (x : y) = f x (foldn f y) (Fold2)
foldn f (x ∪ y) = (foldn f x) ∪ (foldn f y) (Fold3)

Note that foldnf returns an n-tuple of trees rather than a tree;
in the right-hand side of (Fold3), we overload ∪ to tuples as
(x1, . . . , xn) ∪ (y1, . . . , yn) = (x1 ∪ y1, . . . , xn ∪ yn). Unlike
general “fold”, the operations for • and ∪ are fixed in the definition.

As we have mentioned earlier, in our translation, we emulate
input markers by tuples and output markers by λ-abstractions. Thus,
an UnCAL expression g : DBXY is translated to

e : G|Y | → G|X|

where G is the (coinductive) datatype defined by:

data G = • | L : G | G ∪ G

At this point, we assume that FUnCAL has the standard simple type
system with the datatype G and the label type L; we later refine it
to guarantee termination (Section 6). For example, an expression
λf.foldnf has type (L→ Gn → Gn)→ G→ Gn.

We shall sometimes write πi instead of πni if n is clear from the
context. We assume that markers are totally ordered, and write
X for a tuple (x1, . . . , xn) where {&x1, . . . , &xn} = X and
&xi < &xj (i < j). Sometimes, we use a syntax sugar λX.e
for λt.e[(πit)/xi]1≤i≤n where (x1, . . . , xn) = X . For example,
assuming x1 < x2, we write λ(x1, x2).x1 for λt.π1t. We even
write λ().e when the corresponding X is the empty set.

Our translation is defined according to the typing derivation
of UnCAL. A translation judgment Γ ` g : DBXY e reads that
an expression g of type DBXY under a typing environment (i.e.,
a mapping from graph/label variables to types) Γ in UnCAL is
converted to an expression e, where the type of g and types in Γ

are converted from DBX
′

Y ′ to G|Y
′| → G|X

′|. Figure 4 shows the
translation rules for the UnCAL graph constructors. If we ignore the
; e part of Γ ` g : DBXY e, the judgment and rules coincide to
the typing judgment and rules of UnCAL [5, 20].

The conversion rule for srec is a bit involved and thus is written
separately as follows.

Γ, l : L, t : DB
{&}
∅ ` g1 : DBZZ e1 Γ ` g2 : DB

{&}
∅ e2

Γ ` srec(λ(l, t).g1)(g2) : DBZ∅
λ().para|Z| (λl.λt

′.(λt.e1) (λ().t′)) (e2 ())

C-REC

Here, parane, representing a “paramorphism”4 [29], where an
expression λf.paranf has type (L → G → Gn → Gn) → G →
Gn, is a syntax sugar defined by:

parane y ≡ p
(

foldn+1

(
λz.λx.q

(
e z (p′x) (p x)

) (
z : p′x

))
y
)

where p : Gn+1 → Gn, p′ : Gn → G and q : Gn → G → Gn+1

are functions to rearrange tuples defined as p x = (π1x, . . . , πnx),
p′ x = πn+1x, and q x y = (π1x, . . . , πnx, y). This definition
of paran is similar to how a paramorphism is represented by a
catamorphism (fold) via tupling [29]. The rule C-REC becomes a
bit complicated due to explicit conversions between G and ()→ G.
Since the argument of paran must be of type G instead of ()→ G,
we apply () to e2. In addition, since the conversion assumes that t
in e1 has type ()→ G, we construct such a function by λ().t′.

4 Precisely, paramorphism is a notion for inductive datatypes. We borrow the
name just because the computation patterns are similar.

76

Γ ` a : L a
C-LAB

Γ ` {} : DB
{&}
Y •

C-SINGLE

Γ ` g : DB
{&}
Y e Γ ` a : L a′

Γ ` {a : g} : DB
{&}
Y λy.a′ : (e y)

C-EDGE

{Γ ` gi : DB
{&}
Y ei}i=1,2

Γ ` g1 ∪ g2 : DB
{&}
Y λy.(e1 y) ∪ (e2 y)

C-UNI

Γ ` g : DB
{&}
Y e

Γ ` &x . g : DB
{&x}
Y e

C-ROOT
Γ ` () : DB∅Y λy.()

C-EMP

Y = (&y1, . . . , &yn) &y = &yi 1 ≤ i ≤ n

Γ ` &y : DB
{&}
Y λz.πiz

C-HOLE

{Γ ` gi : DBXi
Y ei}i=1,2 p ≡ λX1.λX2.X1 ∪X2

Γ ` g1 ⊕ g2 : DBX1]X2
Y λy.p (e1 y) (e2 y)

C-RU

Γ ` g1 : DBXY e1 Γ ` g2 : DBYZ e2

Γ ` g1 @ g2 : DBXZ λy.e1 (e2 y)
C-SUBST

Γ ` g : DBXX]Y e

Γ ` cycle(g) : DBXY λY . fixG(X.e X ∪ Y)
C-CYC

z: graph/label variable

Γ ` z : Γ(z) z
C-VAR

Γ ` g : DBXY e Y ⊆ Y ′

Γ ` g : DBXY ′ λY ′.e Y
C-SUB

Figure 4. Conversion rules of UnCAL graph-constructors.

For example, assuming some simplifications based on the
standard β and η conversions, cycle({a : &}) of type DB

{&}
∅

is converted to λy. fixG(λx.a : x) of type () → G , and
srec(λ(l, g).&)(cycle({b : &})) of the same type is converted
to λy.fold1(λl.λr.r) (fixG(λx.b : x)).

It is not difficult to show the translated programs are well-typed.

4.2 Correctness
Although the translation is rather simple, some extra effort is
required to state its correctness; we have to be careful with the
following difference between UnCAL and FUnCAL: An UnCAL
graph of type DBXY , which can contain output markers in Y , is
translated to a tree-to-tree function G|Y | → G|X| in FUnCAL rather
than an expression that generates a (tuple of) tree. To leap the gap,
we first define a relation between output-marker-free UnCAL graphs
and FUnCAL tree expressions, and then we extend the relation to
one that between general UnCAL graphs and FUnCAL functions.

First, we define a graph obtained from an expression as a labeled
transition system [31].

