
Resolving Circularity in Attribute Grammars
with Applications to Data ‘Flow Analysis

(Preliminary- Version)

S. Sagiv+ 0. Edelstein’

Abstract

Circular attribute grammars appear in many data
flow analysis problems. As one way of making the
notion useful, an automatic translation of circular at-
tribute grammars to equivalent non-circular attribute
grammars is presented. It is shown that for circu-
lar attribute grammars that arise in many data flow
analysis problems, the translation does not increase
the asymptotic complexity of the semantic equations.
Therefore, the translation. may be used in conjunction
with any evaluator generator to automate the devel-
opment of efficient data flow analysis algorithms. As
a result, the integration of such algorithms with other
parts of a compiler becomes easier.

1 Introduction

Attribute grammars (AGs) were introduced by Knuth
[Knu68] as a means for defining the semantics of
context-free languages. Non-circular AGs (NCAGs)
were shown to be useful for specifying many com-
pilation tasks, and are employed to automate com-
piler development [ASU8,5]. Until recently, circular
AGs (CAGs) were considered ill formed and mean-
ingless. However, if the semantic equations employ

*IBM Israel Scientific Center, The Technion City, Haifa,
32000 Israel

tDepartment of Computer Science, The Technion, Haifa,
32000 Israel

tCurrent address: IBM T.J. Watson ResearchCenter, York-
town Heights, P.O. Box 704 N .Y. 100522

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of
the publication and its date appear, and notice is given that copying
is by permission of the Association for Computing Machinery. To
copy otherwise, or to republish, requires a fee and/or specfic
permission.

0 1989 ACM 0-89791-2942/89/0001/0036 $1.50

N . Francez+ M. Rodeh*$

monotonic operators (over some partial order), they
define a unique greatest (least) fixed point which
may be interpreted as the meaning of the equations
[JS86,Far86]. This kind of circularity arises natu-
rally in many data flow analysis (DFA) problems
[BJ78,ES86].

For structured languages, various DFA problems,
including all the classical ones (see [ASU85]), have
been specified using CAGs [ES86]. CAGs may also
handle, at a moderate cost, certain less structured
constructs (e.g. the BREAK and CONTINUE state-
ments), and constructs with side effects. In addition,
we can automatically transform other uniform for-
malisms for specifying DFA problems (e.g. [Ki173])
into CAGs.

Evaluator generators [DJL86b] accept an AG as in-
put and generate an evaluator, which accepts a syn-
tax tree and decorates it with correct attribute val-
ues. Current evaluator generators are restricted to
NCAGs. Non-circularity guarantees that the num-
ber of iterations of the generated evaluator is linear
in the size of the input tree. Furthermore, these
tools generate optimized evaluators based on non-
circularity. Therefore, translating a CAG into an
equivalent NCAG has both practical applications and
theoretical value. As a by-product of the transla-
tion process, the uniqueness of the decoration which
will be obtained at evaluation time can be checked.
Thereby, assuring that for every input tree the result
is well defined.

1.1 Results and Related Works

In this paper an algorithm is presented which resolves
the circularity in each production individually. As
Knuth has noted, AGs can simulate Turing machines
by encoding the syntax tree itself as an attribute.
Hence every CAG may be trivially converted into an
equivalent NCAG. The resulting NCAG first records
all the equations as an attribute of the start non-
terminal. Then, it computes the greatest (simultane-

36

ous) fixed point. However, this AG is not a ‘true’ AG,
since instead of using the power of the AG paradigm
it uses the power of the language in which the equa-
tions are expressed (the specification language). In
contrast to the trivial translation, our algorithm gen-
erates ‘true’ AG in the sense that all the computa-
tion are local. Furthermore, the local transformation
guarantees that for CAGs arising in DFA problems,
the complexity of solving the equations in the gener-
ated NCAG is the same as that of solving the original
equations.

In contrast to iterative evaluation[JS86,Far86], our
method may be used with an ordinary AG generator
to generate a linear evaluator.

For several DFA problems, our algorithm trans-
forms the natural CAGs describing these problems
into NCAGs which are similar to those composed
manually [BJ78,Ken8 1 ,Far86,ES86]. Therefore, our
algorithm also unifies the treatment of DFA problems
using AGs, and supports natural specification of DFA
problems.

1.1.1 Production Based Translation

The equations associated with a production p may
refer to bee attributes, i.e., attributes with no defin-
ing equations in p. Furthermore, the missing defin-
ing equations are not determined until the input tree
is given. To overcome this problem, we extend the
conventional fixed point theory [Tar551 by consider-
ing free fixed points, i.e., fixed points of systems of
equations with free variables. The greatest free fixed
point is used to compute the greatest simultaneous
fixed point using a divide-and-conquer (DAC) princi-
ple.

Every CAG may be converted into an equivalent
NCAG by using the free fixed point operator. The
generated NCAG defines a DAC computation of the
greatest fixed point of the original CAG. The gener-
ated NCAG includes new functional attributes which
summarize the input-output relation between circular
inherited and synthesized attributes. The circularity
is avoided by using the functional attributes and free
fixed points.

Input-output relations have been introduced by
Knuth [Knu68,Knu71] for circularity testing and were
also used for static evaluation [KW78,CF82,Far86]
and other analysis problems in NCAGs (see [DJL86a]
for more references). Mayoh used input-output rela-
tions to transform an NCAG into an NCAG without
inherited attributes but with functional attributes
which summarize the input-output relations [May81].

In contrast to Mayoh, we do not eliminate inher-
ited attributes but only eliminate references to circu-

lar synthesized attributes. Therefore, our construc-
tion minimizes the number of added attributes, and
yields an NCAG which maintains the same attributes
as the original CAG and not only the attributes of
the start non-terminal.Furthermore, for CAGs the
same tree may have more than one fixed point and
therefore many values may be assigned to the func-
tional attributes. An immediate consequence of our
DAC principle is that the choice of the greatest free
fixed points as the values of the corresponding func-
tional attributes is the only choice which preserves
the greatest fixed point.

