Ynification in many-sprisd aluebras aa o device
for ipncremenial aemantic apalysis

Bregor Snelting
Wolfgang Henhapl

Programmiersprachen und Ubersetzer 11
Fachbereich Informatik
Technische Hochschule Darmstadt

Magdalenensir,

11

D~81 Darmstadt
West Germany

ABSTRACT

Language-specific editors for typed programming languages must contain a subsystem for

semantic analysis

text conditions of the language. As programs are usually
semantic analysis must be able to cope with missing context information, e.g.
plete variable declarations or calls to procedurss imported from still missing modules.
anh algorithm for incremental semantic analysis, which guarantses

the

this paper we present

in order to guarantee correctness of programs with respect to the con-

during development,
incom~-
in

incomplete

immediate detection of semantic errors even in arbitrary incomplets program fragments. The

algorithm is generated from the

inference rules. During editing, these rules are evaluated using a

for many-sorted algebras with semi-lattice ordered
theories, The method has bsen implemented as part of
interactive programming

language s context conditions, which are described by

uynification algorithm
subsorts and non-empty eguational
the PSG system, which gensrates

environments from formal language definitions, and has been suc-

cessfully used to generate an incremental semantic analysis for PASCAL and MODULA-2.

1. Iptroduction

Programming environments for a spacific pro-
gramming language should support the interactive
construction of correct programs. Correciness for
typed programming languages includes wellformed-
ness according to the context conditions of the
language. Therefore, a semantic analyser must be
part of a programming environment which checks
context conditions during program construction.
For us® within a language-specific editer, the
analysis algorithm must fulfill several require-
ments:

during develop~-
important with
declarations}

1. Programs are usually incomplete
ment. Program parts which are
respect to semantic analysis {e.g.
way he still missing or incomplete. The most gen-
sral form of an incomplete program is a sentantial
form of some nontsrminal of the language’ s syntax.
#We call such forms {ahd their representations as
abstract trees) fragments. If the basic units for
editing are incomplete fragments which may.

Permission to copy without fee all or part of this material is' granted
provided that the copies are.not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish; requirés a fee and/or specific permission:

© 1986 ACM-0-89791-175-X-1/86-0229. 800,75

229

be edited separately, in a PASCAL environment the
following situvation could arise: A programmer
types the incomplete procedurse fragmsnt

procedure plaiti; k:t2);
begin
alalk+531 = 3,14,

Although t1 and t2 are global objects the defini-

tion of which is not part of the fragment, the
semantic analysis must be able to handle this
fragment = as a saparate .unit. Therefore, we

require that the semantic analysis must be able to
analyse arbitrary. incomplete program. fragments.

2. Fragments are correct, if they are correct pro-
grams or Aif ‘thev can be smbedded inlio a corzect
program. . Therefore, the semantic .analysis must
report . semantic. errors as soon as a fragment can
no _longer be embedded into.a correct program.. .Our
above example must immediately considered semanti-
cally incorrect, as left and right hand : sides . of
tna’assignment have incompatible types, regardless
of the missing global declarations.

3. For efficient use in an interactive environ-
ment, -the semantic analysis must work in an .incre-
mental manner.

k. It is useful not to. implement .a language-
specific envivonment by hand, but to use a gensra-
tor. Therefore, it must be possible to . generats
ths semantic analysis from.a formal-definition of

the context conditions of a language.

In the following., we present the concept, theory

and algorithms of a semantic analysis satisfying
the above regulirements. The method has been
implemented as part of the PSG Programming System

Genserator, which generates interachive programming
environments from formal langusge definitions
/BasnB5/. Within PSG environments, fragments are
the basic wunits For editing ang execution. The
semantic analysis 1s part of the hybrid editor
generated by PSG. Analysers for ALGOLSD, PASCAL,
MOOULA-2 and the formal language definition
language i1tself have begen generated successfully.