Definition 1. A reduction graph Ge0,X of a (possibly-open)
FUnCAL expression e0 of type Gn and markersX = {&x1, . . . , &xn}
with &xi < &xj (i < j) is an (possibly-infinite) UnCAL
graph (V,E, I, ∅) where V is the set of FUnCAL expressions,
E = {(e, a, e′) | e⇒∗ a : e′}, and I = {&x1 7→ π1e0, . . . ,
&xn 7→ πne0}. Here, the relation (⇒) is defined by:

e1 ∪ e2 ⇒ e1 e1 ∪ e2 ⇒ e2 e⇒ e′ if e→ e′

where,→ is the call-by-name reduction.

Note that, in each reduction by⇒, only (∪) occurring at the top is
interpreted as nondeterministic choice. We writeGe forGe,X ifX is
clear from the context or not relevant. We abuse the notation to write
G ∼ e and e ∼ e′ for G ∼ Ge and Ge ∼ Ge′ , respectively. Note
that G such that G ∼ e for some e must not have output markers.
By definition, if e and e′ are equivalent as infinite constructor trees
(i.e., ∪ is frozen), then e ∼ e′.

Then, we define a correspondence (≈) between an UnCAL graph
G :: DBXY and an expression e :: G|Y | → G|X| by: G ≈ e iff
(G @ (G1 ⊕ . . . ⊕ G|Y |)) ∼ (e (e1, . . . , e|Y |)) for any Gj , ej
(1 ≤ j ≤ |Y |) such that Gj :: DB&

∅ and Gj ∼ ej .
Now, we have the following theorem.

Theorem 1 (Correctness). If ` g : DBXY e, JgK ≈ e holds.

4.3 Translation of isEmpty

The full-set of UnCAL contains isEmpty as we have mentioned
before. Although many transformation can be described without
isEmpty [7] as those obtained from UnQL, there are still useful
transformations that require isEmpty; for example, some UnCAL
programs converted from UnQL+, such as Class2RDB in Sec-
tion 2.3, contain isEmpty [22].

Since a graph is translated to an infinite tree, it is natural that
isEmpty is translated to the productivity test that checks whether
e satisfies e ⇒∗ a : e′ for some a and e′, which is generally
undecidable. In other words, isEmpty is translated to an oracle
instead of a computable function according to our translation. This
is the reason why we consider the positive subset of UnCAL at this
point. For the positive subset of UnCAL, we can reason about the
UnCAL programs through translated functional programs. For the
full-set of UnCAL, additional reasoning effort is needed to handle
the productivity-test oracle, although special treatment of markers
are not necessary in reasoning of the translated programs.

In contrast, isEmpty does not pose any problems when we
execute UnCAL programs as functional ones (Sections 5, 6, and
7). Roughly speaking, the type system in Section 6 ensures that the
productivity test is decidable for the well-typed programs.

5. Graph Transformation as Graph Reduction
This section gives a semantics of FUnCAL so that we can obtain
finite graphs rather than infinite trees after evaluation. Our semantics
is basically a “zipper”ed abstract machine of Nakata and Hasegawa
[32]’s lazy semantics, which extends Launchbury [28]’s natural
semantics with the black hole [2, 3, 32] (“apparent undefinedness”).
This section focuses on the formal description of the semantics. The
discussions on termination are postponed to Sections 6 and 7.

The basic idea is to exploit a pointer-structure in a heap under the
lazy evaluation. For example, the heap obtained after evaluation of
fixG (λx.a : x) in the usual lazy evaluation is cyclic and has a sim-
ilar structure to a corresponding UnCAL graph Jcycle({a : &})K.
However, an extra effort is required to handle fixG(λx.x) and
fold(λa.λr.r)(e) for example, which are nonterminating in usual
semantics.

The lazy semantics with the black hole [32] plays an important
role to resolve this problem. Since fixG(λx.x) evaluates to the black
hole without running infinitely in this lazy semantics, we identify the
black hole with a singleton graph, and obtain a singleton graph as the
evaluation result of fixG(λx.x). Still, the semantics is not sufficient
for terminating evaluation of recursions such as fold(λa.λr.r)(e).
To make the evaluation of recursions terminating, we adopt memo-
ization. Roughly speaking, since e of fold(λa.λr.r)(e) represents
a graph, the recursive call of fold(λa.λr.r) must visit the same
argument twice in the evaluation. Memoization is used to detect the
situation, and make the call result in the black hole.

5.1 Modified Syntax with Memos
To adopt memoization for structural recursions, we change the
FUnCAL syntax as

e ::= · · · | foldMe

where foldne is replaced with foldMe in which M represents a
memo. The memos M are all ∅ initially, and entries are added

77

〈E[x] |x = e, µ〉 → 〈E[x := e] |x = •, µ〉
〈E[x := v] |x = •, µ〉 → 〈E[v] |x = v, µ〉
〈E[(λx.e1) e2] |µ〉 → 〈E[e1] |x = e2, µ〉
〈E[• e2] |µ〉 → 〈E[•] |µ〉 (x: fresh)
〈E[C e1 e2] |µ〉 → 〈E[C x1 x2] |x1 = e1, x2 = e2, µ〉

(x1, x2: fresh)
〈E[fixG e] |µ〉 → 〈E[w] |w = e w, µ〉 (w: fresh)

〈E[foldMe •] |µ〉 → 〈E[•] |µ〉
〈E[foldMe v] |µ〉 → 〈E[w] |w = e x1 (foldM

′
e x2), µ〉

(M ′ = M [v 7→ w], w: fresh)
if v = x1 : x2, v 6∈ dom(M)

〈E[foldMe v] |µ〉 → 〈E[w] |w = foldM
′
e x1 ∪ foldM

′
e x2, µ〉

(M ′ = M [v 7→ w], w: fresh)
if v = x1 ∪ x2, v 6∈ dom(M)

〈E[foldMe v] |µ〉 → 〈E[w] |µ〉
if M(v) = w

Figure 5. Reduction rules of our lazy abstract machine: we assume
that (λx.e) is α-renamed to conform with the freshness condition.

through evaluation. Although tuples and projections are important in
previous sections, we shall ignore them henceforth because they are
not relevant in our technical development in the following sections;
our discussions can be extended to them straightforwardly. This is
the reason why foldMe above does not have the subscript.

