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Abstract 

Circular attribute grammars appear in many data 
flow analysis problems. As one way of making the 
notion useful, an automatic translation of circular at- 
tribute grammars to equivalent non-circular attribute 
grammars is presented. It is shown that for circu- 
lar attribute grammars that arise in many data flow 
analysis problems, the translation does not increase 
the asymptotic complexity of the semantic equations. 
Therefore, the translation. may be used in conjunction 
with any evaluator generator to automate the devel- 
opment of efficient data flow analysis algorithms. As 
a result, the integration of such algorithms with other 
parts of a compiler becomes easier. 

1 Introduction 

Attribute grammars (AGs) were introduced by Knuth 
[Knu68] as a means for defining the semantics of 
context-free languages. Non-circular AGs (NCAGs) 
were shown to be useful for specifying many com- 
pilation tasks, and are employed to automate com- 
piler development [ASU8,5]. Until recently, circular 
AGs (CAGs) were considered ill formed and mean- 
ingless. However, if the semantic equations employ 
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monotonic operators (over some partial order), they 
define a unique greatest (least) fixed point which 
may be interpreted as the meaning of the equations 
[JS86,Far86]. This kind of circularity arises natu- 
rally in many data flow analysis (DFA) problems 
[BJ78,ES86]. 

For structured languages, various DFA problems, 
including all the classical ones (see [ASU85]), have 
been specified using CAGs [ES86]. CAGs may also 
handle, at a moderate cost, certain less structured 
constructs (e.g. the BREAK and CONTINUE state- 
ments), and constructs with side effects. In addition, 
we can automatically transform other uniform for- 
malisms for specifying DFA problems (e.g. [Ki173]) 
into CAGs. 

Evaluator generators [DJL86b] accept an AG as in- 
put and generate an evaluator, which accepts a syn- 
tax tree and decorates it with correct attribute val- 
ues. Current evaluator generators are restricted to 
NCAGs. Non-circularity guarantees that the num- 
ber of iterations of the generated evaluator is linear 
in the size of the input tree. Furthermore, these 
tools generate optimized evaluators based on non- 
circularity. Therefore, translating a CAG into an 
equivalent NCAG has both practical applications and 
theoretical value. As a by-product of the transla- 
tion process, the uniqueness of the decoration which 
will be obtained at evaluation time can be checked. 
Thereby, assuring that for every input tree the result 
is well defined. 

1.1 Results and Related Works 

In this paper an algorithm is presented which resolves 
the circularity in each production individually. As 
Knuth has noted, AGs can simulate Turing machines 
by encoding the syntax tree itself as an attribute. 
Hence every CAG may be trivially converted into an 
equivalent NCAG. The resulting NCAG first records 
all the equations as an attribute of the start non- 
terminal. Then, it computes the greatest (simultane- 
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ous) fixed point. However, this AG is not a ‘true’ AG, 
since instead of using the power of the AG paradigm 
it uses the power of the language in which the equa- 
tions are expressed (the specification language). In 
contrast to the trivial translation, our algorithm gen- 
erates ‘true’ AG in the sense that all the computa- 
tion are local. Furthermore, the local transformation 
guarantees that for CAGs arising in DFA problems, 
the complexity of solving the equations in the gener- 
ated NCAG is the same as that of solving the original 
equations. 

In contrast to iterative evaluation[JS86,Far86], our 
method may be used with an ordinary AG generator 
to generate a linear evaluator. 

For several DFA problems, our algorithm trans- 
forms the natural CAGs describing these problems 
into NCAGs which are similar to those composed 
manually [BJ78,Ken8 1 ,Far86,ES86]. Therefore, our 
algorithm also unifies the treatment of DFA problems 
using AGs, and supports natural specification of DFA 
problems. 

1.1.1 Production Based Translation 

The equations associated with a production p may 
refer to bee attributes, i.e., attributes with no defin- 
ing equations in p. Furthermore, the missing defin- 
ing equations are not determined until the input tree 
is given. To overcome this problem, we extend the 
conventional fixed point theory [Tar551 by consider- 
ing free fixed points, i.e., fixed points of systems of 
equations with free variables. The greatest free fixed 
point is used to compute the greatest simultaneous 
fixed point using a divide-and-conquer (DAC) princi- 
ple. 

Every CAG may be converted into an equivalent 
NCAG by using the free fixed point operator. The 
generated NCAG defines a DAC computation of the 
greatest fixed point of the original CAG. The gener- 
ated NCAG includes new functional attributes which 
summarize the input-output relation between circular 
inherited and synthesized attributes. The circularity 
is avoided by using the functional attributes and free 
fixed points. 

Input-output relations have been introduced by 
Knuth [Knu68,Knu71] for circularity testing and were 
also used for static evaluation [KW78,CF82,Far86] 
and other analysis problems in NCAGs (see [DJL86a] 
for more references). Mayoh used input-output rela- 
tions to transform an NCAG into an NCAG without 
inherited attributes but with functional attributes 
which summarize the input-output relations [May81]. 

In contrast to Mayoh, we do not eliminate inher- 
ited attributes but only eliminate references to circu- 

lar synthesized attributes. Therefore, our construc- 
tion minimizes the number of added attributes, and 
yields an NCAG which maintains the same attributes 
as the original CAG and not only the attributes of 
the start non-terminal.Furthermore, for CAGs the 
same tree may have more than one fixed point and 
therefore many values may be assigned to the func- 
tional attributes. An immediate consequence of our 
DAC principle is that the choice of the greatest free 
fixed points as the values of the corresponding func- 
tional attributes is the only choice which preserves 
the greatest fixed point. 