2. Ine concept of coptext relations.

We assume that program fragments are internally
represented as sbstracl syntax frees during edit-
ing. Afier each modification, the {iree 18 sub-
jected to the incremsntal semanilic analysis. As
usual, we associate aliributes with the nodes of
an abstract tree. However, it will be impossible
to compute uniguely determined attribute wvalues
for tree nodes, bescause in an incomplete fragment
important information {e.g. declarations) may be

missing. A well-known method to handls this prob-
lem is to wuse classical attribute gTammars
together with special "default” attribute values

associated with completing productions, and to use
an incremental attribute evaluastion algorithm
/RepsB3/. However, classical-style attribute gram-
mars always follow the scheme: first inspect the
declavations, building up an environment, then use
this envirgnment to perform e.g. type checking.
Therefore, using classical-style attributed gram-
mars, incomplete fragments cannot be type checked
if declarations are missing.

Because of this defect, we explicitely pass
over fFrom attribute values o seis of "still pos-
sible” attribute values. The basic idea is as fol-
lows: A corrsct fragment can be smbedded into a
{usually infinite) set of zorrect and complate
programs. These programs can be atiriputed, vyield-
ing a2 set of attribute assignments 1o tree nodes.
The restriction of all these assignments onto the
fragment in guestion results in & zet of atiribute
2ssignments for the fragment, which represents
gxattly the context information corresponding to

the Fragment. Instead of using several atiribuites
for a tree node, we use at most one attribute for
gach node, which however may be structured. As

attribute values are associated with tree nodes, a
collection of atiribute assignments can Lhen be
segn as a relation in the sense of relational data
base theory: the columns of such a relation ars
labelled with the tree nodes, tuple elements ars
dttribute values, and each tuple represents & DO~
sible atiribute assignment for the fragment. Such
a2 relation is called a2 gopltext relation. A con-
text relation associasted with a fragment contains
exactly the sitill possible atiribute assignments
of the fragment. If the fragment is complete and
correct, the relation will contain exactly one
tuple, as there iz only one possible atiribule
assignment for complets programs. In case of a
semaniic erreor, the relastion will become empty,
bebause no correct assignment of atiribute wvalues
to tree nodes exists. Mote that a contsxt relation
may be of infinite size, if the set of underiying
attribute values iz infinite, For ceriain

230

languages {nol Ffor PASCAL or €} context relations
may even noil be vecursively enumerable.

Formaily, let A be the set of possible attri-
pute wvalues of the language, N the nodes of 3
fragment F. The context velation CRI{F) associated
with ¥ is a set of mappings

{t: N -> a}

The set of all countext relations as denoted by (R.
During editing, a fragment is produced siep by
step Dby composing a bigéer tres from smallerx
trees: subtree placeholders {unexpanded nontermi-
nals) will be replaced by subtrees, or subtrees of
@ fragment will be deleted and replaced by subtrse
placeholders. As a basis for dincremental
analysis, we therefore need an opesration which
computes the relation of a fragment from the rela-
tions of its components. Actually, this operation
is8 Just the npatural Join of relations {as Known
from data base theory, sse /AhoB79/). I a place-
nolder X in a fragment F is replaced by a fragment
G, thus giving a new fragment H, we therefore have
CR{N) = CR{G) m CRIF)
For examples, sse /He3nbé/ and the following sec-
tions., However, there must be some relations to
start with! At this point, the language definer
entars the scene: In a syntax-oriented manner, he
has to specify so-called basic relations for all
terminals and all constructors of the abstract
syntax pf the language /PSGR5/. Once thess basic
relations thave been defined, all fragments may be
analysed by Jjoining the basic relations of their
components. Again, basic relations may contain an
infinite number of tuples: In PASCAL, an isolated
identifier may have the whole set of PASCAL types
as s$till possible attribute. Therefore, the basic
relation for identifiers «contains at least one
tuple for each PASCAL type.

3. Ihe representation of copntext relations

As context relations are wsually infinite, we
have %o construct a finite representation. The
basic idea is to use a grammar: The set of all
attribute wvalues is described by an abstract syn-
tax, 2 so-called date attribute grammar (DAG]).
Here, the structure of the attributes of the
language is defined. For PASCAL, typical DAG
rules might look like thisg:

attribute :: type object_class
type = simple_type, array_type, set_type, ...
simple_type = arithmetic, ordinal
arithmetic = integer, resl
ordinal = integer, boolesn,
58%t_type :: ordinal
arraytype :: ordinal type
object class = variable, ctype,
procedure,

char, enumeration, .

congtant,
function, ...