In what follows, we shall use a metavariable C for binary
constructors “:” and “∪”.

5.2 Abstract Machine
Now, we describe our lazy semantics to execute FUnCAL programs
as graph transformations.

A value v, or weak head normal form, is defined by:

v ::= a | C x1 x2 | λx.e | foldMe | •.
That is, a value is either of a label, an expression guarded by a
constructor C where x1 and x2 refer to some expressions via a heap
introduced later, a function, a memoized recursion, or the black hole.
An evaluation context E is defined by:

E ::= 2 | E e | (foldMe) E | x := E

An evaluation context x := 2 is a key of lazy evaluation, which
represents heap-update after the expression referred by x becomes a
value. We writeE[e] for an expression obtained fromE by replacing
2 with e. A heap is a mapping from variables to expressions.
A configuration is a pair 〈x |µ〉 where x is a variable to hold
an expression to be evaluated in µ and µ is a heap. We assume
that configurations are closed; 〈x |µ〉 is closed if x and every
variable occurring in the right-hand sides of µ also occur in a left-
hand side of µ. One can think that 〈x |x1 = e1, . . . , xn = en〉 as
letrec x1 = e1 and . . . and xn = en in x. We sometimes write
〈e |µ〉 for 〈x |x = e, µ〉 where we do not care x.

The reduction relation 〈x |µ〉 → 〈x |µ′〉 is defined by the
rules in Figure 5. The rules except the ones for foldMe are just
straightforward extensions of [32] with constructors.

The black hole • represents the apparent undefinedness yielded
when the value of x is required by the evaluation of x itself [32]. A
typical example is fixG (λx.x), which will be evaluated as:

〈fixG (λx.x) | ∅〉 → 〈w |w = (λx.x) w〉
→ 〈w := (λx.x) w |w = •〉
→ 〈w := x |w = •, x = w〉
→ 〈w := (x := w) |w = •, x = •〉
→∗ 〈w := (x := •) |w = •, x = •〉
→∗ 〈• |w = •, x = •〉

In contrast, fixG (λx.a : x) does not lead to • because of the lazy
semantics; recall that the values are weak head normal forms.

〈fixG (λx.a : x) | ∅〉
→ 〈w |w = (λx.a : x) w〉
→ 〈w := ((λx.a : x) w) |w = •〉
→∗ 〈w := a′ : x′ | a′ = a, x′ = x, x = w,w = •〉
→ 〈a′ : x′ | a′ = a, x′ = x, x = w,w = a′ : x′〉

The reduction rules for foldMe are keys in this semantics. It
basically works as fold1e in Section 4.1; indeed, the first, the second
and the third rules correspond to (Fold1), (Fold2) and (Fold3),
respectively. The first rule also says that • can be seen as an
exception. The second and the third rules update the memo, and the
fourth rule of foldMe looks up the memo if there is corresponding
entry in the memo. By memoization, the problematic example in
Section 1 that eliminates all the edges evaluates to • without major
changes to the original semantics [32], as illustrated below.

Example 1 (Eliminate All Edges). Let us consider the expression

fold∅(λz.λr.r) (fixG(λx.a : x))

Here, fold∅(λz.λr.r) eliminates all the edges, and thus we expect
that the expression results in • (a singleton graph). Let us write elM

for foldM (λz.λr.r), then the above expression is evaluated as:

〈el∅ (fixG(λx.a : x)) | ∅〉
→∗ 〈el∅ (a′ : x′) | a′ = a, x′ = x, x = w,w = a′ : x′, . . .〉
→ 〈u |u = (λz.λr.r) a′ (el{(a

′:x′)7→u}x′), . . .〉
→∗ 〈u := el{(a

′:x′)7→u} x′ |u = •, . . .〉
→∗ 〈u := el{(a

′:x′)7→u} (a′ : x′) |u = •, . . .〉
→ 〈u := u |u = •, . . .〉 { hit! }
→ 〈• | . . .〉.

Here, we underlined the configurations where elM inspected the
memo M . Memoization plays an important role to obtain this
intuitive result. At the first-underlined reduction of elM , the entry
(a′ : x′) 7→ u is added to M . At the second-underlined reduction
of elM , since M(a′ : x′) = u holds, the call is reduced to the
variable u. Note that, in the evaluation of u after the first-underlined
reduction of elM , the referred value was replaced with •. Thus, we
got • as the final result.

An important property on memos is that, the looked-up objects
are always values, which will be used in Section 7.

Lemma 1 (Look-up). Suppose that 〈e | ∅〉 →∗ 〈E[foldMe v] |µ〉
where M(v) = x. Then, µ(x) is a value.

5.3 Extracting Graphs
After an evaluation, we extract a graph from the “graph” structure
of a heap. For example, for a configuration 〈x |x = a : x, a = a〉,
we obtain a graph G = (V,E, I,O) with V = {x}, E =
{(x, a, x)}, I = {& 7→ x} and O = ∅. In general, a heap may
contain unevaluated expressions. If a heap contains unevaluated
expressions as {x = (λy.y)(a : x)}, we cannot extract a graph
directly from the heap. To extract a graph from a configuration
〈x |µ〉, we have to ensure that µ(y) is a value for all y accessible
from the root x. Formally, we say a variable x accessible from
y in µ if (x, y) belongs to the reflexive transitive closure of the
{(z, w) | w ∈ fv(µ(z))}. In this subsection and in Section 7, we
shall even omit (∪) for simplicity.

This deep evaluation is done easily: for a configuration 〈x |µ〉,
we just evaluate 〈elim∅ x |µ〉 where elimM = foldM (λa.λr.if a =
a then r else r). Here, if is used just to evaluate a; extending
the abstract machine to if is straightforward. The evaluation of

78

application elim∅ x eliminates all the edges from x by evaluating all
accessible variables from x, and results in • if terminates.