1.1.2 Computability of Free Fixed Points 

Our construction yields computable equations when- 
ever direct evaluation may be used. The complexity 
of solving the generated equations may be the same 
as that of a direct evaluator due to the complexity of 
fixed point computation. 

The closure assumptions of [GW76,Ros80,Tar81b] 
are used to ensure that for DFA problems, the free 
fixed point may be expressed in the specification lan- 
guage of the original CAG. Usually, the DFA prob- 
lems are also bounded ([RosSO]), i.e., the number of 
iterations needed to compute the fixed point of a sin- 
gle function need not depend on the input. In these 
cases, the complexity of solving the equations in the 
generated NCAG is the same as that of solving the 
original equations. This follows from the fact that 
the number of equations associated with a production 
does not depend on the tree size. Therefore, in these 
cases, the generated evaluator is more efficient than 
the iterative evaluation by an order of magnitude. 

Many of the DFA problems may be expressed in 
terms of simple set expressions. In these cases, 
the generated NCAG does not include functional at- 
tributes but only set attributes. 

1.2 Outline of the Paper 

In Section 2, we review the fixed point and AG nota- 
tions. Then, we present our novel schematic transla- 
tion of CAGs into NCAGs (Section 3). In Section 4, 
we address the algorithmic aspects of the translation 
process as they arise in DFA problems. We conclude 
by describing the applications of our translation. 

2 Preliminaries 

2.1 Fixed Point Theory 

In this Section, we review the needed fixed point nota- 
tions and results. In particular, Tarski’s[Tar55] con- 
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ditions are somewhat relaxed, and required to hold 
only for circular arguments. 

Let X = {tr,z~,.. . , a:,,} where with each x E X 
is associated a poset Oz. Let 

D = DC1 x D,, x . . . x D,,, 

and let f: D -+ D. A fixed point of f is sometimes 
called a simultaneous fixed point since the equation 
X = f(X) can be viewed as a simultaneous system 
of equations 

s :: {x = f$JX) : 2 E X} (1) 

To use positional notatio,ns, X is (arbitrary) ordered 
and each of the fc has the form f=(cl, 22,. . ., zn). In 
the sequel, we use systems and functions interchange- 
ably. In particular, we sometimes use YS instead of 
vf to denote the greatest fixed point off. 

We are interested in systems S in which fs need 
not depend on all its arguments. The character& 
tic graph Gs = (X, E) is a directed graph in which 
(zi, zj) E E if zi (semantically) depends on xj, 
i.e., fii(dl,...,dj,...,d,,) # fii(dl,.“,d5,...,d,) 
for some dl,...,dj,d[i,..*,d,. An argument z E X 
transitively depends on 31 E X in S if there exists a 
directed path from y to z: in Gs. In the sequel, we do 
not distinguish between transitive and direct depen- 
dencies. An argument 2: E X is cyclic if it depends 
on itself. It is transitiver!y cyclic if it is either cyclic 
or it depends on a cyclic argument and otherwise it 
is acyclic. The system S is cyclic if it contains cyclic 
arguments, and otherwise it is acyclic. 

Tarski’s theorem guarantees that for every system 
S in which all the functions fz are monotonic in all 
their arguments, and a11 the domains are complete 
partial orders(CPOs) vS exists. The theorem also 
holds when S is only weir! defined, i.e., for every tran- 
sitively cyclic argument x E X, fz is monotonic in 
all its transitively cyclic arguments, and the domains 
of all the cyclic arguments are CPOs. Moreover, we 
prove a simple representation theorem which allows 
to transfer to well defined systems, the results about 
systems in which all the equations are monotonic and 
all the domains are CPOs. 

To that end, the set X of arguments of a system S is 
partitioned into the cyclic arguments (denoted by C), 
the acyclic arguments (denoted by A) and transitively 
cyclic arguments which are not cyclic (denoted by 
T). Every well defined system S has an equivalent 
representation (one preserving all fixed points): 

S” :: 

{ 

A = h,,(C) E d(S, A) 
c = he(C) 

1 
(2) 

T = h??(C) 

This representation can be derived from S by the fol- 
lowing phases: 

1. Find the unique simultaneous fixed point of the 
acyclic part of S, d(S, A). 

2. Replace the references to the acyclic arguments 
by their values to get a new system S’ . 

3. Restructure S’ to have the form (2), by elimi- 
nating the references to transitively cyclic argu- 
ments in S’. Each such reference is replaced by 
its defining equation. 

An element d E D is a pre-fixed point of S, if 
d 2 f(d) and dA = fA(d). Notice that this definition 
is non-standard by requiring equality for acyclic argu- 
ments since their fixed point component is unique. A 
way to circumvent this non-standard definition is by 
using equality as the order imposed on the acyclic 
arguments. In the following theorem, FP(f) and 
PRE(f) are the set of fixed points and pre-fixed 
points of f, respectively. 

Theorem 2.1 (Representation of well defined 
sys terns) 
For every well defined system S ofthe form (I), there 
exists a unique d(S, A) E DA and a monotonic fine- 
tion h: D + D which depends only on its cyclic argu- 
ments such that 

Vd E D: hA(d) = d(S, A) 
FP(S) = FP(h) 

(3) 
(4 

PRE(S) c PRE(h) (5) 

The representation theorem implies that for every 
well defined system S, YS exists. The existence of VS 
can be also proved by a direct inductive proof by par- 
titioning Gs into its strongly connected components, 
and constructing YS using a topological order on the 
strongly connected components. The direct proof has 
the advantage that it suggests an algorithm to com- 
pute ~5’ when the domains of the cyclic arguments 
are well founded sets (WFS). However, the represen- 
tation theorem may be also used to extend Park’s 
Theorem1 and to prove the monotonicity of the v op- 
erator. 