Here, :: indicstes a sov-called node rule, that is,
the subconpongnts of a gliven structure sare
described, In our example an atiribute consists of
two subcomponents, namely the type of an obiject
as well as its object class. On the other hand, =

indicates a class rule, that is, alternatives
within attributes are described. For example, a
type may be a simple type, an array type, a set
type and so on. Note thal classes need not be dis-
Jdoint: integer is an arithmetic type as well as an
ordinal type. An array type has again subcom-
ponents, namely an ordinal index type and a com-
ponent type, which may be an arbitrary type. Since
attribute classes may contain subclasses, a DAG
also includes 1the concept of a subtype in a
natural way: integer is also an ordinal type, and
gach ordinal type is a simple type, seach simple
type 1is a type. DAG symbols not occuring on the
left hand side of a rule are considered to be ter-
minals.

A DAG describes a many sorted free algebra with
subsorts as follows: £ach symbol of the DAG gives
rise to a sort. The terminal symbols are con-
sidered as nullary constants of their own sort,
and the left hand sides of node rules are con-
siderd =as non-nullary function symbols with arity
according to the node rule. The terms freely gen-
erated by all terminal symbols are exactly the
possible attribute values, denoted by A(DAG). As
an abstract syntax also describes a set of trees,
A{DAG) can also be seen as the itree language gen-
erated from the DAG. The terms freely generated by
the terminal symbols and the class names (which
also are considered nullary constants) are just
the incomplete derivation trees {sentential forms)
generated by the DAG; they are called atiribute
forms and are denoted by AF(DAG). Thus, an attri-
nhute form may contain nonterminal leaves. As
usual, we also use the notion of derivation: for
x,y AF(DAG) we write x ¥ y iff y may be derived
from X by substituting an attribute form of the
correct sort for a nonterminal leave. In this
case, we alsc consider the sort associated with vy
to be a subsort of the sort associated with x. An
attribute form can be used to represent an infin-
ite set of attributes, namely all those attributes
which can be derived from it.

As usual, we add variables: The algebra freely
generated by the terminals, class symbols and an
inifite set of sorted variables is called the
algebra of attribute forms with variables and
denoted by AFV{DAG). The sort of a variable v is
denoted by sortiv), and for x& AFV{DAG) we denote
the variables in x by varsix}.

We now define the notion of attiribute form
relatiogns: Given a fragment F, an attribute form
relation describing F is a finite set of mappings
from the tree nodes N of F to attribute forms with
variables. The set of all attribute form rela-
tions is denoted by AFR. An attribute form rela-
tion rEAFR represents a possibly infinite context
relation R{r] @ CR as follows:

t@R{r] iff there is t'€ r and there is a mapping
e: varsi{t’') -> A{DAG)
such that for all s&dom(t)

ex{t’ (s)) ->» tis)

where e* 1s the homomorphic -extension of e to
attribute forms.

At this point, we will give some examples. Con-
sider the PASCAL fragments

1} al<expressioni>} ;= <expression?y
tan incomplete assignment)

2) alk+5] {a variable)

3) k and 3 {an expression)

with corresponding abstract syntax trees

/\

/;/] <expression2>
a

<gxpressioni>

ZANINA
/

For the sake of simplicity, we do not distin-

guish between a subrange type and its base type,
and we assume, that within an assignment both
sides must have the same type or the left hand
side has type real and the right hand side has
type integer (these simplifications are not essen-
tial). Therefore, in fragment one, we do not know
the component type of the array, but it is clear
that the still missing index must be of ordinal
type. Furthermore, the still missing right hand
side of the assignment either must have the same
type as the component type of array a, or a has
component type real and the right hand side has
type integer. 1In the second fragment, k must be a
variable, function or constant of type integer,
and a therefore has index type compaltible with
integer. Note that even though the addition in
PASCAL is overloaded, k cannot be real, as it is
used within an array index. The fragment itself
has the same type as the component type of array
a. In the third fragment, k, 3 and the fragment
itself must have type boolean.
These inferences are valid regardless of the pro-
grams into which the fragments can be hypotheti-
cally embedded and can be dope without looking at
any declarations, but more cannol be said. We now
describe the possible attribute assignhments to
fragments nodes by attribute form relations. For
the ~sake of readability, ‘we will dignore the
ohject_class - component of attributes and simply
concenirate on.-the types of the ¢bjects. -involved.
The attribute form relations corresponding to the
fragmenis are