Now, we are ready to define the graph extraction formally. Let
e0 be a closed expression of type G, and suppose that we have
〈elim∅ x0 |x0 = e0〉 →∗ 〈• |µ〉. Then, µ(x) is a value for every x
accessible from x0. After that, the graph extraction is done easily.
This process is summarized as graphify(x0, e0) below.

graphify(x0, e0) = (V,E, {& 7→ x0} , ∅)
where V = accessible variables from x in µ

E =
⋃
x=(x1:x2)∈µ,x∈V {(x, µ(x1), x2)}

〈elim∅ x0 |x0 = e0〉 →∗ 〈• |µ〉
Note that µ(x1) above is a value, more concretely a label literal.

Thus, the termination under the context elim∅ 2 means that an
expression corresponds to a finite graph.

Treatment of (∪). If we have (∪), it suffices to use a context
isEmpty∅ (elim∅2) instead of elim∅2, where isEmptyM is a mem-
oized version of isEmpty. If we only allow isEmpty∅ to appear
the outermost context, only an extra effort to prove the termina-
tion is one more case analysis added to the proof of Lemma 9.
With (∪), the definition of graphify(x0, e0) is changed accord-
ingly; specifically, the definition of E is changed to E = · · · ∪⋃
x=(x1∪x2)∈µ,x∈V {(x, ε, x1), (x, ε, x2)}.
The next theorem states that the two semantics (the call-by-name

one and the lazy abstract machine) coincide.

Theorem 2. If graphify(x, e) = G, Ge and G are bisimilar.

Remark. This construction of a graph from a configuration runs in
time linear to the heap size. This efficient construction is achieved
by ε-edges that postpone ∪-operation. To obtain ε-free graphs, we
have to pay a similar cost to ε-elimination in automata, i.e., cubic
time to the number of nodes (= the size of the heap).

Together with Lemma 1, the following lemma says that growth
of memo M of elimM does not affect termination, which will be
used in Section 7.

Lemma 2 (Memo and Termination). If 〈elim∅ e |µ〉 terminates,
then 〈elimM e |µ〉 also terminates for any M such that µ(M(v))
is a value for all v ∈ dom(M).

6. Type System
In this section describes the type system that guarantees termination
of→ under the context elim∅2. That is, in this type system, well-
typed expressions represent finite-graph transformations.

6.1 Idea
In advance of the formal definition of our type system, we discuss a
problematic example we want to exclude, to show the underlying
idea of the type system. Consider the expression aInB bs where

bs = fixG (λx.b : x)
aInB = fold(λz.λr.z : insA r)
insA = fold(λz.λr.a : z : r).

(Here, we ignore memos for a while.) One might notice that insA is
applied to a variable r that holds the result of the recursive call of
aInB . The expression evaluates to a nonregular tree as

aInB bs →∗ b : insA (aInB bs)
→∗ b : insA (b : insA (aInB bs))
→∗ b : a : b : insA2 (aInB bs)
→∗ b : a : b : a : a : a : b : insA3 (aInB bs)
→∗ b : a : b : a : a : a : b : · · · : insAn (aInB bs)

and thus must not correspond to a finite graph. Here, one can find
that the number of nested applications of insA increases in the eval-

Γ(x) = τ

Γ ` x : τ
T-VAR

Γ, x : τ1 ` e : τ2

Γ ` λx.e : τ1 → τ2
T-ABS

Γ ` e1 : τ ′ → τ Γ ` e2 :: τ ′

Γ ` e1 e2 : τ
T-APP

Γ ` a : L
T-LABEL

Γ ` e1 : L Γ ` e2 : G〈n〉
Γ ` (e1 : e2) : G〈n〉

T-CONS

{Γ ` ei : G〈n〉}i=1,2

Γ ` e1 ∪ e2 : G〈n〉
T-CHOICE

Γ ` • : τ
T-BH

Γ ` e : G〈n〉 → G〈n〉
Γ ` fixG e : G〈n〉

T-FIX

Γ ` e : L→ G〈m〉 → G〈m〉
{Γ ` v : G〈n〉 ∧ Γ ` x : G〈m〉}(v,x)∈M m > n

Γ ` foldMe : G〈n〉 → G〈m〉 T-CATA

Γ ` e : τ ′ τ ′ � τ
Γ ` e : τ

T-SUB

Figure 6. Typing rules for termination.

uation, which leads to this nonregularity and thus nontermination of
elim∅ (aInB bs). In contrast, such nonregularity does not arise for
functions insA itself and el in Example 1. For example, if we apply
them to bs above, we have

el bs →∗ el bs insA bs →∗ a : b : insA bs

Thanks to this looping structure, elim∅ (el bs) and elim∅ (insA bs)
terminate with memoization.

To exclude such a problematic case, we overapproximate the
number of nested applications of folds and bound it by typing.
Specifically, we associate a graph type with an integer as G〈n〉,
and the number is increased by fold, as foldMe : G〈n〉 → G〈m〉
where e : L → G〈m〉 → G〈m〉 and m > n. We call the number
generation. Note that generations are integers instead of natural
numbers because they are more convenient for proving Theorem 3.
For example, aInB = fold∅(λz.λr.z : insA r) is ill-typed; the
body of fold must has the type L→ G〈m〉 → G〈m〉 but it can only
have the type L → G〈m〉 → G〈m+ l〉 with l > 0 because insA
increase the generation at least by one. In contrast, insA itself and
el are well-typed. We will add similar restrictions on fixG because
fixG can also produce non-regular results,

6.2 Types
A type τ is defined as follows.

τ ::= G〈n〉 | τ1 → τ2 | L (n ∈ Z)

Types consist of graph types with generation (G〈n〉), function
types (→) and the label type (L). It is natural to have a subtyping
relation G〈m〉 � G〈n〉 with m ≤ n because generations are
overapproximation of number of nested applications of fold. The
structural subtyping rules for � are standard ones and we shall omit
them.

Figure 6 shows the typing rules. The typing rules for variables
and λs are standard ones. The rules T-CONS, T-CHOICE and T-FIX
says that the tree constructors construct a graph of a generation
from graphs of the same generations. The rule T-BH says that •
is something similar to an exception. The rule T-CATA is special
in our type system, which says that the resulting graph of foldf
must be a strictly newer generation than its argument. The resulting
graph not necessary be 1-generation newer because f can use other
folds many times. Also, note that we typecheck memos in the rule

79

to ensure the preservation property. Our type system can be easily
extended to configurations, of which preservation property can also
be proved easily.