Systems of equations may contain free variables. 
Let Y = {YI,Y~,..., ym). The free system S(Y) has 
the form: 

S(Y) :: {x = fz(Y, X) : 2 E X} (6) 
The functional representation of S(Y) has the form 
f: Dy x Dx + Dx, 0~ in its Curried form f: Dy -+ 
(Dx + Dx), where f(&)(h) = f (dy, dx). The 

notions of characteristic graph, cyclic and transi- 
tively cyclic arguments and well defined systems of 

lone of the variants of Park’s theorem is that d 5 vf for 
everypre-fixed point d E D of a monotonic function f : D -+ D 
where D is a CPO. 
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equations are extended to free systems in a natural 
way. Furthermore, for well defined free systems S, 
v(S(dy)) (the greatest fixed point of the system of 
the form (1) obtained by substituting dy for Y) ex- 
ists for every dy E Dy. 

To allow transformations on free systems of equa- 
tions, we define the notion of weak equivalence of two 
free systems S’ and S2 of the form (6). S1 and S2 
are weakly equivalent (S E S2) if for every dy E Dy , 
vSl(dy) = vS2(dy). For example, the equations 
2 = zfly and 2 = y are weakly equivalent on powerset 
domains ordered by set inclusion. 

2.2 Attribute Grammars 

For a review of the standard imperative semantics 
of AGs see [DJL86a]. Here we exemplify the nota- 
tions via the AG AEP in Table 1, which describes 
the formal available expressions problem[ASU85, pp. 
627-6311, [BJ78]. The intended value of the inher- 
ited attribute St. before is the set of available expres- 
sions before the execution of the statements derived 
from St. Similarly, the value of the synthesized at- 
tributes St.after and Prog.after are the set of avail- 
able expressions after the execution of St and Prog, 
respectively. The synthesized attributes Ezp.s and 
Cond.s hold the set of expressions which appear in 
the expression and the condition, respectively. The 
attribute id.name contains the name of the variable. 
The function iVotArg(n, E) used in 5.1 returns the 
expressions in E in which n does not appear as argu- 
ment. Thus, equation 5.1 first adds the new expres 
sion, and then deletes the expressions which become 
unavailable by the assignment. The other equations 
are straightforward. This AG is used as a running 
example in this paper. 

Apart from the standard imperative semantic def- 
inition of AGs, an AG defines a class of systems of 
equations ([CM79]). With each production p in the 
grammar is associated a system S/p] over the at- 
tributes Attr[pl of the grammar symbols in p. The 
set Attr[p] is partitioned into the defined attributes 
Outputb] and the free attributes Inputb]. Let T be 
a tree over a given AG and let v be a vertex of T in 
which a production p has been applied. The system 
S(v) is an instantiation of S[p] obtained by replacing 
the attributes of S[p] by the corresponding attribute 
occurrences. S(T) is obtained by pasting together the 
systems S(v) for all v in T. The set Attr(T), the at- 
tribute occurrences of T, is partitioned into Input(T), 
which are the free attribute occurrences and are ini- 
tialized during the tree construction, and the defined 
attribute occurrences Output(T). Figure 1 contains 
an input program for AEP and a possible tree. Ta- 

ble 2 contains the system of equations of this tree as 
well as the greatest simultaneous fixed point. Here 
b,a and n are shorthand for the attribute names be- 
fore, after and name, respectively. 

An AG is circular (CAG) if there exists a tree T 
for which S(T) is cyclic; otherwise it is non-circular 
(NCAG). Table 2 shows that AEP is circular since 
v12.a depends on vl2.b in equation 13, and v12.b de- 
pends on vl2.a in equation 11. 

A CAG is well defined if for every T, the system 
S(T) is well defined. The example AG AEP is well 
defined since the finite powerset AE of available ex- 
pressions ordered by set inclusion is a CPO and the 
functions used in AEP employ set operations which 
are monotonic in the (transitively) cyclic attributes. 
Some care has to be taken in this example in order 
to cope with the absence of a maximum element. 

Since the equations of any AG are syntactically 

sparse, the characteristic graph G(T) dgf Gs(T) of 
S(T) may be approximated by considering syntac- 
tic rather than semantic dependencies. As a result, 
G(T) may have more edges than the real characteris- 
tic graph of S(T). 

AGs may be analyzed in order to find out which 
of the semantic functions need to be monotonic, and 
which of their domains need to be a GPO, Unfortu- 
nately, the circularity testing problem is exponential 
([JOR75]). Still, for all practical purposes, Knuth’s 
algorithm [Knu68] can be used as an approximation 
to circularity testing. The idea is to precompute the 
IO relation IO[Z] s Inh[Z] x Syn[Z] which is a su- 
perset of the set of all the possible dependencies of 
the synthesized attributes of Z on the inherited at- 
tributes of Z. Thus, for every tree T with a root of 
type Z (where Z is not necessarily the start symbol of 
the grammar), IO(T) c IO[Z], where IO(T) denotes 
the relation obtained by restricting the transitive cl* 
sure of G(T) to the attributes of Z. An AG is uniform 
if for every non-terminal Z, there exists a tree T with 
a root of type Z such that IO[Z] - IO(T). Non- 
uniform AGs are considered ill formed and tend not 
to appear in practice. In this paper the IO relations 
are useful for two purposes: 

1. To.derive an algorithm for finding the cyclic and 
transitively cyclic attributes of every production 
p, (denoted by CAttr[p] and TAttrlp]), and the 
circular attributes of a non-terminal Z (denoted 
by CAttr[Z] and TAttr[Z]). The details of the 
algorithm are not give here. 

