
Data Types, Parameters and Type Checking

Alan J. Demers

James 1%. Donahue

Department of Computer Science

Cornell University
Ithaca, New York 14853

L. Introduction

In statically

each variable and

assigned a unique

checked to ensure

application are

typed programming languages,

expression in a program is

‘type= and the program is

that the arguments in each

‘type-compatiblen with the

corresponding parameters. The rules by which this

‘type-checkingn is perfomed must be carefully

considered for modern languages that allow the

programmer to define his own data types and allow

parametrized types or

languages include

[Liskov771, Euclid

tYPes as parameters. (Such

Alphard IWulf78], CLU

[Lampson771 and Russell

[Demers79].) These features increase the expres-

sive power of the languages, but also increase the

difficulty of type-checking them.

In this paper, we describe a treatment of

type-checking that makes it possible to do com-

pletely static checking with a general parametriz-

ation mechanism allowing parameterized types,

Permission to copy without fee all or part of
this material is granted provided that the copies
are not made or distributed for direct commercial
advantage, the ACM copyright notice and the title
of the publication and its date appear, and no-
tice is given that copying is by permission of
the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/
or specific permission.

This work supported by National Science Foundation grant

@1980 ACM 0-89791-01 1-7/80/0100-0012 $00.75

types as parameters, and even a disciplined form

of self-application. Our method defines a cal-

culus of ~?signatures, l! where signatures are ‘imi-

lar to the ‘Iprogram types” of [Reynolds78]. Each

identifier and expression is given a signature,

and applications are type-correct when argument

and parameter signatures are equivalent under a

simple set of signature transformation rules.

Below we present the signature calculus of

Russell; we also present a semantic justification

of this calculus and specify the language con-

straints necessary for us to justify our purely

static approach to type-checking.

2. A?l QYsxluLi w of Types ~ Russell

The treatment of type-checking described in

this paper is used in the Russell programming

language, described in [Demers79] . The type

structure of Russell is based on a novel view of

the meaning of a data type, presented in

[Demers78], and succinctly described as follows: a

data type is a set of named operations that pro-

vide an interpretation of the values of a single

universal value space common to all types. For

the purposes of this paper, the important conse-

quence of this definition is that it allows us to

MCS-7901O48.

12

Permission to make digital or hard copies of part or all of this work or
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior
specific permission and/or a fee.
© 1980 ACM 0-89791-011-7…$5.00

treat data types as values, in complete analogy

with procedure and function values in conventional

languages.

The treatment of data typea as values leads

to a pleasing uniformity in the parameterization

mechanism of Russell. The Russell semantica gives

a meaning for the value of any identifier or

expression, including types and variables (vari-

ables are treated essentially as reference

values). Thus, any construction in the language

may be parameterized with respect to any of its

free identifiers (even type identifiers) using a

straightforward call-by-value semantics. (The

benefits of this ‘type completeness as a language

design principle are discussed in the other paper

in this proceedings by the authors [Demers80a];

here we are concerned solely with its implications

for type-checking.) In addition, following

Landints ‘rPrinciple of Correepondence~’ [Landin66],

we treat declaration and parameterization as

semantically equivalent. Thus, the language has

only a single, straightforward semantic mechanism

(call-by-value parameter passing) for the intro-

duction of new names. In particular, it is not

necessary to treat type declarations and type

parameters as special casea, aa must be done done

in Euclid, Alphard and CLU.

Finally, we note that every value in a

Russell program either is treated as an operation

(i.e. a procedure, function or type) or else is

interpreted by the operations of some type. thus ,

the set of primitive combining forms in Russell is

extremely small, consisting of those forms needed

to interpret operation values: selection of a com-

ponent of a type, and S%P-Plicat ion of a procedure

or function to a list of argument values.

The purpose ascribed to type-checking depends

on onels view of what a data type is. If types

are viewed a& sete of values (as in Pascal) or as

sets of values and operations (as in [Morris73].

or the Wrnany-sorted algebras!? of [Goguen76]), an

attempt to apply an operation to a value of the

wrong type produces an erroneous result (i.e., a

‘Prun-time errort~). Thus, type-checking is con-

sidered an essentially redundant way of predicting

at compile-time that a program will produce an

error when executed.