unification of a variable of sor:
111 axrray_type and another variable of
) |_<expressioni> | {1 | <sxpressiond> sort real fails, as real and
array_type{DRDIMAL, TYPE) | ORDINAL I TYPE | TYPE array_type are disjoint sorts. MNote
arrvay_type{ORDINAL, real) | ORDINAL | real | integer that from a theoretical point of view
it is not essential to include non-
121 disijoint DAG classes. The special case
a Yk [+ 1_5 "classes must be disjoint” is theoret-
array_typelinteger, TYPE) | TYPE | integer | intsger | integer ically sufficient and lesads to a sub-
sort ordering which has tree structure
{3) rather than to be an upper semilat-
K | _and |4 tice. From a practical point of view,
boolean | boolean | boolean however, i1t is essential that rela-
tions contain as few tuples as possi-
ble. Therefore, any attribute subsst

relevant in a languayge should be
The column labels of these relations are the represented by a DAG class rather than by dif-
nodes of the corresponding fragments which possess ferent tuples within a 7relation. Considering
an attribute. Tupsel components are attribute forms that, including non-disjoint DAG classes is

with wvariables. The first relation has two tupels.
The first tuple contains the variables DRDIMAL and
TYPE, which are (similar to PROLOG) written in
Upper case leltters. For the sake of simplicity,
the names of the wvariables also indicate their
sort. Thus, the first tuple states that ‘a' may
be an array of unknown index and componsnt type
and that the still missing index expression is of
the game ordinal type; the right hand side must be

of the game type as the array component type. The
second tuple states that alternatively "a’ may
have component type real and the rignht hand side

integer; again the variable ORDIMAL describes
that the unknown index type must be the same as
the type of the still missing index. A similar
interpretation applies {o the two other relations.
Hote that the scope of a varliable is always the
tuple 1t occurs in. The first two vrelations
represent infinite context relations, whereas the
third relation 7Tepresents 2 one-tuple context
relation ({which is accidently identical with the
basic relation for the logical and operator).
Mote that still possible attribute assignments
different from those represented Dby the given
relations do not exist for our fragments, regard-
less of global vcontext: the relations describe
exactly the sets of possible atiribute assignments
to fragment nodes, As example three shows., such a
set can be unigue 2ven in the absence of declara-
tiens.

type

Unification as a device for modelling the Jjoin

It 1s now neccessary to construct an operation
for attribute form relations which exactly
represants the Jjoin. This operation is unification

in our many-sorted algebra with subsorts. Unifica-
tion 1n many-soried algebras works similar to the
classical Robinson unification /Robif5/. Howevsr

2% we have subsorts and non-disjoint sorts, in
order to unify two variables of different sorts it
i3 neccegssary to find & sort which describes
gxactly the interssction of ths original sorts.
Therefore, we require for two sorts that their
intersection is either empty or again a sort,
which 18 eguivaleni to

(AFIDAGY: B®3) is an upper semilattice.
the unification hasg to
this lattice from ‘time fo time.
DAG, if we have a variable of sort ordinal and a
variable of sort arithmetic, their unification is
2 variable of sort integer. Op the other hand, the

Thus, compute suprema in

For our sample

232

essential for performance.

terms, 1f
tuple-wise
relations

Thegrem Considering tuples as special
the DAG induces an upper semilattice,
unification of attribute form
represents the natural join exactly:

R{{t | there are tgrt, t & r2, t =
= RIr13 pg Rirz2}

furthermore, the unification as scetched above
will produce a correct and unigue most general
unifier for many-sorted algebras with sami -
lattice ordered subsorts.

Propf see /Sneldld/.

Exa 23

al We compose fragments 1) and 2), thus obtaining

the fragment

alalk+5]] = <expression>

We have to
corresponding
the example,

unify tuple
columns of our
the column for ‘a’ in
has to bhe matched against the
column for 'a in relation {2}, and
for ‘<expressiont>’ in relatlon {1} has to be
matched against the column for '[1' in relation
{2}. MNote <that in general, scope and visibility
rules of the language in guestion must be obeyed
when determining which columns match; this pro-
cess 1s not described here {see /HuScs3/).
Upification of the attributes array_typelORDINAL,

components n
two relations. In
relation (1)
corresponding

the column

TYPE} and array_typelinteger, TYPE) results in a
new sort for the wvariable ORDINAL, namely
integer, as integer i3 a subsort of ordinal.
Furthermore, the two TYPE variables are uynified.
Mext, considering the columns for " <expressioniy’
in relation (1) and '[1 in vrelation (2}, we
have to unify the variables ORDINAL and TYPE. But
OROIMAL has slready been substituted by integer.