2. In the next section, we shall use the IO relations 
to define the translation of a CAG into an equiv- 
alent NCAG. 
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In the rest of this paper Twe treat only uniform CAGs 
although this restriction can be relaxed 

3 Schematic Resolution 

The free greatest fixed po:int vS of a free system S(Y) 
of the form (6) is a function of the free arguments 
which yields the greatest, fixed point for every input 
value (thus (v,!?)(d) - vS(d)). For example, consider 
a powerset domain ordered by set inclusion. Then, for 

S(Y1, Y2) :: x = (x - ~1) n 92, I& = ~(YI, YZ) where 

f(Y1, Y2) ef Y2 - Yl. 
If the domains of the cyclic attribute occurrences 

of a tree 5” over a CAG; are WFS then a straight- 
forward iterative procedure may be used to com- 
pute the greatest fixed point of SAG(T). Alterna- 
tively, the free fixed point may be used to compute 
vSAG(T)@@(T)) in t:he following two phase pro- 
cedure: 

Bottom-Up For each vertex v find the free fixed 
point vS(v) by scanning T bottom-up. 

Top-Down Use the values of the inherited attributes 
top-down to substitute for the free arguments of 
each free fixed point to obtain the values of all 
the attributes. 

This procedure has the desired property of being lo- 
cal. However, it is carried out at evaluation time 
when T is given. Instead, we would like to concen- 
t+e on generation time and to construct an NCAG, 
AG, for a given CAG A(‘;, which induces the above 
DAC process for computing the grztest fixed point 
of SAG(T) for every T. The AG AG would include 
the original set of attribute occurrences and new syn- 
thesized functional attribute occurrences to represent 
vS(v). Since we deal with generation time, Sb] will 
be considered. 

By solving the systems S[p] once and for all, the 
complexity of the generated evaluator is reduced. 
However, the cost of ma.intaining the functional at- 
tributes may be considera.ble. Therefore, we only add 
enough functional attributes to break all the cycles. 
As an additional benefit, this allows easy integration 
with non-circular components of a given CAG. 

3.1 Production Based Translation 

Consider a production p:: 2 + ZlZ2 . . . Z,. To get 
rid of cycles, it is sufficient to eliminate the following 
two sources of circularity in p: 

1. The system S[p] is c.yclic by itself (direct cir- 
cularity) 

2. The system Sip] contains a reference to a cyclic 
synthesized attribute Zj .cs (transitive circu- 
larity). 

In AEP, there is no direct circularity since for all 
p, S[p] is acyclic. However, all the productions other 
than p5 are transitively circular. For example, p4 is 
transitively circular since the attribute Stl.a.fter is 
used in S[p4] for defining Stl.before. 

Our approach to first eliminate the transitive circu- 
larity in p, thereby introducing direct circularity and 
then to eliminate direct circularity altogether. 

3.1.1 Elimination of Transitive Circularity 

Transitive circularity is a chicken and egg problem 
where cyclic synthesized attributes are used in S[p] 
for defining cyclic inherited attributes, and cyclic in- 
herited attributes are used in productions applied be- 
low p for defining cyclic synthesized attributes. 

The transitive circularity may be eliminated by 
adding a functional synthesized attribute Zj.fcs 
which holds the input-output relation from inherited 
attributes to a circular synthesized attribute Zj.cs 
and using the expression Zi.fcs(lnh[Zj]) instead of 
Zj.CS* 

Table 3 contains the system obtained from S[p4] 
where the cyclic attribute St,.before was replaced 
by Stl.fafter(Stl. before). Thus, St.fofter is a new 
functional synthesized attribute of type AE -P AE 
(remember that AE is the powerset of available ex- 
pressions). Of course, this replacement is valid only 
if all the semantic equations associated with pro- 
ductions in which Zj is derived maintain the in- 
variant Zj .CS = Zi. f cs(lnh[Zj]). In AEP, each of 
the productions pz,p3, p4 and p5 need to be associ- 
ated with an equation defining St.fafter such that 
St.after = St.fafter(St.before). We defer the def- 
inition of the semantic functions to maintain these 
invariants to Section 3.1.3. 

In general, the new functional attribute Zj .fcs is a 
function from Drnhlzjl to Dz~.~~. However, the num- 
ber of inherited attributes may be large and therefore 
Zj.fcs may have many arguments. Thus, we take 
only those arguments which are cyclic in p and used 
in some of the trees below p to define Zj.cs. 

Let CSyn[Z] (C%h[Z]) be the circular synthesized 
(inherited) attributes of a non-terminal 2. Formally, 
for every non-terminal Y in AG, and an attribute 
cs E CSyn[Y], AG - includes a synthesized functional 
attribute fcs associated with Y. For a circular syn- 

thesized attribute cs E CSyn[Y), let Inp[Y, cs] zf 
{Y.ci : (ci,cs) E IO[Y], ci E Crnh[Y]}. Each cyclic 
synthesized attribute Zj.cs E CAttr[p] is replaced by 
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Zj.fcs(lnp[Zj,cs]). Let MSb] be the modified SYS- 

tern and let fb] be the corresponding function. Let 
Inp&b] be the free attributes in MSb]. The Cur- 
ried representation of MS[p] is 

J/fS[p] :: {x = flplz(~np~t’[pl)(O~~P~~~l~ : 
x E 0utput[p]} 

(7) 

In AEP, Inpd[pd] = {Cond.s,Stl.fufler,St.before}. 
Table 4 contains the system MS[p4] where the se- 
mantic functions are explicitly written using Curried 
notations. 