In our view of data types, however, all types

share a single universal value space. Any value

may be interpreted as belonging to any type, or

even as being a type. Thus, a type-erroneous

application does not necessarily generate an

error; it simply produces a spurious result by

‘misinterpretingn its argument. Note that this

view reflects the situation in a typical language

implementation on a vonNeumann machine -- values

are represented as (untyped) sequences of bits,

and can be partitioned into clisjoint sets only by

introducing explicit ‘tagn fields, with the asso-

ciated overhead in time and apace. In this frame-

work, static type-checking takes on a more essen-

tial role: it is pecessary in order to guarantee

that values produced by one type will not be

misinterpreted by operations of another type.

In practice there is not much difference

between these points of view for simple languages.

When static type-checking is sufficient to guaran-

tee that no type-erroneous application will be

attempted, the representations of values of dis-

tinct types need not be distinct -- e.g., most

Pascal implementations will represent both @

and integer values in a single word. However, our

view of types suggeste that, no matter how ela-

borate the type etructure of a language becomes,

it must still be possible to do all type-checking

statically, since no additional information will

be available at run time to facilitate it.

4. Yroble ms .in ~ TVX Checking M~ ds

In a programming language that provides only

a finite set of builtin typee, the type-checking

rules can be specified exhaustively. Frequently

these rules are laden with & ~ coercion rules

and run-time consistency checks. (The PL/I arith-

metic rules are an outstanding example.) Flexible

type definition and parametrized type mechanisms,

however, make it essential that a programming

language design be based on a clear understanding

of the meaning of data types and type-checking.

The use of data type definitions meane that the

set of types with which the type-checker must deal

is no longer finite; thus, the type-checking rules

cannot be an exhaustive list of special cases.

Instead, the rules must show how the result of any

type constructor in the language behaves with

respect to existing (builtin or user-defined)

types. That this is not straightforward is seen

in the inconsistencies between the type-checking

rules of ‘Algol-liket! languages, in the complexity

of the rules, and in the difficulty of providing

semantic justifications for them.

Below we describe several aspects of type-

checking in which this problem is apparent. TWO

basic problems arise: (a) types that are ‘obvi-

Ouslyir semantically equivalent but have distinct

denotations. and (b) type denotations whose mean-

ing depends on (run-time) argument values. The

treatment of types as values and the Principle of

Correspondence suggest a solution to (a) which

aPPears in [Demers78] and will be discussed only

briefly here. Problem (b) greatly influenced our

syntactic treatment of type-checking; it also

motivated the scope and import rules of Russell,

described and justified later in this paper.

Consider a program like the following in

which a new type is declared to be ~~identical~t to

an existing type:

JQ

T {Qgze . . .] == Integer

T! {~ . . . } == Integer

in let

x {wT} == . . .

y {wT’} == . . .

~

. . . x :=y . . .

(In Russell syntax, braces enclose ‘?signatures,t~

or syntactic types; thus T and Tr are types, x is

a variable of type T, and y is a variable of type

T?.) Whether this program is considered legal

depends on whether types T and T~ with identical

definitions are considered equivalent by the

type-checking rules. Alphard and Euclid give dif-

ferent answers to this question, while the Pascal

report says nothing at all.

By the Principle of Correspondence, the above

program in Russell is equivalent to one in which

the type declarations are replaced by parameters:

ill

. . . x :=Y ***

h

P[Integer, Integer 1

A type-checking system based on %acro-expansionn

semantica (as used in Alphard) may or may not

declare the above program correct. However, if

the call

P [Integer, Real]

is added, then the program as a whole must be con-

sidered type-incorrect, though it is unclear

whether it is the body of P or the call which is

invalid. Our desire to treat type parameters uni-

formly with other kinds of parameters leads us to

conclude that the body of P is invalid. Since we

can type-check and give the meaning of an ordinary

procedure independent of any calls of the pro-

cedure, we must be able to do the same for a

polymorphic procedure. This requirement precludes

a macro-expansion interpretation of polymorphism

and leada to a set of type-checking rules in which

distinct type names are never treated as

equivalent.

Parameterized types introduce a second kind

of problem in which textually identical type

expressions may denote different types because of

a change in the value of some variable, The usual

interpretation of equivalence for two applications

of a parameterized type like ~ is that

corresponding argument valules must be equal.

Thus, the assignment x := y, where the types of x

and y are

&E?&%y E1..nal 4 intezer

and

~ [l..nb] tiinte~er

is legal only when na and nb have the same value.

For arbitrary expressions, it is clearly undecid-

able whether this will always (or ever) be the

case; thus, asking that the run-time values of

type arguments be equal makes static type-checking

of such an assignment impossible. Further compli-

cations arise if, as in Russell, the programmer

can redefine the meaning of equality for any type.