Therefore, TYPE also changes its sort and becomes
integer {note that in our setting for a2 wvariable
"to change sort” and “to get a new value” are
somewhat squivalent). Now, the second tuple of
the first relation must be considered. Here, we
unify array_typelORDINAL, reall and
array_typelinteger, TYPE) resulting in a new sort
for ORDINAL, namely integer, and a new sort for
TYPE, namely real. Mext, ORDINAL and TYPF have to

be unified; however,
integer and real are not
tion of the corresponding sorts is empty) the
whole unification +ails. Thus, we obtain az new
relation consisting of one tuple

because the constants
unifyable {the intersec-

a . [} [_1 K

B U I

! +

"almost any" input in the sense of open problem 8
in /Siek84/. '

1.5 |<pxpression>

arraymtype(lnteger.Lnteger)Iintegeriintegerlintegerlinteger]integeriinteger

that 1s, we have inferred that in the new frag-
ment the still missing right hand side of the
assignment, as well as index and component type

of array a, must be of type integer.

b} We compose our newly derived fragment and our

original fragment {3} to form the assignment
alalk+51] = k and j

Here, we have %to unify the attributes for

<expression> in fragment (1) and the "and' node

1n fragment [(3), as well as the attributes for k.
However, unification of integer and boolean fails
at once. We therefore obtain the empty relation

el L1tk s 15 l_and Vi
| | i }

indicating a semantic error: Type conflict in an
assignment. This example illustrates how the
method guarantess immediate detection of semantlic
earrors even in incomplete fragments. Furthermore,
since the columns and atiributes which did not
match are known, it 15 also possible to locate
semantic errors exactly.

4. Bullding in gguatiopal theoriss

The use of sorted variables allows the specaf-
1cation of eguality in certain (sublatiributes of
a tuple together with an indication of admissible
substitutions. However, for practical purposes
this is not enough. We will give an example:

MODULA-2Z allows the use of constant expressions
within constant declarations. For purposes of
semantic analysis, it is important to evaluate

these constant expressions: The fragment

CONST a = 3,

b= a-3;
VAR %: ARRAY [a..b] OF <type>
is obviously incorrect. Expression evaluation
within semantic analysis based on unification is
eguivalent to unification in algebras with non-
empty equational theory. The unfication algorithm
in our example must know that 3-3 = 0 and 3 <=0 =

false. Arbitrary complicated examples like this
may be constructed. However, in his well-known
paper /Plo72/ Plotkin showed that finite most
general wunifiers for algebras with non-empty
eguational theory in general do not exist. As
our concept is language independent, we do not
want to look for correct unification algorithms
for each language (there are certain equational
theories where finite most general wunifiers
exist)., Since the general problem is not solv-
able, we have developed an extension of our unif-
ication in order to be able to handle arbitrary
equational theories, which works correct with

233

The basic idea 1s as follows: We extend our
attribute algebra with sorts and terms for which
an interpreter is assumed to exist, that i3, we
mark certain attribute forms as evaluable. In our
example, we introduce integer values and arith-
metic and assume that an inferpreter for arith-
metlc and relationsl expressions exists which for
example can determine that 3-3:=0. Thus, if we
assume that constants are described by their type
and value

const_attry simple_type value
value = Int_value, Real_value, Bool_value
where Int_value etc. are assumed to be predefined
DAG <c¢lasses, the basic relation for constant
addition 1n MODULA-2 might look as follows
{const_add is a2 node with two sons,const_expr!
and const_expr2) %

const add | const attr(ARITHMETIC, YALUEI+YALUE2)
const exprl | const attr{ARITHMETIC, YALUET)
const_expr2 | const_attr{ARITHMETIC,VALUE2Z)