3.1.2 Elimination of Direct Circularity 

Direct circularity may be avoided by finding an 
acyclic system AS[p] such that ASb] Z MSb]. This 
can be done by ‘symbolically’ solving all the cycles 
in MSb], and finding an expression over the free at- 
tributes of MSb] which computes the free greatest 
fixed point of MS[p]. 

Applying the free fixed point operator to fb] of (7) 
we get: 

AC&] :: tz = (“fb~)dlnputl~l) : 
x E Ovtpuqp]} 

In Table 5, we applied this transformation to MSbb] 
to obtain AS[pa]. By definition AS[p] is acyclic and 
has the same greatest fixed point as MSb](d) for ev- 
ery input d E DI,,+I[~I. 

If the original AG is well defined, then all the equa- 
tions in Sk] are monotonic in Zi.cs. Therefore, if the 
semantic equations set Zi.fcs to a monotonic func- 
tion then vfb] exists. For example, equation (4.1) 
in the original AG AEP is monotonic in St1 .after. 
Therefore, if the value of the functional attribute 
St.fufter is always a monotonic function, then we can 
guarantee at construction time that Vf[P4] exists. 

3.1.3 Maintaining the Invariants 

To complete the construction described above, we 
have to introduce equations which establish the in- 
variants 2. fcs(lnp[Z, cs]) = Z.cs for every circular 
synthesized attribute cs of the left hand side non- 
terminal 2. 

Let cs E CSyn[Z]. Let Other[p,cs] gf InputlEp] - 
Inp[Z, cs]. The function (vf [p])z.cs may be presented 
in a Curried notation as: 

(vf b])Z.cs : DOther[p,cs] - (%np[Z,ea] + DZ.cs) 

Now define the system PS/p] as follows: 

FS[p] :: Wfcs = (vf W?Lc40tWp> 4) : 
cs E CSyn[Z]} 

(9) 

The system &] associat_ed with p in 2 is ASb] U 
FSb]. Table 6 contains S[pa]. 

3.2 Correctness of the Translation 

The non-circularity of 2 stems from the following: 

1. An AG which does not contain transitive and 
direct circularity is non-circular. 

2. For every production p: Zo ---, 212~ . . . Z,, each 
of the functional attributes of 20 may depend 
only on functional attributes of Zi for 1 5 i 5 n 
and on non-cyclic attributes of Zi. This follows 
from the elimination of references to cyclic syn- 
thesized attributes as well as the elimination of 
cyclic inherited attributes, by using them as ar- 
guments of the functional attributes. 

To guarantee that the new functional attributes are 
non-circular, we eliminate all the references to cyclic 
synthesized attributes even though not all the elimi- 
nations expose direct circularity. In fact, new direct 
circularity is created in MSb] only when a cyclic in- 
herited attribute depends on a cyclic synthesized at- 
tribute in Sk]. 

In AEP, the only new direct circularity is in MS[p4] 
since Stl.before depends on Stl.ufter, in Sb)rl], Still, 
to guarantee that St.fafter is non-circular we need to 
eliminate St.after from S[pz] and S[~B]. 

A tree T is complete if its leaves contain only ter- 
minals. 

Theorem 3.1 (Equivalence Theorem) 

Let AG be a well defined CAG and z be the resulting 
NCAG. Then, for every complete tree T, SAG(T) z 

The system SAz (T) may be obtained from the sys- 

tem SAG(T) by a sequence of transformations each of 
which preserves the greatest fixed point and the well 
definededness of the system. Therefore, the unique 
fixed point of (the acyclic). S,--,(T) is the greatest 
fixed point of SAG(T). D ue to space limitations we 
cannot rigorously prove it here. The proof is based 
on the following mathematical properties: 

1. The weak equivalence relation is closed under 
systems union, i.e., if Sx, g S2x, and S1x, z 

s2x2 for an arbitrary partition of the defined 
arguments X of S1 and S2 into X1 and X2, 
then S’ z S2. This allows us to show that 
SAG(T) Y S,--,(T) by structural induction on 
T. 

2. Let S(Y) be a well defined system of the form (6). 
Then VS can be found by first finding YS~ for 
an arbitrary sub-system Sl of S and then find- 
ing vS’ where S’ is the system obtained from S 
by replacing the arguments of S1 by vS~. The 
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above may be proven using Park’s Theorem. In 
particular, for a complete tree T rooted by P, 
YSAG(T) may be found by first finding the free 
fixed point of cyclic arguments of the children of 
r, and then finding the solution of the resulting 
system as done in S;&T). 

4 Application to Data Flow 

We now apply the translation scheme of Section 3 to 
CAGs arising in DFA. In ,these problems each of the 
semantic functions defining circular attributes is an 
expression in some specification language. If in addi- 
tion we make the standard DFA assumptions regard- 
ing the expressibility of the specification language, 
then each of the Ask] systems can be also written in 
the same specification language. 

4.1 A Data Flow Framework 

Let the domain of all the transitively circular at- 
tributes D be a complete semi-lattice, A the meet 
operator over D and let E’ be set of functions on D. 
Then, CAG is a circular data flow analysis AG with 
respect to D and F (CDFAG) if each of the transi- 
tively circular attributes a is defined by an equation 
of the form: 

a = Ad&L+‘) (10) 

where each %I is an expression over the acyclic at- 
tributes which yields a function in F, and I, is the set 
of transitively cyclic arguments on which u depends. 
The set F is the ‘valid’ functions and (10) defines the 
specification language. 