An important property is that the translation in Section 4 yields
well-typed programs from well-typed UnCAL.

Theorem 3. If ` g : DBXY e, then ` e : (G〈n〉)|Y | →
(G〈n〉)|X| for some n.

Notice that this translation uses general versions of fixG e and
foldMk e extended for tuples. Here, we just note foldMk ’s general
typing rule; that for fixG e is much straightforward.

Γ ` e : L→
∏

1≤i≤k G〈mi〉 →
∏

1≤i≤n G〈mi〉
{Γ ` v : G〈n〉 ∧ Γ ` x :

∏
1≤i≤k G〈mi〉}(v,x)∈M

k < min {mi}1≤i≤k
Γ ` foldMk e : G〈n〉 →

∏
1≤i≤k G〈mi〉

T-CATA

Here, we write
∏

1≤i≤k τi for τ1 × · · · × τk. This type allows us to
traverse the ith component of a tuple to produce the jth component
if mi < mj , as fold∅2(λa.λr.(fold∅f (π2z), a : π2z)), which is a
key to implement parak−1 expressive enough to represent UnCAL’s
srec. For example, the translation of the query in Introduction needs
such a traversal. This is the key difference from Nishimura and Ohori
[33]’s type system that distinguishes types for graphs (traversable)
from types for nodes (untraversable).

We state that the typed expressions respect bisimulation; in other
words, a typed expression cannot distinguish bisimilar expressions
(in the sense of Section 4.2).

Theorem 4. Suppose ` f : G〈n〉 → G〈m〉. If ` ei : G〈n〉
(i = 1, 2), e1 ∼ e2 implies f e1 ∼ f e2.

7. Soundness of the Type System
In this section, we prove that every expression e of type G repre-
sents a finite graph; i.e., the evaluation of elim∅ e terminates and
thus graphify succeeds. To simplify our discussion, as wrote in
Section 5.3, we shall ignore (∪) in this section.

Formally, we will prove the following type soundness theorem
by using logical relation [38].

Theorem 5. If ` e : G〈n〉, then 〈elim∅ x |x = e〉 →∗ 〈• |µ〉.

7.1 Typing Configurations without Cyclic Dependency
Recall that we have said that our type system can be extended to
heaps and configurations; a solution would be defining that µ is well-
typed under Γ if ∀x. Γ ` µ(x) : Γ(x). However, typing derivations
could be cyclic via µ in this naive approach. This prevents us from
using the logical-relation based termination proof as in the simply-
typed λ-calculus [38]. In other words, a configuration 〈x |µ〉 is
essentially cyclic [2].

To overcome the problem, we parameterize a type system by a
heap. In analogy with the lazy evaluation strategy in which every
variable is evaluated at most once, every variable is dereferenced at
most once in typing. This idea is realized by splitting T-VAR into
the following two rules.

Γ(x) = τ

Γ `µ x : τ
T-VAR

Γ `µ,x=• e : τ

Γ `µ,x=e x : τ
T-VARREC

Here, we assume that dom(µ) and dom(Γ) are disjoint, and thus we
can deterministically apply T-VAR or T-VARREC. The other rules
remain unchanged.

The following fact says that an expression and a heap that
are typable in the original type system are also typable in the
parameterized type system.

Lemma 3. If we have Γ,∆ ` e : τ and Γ,∆ ` µ(x) : ∆(x) for
any x in dom(∆), then Γ `µ e : τ holds.

We define a substitution σ as a mapping from variables to ex-
pressions of which domain is finite. We write tσ for the application
of the substitution σ to an expression/heap t.

The following lemma says that an evaluation of an expression of
type G〈n〉 cannot “observe” graphs of type G〈n〉; recall that fold is
the only language construct that can observe graphs.

Lemma 4. Let Z = {z1, . . . , zk}. Suppose z1 : G〈n〉, . . . , zk :
G〈n〉 `µ e : G〈n〉. Then, if 〈elimM eσ |µσ〉 terminates for
some σ ∈ Z ⇀ VM , then 〈elimM eσ′ |µσ′〉 terminates for all
σ′ ∈ Z ⇀ VM where VM = dom(M) ∪ {•}.

7.2 Logical Relation
Then, we define a logical relationR.

Definition 2 (RelationR). The unary relationRτ on configurations
is defined as follows.

• 〈e |µ〉 ∈ RL iff 〈e |µ〉 →∗ 〈v |µ′〉 for some v and µ′.
• 〈e |µ〉 ∈ RG〈n〉 iff 〈elim∅ e |µ〉 →∗ 〈• |µ′〉 for some µ′.
• 〈f |µ〉 ∈ Rτ1→τ2 iff 〈f |µ〉 →∗ 〈v |µ′〉 for some v and µ′,

and 〈f e |µ ∪ η〉 ∈ Rτ2 for any 〈e | η〉 ∈ Rτ1 .

For heaps µ and µ′, we write µ ∪ µ′ for the union of µ and
µ′, assuming that µ(x) = µ′(x) for any x ∈ dom(µ) ∩ dom(µ′).
Intuitively, R(τ) defines pairs of expressions and heaps that are
“meaningful” as finite-graph transformations. Especially, 〈e |µ〉 ∈
RG〈n〉 means that 〈e |µ〉 corresponds to a finite graph. Note that,
thanks to elim∅ in the definition, we have aInB bs 6∈ RG〈n〉
for bs = fixG (λx.b : x) while the evaluation of aInB bs itself
terminates. Also note that we have RG〈n〉 = RG〈m〉 because
`µ e : G〈n〉 if and only if `µ e : G〈m〉; recall that the generations
are integers, and only their differences matter (cf. Lemma 4).

In the later proof, we will use the following properties on
R. Lemma 5 says that “garbage cells” in the heap do not affect
termination. Lemma 6 says that one-step reduction does not change
the termination property, which is rather obvious.

Lemma 5. 〈e |µ〉 ∈ Rτ implies 〈e |µ ∪ µ′〉 ∈ Rτ .