Conventional approaches to this problem either

insist that arguments to parametrized types be

manifest constants or defer type-checking to run

time in such cases. Each app:roach has its draw-

backs. Limiting type arguments to manifest con-

stants severely restricts the programs that can be

written (this ia a major problem in Pascal). How-

ever, as was argued in Section 3, our view of

types precludes run-time type-checking. Thus, we

have been led to devise language restrictions (in

the form of scope and import rules, described

below) to ensure that identical type expressions

denote equivalent types without insisting that all

type argumenta be manifest constants.

In this section we present. the type-checking

rules of Russell. To escape the undecidability

problems described above, tlhe Russell type-

checking rules avoid the use of run-time values of

expressions, without demanding that all type argu-

ments be manifest constants. Instead, the rules

15

are applied to uninterpreted type expressions as

purely syntactic forms. Each identifier in a

Russell program ie given a pi~naturq (similar to a

nsyntactic typen of [Reynolds78].) The signatures

of expressions are determined from the signatures

of their components by a set of purely syntactic

composition rules. Finally, each procedure or

function application is checked to ensure that

corresponding argument and parameter signatures

are equivalent under a simple calculus of signa-

ture transformation rules described below.

To justify the claim that our type-checking

rules are sufficient to prevent misinterpretation

of values, the syntactic transformations of the

signature calculus must be provably

‘interpretation-preserving .W Also , the language

must be constrained to guarantee that syntacti-

cally identical type expressions in the same scope

(which would be equivalent under the signature

calculus) are semantically equivalent. In

Russell, a simple import rule (discussed below) is

sufficient to guarantee that identical type

expressions are equivalent.

2.1. Simaturea

In Russell, each identifier and expression in

a program is given a syntactic type or ‘signa-

ture.n A signature may describe a variable, a

value, or an ‘operation” -- procedure, function or

type.

Signature ::= w ~peDenotation

I JQ ‘@peDenotation

I OperationSignature

In this context a TypeDenotation ie any expression

that has ~ signature according to the signature

composition rules described below. In particular,

the TypeDenotation may contain free identifiers,

subject to the import rule described below. For

example,

w Stack[N+M, Integer]

and

Y&Z Stack[M+N, Integer 1

are valid (and distinct) signatures.

The signature of a procedure or function

gives an identifier and signature for each parame-

ter, plus a signature for the result, if there is

one. (In Russell, functions may produce results

having any signature, including variables, func-

tions or data types.) Since we view a type as a

set of operations, the signature of a type is sim-

ply a collection of operation signatures, with an

identifier naming each component operation, and a

bound identifier (or Mlocal name!t), which the com-

ponents may use as a type denotation meaning “the

type in which the component appears.vt

OperationSignature ::=

@ Id{Signature} ;1

I fund Id{Signature} ~ 1 Signature
●

! &YQ& Id(Id{OperationSignature] ;)

The need for an identifier associated with

each parameter of a procedure or function arises

because a parameter name may appear free in the

signature of other parameters or the result. For

example, a polymorphic function might have signa-

ture

16

T{~t(...));

x{ YQT}

]y&l T

where the type of the second parameter and of the

result depend on the first argument. A similar

technique is used in the polymorphic lambda cal-

culus of [Reynolds74], where a mCurriedn version

of the above signature would be

(AT. T+T)

5.2. Siznature ComDosltloa
. .

written

The rules for composing signatures of compo-

site expressions are completely natural if one

bears in mind that they deal with signatures as

syntactic objects, and not as values.

tioned above, there are two primitive

composition in Russell: selectlon of a

of a type. and ~lication, of a function

of argument values.

5.2.1. Sele tc ions

As men-

forms of

component

to a list

Consider selection of the ‘fn component of a

type T, where T is some (arbitrarily complex) type

denotation with signature

QJ!Qt (... f { sig } . . .)

The signature of the selection T $ f is obtained

by textual substitution of the type denotation T

for the local name t in the signature of the f

component:

IT

s ig
/
It

For example, if Integer has signature

-1(...

+ {-[X,Y{YQ 1] 1 @ I)

. . .)

then Integer$+ has signature

J5WI X,Y{YQ Integer] 1 W Integer

Selection illustrates the importance of local

names in type signatures: if another type T has

the - signature as Integer, the signature of

T$+ is

.&dx.YkLLT] IMQT

This allows operations selected from T to be

applled to T values rather than to Integers.