A special case of the above parametric specification 
language is when D = 2p for some finite set P and 
5 is set inclusion. In this case, A is n and T = P. A 
function f: D + D is a uniform modification function 
(UMF) with respect to P if there exists K,G C_ P 
such that for every d s P, f(d) = (d - K) U G. 
The set F(P) is the set of UMFs with respect to 
P. UMFs are used to describe most of the classi- 
cal DFA problems[GW76,:RP86]. We use I< and G 
as a generalized shorthand for kill and gen which are 
frequently used in the literature to describe classical 
problems such as available expressions, live variables 
and reaching definitions2[.ASU85]. For UMFs, (10) 
has the form: 

O,= nolEr, ((a’ - h) u Gal) (11) 

where K,, and G,, are functions of acyclic attributes 
which yields subsets of P. By convention, CDFAG 

2The last two problems need least and not greatest fixed 
point. 

which uses UMFs is a uniform modification circular 
attribvle grammar(UMCAG). 

For example, Table 7 presents a variant of S[pd] 
in which both equations have the form (11). All the 
Equations of AEP but (5.1) can be easily put in the 
form (11:). To use UMFs in (5.1), we modify it into: 

(L3t.l~ - Arg(id.n, T)) U NotArg(id.n, Ezps) 

where T denotes the universal set (all the expressions 
in program) and Arg(n, T) is the set of expressions in 
the program in which n is an argument. Notice that T 
can be replaced by an inherited attribute St.universe, 
and by writing new semantic equations to define this 
attribute in a left-to-right manner. In general, the re- 
quirement of having P finite can be relaxed by requir- 
ing that only the G sets are finite. Thus, for an input 

tree T, we can set P(T) dzf UrzL=,Gi where Gi are the 
G sets which appear in the equations. Notice that 
the sets G are known after computing non-circular 
attributes. 

To guarantee that A^G uses the same specification 
language, we require that the new equations also have 
this form over the same F. To this end, we say that an 
AG is closed with respect to F if for every produc- 
tion p: 20 + Zr Z2 s s .Z, and a transitively circular 
attribute Zi.o E Output[p], the defining equation of 
&.a in AS[p] may be written as an expression of the 
form (10) over F where a’ E CInh[Zo]. As we shall 
see, every UMCAG is closed with respect to UMFs. 
Therefore, the schematic translation of Section 3 will 
produce an NCAG where the modified equations use 
only sets expressions. 

4.2 Distributive Frameworks 

We now impose more restrictions on F to guaran- 
tee that the CDFAG is closed. Furthermore, the re- 
strictions allow us to construct functional expressions 
for computing the greatest free fixed point, by an 
efficient algorithm. In particular, it will enable the 
automatic conversion of UMCAG into an equivalent 
NCAG since it will satisfy the restrictions. 

A function f: D + D is distributive (and there- 
fore monotonic) if for every $1, dz, . . . E D, f(Adi) = 
Af(di). For example, UMFs are distributive since for 
everydr,dz,..., ((nidi)- K)UG= ni((di-K)UG). 

A set of distributive functions F on D is a distribu- 
tive data jlow analysis framework (DFAF) if: 

Identity There exists an identity function L E F 
such that for every d E D: L(d) = d. 

Top There exists a function T E F such that for 
every d E D: T(d) = T. 
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M-Closure F is closed under meet operation, i.e., 

Vf1,fi E FJ(fi/\fi) E F,VdED: 
(fl A fz>@) = M-0 A f2(4 

C-Closure F is closed under composition, i.e., 

Vf1,f2 E F,3(flof2) E F,VdED: 
(fl 0 f2)(4 = f2UlW 

S-Closure F is closed under the star operation, i.e., 

Vf EF,iIf*EF,VdED: 
f’(d)=dAf(d)Af2(d)A.** 

The requirement of having a top function is an extra 
requirement with respect to [Ro&O,TaBlb], and may 
be replaced by some connectivity requirements on the 
characteristic graph of each of the systems. 

The set F(P) of UMFs is closed where b(d) dgf (d- 

4) U 4 and T(d) dgf (d - 4) U P. For the closure rules 

let fi(d) dgf (d - Ki) U Gi for i = 1,2. Then: 

M-Closure (fl Afz)(d) E (d - (Kl U K2)) U (G2 n 
G2). 

C-Closure (fl o fi)(d) E (d - (K2 u (KI - Gz))) u 

(G2u(G--K2)). 

S-Closure Every UMF f is idempotent, i.e., fk I f, 
for A 2 1. in particular, fl*(d) c d fl (d - K1) IJ 
Gl=(d-(Kr-Gr))uqk 

Theorem 4.1 Let AG be a CDFAG with respect to 
D and a DFAF F. Then, AG is closed with respect 
to F. 

The proof of Theorem 4.1 (not given here) is construc- 
tive. The idea is to maintain stronger invariants by 
guaranteeing that the functional attributes also have 
the form (10). F or example, in AEP we maintain the 
invariant that 

St.fa(St.b) = (St.b - St.k) u S&g (12) 
where k and g are new synthesized attributes. There- 
fore, in this case, these set attributes may be used 
instead of the functional attribute St.fa. 

Using the stronger invariants, the construction is 
similar to the construction of the functional expres- 
sions whichcompute the meet over all paths[Tar81b13. 
For example, consider the system of Table 7. After 
eliminating the cyclic reference to St1 .a in (4.1), we 
get: 

St1.b = ((St,.fa(St,.b)-~)UCond.s)fl((St.b-+)Uq5) 

3This is not exactly true since we allow many sources. Thus, 
we need to use the T function to reduce our system into 
Tarjan’s. 