1.1.2 Computability of Free Fixed Points

Our construction yields computable equations when-
ever direct evaluation may be used. The complexity
of solving the generated equations may be the same
as that of a direct evaluator due to the complexity of
fixed point computation.

The closure assumptions of [GW76,Ros80,Tar81b]
are used to ensure that for DFA problems, the free
fixed point may be expressed in the specification lan-
guage of the original CAG. Usually, the DFA prob-
lems are also bounded ([RosSO]), i.e., the number of
iterations needed to compute the fixed point of a sin-
gle function need not depend on the input. In these
cases, the complexity of solving the equations in the
generated NCAG is the same as that of solving the
original equations. This follows from the fact that
the number of equations associated with a production
does not depend on the tree size. Therefore, in these
cases, the generated evaluator is more efficient than
the iterative evaluation by an order of magnitude.

Many of the DFA problems may be expressed in
terms of simple set expressions. In these cases,
the generated NCAG does not include functional at-
tributes but only set attributes.

1.2 Outline of the Paper

In Section 2, we review the fixed point and AG nota-
tions. Then, we present our novel schematic transla-
tion of CAGs into NCAGs (Section 3). In Section 4,
we address the algorithmic aspects of the translation
process as they arise in DFA problems. We conclude
by describing the applications of our translation.

2 Preliminaries

2.1 Fixed Point Theory

In this Section, we review the needed fixed point nota-
tions and results. In particular, Tarski’s[Tar55] con-

37

ditions are somewhat relaxed, and required to hold
only for circular arguments.

Let X = {tr,z~,.. . , a:,,} where with each x E X
is associated a poset Oz. Let

D = DC1 x D,, x . . . x D,,,

and let f: D -+ D. A fixed point of f is sometimes
called a simultaneous fixed point since the equation
X = f(X) can be viewed as a simultaneous system
of equations

s :: {x = f$JX) : 2 E X} (1)

To use positional notatio,ns, X is (arbitrary) ordered
and each of the fc has the form f=(cl, 22,. . ., zn). In
the sequel, we use systems and functions interchange-
ably. In particular, we sometimes use YS instead of
vf to denote the greatest fixed point off.

We are interested in systems S in which fs need
not depend on all its arguments. The character&
tic graph Gs = (X, E) is a directed graph in which
(zi, zj) E E if zi (semantically) depends on xj,
i.e., fii(dl,...,dj,...,d,,) # fii(dl,.“,d5,...,d,)
for some dl,...,dj,d[i,..*,d,. An argument z E X
transitively depends on 31 E X in S if there exists a
directed path from y to z: in Gs. In the sequel, we do
not distinguish between transitive and direct depen-
dencies. An argument 2: E X is cyclic if it depends
on itself. It is transitiver!y cyclic if it is either cyclic
or it depends on a cyclic argument and otherwise it
is acyclic. The system S is cyclic if it contains cyclic
arguments, and otherwise it is acyclic.

Tarski’s theorem guarantees that for every system
S in which all the functions fz are monotonic in all
their arguments, and a11 the domains are complete
partial orders(CPOs) vS exists. The theorem also
holds when S is only weir! defined, i.e., for every tran-
sitively cyclic argument x E X, fz is monotonic in
all its transitively cyclic arguments, and the domains
of all the cyclic arguments are CPOs. Moreover, we
prove a simple representation theorem which allows
to transfer to well defined systems, the results about
systems in which all the equations are monotonic and
all the domains are CPOs.

To that end, the set X of arguments of a system S is
partitioned into the cyclic arguments (denoted by C),
the acyclic arguments (denoted by A) and transitively
cyclic arguments which are not cyclic (denoted by
T). Every well defined system S has an equivalent
representation (one preserving all fixed points):

S” ::

{

A = h,,(C) E d(S, A)
c = he(C)

1
(2)

T = h??(C)

This representation can be derived from S by the fol-
lowing phases:

1. Find the unique simultaneous fixed point of the
acyclic part of S, d(S, A).

2. Replace the references to the acyclic arguments
by their values to get a new system S’ .

3. Restructure S’ to have the form (2), by elimi-
nating the references to transitively cyclic argu-
ments in S’. Each such reference is replaced by
its defining equation.

An element d E D is a pre-fixed point of S, if
d 2 f(d) and dA = fA(d). Notice that this definition
is non-standard by requiring equality for acyclic argu-
ments since their fixed point component is unique. A
way to circumvent this non-standard definition is by
using equality as the order imposed on the acyclic
arguments. In the following theorem, FP(f) and
PRE(f) are the set of fixed points and pre-fixed
points of f, respectively.

Theorem 2.1 (Representation of well defined
sys terns)
For every well defined system S ofthe form (I), there
exists a unique d(S, A) E DA and a monotonic fine-
tion h: D + D which depends only on its cyclic argu-
ments such that

Vd E D: hA(d) = d(S, A)
FP(S) = FP(h)

(3)
(4

PRE(S) c PRE(h) (5)

The representation theorem implies that for every
well defined system S, YS exists. The existence of VS
can be also proved by a direct inductive proof by par-
titioning Gs into its strongly connected components,
and constructing YS using a topological order on the
strongly connected components. The direct proof has
the advantage that it suggests an algorithm to com-
pute ~5’ when the domains of the cyclic arguments
are well founded sets (WFS). However, the represen-
tation theorem may be also used to extend Park’s
Theorem1 and to prove the monotonicity of the v op-
erator.

Systems of equations may contain free variables.
Let Y = {YI,Y~,..., ym). The free system S(Y) has
the form:

S(Y) :: {x = fz(Y, X) : 2 E X} (6)
The functional representation of S(Y) has the form
f: Dy x Dx + Dx, 0~ in its Curried form f: Dy -+
(Dx + Dx), where f(&)(h) = f (dy, dx). The

notions of characteristic graph, cyclic and transi-
tively cyclic arguments and well defined systems of

lone of the variants of Park’s theorem is that d 5 vf for
everypre-fixed point d E D of a monotonic function f : D -+ D
where D is a CPO.