During analysis, wunification and evaluation
are inieriwined. The system keeps track of

unevaluated expressions. Once the neccesary argu-
ments of as yet unevaluated expressions are known
(this might be a «conseguence of unifications),
the expressions are evaluated at once. This con-
cept is known as data driven evaluation strategy:
Unevaluated expressions are waiting as demons;
they are always evaluated as soon as possible,
Thus, unification calls evaluation if possible,
however the results of evaluations must again be
considered for wunification: evaluation calls
ynification if neccessary. This concept does not
work 1n every case: there might be unevaluated
expressions, which, in case of evaluation, would
cause subsequent wunifications to fail; however,
they never get evaluated. Fortunately, this does
not happen very often, and as mentioned above,
something better will oprobably not exist feor
arbitrary equational theories. Note that extend-
ing unification by data-driven evaluation 1s also

considered a useful extension of PROLOG. We con-
sider the approach to be an alternative to nar-
rowing algorithms.
5. Ihe incremental analysis concept

We have seen that unification, intertwined
with evaluation, gives a useful basis for incre-
mental semantic analysis. Conceptually, it would

be sufficient to store with each fragment one big
"global relation” which contains all the attri-

¥ This relation has been votated for layout

reasons

During editing, this rela-
modified after each editing
unexpanded nonterminal

butes of the fragment.
tion must then he
step. [+, for example, an
15 replaced by a new subtree, 2t would be suffi-
crent to analyse the new subtree by jorning the
basic relations of its components and then to use
ong joan 1o update the global relation. This
scheme, however, i1s nol very appropriate, because
1t omight require a complete re-analysis of frag-
ments after subtree deletions. It is far better
to distrabute the global relation withain the syn-
tax tree: Some fragment nodes have a "local rela-
tion” attached, which describes part of the sub-
tree beginning at that node. It 1s not neccessary
to include into such a local relation e.g. attri-
butes of obiects which are not visible at the
corresponding fragment node, according to the
scope rules of the language, After an editing
step, there 1s usually only a small number of
small relations to be uypdated, which is far more
efficient than to update one blg relatlion. Only
local relations attached to fragment nodes on the
path from the modified subtree to the fragment
root must be cansidered. After a subtres
insertion,these relations have to pe Jjoined with
the relation of the new subtree [(which has to be
analysed first). After a subtree deletion, these
rglations must be recomputed from basic relations
and other local relations which are not affectad
by the subliree deletion and therefore need not be
recomputed. The analysis can often be stopped
after copsidering Jjust one or two local rela-
tions: as soon as the scope rules guarantee that
inserted or deleted syntactic objects cannot have

any influence on surrounding parts of the frag-
ment, updating of local relations on the path
from the modified subiree to ‘the fragment root

may be aborted. It is even possible to implement
a Reps-style change propagation algorithm for
local rTelations: wupdating local vrelations 1is
stopped as soon as no more changes 0CCUT.

In general, the complete analysis of a “frag-
ment of size n reqguires 0{n%*ln n) unifications,
whereas the incremental analysis after one edit-
ing step reguires typically O0{ln n} unifications.

For a detailed description of the incremental
analysis algorithms inclugding complexity
analysis, see /Snel85/.

During editing, the context relations are pri-
marily used to detect semantic srrors, OFf course,
relations assoclated with fragments can also be
used asg symbol tables: within a PSG snvironment,
the user always may have a look at the attributes

of syntactic objects. MNote that relational
analysis does noi require any objects to be
declared, scope analysis will however detect
missing declarations as 500n as the last poOssi~
bility of declaring that object has been delsted
and there is no possibility of declaring that
object outside the fragment in guestion.
Furthermore, the relational approach can be

used to guarantee not only immediate detsction of
semantic errors, but also their prevention: 4 PSG
editor always offers ussrs the possibility to
manipulate their fragments by selection from
language-specific menu items. These menus are
generated according to the abstract syntax of the
language. However, they are additionally fil-
tered dynamically with respect to context condi-
tions. Thus, if PSG editors are simply used as

234

structure editors, they guarantee the prevention
of both, syntactic and semantic errors.
6. Comparison with related work

Several technlgues for incremental semantic

language-speclific editors have been
The probably most well-known Concepts
arg semantic action routines in GANDALF /HabB2/
and aincremental attrabutle evaluation within the
Carnell Program Synthesizer /Repsdl/; there are
also variations on the attribute grammar theme
e.4. [JoF182/. It is possible to implement our
concept using these technigues. In fact, context
relations and unification have experimentally
been implemented using the Cornell synthesizer
generator. However, the concept of inferring sets
of sti11l possible attributes within incomplete
fragments seems to be new. All the known concepts
have always obeyed the classical scheme: First
inspect the declarations, then use the collected
information for the analyvsis of statements etc.
It was a direct conseguence of the PSG fragment
concept that we had to do 1t another way.

analysis in
developed.