By using the invariant (12), we get 

St1.b = ((((St1 .b - St1.k) u Stl.g) - 4) 
uC0nd.s) n ((NJ - c#~) u 4) 

Now using the closure of UMFs under composition 
MS [pd] yields: 

MS[p*] :: 
St1 .b = fl(stl.b) A f&m) (4.1) 
St.a = fs(St1.b) (4.2) 

where: 
Kl L 

fi(d) zf (d - 9 U S$,.g U Cond.s (13) 

fi(d) gf (d-PUP 

f3(d) %Zf (d--6;)&?+ 

(14) 

(15) 
The characteristic graph of this system is shown in 
Figure 2 where the edges are marked with the func- 
tion names. 

Tarjan’s method may be used to construct vMS[p4] 
in two conceptual phases: 

1. Find regular path expressions o(St.b,St.a) and 
cr(St.b,Stl.b) over the edges which summarize 
the set of paths from St.b to St.a and St1.b re- 
spectively. In the graph of Figure 2 we will get: 

cY(St.b, St.a) = ((+S;.bbS’.b)).(Stl.b, St1.b)‘. 

c@.b, 31 .b) = (St!&;).(Stl.b, Stl.b)+ 

2. Convert cu(St.b, %a) and a(St.b, St1.6) into 
functions in F which compute (vMS[p&~t.~ and 
(YMS[~~])~~~J,, respectively. This is done by in- 
duction of the structure of the regular path ex- 
pression and using the closure operations on F. 
The expressions in the system MS[p4] are: 

St1.b = 
d!f 

d!f 

E 

St.a = 
E 

fi o fi’(3.b) 

(St.b - (K1 - G1) u (K2 - C#J))U 

f’-’ iG2 ;K(K1- GIN 
I -G)uK2)u 

(4 $5 - Gl)) 

(St.b - (St,.k - (Stl.gu Cond.s)) u q5)u 
(Cond.s - (31 .k - (St, .g u Cond.s))) 
(St.b - St1 .k - (St1 .g u Cond.s))u 
Cond.s 
(St.b - (St1.k - St1 .g)) u Cond.s 
f2 Ofl’ o f3W.b) 
(St.b - (St1.k - St1 .g)) U Conds 

Table 8 contains the constructed NCAG obtained 
by finding vMStp] for all the productions p in the 
modified AEP, using the above two phases algorithm. 
To make this algorithm efficient, the regular path ex- 
pressions (and the functional expressions) need to be 
maintained in a single labeled direct acyclic graph. 
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For general graphs, the complexity of computing the 
path expressions is O(#) where n is the number of 
vertices4. Therefore, the complexity of constructing 
the expressions for CDFAG, is O(pZ3) where p is the 
number of productions and 1 is the maximal number 
of circular attribute appearances in a production. 

Some of the DFA pro’blems are not distributive. 
Furthermore, the star operation may be too expen- 
sive to compute. In these cases, a functional expres- 
sion can still be computed [GW76,Ros80,Tar81b] but 
the expression may yield. a value which is between 
the meet over all paths and VS. Thus, the resulting 
NCAG is not weakly equivalent but yields safe results 
which may be greater than VS. 

Since we resolve circularity at generation time, the 
major concern is the complexity of the generated se- 
mantic functions. To estimate the complexity of the 
star operation (which is the main problem), the no- 
tion of k-boundedness is defined: F is k-bounded if 
for every f E F, fk+l 2~ l/\fl\..ql\fk. For ex- 
ample, UMFs are l-bounded. For a k-bounded func- 
tion f, f’ E (L/\ f)k ma,y be computed by O(log k) 
composition operations. As a result, the generated 
semantic equations have the same asymptotic com- 
plexity as the original ones. 

5 Conclusions 

The resolution algorithm presented here may be used 
to convert a CAG into a linear evaluator in the fol- 
lowing steps: 

1. 

2. 

3. 

4. 

The IO relations and the set of (transitively) 
cyclic attributes are found. This information is 
used to guarantee that the CAG is a data flow 
analysis CAG and therefore well defined. 

The algorithm of Section 3 is applied to yield an 
NCAG which includes the free fixed point oper- 
ator. 

The free fixed point operator is replaced by an 
expression over the functions used in the orig- 
inal expressions and the closure operations. If 
the functions are bounded then the resulting ex- 
pressions have the same asymptotic complexity 
as the original ones. 

An ordinary evaluator generator translates the 
NCAG into a program. 

High-level data flow analysis algorithms[Ros77] are 
also linear. The fact that we use AG formalism en- 
ables us to solve data flow analysis problems without 

‘If the graph is reducible then a more efficient algorithm 
due to Tarjan [TarSla] may be used. 

interpreting the meaning of the control structures or 
the non circular components. As a result, our method 
provides a tool for developing data flow analysis al- 
gorithms. 

Historically, this work began by developing an opti- 
mizer for a Pascal-like language using GAG[KHZ82]. 
For each data flow analysis problem we wrote[ES86] 
a CAG and manually translated it into an equivalent 
NCAG so that GAG could convert the NCAG into a 
Pascal program. The resolution algorithm proposed 
here automates the translation for most of the data 
flow analysis problems considered since most of them 
could be easily specified using uniform modification 
CAGs. One exception is the constant propagation 
problem in which symbol tables are needed. In this 
case, we can still resolve the circularity but the result- 
ing NCAG yields less informative results. For exam- 
ple, the NCAG in [Wi181] is a natural approximation 
for a CAG to the constant propagation problem. 