2.2.2. @DlicatiOns

The composition rule for function application

also involves textual substitution of denotations

for bound identifiers. Consider an application

F(al,ak).

where F is an (arbitrarily complex) denotation

with signature

XuQG[

Pl{viigl); ..(. pk{w%k}

] rsig

The result signature is obtained by textual sub-

stitution of argument clenotations for the

corresponding parameter identifiers in the result

part of the signature of F:

I al, ak

I
rsig I

\ PI, . ..s Pk

Thus, an application of the form f[Integer,lO]

where f has signature

.&d ‘M$xrxiit(. ..)}. n{YA.LT} 1 AT

would have signature YQ Integer. No ‘type-

checkingn is involved here; the result signature

of a type-erroneous application is a perfectly

well-defined syntactic object (which may itself

contain type-erroneous

Xi. Xi&e-Ghec king a

Calculus

To type-check a

applications,

ADDli cations:

of course).

XJx2S.i.mature

Russell program, we must

guarantee that the signatures of the arguments and

parameters match in function or procedure applica-

tions. Every parameter in a Russell program has

an explicit signature; and every argument can be

given a signature using the composition rules

described above. Thus, the Russell type-checking

rules operate by transforming and comparing signa-

tures. Note that since types themselves have

values and signatures, type parameters require no

special treatment.

Type-checking an application proceeds in two

steps: ex~ ansion of parameter signatures by argu-

ment denotations, and ~atc- of argument and

parameter signatures.

iff each argument

corresponding expanded

The application ie legal

signature matches the

parameter signature.

Consider an application

P[al, . ..s ak],

where P

and the

has signature

=[pl~psigl}; ●--; pk{psigk}]

arguments have signatures

asigl , asigk

First the parameter signatures are expanded by

textual substitution of arguments for the

th
corresponding parameter identifiers; thus, the i

expanded parameter eignature is

I al, ak

I
psigi I

1
, PI, . ..s Pk

Signature expansion is used so that the parameter

signatures may be modified to reflect the interre-

lationships among the arguments of a particular

call of an operation. For example, if g has sig-

nature

-[n{yal Integer]; x{= T[n]} 1

then the expanded parameter signatures used in

matching the call g[a+b,y] would be

Q Integer and ~ T[a+b]

h argument and parameter are said to IL@&-&

iff the argument signature can be transformed to

the parameter signature using a small set of syn-

tactic transformations, the simature calculus.

The signature calculus rules are:

a)

b)

Re mn ing. The local name on a type signa-

ture, or the parameter names in a procedure

or function

replaced by

example, the

signature, may be uniformly

any new identifier. Thus ,

signature

~ [x,y{sigl]] sig2

matches the signature

Ia,b Ia,b

I
- “b~si% I

}1 sig2\

Ix,y Ix,y

The substitutions are necessary because x

y may appear free in the signatures sigl

sig2.

~ ord in . TWO type signatures match if

for

and

and

the

signatures include all the same component

names and identically-named components have

matching signatures. For example, the signa-

18

ture

3YET (al{sigl]; a2{sig2])

matches

LYM T (a2{8ig2’l; al[sigl’l)

if sig matches sig t and sig
1 1 2

matches sig ~.
2

c) .Rw etting. An argument type signature may

be simplified by eliminating (nforgettingl?)

some of its operations. Thus, the argument

signature

LYUT (al{sigl}: a2{sig2})

can be reduced by ‘~forgettingm a+ to
L

&yIET (al{sigl}

This rule is the sole means of

ingn data type definitions

Russell.

All the above

easily explained and

)

‘encapsulat-

required in

rules are straightforward,

can obviously be shown to be

interpretation-preserving. It is important

note the absence of any transformation rule

variable or value signatures -- to match,

to

for

two

variable or value signatures must be textually

identical. There are no 4 & transformations

based on knowledge of the behavior of particular

types. This rule has the advantage of simplicity,

especially when contrasted with the ‘type compati-

bilitytt rules of Euclid [Lampson77, pp. 31-32] or

the ‘type subsumption, syntactic satisfaction

implicit bindingn rules of Alphard [Wulf78,

11-131.

2.4. SQuKiiwdlw!Qxt MdSS

and

PP.

expressions as syntactic objects. Clearly, such

an approach can only work if language constraints

exist to ensure that te~tually identical type

expressions always denote semantically equivalent

type values. At the same time, these constraints

must not be so restrictive as to prevent e.g. the

computation of arguments to parameterized types.