38

equations are extended to free systems in a natural
way. Furthermore, for well defined free systems S,
v(S(dy)) (the greatest fixed point of the system of
the form (1) obtained by substituting dy for Y) ex-
ists for every dy E Dy.

To allow transformations on free systems of equa-
tions, we define the notion of weak equivalence of two
free systems S’ and S2 of the form (6). S1 and S2
are weakly equivalent (S E S2) if for every dy E Dy ,
vSl(dy) = vS2(dy). For example, the equations
2 = zfly and 2 = y are weakly equivalent on powerset
domains ordered by set inclusion.

2.2 Attribute Grammars

For a review of the standard imperative semantics
of AGs see [DJL86a]. Here we exemplify the nota-
tions via the AG AEP in Table 1, which describes
the formal available expressions problem[ASU85, pp.
627-6311, [BJ78]. The intended value of the inher-
ited attribute St. before is the set of available expres-
sions before the execution of the statements derived
from St. Similarly, the value of the synthesized at-
tributes St.after and Prog.after are the set of avail-
able expressions after the execution of St and Prog,
respectively. The synthesized attributes Ezp.s and
Cond.s hold the set of expressions which appear in
the expression and the condition, respectively. The
attribute id.name contains the name of the variable.
The function iVotArg(n, E) used in 5.1 returns the
expressions in E in which n does not appear as argu-
ment. Thus, equation 5.1 first adds the new expres
sion, and then deletes the expressions which become
unavailable by the assignment. The other equations
are straightforward. This AG is used as a running
example in this paper.

Apart from the standard imperative semantic def-
inition of AGs, an AG defines a class of systems of
equations ([CM79]). With each production p in the
grammar is associated a system S/p] over the at-
tributes Attr[pl of the grammar symbols in p. The
set Attr[p] is partitioned into the defined attributes
Outputb] and the free attributes Inputb]. Let T be
a tree over a given AG and let v be a vertex of T in
which a production p has been applied. The system
S(v) is an instantiation of S[p] obtained by replacing
the attributes of S[p] by the corresponding attribute
occurrences. S(T) is obtained by pasting together the
systems S(v) for all v in T. The set Attr(T), the at-
tribute occurrences of T, is partitioned into Input(T),
which are the free attribute occurrences and are ini-
tialized during the tree construction, and the defined
attribute occurrences Output(T). Figure 1 contains
an input program for AEP and a possible tree. Ta-

ble 2 contains the system of equations of this tree as
well as the greatest simultaneous fixed point. Here
b,a and n are shorthand for the attribute names be-
fore, after and name, respectively.

An AG is circular (CAG) if there exists a tree T
for which S(T) is cyclic; otherwise it is non-circular
(NCAG). Table 2 shows that AEP is circular since
v12.a depends on vl2.b in equation 13, and v12.b de-
pends on vl2.a in equation 11.

A CAG is well defined if for every T, the system
S(T) is well defined. The example AG AEP is well
defined since the finite powerset AE of available ex-
pressions ordered by set inclusion is a CPO and the
functions used in AEP employ set operations which
are monotonic in the (transitively) cyclic attributes.
Some care has to be taken in this example in order
to cope with the absence of a maximum element.

Since the equations of any AG are syntactically

sparse, the characteristic graph G(T) dgf Gs(T) of
S(T) may be approximated by considering syntac-
tic rather than semantic dependencies. As a result,
G(T) may have more edges than the real characteris-
tic graph of S(T).

AGs may be analyzed in order to find out which
of the semantic functions need to be monotonic, and
which of their domains need to be a GPO, Unfortu-
nately, the circularity testing problem is exponential
([JOR75]). Still, for all practical purposes, Knuth’s
algorithm [Knu68] can be used as an approximation
to circularity testing. The idea is to precompute the
IO relation IO[Z] s Inh[Z] x Syn[Z] which is a su-
perset of the set of all the possible dependencies of
the synthesized attributes of Z on the inherited at-
tributes of Z. Thus, for every tree T with a root of
type Z (where Z is not necessarily the start symbol of
the grammar), IO(T) c IO[Z], where IO(T) denotes
the relation obtained by restricting the transitive cl*
sure of G(T) to the attributes of Z. An AG is uniform
if for every non-terminal Z, there exists a tree T with
a root of type Z such that IO[Z] - IO(T). Non-
uniform AGs are considered ill formed and tend not
to appear in practice. In this paper the IO relations
are useful for two purposes:

1. To.derive an algorithm for finding the cyclic and
transitively cyclic attributes of every production
p, (denoted by CAttr[p] and TAttrlp]), and the
circular attributes of a non-terminal Z (denoted
by CAttr[Z] and TAttr[Z]). The details of the
algorithm are not give here.

2. In the next section, we shall use the IO relations
to define the translation of a CAG into an equiv-
alent NCAG.

39

In the rest of this paper Twe treat only uniform CAGs
although this restriction can be relaxed

3 Schematic Resolution

The free greatest fixed po:int vS of a free system S(Y)
of the form (6) is a function of the free arguments
which yields the greatest, fixed point for every input
value (thus (v,!?)(d) - vS(d)). For example, consider
a powerset domain ordered by set inclusion. Then, for

S(Y1, Y2) :: x = (x - ~1) n 92, I& = ~(YI, YZ) where

f(Y1, Y2) ef Y2 - Yl.
If the domains of the cyclic attribute occurrences

of a tree 5” over a CAG; are WFS then a straight-
forward iterative procedure may be used to com-
pute the greatest fixed point of SAG(T). Alterna-
tively, the free fixed point may be used to compute
vSAG(T)@@(T)) in t:he following two phase pro-
cedure:

Bottom-Up For each vertex v find the free fixed
point vS(v) by scanning T bottom-up.

Top-Down Use the values of the inherited attributes
top-down to substitute for the free arguments of
each free fixed point to obtain the values of all
the attributes.