This work also emphasizes the the trade-off be- 
tween the class of AGs and the power of semantic 
functions. For uniform modification CAGs, the ex- 
pressive power of NCAGs and CAGs are essentially 
the same. This is also true for monotonic computable 
functions on well founded sets. However, in problems 
such as the constant propagation or when using GO- 
TOs, symbol-tables need to be used. Therefore, the 
resulting NCAG includes an explicit free fixed point 
operator. 

A direct efficient algorithm may be used instead of 
translating CAGs into NCAGs. In particular, meth- 
ods of finite differencing[CP87] may be used to avoid 
the cumulative cost of repeatedly computing the func- 
tions. Our initial study shows that this technique 
provides an alternative linear computation for a sub- 
class of CAGs including UMCAGs. 
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pl: Prog + St r St.before = qi 
Prog.after = St.after 

Stl.befom = St.before (2.1) 
St2. before = St1 .after (2.2) 
St. afler = St2. afler (2.3) 

St 4 if Cond then%1 else St2 
Stl.before = Cond.s U St.befom (3.1) 
Sta.before = Cond.s U St.before (3.2) 
St.after = Stl.after fl Sta.after (3.3) 

p4: St + while Cond doStl 
Stl.before= Cond.sU(Stl.afternSt.before) 
St.after = St1 . before 

p5 

: 3t + Id := r;xp 

{ St p .a er = NotArg(id.name, St.before U Ezp.s) (5.1) } 

Table 1: An AG (AEP) for the available expressions problem. 

01 

x:=y+z; 
I 

9 :=x+t; 
while t < 8 do 

2 := 2 + 1; V 

Figure 1: .An input program to the available expressions problem and its tree. 
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* 
1 Iv1 1.i I v2.b = 
2 1 1.2 v1.a = v2.a 

3 Iv2 2.1 v3.b = v2.b 

v6.a 

v3.a = 
v5.a = 

= 
= 
= 

vl2.b = 
= 

((Y + 4% < 8)) 

{(y+ GL+w 
{(Y + “‘;d” < 811 

i(Y + %)I 
{(Y+4,(~+-tt)l 

HY + 41 

{(Y + %), (z + t>l 

vl2.a = iVotArg(vl3).n, v1z.b U ~14s) 

= NotArg(z, v5.b U ((x + 1))) {(Y + %>I 

Table 2: The system S(T) for the tree and its greatest fixed point. 

~4: St + while Cond doStl 
.S’:li~fore = Cond.s U (St, .fafter(Stl.before) I-I St.before) 

. er = Stl. before 

Table 3: The system of equations obtained by eliminating the references to cyclic synthesized attributes in S[pQ]. 

P4: s t+w ie on d do St1 
Stl.before = f[p4]Sti.be ore (Cond.s, Stl.fafter,St.before)(St.after, Stl.before) 
St.ufter = f[P&.after[Cond.s, Stl.fafter,St.before)(St.after, Stl.before) 

Table 4: The Curried representation of system of equations MS[p4] obt ained by eliminating the references to 
cyclic synthesized attributes. 

p4: St 4 whiIe Cond do St1 
be ,,,(Cond.s, St1 .fafter, St.before) 

= (“f[P&t.+V(fCond.s,Stl.fufter,St.before) 

Table 5: The canonical setting to ASIp4]. 

p4: s t-+w le on d do St1 

AS[p4] :: 
31. before = (vf[P&il.be ore (Cond.s, Stl.fafter, St.before) 
St.ufter = (~f[p4])st.nfter~Cond.s, Stl.fufter, St.before) 

FSIp4 :: { Stl.fafter = (vf[p4])st,.ofter(Cond.s,Stl.fufter) } 

Table 6: The system &4]. 
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Stl.befo7-e = ((St1.a - 4) u CO&S) n ((St.b - 4) u C07d.s) 
St.after = (St1 .b - 9) U f$ 

Table 7: A rewriting of $4 using UMFs. 

st.a 

fl 
Figure 2: The characteristic graph of the transitively cyclic arguments of MS[pG]. 

p1: Prog + St 

AS[pl] :: p;;,=,f= St g 
. > 

pz: St + St1 ; x2 

{ 

Stl.b = St.b 
ASrp2] :: St2.b = (St.b - Stl.k) u Stl.g 

St.a = (St.b - (St2.k U (Stl.k - St2.g))) U (Stz.gU (St,.g - St2.k)) 

E!qp’a] :: 
st.g = st2.g u (St1 .g - St2.k) 
St.k = St2 .Ic u (St, .k - stz .g) > 

A- 

{ 

Stl.b = 6d.s u 5t.b 
AS[ps] :: St2.b = Cond.s U St.b 

St.a = (St.b - (Stl.k u St2.k)) u (St, .g n St,.g) 

FS[p3] :: 
st.g = St1 .g n St2 .g 
St-k = St1 .k u S12.k > 

p4: St -While Lonu cloxl 

AS[pd] :: 
St1 .b = (St.6 - (St, .k - St.g ) U Cond.s 
St.a = (St.b - (St1.k - St.g) U Cond.s 

FS[p4] :: 
St.g = Cond.s 
St.k = St1.k - Stl .g > 

31 - au .- zl;L-y 

AS[p5] :: { St.a = (St.b - Arg(id. name, T)) U NotArg(id.name, Ezps) } 

FS[ps] :: 
st.g = NotArg(id.name, Ezp.s) 
St.k = Arg(id.name, T) > 

Table 8: The constructed NCAG for the AG of the available expressions problem. 
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