A formal definition of ‘semantically equivalent

type values requires a fo:~al semantics for the

language; this is currently in preparation [Demers

80b] . However, we can ensure the correctness of

our type checking rules in a way that is largely

independent of the details (of the formal semantics

by insisting that the meanings of Russell programs

be invariant under certain syntactic transforma-

tions. Our approach to thifl is described below.

The scope and import rules of Russell have

been designed to guarantee that denotations have

the subst itu tion ~. described as follows.

Let D be any denotation appearing in a legal

Russell program, and let D be yariabk -a (i.e..

neither D nor any of the free identifiers of D has

w signature). Define the m of D to be the

smallest enclosing scope in which all free iden-

tifiers of D are bound; this has the form

kc

c.

ill

P

The substitution property demands that an

equivalent program results if all occurrences of D

are replaced by a new identifier bound to the

value of D:

Above we described_ an approach to static

type-checking based on the manipulation of type

Ref[Integer]$+ has signature

ID

Informally, this rule requires that evaluations of

identical variable-free denotations must produce

semantically identical values and must be free of

observable side-effects. Note that a consequence

of this rule is that variable-free Russell pro-

grams, like the lambda calculus, have the Church-

Rosser property; in particular, terminating pro-

grams cannot distinguish between call-by-value and

call-by-name semantice.

In Russell, the substitution property is

achieved by enforcing the following rules.

1. The builtin types

property. This constraint

as well as the meanings of

have the substitution

affects the signatures

certain builtin types,

For example, the ~tobvious~t signature for the dere-

ferencing operation Ref[Integer]$t is

~ [{ti Ref[lnteg=l}l = Integer

This signature would be unacceptable, as it can

easily be used to write variable-free denotations

that do not have substitution property (using any

plausible semantics); for example:

. . . ValueOf[p+ 1 . . .

p+ := ValueOf[p+ 1 + 1

. . . ValueOf[p+ 1 . . .

The remedy in this case is to introduce a type

Heap, analogous to an untyped Euclid collection,

and require a Heap variable as the first argument

of a dereferencing operation. With this change,

tic

{~Heap}; {~ Integer}

1 W Integer

and cannot be embedded in a variable-free denota-

tion as was done in the example above.

2. No identifier may be redeclared in a scope

in which it is accessible. This %nique visibil-

itytr rule is necessary to avoid capture of free

identifiers of the signature of an argument when

that argument is passed to an operation declared

in an outer scope. For example, it prohibits such

(clearly incorrect) programs as

m

~== . . .

P == @x{ysML T}] . . .

iJlle.&

T== . . .

y {y&ET} == . . .

Q=

. . . PIYI...

which without the unique visibility rule would be

considered legal.

3. No free identifier in an operation (i.e.,

procedure, function or type) denotation may have

YCLK signature. This rule simply ensures that all

operation denotations are variable-free. This is

the most restrictive of the three rules, as it

prevents procedures from inspecting or modifying

global variables and prohibits applications like

Array [1, N, Integer]

where N is a variable. The rule does not, how-

ever, prevent obtaining the effect of the above

application; it is simply necessary to introduce a

20

new identifier and bind it to the current value of

N:

M

VN == ValueOf[N]

h

..* Array[1, VN, Integer] . . .

In our discussion of type-checking we have

made a careful distinction between signatures and

“data types. Data types are sets of operations,

and have values; signatures are purely ~vntactic

constructs used by the type-checker, and do not

have values. In particular, an operation signa-

ture like

.@=[kdT}] @T

is not a type; thus,

Y&z.i3Lu[klTllw.L’f

is not a legal signature, and there are no

operation-valued variables.

It is difficult to see how operation-valued

variables could be introduced directly into the

Russell type-checking framework. For example,

suppose we somehow managed to produce a type F

that interpreted values as T-to-T functions. The

operation of !Itaking the value of an F variable”

would have signature

Z!md{w F}]

ti{L@T]ltiT

tiny nontrivial application of this function would

be an operation denotation (since the result ia a

function) that imported a variable (the argument),

and thus would violate the import rule.