This procedure has the desired property of being lo-
cal. However, it is carried out at evaluation time
when T is given. Instead, we would like to concen-
t+e on generation time and to construct an NCAG,
AG, for a given CAG A(‘;, which induces the above
DAC process for computing the grztest fixed point
of SAG(T) for every T. The AG AG would include
the original set of attribute occurrences and new syn-
thesized functional attribute occurrences to represent
vS(v). Since we deal with generation time, Sb] will
be considered.

By solving the systems S[p] once and for all, the
complexity of the generated evaluator is reduced.
However, the cost of ma.intaining the functional at-
tributes may be considera.ble. Therefore, we only add
enough functional attributes to break all the cycles.
As an additional benefit, this allows easy integration
with non-circular components of a given CAG.

3.1 Production Based Translation

Consider a production p:: 2 + ZlZ2 . . . Z,. To get
rid of cycles, it is sufficient to eliminate the following
two sources of circularity in p:

1. The system S[p] is c.yclic by itself (direct cir-
cularity)

2. The system Sip] contains a reference to a cyclic
synthesized attribute Zj .cs (transitive circu-
larity).

In AEP, there is no direct circularity since for all
p, S[p] is acyclic. However, all the productions other
than p5 are transitively circular. For example, p4 is
transitively circular since the attribute Stl.a.fter is
used in S[p4] for defining Stl.before.

Our approach to first eliminate the transitive circu-
larity in p, thereby introducing direct circularity and
then to eliminate direct circularity altogether.

3.1.1 Elimination of Transitive Circularity

Transitive circularity is a chicken and egg problem
where cyclic synthesized attributes are used in S[p]
for defining cyclic inherited attributes, and cyclic in-
herited attributes are used in productions applied be-
low p for defining cyclic synthesized attributes.

The transitive circularity may be eliminated by
adding a functional synthesized attribute Zj.fcs
which holds the input-output relation from inherited
attributes to a circular synthesized attribute Zj.cs
and using the expression Zi.fcs(lnh[Zj]) instead of
Zj.CS*

Table 3 contains the system obtained from S[p4]
where the cyclic attribute St,.before was replaced
by Stl.fafter(Stl. before). Thus, St.fofter is a new
functional synthesized attribute of type AE -P AE
(remember that AE is the powerset of available ex-
pressions). Of course, this replacement is valid only
if all the semantic equations associated with pro-
ductions in which Zj is derived maintain the in-
variant Zj .CS = Zi. f cs(lnh[Zj]). In AEP, each of
the productions pz,p3, p4 and p5 need to be associ-
ated with an equation defining St.fafter such that
St.after = St.fafter(St.before). We defer the def-
inition of the semantic functions to maintain these
invariants to Section 3.1.3.

In general, the new functional attribute Zj .fcs is a
function from Drnhlzjl to Dz~.~~. However, the num-
ber of inherited attributes may be large and therefore
Zj.fcs may have many arguments. Thus, we take
only those arguments which are cyclic in p and used
in some of the trees below p to define Zj.cs.

Let CSyn[Z] (C%h[Z]) be the circular synthesized
(inherited) attributes of a non-terminal 2. Formally,
for every non-terminal Y in AG, and an attribute
cs E CSyn[Y], AG - includes a synthesized functional
attribute fcs associated with Y. For a circular syn-

thesized attribute cs E CSyn[Y), let Inp[Y, cs] zf
{Y.ci : (ci,cs) E IO[Y], ci E Crnh[Y]}. Each cyclic
synthesized attribute Zj.cs E CAttr[p] is replaced by

40

Zj.fcs(lnp[Zj,cs]). Let MSb] be the modified SYS-

tern and let fb] be the corresponding function. Let
Inp&b] be the free attributes in MSb]. The Cur-
ried representation of MS[p] is

J/fS[p] :: {x = flplz(~np~t’[pl)(O~~P~~~l~ :
x E 0utput[p]}

(7)

In AEP, Inpd[pd] = {Cond.s,Stl.fufler,St.before}.
Table 4 contains the system MS[p4] where the se-
mantic functions are explicitly written using Curried
notations.

3.1.2 Elimination of Direct Circularity

Direct circularity may be avoided by finding an
acyclic system AS[p] such that ASb] Z MSb]. This
can be done by ‘symbolically’ solving all the cycles
in MSb], and finding an expression over the free at-
tributes of MSb] which computes the free greatest
fixed point of MS[p].

Applying the free fixed point operator to fb] of (7)
we get:

AC&] :: tz = (“fb~)dlnputl~l) :
x E Ovtpuqp]}

In Table 5, we applied this transformation to MSbb]
to obtain AS[pa]. By definition AS[p] is acyclic and
has the same greatest fixed point as MSb](d) for ev-
ery input d E DI,,+I[~I.

If the original AG is well defined, then all the equa-
tions in Sk] are monotonic in Zi.cs. Therefore, if the
semantic equations set Zi.fcs to a monotonic func-
tion then vfb] exists. For example, equation (4.1)
in the original AG AEP is monotonic in St1 .after.
Therefore, if the value of the functional attribute
St.fufter is always a monotonic function, then we can
guarantee at construction time that Vf[P4] exists.

3.1.3 Maintaining the Invariants

To complete the construction described above, we
have to introduce equations which establish the in-
variants 2. fcs(lnp[Z, cs]) = Z.cs for every circular
synthesized attribute cs of the left hand side non-
terminal 2.

Let cs E CSyn[Z]. Let Other[p,cs] gf InputlEp] -
Inp[Z, cs]. The function (vf [p])z.cs may be presented
in a Curried notation as:

(vf b])Z.cs : DOther[p,cs] - (%np[Z,ea] + DZ.cs)

Now define the system PS/p] as follows:

FS[p] :: Wfcs = (vf W?Lc40tWp> 4) :
cs E CSyn[Z]}

(9)

The system &] associat_ed with p in 2 is ASb] U
FSb]. Table 6 contains S[pa].

3.2 Correctness of the Translation

The non-circularity of 2 stems from the following:

1. An AG which does not contain transitive and
direct circularity is non-circular.

2. For every production p: Zo ---, 212~ . . . Z,, each
of the functional attributes of 20 may depend
only on functional attributes of Zi for 1 5 i 5 n
and on non-cyclic attributes of Zi. This follows
from the elimination of references to cyclic syn-
thesized attributes as well as the elimination of
cyclic inherited attributes, by using them as ar-
guments of the functional attributes.