Lemma 6 (Preservation under Reduction). Suppose `µ E[e] :: τ
and 〈E[e] |µ〉 → 〈E′[e′] |µ′〉. Then, 〈E[e] |µ〉 ∈ Rτ if and only
if 〈E′[e′] |µ′〉 ∈ Rτ .

7.3 Lemmas for Recursive Definitions
In advance of the proof of the termination, we prove some lemmas
statingR is preserved in our recursive definitions.

The following lemma intuitively says that typed fixG e expres-
sions corresponds to a finite graph if e preserves finiteness.

Lemma 7 (fixG). If `µ e0 :: G〈n〉 → G〈n〉 and 〈e0 e
′ |µ ∪ µ′〉 ∈

RG〈n〉 for any 〈e′ |µ′〉 ∈ RG〈n〉, then 〈fixG e0 |µ〉 ∈ RG〈n〉 holds.

Proof (Sketch). It suffices to show that 〈elim∅ w |w = e0 w, µ〉
terminates. Consider c0 = 〈elim∅ w |w = e0 u, u = •, µ〉 where
fixG is unfolded only once. Then, we prove the statement by
showing that d0 = 〈elim∅ w |w = e0 w, µ〉 terminates if c0 does,
by using Lemma 4. The termination of c0 can be concluded from
the premise of this lemma.

The following lemma states that every typed foldMe results in
a finite graph if it is applied to an expression that results in a finite
graph. Note that, we use the finiteness of the argument in this proof.

80

Lemma 8 (fold). If `µ foldMe :: G〈n〉 → G〈m〉 (m > n) and
〈e |µ〉 ∈ RL→G〈m〉→G〈m〉, then 〈foldMe |µ〉 ∈ RG〈n〉→G〈m〉.

Proof (Sketch). We will prove that 〈foldMe e′ |µ ∪ µ′〉 ∈ RG〈m〉
holds for any 〈e′ |µ′〉 ∈ RG〈n〉 in three steps:

1. We prove the termination of fold(k)e, where the number of
applications is limited by k and the memoization is not exploited.

2. We prove the termination of foldM(k)e, where the number of
applications is limited by k, but memoization is exploited.

3. We prove the termination of foldMe.

For Step 1, we introduce a new language construct fold(k)e to
limit the number of recursions. Concretely, for k > 0, its evaluation
rules are similar to those of foldM , except that foldM

′
s in the RHSs

are replaced with fold(k−1) and fold(k) does not use memoization.
For k = 0, its evaluation rule is as follows.

〈E[fold(0)e v] |µ〉 → 〈E[•] |µ〉

By the induction on k, we can prove that 〈fold(k)e e
′ |µ ∪ µ′〉 ∈

RG〈m〉 if 〈e′ |µ′〉 ∈ RG〈n〉 for any k. The types, or more precisely
the generation, are not relevant in this proof; even elim∅ (aInB bs)
terminates if we replace fold∅ with fold(k) in the definition of aInB .

For Step 2, similar to Step 1, we introduce a new language
construct foldM(k)e which has the similar semantics to fold(k)e

but it looks up memo as foldMe does. A key observation is that
for any configuration 〈E[foldM(k)e v] |µ〉, if M(v) = x, then
µ(x) is a value from Lemma 1. Thus, from Lemma 4, we can
prove that 〈elim∅ (foldM(k)e e

′) |µ ∪ µ′〉 terminates if and only if
〈elim∅ (fold(k)e e

′) |µ ∪ µ′〉 terminates. Note that, since the gen-
eration information is used here to apply Lemma 4, the same
discussion cannot be applied to aInB .

For Step 3, we show that there exists some k0 such that
〈elim∅ (foldM(k)e e

′) |µ ∪ µ′〉 terminates for some k ≥ k0 if and
only if 〈elim∅ (foldMe e′) |µ ∪ µ′〉 terminates. Since we have
〈e′ |µ′〉 ∈ RG〈n〉, we have that 〈elim∅e′ |µ′〉 terminates. Then,
we can show that v′ that occurs as 〈elim∅ (foldM(k)e e

′) |µ ∪ µ′〉 →∗

〈E[foldM
′

(k′)e v
′] | 〉 also occurs as 〈elimMe′ |µ′〉 →∗ 〈elimM′

v′ | 〉.
From the termination of 〈elim∅ e′ |µ′〉, we can say that the number
of arguments of foldM()e is at most finite. Thus, by memoization,
let k0 be the number of such v′s, 〈elim∅ (foldM(k)e e

′) |µ ∪ µ′〉 ter-
minates if and only if 〈elim∅ (foldMe e′) |µ ∪ µ′〉 does, for all
k > k0. Thus, we have 〈foldMe e′ |µ ∪ µ′〉 ∈ RG〈m〉.

7.4 Proof of Termination
Now we are ready to prove Theorem 5. To prove the theorem, we
prove the following more general property.

Lemma 9. Suppose 〈ex |µ′〉 ∈ RΓ(x) for any x ∈ dom(Γ). If
Γ `µ e : τ , then 〈e |µ ∪ µ′ ∪ {x = ex}x∈dom(Γ)〉 ∈ Rτ .

Proof. We prove the statement by using the induction on the typing
derivation. Let η be µ ∪ µ′ ∪ {x = ex}x∈dom(Γ). We only show the
proofs for non-trivial cases.
Case T-VARREC. In this case, we have e = x ∈ dom(µ). By
the induction hypothesis, we have 〈µ(x) |µ, x = •〉 ∈ Rτ . By
Lemma 6, we have 〈x |µ〉 ∈ Rτ . Then, by Lemma 5 we have
〈x | η〉 ∈ Rτ .
Cases T-CONS. In this case, we have e = e1 : e2 and τ = G〈n〉.
Then, 〈elim∅ (e1 : e2) | η〉 has the reduction sequence

〈elim∅ (e1 : e2) | η〉 →∗ 〈elim∅ (x1 : x2) |x1 = e1, x2 = e2, η〉
→∗ 〈E[a] | a = x1, r = elimMx2, x1 = e1, x2 = e2, η〉

where E[a] = if a = a then r else r. Since 〈e1 | η〉 ∈ RL holds
by the induction hypothesis, we have that the evaluation of a above
terminates by Lemmas 5 and 6. Thus, the reduction continues as

· · · →∗ 〈elimM′′
x2 |x1 = a, x2 = e2, η

′〉

Since we have 〈e2 | η〉 ∈ RG from the induction hypothesis,
we have that 〈elimM′′

x2 |x1 = e1, x2 = e2, η
′〉 terminates from

Lemmas 1, 2, 5 and 6. Thus, the reduction sequence terminates and
〈e1 : e2 | η〉 ∈ RG〈n〉.
Case T-BH. By induction of τ . Note that, if we apply • of type
τ1 → τ2 to any value, then we obtain a value • of type τ2.
Case T-FIX. By Lemma 7
Case T-CATA. By Lemma 8.