The Milner-Style analysis of type-free lambda
calculus expressions /Miln78/ computes the most
gengral polymorohic type o0f a given lambda term,
It also wuses wunification and 1s 1ln some sense
similar to our scheme. However, Milner an the
workers who extended the approach never tried to
implement incremental algorithms, and they also
did not wuss the <concept within an environment

generator.

1. Einal remarks

The incremental semantic analysis with context
relatlons is in operation as part of the PSG sys-
tem since 1984. It is implemented in PASCAL, all
in all about 10000 lines of code. For a 100 line
PASCAL program, the complete analysis requires
1.2 CPU seconds on a SIEMENS 7551 machine; incre-
mental analysis of modifications requires between
0.02 and 0.3 seconds per editing step. The defin-
ition of the PASCAL context conditions {that is,
the specification of the basic relations) con-
sists of about 500 lines of meta language, which
we consider to be not very much. Mote that we
did not present the specification of scope rules
as well as several wuseful extensions like 2.g.
operations on lists.

8. References

/AhoBT3/ Aho, A.Y., Beeri,C., Ullman,J.D: The

theory of joins in relational databases.

ACM TODS 4 (1879}, 3, pp. 297-314
/AustB3/ Austermihl, B.: Ein relationaler Ansatz
zur Beschreibung der sfatischen Semantik
von Programmiersprachen. PhD thesis,
Technische Hochschule Darmstadt 1983
/Bain85/ Bahlke, R, Snelting, 6.: The PSG - Pro-
gramming System Generator. Proc. ACH
SIGPLAM 85, Language issuyes in program-
ming environments. SIGPLAM notices 20
{1985}, 7, pp. 28-33

/loFis2/

/Hab82/

/Hesndh/

/HuSc83/

/Miln78/

IPSGBS/

/PloT2/

{RepsB3/

/Robi65/

/Siekbh/

/Snelds/

Johnson, G.F, Fisher, C.N,: Non~
syntactic attribute flow in language-
based editors. Proc. Sth ACM symposium
on principles of programming languages,
1882, pp.196-206

Habermann, N. 2% al: The second compen-
dium of Gandalf documentation. Dept. of
Computer scisnce, Carnegie Mellon
University 1982

Henhapl, ¥W., Snelting, G6.: Context rela-
tions: a concept for incremental context
analysis in program fragments. Proc. GI
Fachtagung Programmiersprachen und Pro-
grammentwicklung, Springer Yerlag 1984,
Informatik Fachberichte 77, pp. 128-143

Hunkel, M., Schmitt, H.: €in System zur
Bezeichneridentifikation und dessen
Integration in ein strukturorientiertes
Ediersystem, Diploma thesis, Technische
Hochschule Darmstadt 1983,

Milner,R.: A theory of type polymorphism
in programming. J. Computer and system
sciences 17 (1978}, pp. 348-375

Bahlke ,R., Hunkel, M., Klug, M.,
Snelting,6.: Language definers guide to
PSG. Report PU2R3/ 85, Technische

Hochschule Darmstadi, 1985.

Plotkin, &.: Building in equational
theories. Machine intelligence 7 (1872},
pp. 13-90

Reps, 7., Teitelbaum, T., Demers, A.:
Incremental context-dependent analysis
for language-pased editors. ACM TOPLAS
5 (1983), 3, pp. 449-477

Robinson, J.A.: A machine oriented logic
hased on the resclution principle. JACM
12 {1965), 1, pp. 23-41

Siekmann, J.: Universal unification,
Proc, Tth international conference on
automated deduction, Springer Verlag,
LMECS 170, pp. 1-42

Snelting, G.: Inkrementelle semantische
Analyse in unvollstandigen Programmfrag-
menten mit Kontextrelationen. £no
thesis, Technische Hochschule Darmstadt
1985,

235