To guarantee that the new functional attributes are
non-circular, we eliminate all the references to cyclic
synthesized attributes even though not all the elimi-
nations expose direct circularity. In fact, new direct
circularity is created in MSb] only when a cyclic in-
herited attribute depends on a cyclic synthesized at-
tribute in Sk].

In AEP, the only new direct circularity is in MS[p4]
since Stl.before depends on Stl.ufter, in Sb)rl], Still,
to guarantee that St.fafter is non-circular we need to
eliminate St.after from S[pz] and S[~B].

A tree T is complete if its leaves contain only ter-
minals.

Theorem 3.1 (Equivalence Theorem)

Let AG be a well defined CAG and z be the resulting
NCAG. Then, for every complete tree T, SAG(T) z

The system SAz (T) may be obtained from the sys-

tem SAG(T) by a sequence of transformations each of
which preserves the greatest fixed point and the well
definededness of the system. Therefore, the unique
fixed point of (the acyclic). S,--,(T) is the greatest
fixed point of SAG(T). D ue to space limitations we
cannot rigorously prove it here. The proof is based
on the following mathematical properties:

1. The weak equivalence relation is closed under
systems union, i.e., if Sx, g S2x, and S1x, z

s2x2 for an arbitrary partition of the defined
arguments X of S1 and S2 into X1 and X2,
then S’ z S2. This allows us to show that
SAG(T) Y S,--,(T) by structural induction on
T.

2. Let S(Y) be a well defined system of the form (6).
Then VS can be found by first finding YS~ for
an arbitrary sub-system Sl of S and then find-
ing vS’ where S’ is the system obtained from S
by replacing the arguments of S1 by vS~. The

41

above may be proven using Park’s Theorem. In
particular, for a complete tree T rooted by P,
YSAG(T) may be found by first finding the free
fixed point of cyclic arguments of the children of
r, and then finding the solution of the resulting
system as done in S;&T).

4 Application to Data Flow

We now apply the translation scheme of Section 3 to
CAGs arising in DFA. In ,these problems each of the
semantic functions defining circular attributes is an
expression in some specification language. If in addi-
tion we make the standard DFA assumptions regard-
ing the expressibility of the specification language,
then each of the Ask] systems can be also written in
the same specification language.

4.1 A Data Flow Framework

Let the domain of all the transitively circular at-
tributes D be a complete semi-lattice, A the meet
operator over D and let E’ be set of functions on D.
Then, CAG is a circular data flow analysis AG with
respect to D and F (CDFAG) if each of the transi-
tively circular attributes a is defined by an equation
of the form:

a = Ad&L+‘) (10)

where each %I is an expression over the acyclic at-
tributes which yields a function in F, and I, is the set
of transitively cyclic arguments on which u depends.
The set F is the ‘valid’ functions and (10) defines the
specification language.

A special case of the above parametric specification
language is when D = 2p for some finite set P and
5 is set inclusion. In this case, A is n and T = P. A
function f: D + D is a uniform modification function
(UMF) with respect to P if there exists K,G C_ P
such that for every d s P, f(d) = (d - K) U G.
The set F(P) is the set of UMFs with respect to
P. UMFs are used to describe most of the classi-
cal DFA problems[GW76,:RP86]. We use I< and G
as a generalized shorthand for kill and gen which are
frequently used in the literature to describe classical
problems such as available expressions, live variables
and reaching definitions2[.ASU85]. For UMFs, (10)
has the form:

O,= nolEr, ((a’ - h) u Gal) (11)

where K,, and G,, are functions of acyclic attributes
which yields subsets of P. By convention, CDFAG

2The last two problems need least and not greatest fixed
point.

which uses UMFs is a uniform modification circular
attribvle grammar(UMCAG).

For example, Table 7 presents a variant of S[pd]
in which both equations have the form (11). All the
Equations of AEP but (5.1) can be easily put in the
form (11:). To use UMFs in (5.1), we modify it into:

(L3t.l~ - Arg(id.n, T)) U NotArg(id.n, Ezps)

where T denotes the universal set (all the expressions
in program) and Arg(n, T) is the set of expressions in
the program in which n is an argument. Notice that T
can be replaced by an inherited attribute St.universe,
and by writing new semantic equations to define this
attribute in a left-to-right manner. In general, the re-
quirement of having P finite can be relaxed by requir-
ing that only the G sets are finite. Thus, for an input

tree T, we can set P(T) dzf UrzL=,Gi where Gi are the
G sets which appear in the equations. Notice that
the sets G are known after computing non-circular
attributes.

To guarantee that A^G uses the same specification
language, we require that the new equations also have
this form over the same F. To this end, we say that an
AG is closed with respect to F if for every produc-
tion p: 20 + Zr Z2 s s .Z, and a transitively circular
attribute Zi.o E Output[p], the defining equation of
&.a in AS[p] may be written as an expression of the
form (10) over F where a’ E CInh[Zo]. As we shall
see, every UMCAG is closed with respect to UMFs.
Therefore, the schematic translation of Section 3 will
produce an NCAG where the modified equations use
only sets expressions.

4.2 Distributive Frameworks

We now impose more restrictions on F to guaran-
tee that the CDFAG is closed. Furthermore, the re-
strictions allow us to construct functional expressions
for computing the greatest free fixed point, by an
efficient algorithm. In particular, it will enable the
automatic conversion of UMCAG into an equivalent
NCAG since it will satisfy the restrictions.

A function f: D + D is distributive (and there-
fore monotonic) if for every $1, dz, . . . E D, f(Adi) =
Af(di). For example, UMFs are distributive since for
everydr,dz,..., ((nidi)- K)UG= ni((di-K)UG).

A set of distributive functions F on D is a distribu-
tive data jlow analysis framework (DFAF) if:

Identity There exists an identity function L E F
such that for every d E D: L(d) = d.