As a consequence, we have obtained Theorem 5, which says that
every expression of type G〈n〉 corresponds to a finite graph, in the
sense that→ terminates under the observation elim∅ 2.

If we include isEmptyM , it must be treated similarly to foldM to
keep Lemma 4. That is, also Bool has generations and isEmptyM

increases the generation, while if keeps them.

8. Related Work
We have discussed transformations of graphs up to bisimilarity like
UnCAL [7]. Many frameworks have been proposed for transforma-
tions of graphs up to equality/isomorphism, from the functional pro-
gramming community [9, 11–13, 17, 25, 27] and from the database
community [1, 8]. Due to the difference of graph models, these
results are incomparable with UnCAL and ours. Leveraging the fact
that graphs up to bisimilarity are actually infinite trees, we have
shown that we can enjoy functional-style program-manipulation
techniques for UnCAL graph transformations (Section 2). Since
graph-theoretic properties of a graph are usually do not respect
the bisimilarity, any graph-transformation language that respects
bisimilarity like UnCAL cannot compute them.

In the listed above, some frameworks [9, 13, 17] focus on
cyclic trees instead of general graphs, by using µ-terms (e.g.,
µx.1 : x represents an infinite list of 1) in some abstract syntax
representations. We did not use µ-terms and adopted expressions
with heaps because of treatment of tuples: While we want to identify
π1µx.(π2x, π1x) with the black hole for example, it is nontrivial
to obtain reduction rules that reduce π1µx.(π2x, π1x) to the black
hole. In contrast, π1(fixG (λx.(π2x, π1x)) successfully evaluates
to • in [32] and ours. In addition, even with µ-terms, we have to
exclude problematic examples such as µx.b : insA x.

CoCaml has “recursions” with user-specified resolvers of their
fixpoints [24]. For example, a memoized recursion to write some
terminating transformations on cyclic data can be realized by the
constructor resolver. However, they do not give any formal
system to guarantee that such a memoized recursion on a cyclic
data has the same meaning as the corresponding usual recursion on
the infinite data, while we gave it by the type system.

Nishimura and Ohori [33] discuss recursions similar to srec,
for application of parallel queries on object-oriented databases [34].
Surprisingly, their idea of computation is quite similar to the bulk
semantics of UnCAL [7], while general paramorphisms are not
supported in their framework.

Hamana and the authors [18] discuss a categorical and algebraic
characterizations of full UnCAL transformations. In the present
paper, leveraging this idea, we clarified relationship between UnCAL
and a lazy language by prohibiting the argument of srec to have
output markers, materialized the concrete operational semantics
and designed type system for the regularity guarantee according
to the relationship. We also showed the effectiveness our idea by
experiments.

81

9. Conclusion
We formalized the translation from UnCAL programs to FUnCAL
ones, and then designed the semantics and type system of FUnCAL
to execute the translated programs as finite-graph transforma-
tions with termination guarantee. Since FUnCAL is a variant of
a call-by-need λ-calculus with memoized folds, this translation
makes UnCAL graph transformations more amenable to program-
manipulation techniques such as verification and optimization.
Extending our system to general cyclic data is a future direction.

Acknowledgments
We thank Meng Wang, Janis Voigtländer, Patrik Jansson, and
Makoto Hamana for their helpful comments. This work was par-
tially supported by JSPS KAKENHI Grant Numbers 15K15966,
15H02681, 25540001, 24700020 and 22800003, and the Grand-
Challenging Project on the “Linguistic Foundation for Bidirectional
Model Transformation” of the National Institute of Informatics.

References
[1] Serge Abiteboul, Dallan Quass, Jason McHugh, Jennifer Widom, and

Janet L. Wiener. The Lorel query language for semistructured data. Int.
J. on Digital Libraries, 1(1):68–88, 1997.

[2] Zena M. Ariola and Stefan Blom. Cyclic lambda calculi. In TACS,
volume 1281 of LNCS, pages 77–106. Springer, 1997.

[3] Zena M. Ariola and Jan Willem Klop. Equational term graph rewriting.
Fundam. Inform., 26(3/4):207–240, 1996.

[4] Jean Bézivin, Bernhard Rumpe, Andy Schürr, and Laurence Tratt.
Model transformations in practice workshop. In MoDELS Satellite
Events, volume 3844 of LNCS, pages 120–127. Springer, 2005.

[5] Peter Buneman, Susan Davidson, Gerd Hillebrand, and Dan Suciu. A
query language and optimization techniques for unstructured data. In
SIGMOD, pages 505–516. ACM, 1996.

[6] Peter Buneman, Susan B. Davidson, Mary F. Fernandez, and Dan Suciu.
Adding structure to unstructured data. In ICDT, volume 1186 of LNCS,
pages 336–350. Springer, 1997.

[7] Peter Buneman, Mary F. Fernandez, and Dan Suciu. UnQL: A query
language and algebra for semistructured data based on structural
recursion. VLDB J., 9(1):76–110, 2000.

[8] Mariano P. Consens and Alberto O. Mendelzon. GraphLog: a visual
formalism for real life recursion. In PODS, pages 404–416. ACM Press,
1990.

[9] Bruno C. d. S. Oliveira and William R. Cook. Functional programming
with structured graphs. In ICFP, pages 77–88. ACM, 2012.