It is possible to add operation-valued vari-

ablee to Russell using the _ constructor. Let

sig be any operation signature; then

*(sig)

is a type with signature

~1(

New{ HI ~ I }

:={ A{wI], {YQI}]]

ValueOf{ ti{y~ 1}1 Y&l. I 1

In{ fic~{sig}l W I }

Out{ -{A 1)] sig]

)

For example, the type

Ff == imzs-d iwd{YJLLT)]YALT)

is similar to the type F shown above to violate

the import rule. The key difference is that the

ValueOf operation of Fr yields a A F? rather

than a function; to obtain a function value it is

neceseary to apply the Out function. Direct

conversion of an F! variable to a function by conv

position of ValueOf and Out, e.g.

F’$Out[F’$ValueOf[x] 1

still violates the import rule; however, in most

cases the same effect can be achieved by first

binding the value of the variable to a new iden-

tifier and then applying the Out function:

-k

Vx == Ft$ValueOf[x]

h

. . . Ft$Out[VX 1 . . .

Since vx haa signature JQ Ft. the import rule is

satiafied and type-checking is unaffected.

The _ constructor allows self-application

21

in Russell programs.

type declaration

T ❑ = x(

For example, the (recursive)

ti{~T}] AT)

is perfectly well-behaved. An example of an

expression of this type is the following T-to-T

identity function:

f == T$In [

= x{d) T] YA.LT

Le&QIJixd

1

Clearly f can be applied to itself in a type-

correct way, e.g.

(T$Out[f])[f 1

From this example we can conclude that, with our

view of data types, type-correctness and eelf-

aPPlication are unrelated; the fundamental goal of

typechecking --

values -- can be

is allowed.

6. Conclusiw

The ability

produce objects

parameterization

to prevent misinterpretation of

achieved even if self-application

to define new data types and to

of arbitrarily complex kinds by

greatly increase the difficulty

of type-checking. In this paper we investigate

the problems of type-checking in the presence of

these features, and present an approach that

allows static type-checking in the presence of

completely general type definition and parametriz-

ation mechanisms. The type-checking rules we

present are simple and, most importantly, are

based on the firm ground of a semantic characteri-

zation of data types. Thus, a basic test of the

‘correctness of the Russell design has been to

guarantee that the type-checking rules are suffi-

cient to prevent any combination of language

features from being

value. The obligation

the language makes it

few general mechanisms

of unrelated features.

z. References

[Demers78]

used to ‘misinterpretn a

to prove this property of

advantageous to look for a

rather than a large number

Demers, A., J. Donahue and G. Skinner. Data

Types as Values: Polymorphism, Type-Checking,
Encapsulation. Proceedings rZi&tll AaILKLL

?r inCiD Ies A Proyramin% ~an~ua!es X
h, 1978, pp. 23-30.

[Demers79]

Demers, A. and J. Donahue. Revised Report on

Russell. Report TR79-389, Computer Science

Department, Cornell University, September

1979.

[Demers80a]
Demers, A. and J. Donahue. Type-Completeness

as a Language Principle. Pro ceedinzs Seventh

~ Pr inCiDl es d Pr osrammin% Lanzuazes

.@uo s iu m, 1980.

[Demers80b]

Demers, A. and J. Donahue. A Formal Seman-

tics for Russell. (in preparation)

[Goguen76]
Goguen, J.A., J.W. Thatcher and E.G. Wagner.

An Initial Algebra Approach to the Specifica-

tion, Correctness and Implementation of

Abetract Data Types. Report RC6487. IBM Tho-

mas J. Watson Research Center, Yorktown

Heights, N.Y., 1976.

[Landin66]
Landin, P.J. The Next 700 Programming

Languages. &mQ. ~ 9:3 (1966).

[Liskov77]
Liskov, Barbara, Alan Snyder, Russell Atkin-

son and Craig Scaffert. Abstraction Mechan-

isms in CLU. h. w 20:8 (August 1977).

[Morris73]

Morris, James H. Types are Not Sets.

lro ceedin~s m Annual Principles ti ~
.nn

ar~~s ua~ s ~VmD 0 s ium ● 1973, pp. 120-

12;.

[Reynolds74]
Reynolds, John. Towards a Theory of Type

Structure. Colloquium Q pro~ramming, Paris,

1974.

[Reynolcle781
Reynolde, John. Syntactic Control of

Interference. Pr oceedin~s Fifth Annual Prin-

- d Pro~rammin~ Lan”uazes .SvmDosium,
1978, pp. 39-46.

22

[Wulf78]
Wulf, W. A. (cd.) An Informal Definition of

Alphard. CMU-CS-78-105, Department of Com-

puter Science, Carnegie-Mellon University,
1978.

23