Top There exists a function T E F such that for
every d E D: T(d) = T.

42

M-Closure F is closed under meet operation, i.e.,

Vf1,fi E FJ(fi/\fi) E F,VdED:
(fl A fz>@) = M-0 A f2(4

C-Closure F is closed under composition, i.e.,

Vf1,f2 E F,3(flof2) E F,VdED:
(fl 0 f2)(4 = f2UlW

S-Closure F is closed under the star operation, i.e.,

Vf EF,iIf*EF,VdED:
f’(d)=dAf(d)Af2(d)A.**

The requirement of having a top function is an extra
requirement with respect to [Ro&O,TaBlb], and may
be replaced by some connectivity requirements on the
characteristic graph of each of the systems.

The set F(P) of UMFs is closed where b(d) dgf (d-

4) U 4 and T(d) dgf (d - 4) U P. For the closure rules

let fi(d) dgf (d - Ki) U Gi for i = 1,2. Then:

M-Closure (fl Afz)(d) E (d - (Kl U K2)) U (G2 n
G2).

C-Closure (fl o fi)(d) E (d - (K2 u (KI - Gz))) u

(G2u(G--K2)).

S-Closure Every UMF f is idempotent, i.e., fk I f,
for A 2 1. in particular, fl*(d) c d fl (d - K1) IJ
Gl=(d-(Kr-Gr))uqk

Theorem 4.1 Let AG be a CDFAG with respect to
D and a DFAF F. Then, AG is closed with respect
to F.

The proof of Theorem 4.1 (not given here) is construc-
tive. The idea is to maintain stronger invariants by
guaranteeing that the functional attributes also have
the form (10). F or example, in AEP we maintain the
invariant that

St.fa(St.b) = (St.b - St.k) u S&g (12)
where k and g are new synthesized attributes. There-
fore, in this case, these set attributes may be used
instead of the functional attribute St.fa.

Using the stronger invariants, the construction is
similar to the construction of the functional expres-
sions whichcompute the meet over all paths[Tar81b13.
For example, consider the system of Table 7. After
eliminating the cyclic reference to St1 .a in (4.1), we
get:

St1.b = ((St,.fa(St,.b)-~)UCond.s)fl((St.b-+)Uq5)

3This is not exactly true since we allow many sources. Thus,
we need to use the T function to reduce our system into
Tarjan’s.

By using the invariant (12), we get

St1.b = ((((St1 .b - St1.k) u Stl.g) - 4)
uC0nd.s) n ((NJ - c#~) u 4)

Now using the closure of UMFs under composition
MS [pd] yields:

MS[p*] ::
St1 .b = fl(stl.b) A f&m) (4.1)
St.a = fs(St1.b) (4.2)

where:
Kl L

fi(d) zf (d - 9 U S$,.g U Cond.s (13)

fi(d) gf (d-PUP

f3(d) %Zf (d--6;)&?+

(14)

(15)
The characteristic graph of this system is shown in
Figure 2 where the edges are marked with the func-
tion names.

Tarjan’s method may be used to construct vMS[p4]
in two conceptual phases:

1. Find regular path expressions o(St.b,St.a) and
cr(St.b,Stl.b) over the edges which summarize
the set of paths from St.b to St.a and St1.b re-
spectively. In the graph of Figure 2 we will get:

cY(St.b, St.a) = ((+S;.bbS’.b)).(Stl.b, St1.b)‘.

c@.b, 31 .b) = (St!&;).(Stl.b, Stl.b)+

2. Convert cu(St.b, %a) and a(St.b, St1.6) into
functions in F which compute (vMS[p&~t.~ and
(YMS[~~])~~~J,, respectively. This is done by in-
duction of the structure of the regular path ex-
pression and using the closure operations on F.
The expressions in the system MS[p4] are:

St1.b =
d!f

d!f

E

St.a =
E

fi o fi’(3.b)

(St.b - (K1 - G1) u (K2 - C#J))U

f’-’ iG2 ;K(K1- GIN
I -G)uK2)u

(4 $5 - Gl))

(St.b - (St,.k - (Stl.gu Cond.s)) u q5)u
(Cond.s - (31 .k - (St, .g u Cond.s)))
(St.b - St1 .k - (St1 .g u Cond.s))u
Cond.s
(St.b - (St1.k - St1 .g)) u Cond.s
f2 Ofl’ o f3W.b)
(St.b - (St1.k - St1 .g)) U Conds

Table 8 contains the constructed NCAG obtained
by finding vMStp] for all the productions p in the
modified AEP, using the above two phases algorithm.
To make this algorithm efficient, the regular path ex-
pressions (and the functional expressions) need to be
maintained in a single labeled direct acyclic graph.

43

For general graphs, the complexity of computing the
path expressions is O(#) where n is the number of
vertices4. Therefore, the complexity of constructing
the expressions for CDFAG, is O(pZ3) where p is the
number of productions and 1 is the maximal number
of circular attribute appearances in a production.

Some of the DFA pro’blems are not distributive.
Furthermore, the star operation may be too expen-
sive to compute. In these cases, a functional expres-
sion can still be computed [GW76,Ros80,Tar81b] but
the expression may yield. a value which is between
the meet over all paths and VS. Thus, the resulting
NCAG is not weakly equivalent but yields safe results
which may be greater than VS.

Since we resolve circularity at generation time, the
major concern is the complexity of the generated se-
mantic functions. To estimate the complexity of the
star operation (which is the main problem), the no-
tion of k-boundedness is defined: F is k-bounded if
for every f E F, fk+l 2~ l/\fl\..ql\fk. For ex-
ample, UMFs are l-bounded. For a k-bounded func-
tion f, f’ E (L/\ f)k ma,y be computed by O(log k)
composition operations. As a result, the generated
semantic equations have the same asymptotic com-
plexity as the original ones.

5 Conclusions

The resolution algorithm presented here may be used
to convert a CAG into a linear evaluator in the fol-
lowing steps:

1.

2.

3.

4.