[10] Agostino Dovier, Carla Piazza, and Alberto Policriti. An efficient algo-
rithm for computing bisimulation equivalence. Theoretical Computer
Science, 311(1):221 – 256, 2004.

[11] Martin Erwig. Graph algorithms = iteration + data structures? the struc-
ture of graph algorithms and a corresponding style of programming. In
WG, volume 657 of LNCS, pages 277–292. Springer, 1992.

[12] Martin Erwig. Inductive graphs and functional graph algorithms. J.
Funct. Program., 11(5):467–492, 2001.

[13] Leonidas Fegaras and Tim Sheard. Revisiting catamorphisms over
datatypes with embedded functions (or, programs from outer space). In
POPL, pages 284–294, 1996.

[14] Sebastian Fischer, Oleg Kiselyov, and Chung-chieh Shan. Purely
functional lazy non-deterministic programming. In ICFP, pages 11–22,
2009.

[15] Andrew J. Gill, John Launchbury, and Simon L. Peyton Jones. A short
cut to deforestation. In FPCA, pages 223–232, 1993.

[16] Lars Grunske, Leif Geiger, and Michael Lawley. A graphical spec-
ification of model transformations with triple graph grammars. In
ECMDA-FA, volume 3748 of LNCS, pages 284–298. Springer, 2005.

[17] Makoto Hamana. Initial algebra semantics for cyclic sharing tree
structures. Logical Methods in Computer Science, 6(3), 2010.

[18] Makoto Hamana, Kazutaka Matsuda, and Kazuyuki Asada. The
algebra of recursive graph transformation language UnCAL: Complete
axiomatisation and iteration categorical semantics. Math. Struct. in
Comp. Science, accepted.

[19] Soichiro Hidaka, Zhenjiang Hu, Kazuhiro Inaba, Hiroyuki Kato, Kazu-
taka Matsuda, and Keisuke Nakano. Bidirectionalizing graph transfor-
mations. In ICFP, pages 205–216. ACM, 2010.

[20] Soichiro Hidaka, Zhenjiang Hu, Kazuhiro Inaba, Hiroyuki Kato, Kazu-
taka Matsuda, Keisuke Nakano, and Isao Sasano. Marker-directed
optimization of UnCAL graph transformations. In LOPSTR, volume
7225 of LNCS, pages 123–138. Springer, 2011.

[21] Soichiro Hidaka, Kazuyuki Asada, Zhenjiang Hu, Hiroyuki Kato, and
Keisuke Nakano. Structural recursion for querying ordered graphs. In
ICFP, pages 305–318, 2013.

[22] Soichiro Hidaka, Zhenjiang Hu, Kazuhiro Inaba, Hiroyuki Kato, and
Keisuke Nakano. GRoundTram: An integrated framework for devel-
oping well-behaved bidirectional model transformations. Progress in
Informatics, (10):131–148, 2013.

[23] Kazuhiro Inaba, Soichiro Hidaka, Zhenjiang Hu, Hiroyuki Kato, and
Keisuke Nakano. Graph-transformation verification using monadic
second-order logic. In PPDP, pages 17–28. ACM, 2011.

[24] Jean-Baptiste Jeannin, Dexter Kozen, and Alexandra Silva. Cocaml:
Programming with coinductive types. http://www.cs.cornell.
edu/~kozen/Papers/cocaml.pdf, 2013.

[25] Thomas Johnsson. Efficient graph algorithms using lazy monolithic
arrays. J. Funct. Program., 8(4):323–333, 1998.

[26] Frédéric Jouault and Jean Bézivin. KM3: A DSL for metamodel
specification. In FMOODS, volume 4037 of LNCS, pages 171–185.
Springer, 2006.

[27] David J. King and John Launchbury. Structuring depth-first search
algorithms in haskell. In POPL, pages 344–354, 1995.

[28] John Launchbury. A natural semantics for lazy evaluation. In POPL,
pages 144–154, 1993.

[29] Lambert G. L. T. Meertens. Paramorphisms. Formal Asp. Comput., 4
(5):413–424, 1992.

[30] Erik Meijer, Maarten M. Fokkinga, and Ross Paterson. Functional
programming with bananas, lenses, envelopes and barbed wire. In
FPCA, volume 523 of LNCS, pages 124–144. Springer, 1991.

[31] Robin Milner. Communicating and mobile systems - the Pi-calculus.
Cambridge University Press, 1999. ISBN 978-0-521-65869-0.

[32] Keiko Nakata and Masahito Hasegawa. Small-step and big-step
semantics for call-by-need. J. Funct. Program., 19(6):699–722, 2009.

[33] Susumu Nishimura and Atsushi Ohori. Parallel functional programming
on recursively defined data via data-parallel recursion. J. Funct.
Program., 9(4):427–462, 1999.

[34] Susumu Nishimura, Atsushi Ohori, and Keishi Tajima. An equational
object-oriented data model and its data-parallel query language. In
OOPSLA, pages 1–17, 1996. doi: 10.1145/236337.236339.

[35] Atsushi Ohori and Isao Sasano. Lightweight fusion by fixed point
promotion. In POPL, pages 143–154. ACM, 2007.

[36] Yannis Papakonstantinou, Hector Garcia-Molina, and Jennifer Widom.
Object exchange across heterogeneous information sources. In ICDE,
pages 251–260. IEEE Computer Society, 1995.

[37] Morten Heine Sørensen, Robert Glück, and Neil D. Jones. A positive
supercompiler. J. Funct. Program., 6(6):811–838, 1996.

[38] William W. Tait. Intensional interpretations of functionals of finite type
I. Journal of Symbolic Logic, 32(2):198–212, June 1967.

[39] Hiroshi Unno, Naoshi Tabuchi, and Naoki Kobayashi. Verification of
tree-processing programs via higher-order model checking. In APLAS,
volume 6461 of LNCS, pages 312–327. Springer, 2010.

[40] Yijun Yu, Yu Lin, Zhenjiang Hu, Soichiro Hidaka, Hiroyuki Kato,
and Lionel Montrieux. Maintaining invariant traceability through
bidirectional transformations. In ICSE, pages 540–550, 2012.

82