The IO relations and the set of (transitively)
cyclic attributes are found. This information is
used to guarantee that the CAG is a data flow
analysis CAG and therefore well defined.

The algorithm of Section 3 is applied to yield an
NCAG which includes the free fixed point oper-
ator.

The free fixed point operator is replaced by an
expression over the functions used in the orig-
inal expressions and the closure operations. If
the functions are bounded then the resulting ex-
pressions have the same asymptotic complexity
as the original ones.

An ordinary evaluator generator translates the
NCAG into a program.

High-level data flow analysis algorithms[Ros77] are
also linear. The fact that we use AG formalism en-
ables us to solve data flow analysis problems without

‘If the graph is reducible then a more efficient algorithm
due to Tarjan [TarSla] may be used.

interpreting the meaning of the control structures or
the non circular components. As a result, our method
provides a tool for developing data flow analysis al-
gorithms.

Historically, this work began by developing an opti-
mizer for a Pascal-like language using GAG[KHZ82].
For each data flow analysis problem we wrote[ES86]
a CAG and manually translated it into an equivalent
NCAG so that GAG could convert the NCAG into a
Pascal program. The resolution algorithm proposed
here automates the translation for most of the data
flow analysis problems considered since most of them
could be easily specified using uniform modification
CAGs. One exception is the constant propagation
problem in which symbol tables are needed. In this
case, we can still resolve the circularity but the result-
ing NCAG yields less informative results. For exam-
ple, the NCAG in [Wi181] is a natural approximation
for a CAG to the constant propagation problem.

This work also emphasizes the the trade-off be-
tween the class of AGs and the power of semantic
functions. For uniform modification CAGs, the ex-
pressive power of NCAGs and CAGs are essentially
the same. This is also true for monotonic computable
functions on well founded sets. However, in problems
such as the constant propagation or when using GO-
TOs, symbol-tables need to be used. Therefore, the
resulting NCAG includes an explicit free fixed point
operator.

A direct efficient algorithm may be used instead of
translating CAGs into NCAGs. In particular, meth-
ods of finite differencing[CP87] may be used to avoid
the cumulative cost of repeatedly computing the func-
tions. Our initial study shows that this technique
provides an alternative linear computation for a sub-
class of CAGs including UMCAGs.

Acknowledgments

We would like to thank Peter Lipps, Robert Paige,
Ken Perry, Ron Pinter, Reinhard Wilhelm and Shaula
Yemini for their help during our research and writ-
ing up this paper. The work of Shmuel Sagiv was
Partially supported by SFB 124-VLSI design and
parallelism of the Deutsche Forschungsgemeinschaft.
The work of Nissim Francez was partially supported
by the foundation for research in Electronics, Com-
puters and Communication (administered by Israeli
academy of sciences and humanities), and by the fund
for the promotion of research in the Technion.

References

[ASU85]

[BJ78]

[CF82]

[CM791

[CP87]

A.V. Aho, R. Sethi, and J.D. Ullman.
Compilers: Principles, Techniques and
Tools. Addison-Wesley, 1985.

W.A. Babich and M. Jazayeri. The method
of attributes for data flow analysis, part i:
exhaustive analysis, part ii: demand anal-
ysis. Acta Informatica, 10:245-272, 1978.

B. Couracelle and P. Franchi-Zanettachi.
Attribute grammars and recursive program
schemes. Theoretical Computer Science,
17:163-191 and 235-257,1982.

L. Chirica and D. Martin. An order-
algebraic definition of Knuthian seman-
tics. Mathematical Systems Theory, 13:1-
27, 1979.

J. Cai and R. Paige. Binding performance
at language design time. In ACM Sympo-
sium on Principles of Programming Lan-
guages, pages 85-97, 1987.

[DJL86a] P. D eransart, M. Jourdan, and B. Lhorho.
A Survey on Attribute Grammars Part I:
Main Results on Attribute Grammars. Re-
search Report 485, I.N.R.I.A, 1986.

[DJL86b] P. D eransart, M. Jourdan, and B. Lhorho.

[ES861

[Far861

[GW76]

[JOR75]

[JS86]

[Ken8 l]

A Survey on Attribute Grammars Part II:
Review on Existing Systems. Research Re-
port 501, I.N.R.I.A, 1986.

0. Edelstein and S. Sagiv. Machine Inde-
pendent Optimizations via Attribute Gram-
mars. Technical Report TR88.187, IBM
Israel Scientific Center, 1986.

R.W. Farrow. Automatic generation of
fixed-point-finding evaluators for circular
but well-defined attribute grammars. In
SIGPLAN ‘86 Symposium on Compiler
Construction, pages 85-98, 1986.

S.L. Graham and M. Wegman. A fast
and usually linear algorithm for global data
flow analysis. Journal of ACM, 23(1):172-
202, 1976.

M. Jazayeri, W.F. Ogden, and WC.
Rounds. The intrinsic exponential com-
plexity of the circularity problem for at-
tribute grammars. Communications of the
ACM, 18(12):696-706,1975.

L.G. Jones and J. Simon. Hierarchical
VLSI design systems based on attribute
grammars. In A CM Svmvosium on Princi-
pies of Progmmming Languages, pages 58-
71, 1986.

K. Kennedy. A survey of data flow anal-
ysis techniques. In S.S. Muchnick and
N.D. Jones, editors, Program Flow Anal-
ysis: Theory and Applications, chapter 1,
pages 5-54, Prentice-Hall, 1981.

[KHZ821

[Ki173]

[Knu68]

[Knu71]

[KW78]

[May811

[Ros77]

[Ros80]

[RP86]

[Tar551

[Tar8la]

[Tar8lb]

[Wi18 l]

U. Kastens, B. Hutt, and E. Zimmer-
man. GAG: a Practical Compiler Genera-
tor. Volume 141 of Lecture Notes in Com-
puter Science, Springer Verlag, 1982.

G.A. Kildall. A unified approach to global
program optimization. In ACM Sympo-
sium on Principles of Progmmming Lan-
guages, pages 194-206, 1973.

D. E. Knuth. Semantics of context free
languages. Mathematical Systems Theory,
2(2):127-145, 1968.

D. E. Knuth. Semantics of context free
Ian uages. Mathematical Systems Theory,
5(17:95-96, 1971. Errata.

K. Kennedy and S.K. Warren. Automatic
generation off efficient evaluators for at-
tribute grammars. In ACM Symposium
on Principles of Programming Languages,
pages 32-49, 1978.

B. II. Mayoh. Attribute grammars and
mathematical semantics. SIAM Journal
on Computing, 10(3):503-518,198l.

B. K. Rosen. High-level data flow analysis.
Communications of the ACM, 20:712-724,
1977.

B. K. Rosen. Monoids for rapid data flow
analysis. SIAM Journal on Computing,
9(1):159-196, 1980.

B.G Ryder and M.C. Paul. Elimination
algorithms for data flow analysis. ACM
Computing Surveys, 18(3):277-316,1986.

A. Tarski. A lattice-theoretical fixedpoint
theorem and its application. Pacific Jour-
nal of Mathematics, 5:285-309, 1955.

R.E. Tarjan. Fast algorithms for solv-
ing path problems.
28(3):594+X4, 1981.

Journal of ACM,

R.E. Tarjan. A unified approach to path
problems. Journal of ACM, 28(3):577-593,
1981.

R. Wilhelm. Global flow analysis and opti-
mization in the MUG2 compiler generating
system. In S.S. Muchnick and N.D. Jones,
editors, Program Flow Analysis: Theory
and Applications, chapter 3, pages 141-
159, Prentice-Hall, 1981.

pl: Prog + St r St.before = qi
Prog.after = St.after

Stl.befom = St.before (2.1)
St2. before = St1 .after (2.2)
St. afler = St2. afler (2.3)

St 4 if Cond then%1 else St2
Stl.before = Cond.s U St.befom (3.1)
Sta.before = Cond.s U St.before (3.2)
St.after = Stl.after fl Sta.after (3.3)

p4: St + while Cond doStl
Stl.before= Cond.sU(Stl.afternSt.before)
St.after = St1 . before

p5

: 3t + Id := r;xp

{ St p .a er = NotArg(id.name, St.before U Ezp.s) (5.1) }

Table 1: An AG (AEP) for the available expressions problem.

01

x:=y+z;
I

9 :=x+t;
while t < 8 do

2 := 2 + 1; V

Figure 1: .An input program to the available expressions problem and its tree.

46

*
1 Iv1 1.i I v2.b =
2 1 1.2 v1.a = v2.a

3 Iv2 2.1 v3.b = v2.b

v6.a

v3.a =
v5.a =

=
=
=

vl2.b =
=

((Y + 4% < 8))

{(y+ GL+w
{(Y + “‘;d” < 811

i(Y + %)I
{(Y+4,(~+-tt)l

HY + 41

{(Y + %), (z + t>l

vl2.a = iVotArg(vl3).n, v1z.b U ~14s)

= NotArg(z, v5.b U ((x + 1))) {(Y + %>I

Table 2: The system S(T) for the tree and its greatest fixed point.

~4: St + while Cond doStl
.S’:li~fore = Cond.s U (St, .fafter(Stl.before) I-I St.before)

. er = Stl. before

Table 3: The system of equations obtained by eliminating the references to cyclic synthesized attributes in S[pQ].

P4: s t+w ie on d do St1
Stl.before = f[p4]Sti.be ore (Cond.s, Stl.fafter,St.before)(St.after, Stl.before)
St.ufter = f[P&.after[Cond.s, Stl.fafter,St.before)(St.after, Stl.before)

Table 4: The Curried representation of system of equations MS[p4] obt ained by eliminating the references to
cyclic synthesized attributes.

p4: St 4 whiIe Cond do St1
be ,,,(Cond.s, St1 .fafter, St.before)

= (“f[P&t.+V(fCond.s,Stl.fufter,St.before)

Table 5: The canonical setting to ASIp4].

p4: s t-+w le on d do St1

AS[p4] ::
31. before = (vf[P&il.be ore (Cond.s, Stl.fafter, St.before)
St.ufter = (~f[p4])st.nfter~Cond.s, Stl.fufter, St.before)

FSIp4 :: { Stl.fafter = (vf[p4])st,.ofter(Cond.s,Stl.fufter) }

Table 6: The system &4].

47

Stl.befo7-e = ((St1.a - 4) u CO&S) n ((St.b - 4) u C07d.s)
St.after = (St1 .b - 9) U f$

Table 7: A rewriting of $4 using UMFs.

st.a

fl
Figure 2: The characteristic graph of the transitively cyclic arguments of MS[pG].

p1: Prog + St

AS[pl] :: p;;,=,f= St g
. >

pz: St + St1 ; x2

{

Stl.b = St.b
ASrp2] :: St2.b = (St.b - Stl.k) u Stl.g

St.a = (St.b - (St2.k U (Stl.k - St2.g))) U (Stz.gU (St,.g - St2.k))

E!qp’a] ::
st.g = st2.g u (St1 .g - St2.k)
St.k = St2 .Ic u (St, .k - stz .g) >

A-

{

Stl.b = 6d.s u 5t.b
AS[ps] :: St2.b = Cond.s U St.b

St.a = (St.b - (Stl.k u St2.k)) u (St, .g n St,.g)

FS[p3] ::
st.g = St1 .g n St2 .g
St-k = St1 .k u S12.k >

p4: St -While Lonu cloxl

AS[pd] ::
St1 .b = (St.6 - (St, .k - St.g) U Cond.s
St.a = (St.b - (St1.k - St.g) U Cond.s

FS[p4] ::
St.g = Cond.s
St.k = St1.k - Stl .g >

31 - au .- zl;L-y

AS[p5] :: { St.a = (St.b - Arg(id. name, T)) U NotArg(id.name, Ezps) }

FS[ps] ::
st.g = NotArg(id.name, Ezp.s)
St.k = Arg(id.name, T) >

Table 8: The constructed NCAG for the AG of the available expressions problem.

48

