
Gregor Snelting
Holfgang Henhapl

P rog rammie rsp rachen und Obersetzer II
Fachbereich In#ormatik

Technische Hochschule Darmstadt
Hagdalenenstr. 11

D~61 Oarmstsdt
West Germany

~_tEECt

L a n g u a g e - s p e c i f i c editors @or t yped p r o g r a ~ i n g languages must contain a subsystem ~or
semantic snalysis in order to gusrsntee correctness o~ programs with respect to the con-
text conditions o f the l anguage , AS programs are usually incomplete durzng development,
the semsntic analysis must be able to cope with missing context in~ormation~ e . g , incom-
plete variable declarstions or calls to procedures imported from still missing modules. ~n
this paper we present an algorithm ~or incremental semantic analysis, which guarantees
immediate detection of semantic errors even in arbitrary incomplete program fragments. The
algorithm is generated from the lsnguage's context conditions, which are described by
i n f e r e n c e rules. During editing, these rules are evaluated using a unification algorithm
for many-sorted algebras with semi-lattice ordered subsorts and non-empty equational
theories. The method has been implemented as part of the PSG system, which generates
interactive programming environments from formal language definitions~ and has been suc-
cessfully used to generste an incremental semantic snalysis for PASCAL and MODULA-2.

Programm&ng environments for a specific pro-
gramc~ing language should support the interactive
construction of correct programs. Correctness for
typed programming languages includes wellformed-
hess according to the context conditions of the
lsnguage. Therefore, a semantic anslyser must be
part of a programmlng environment which checks
context conditions during program construction,
For use within s language-specific e d i t o r , the
analysis algorithm must ~ul~ill several require-

ments:

I. Programs are usually incomplete during develop-
ment. Program parts which are important w~th
respect to semantic analysis { e . g , declarations]
may be still m i s s i n g or incomplete. The most gen-
e r a l form o~ an incomplete program is a sentential
form of some nonterminal o f the l a n g u a g e ' s s y n t a x .
We call such ~orma (and their representations as
abstract trees) ~ , If the basic units ~or
editing are incomplete fragments which may

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and i~ date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires e fee and/or specific permission.

© 1986ACM.~89791o175-X-1/86~229 $00,75

be edited separately, in a PASCAL environment the
~ollowing situation could arise: A programmer
types the incomplete procedure fragment

procedure p (a : t l ; k : t 2) ;
begin

a[a(k+5]] := 3 . ~ ;

Although tl and t2 are global objects the defini-
tion of which is not part o4 the fragment, the
semantic analysis must be able to handle this
fragment as a separate unit~ Thezefore, we
require that the seman t i c analysis must be able to
anslyse arbitrary incomplete program fragments.

2. Fragments are correct , i~ they are correct pro ~

R~D.=.~L~.~.. Therefore, the semantic analysis must
report semantic er rors as soon as a fragment can
no longer be embedded in to a correct progrsm. Our
above example must immediately considered semsnti-
C~iiy incorrect~ as left and right hand sides o~
the asslgnment have incompatible t y p e s , regardless
of the missing global declarations.

• . For e f f i c i e n t use in an
ent, the semantic analysis

mental manner.

i n t e r a c t i v e envlron =

must work in an inc re -

4, It is useful not to implement a language-
specific environment by hand, but to use a geners-
tot. Therefore, it must be possible to geners te

the semantic analysis from o formal definition of

229

the c o n t e x t conditions o f a language~

~n the following, we p r e s e n t the c o n c e p t , theory
and a l g o r i t h m s o f a seman' t ic a n a l y s i s s a t i s f y i n g
the above r e q u i r e m e n t s ~ The m e t h o d has been
implemented as part of the PSG Programming System
Generator, which generates interactive programming

environments from formal language definitions
/SaSh85/ , W i t h i n PSG e n v i r o n m e n t s , f ragments are
the b a s i c u n i t s f o r e d i t i n g and execution. 'The
semantic analysis is part of the hybrid editor

genera ted by PSG. i n a l y s e r s for ALGOL60, PASCAL,
MOOULA-2 and the formal language definition

l anguage itself have been g e n e r a t e d s u c c e s s f u l l y .

We assume that program f r a g m e n t s are i n t e r n a l l y
r e p r e s e n t e d as a b s t r a c t s y n t a x t r e e s during e d i t -
ing. A f t e r each m o d i f i c a t i o n , the t r e e i s sub-
3acted to the incremental semantic a n a l y s i s . AS
usual~ we associate attributes with the nodes Of
an abstract tree. Hoverers it will be impossible

to compute uniquely determined attribute v a l u e s
f o r tree nodes, because in an incomplete f r a g m e n t
important information { e . g . declarations) may be
missing. A well-known method to handle this prob-

lem is t o use c l a s s i c a l attribute grammars
together with special " d e f a u l t " attribute v a l u e s
associated with completing productions, and to use
an incremental a t t r i bu te e v a l u a t i o n algorithm
/Reps83/. However, c lass ica l - s t y le a t t r i bu te gram-
mars a lways f o l l o w the scheme: first i n s p e c t the
d e c l a r a t i o n s , b u i l d i n g up an e n v i r o n m e n t , then use
this environment to per{ore e.g, type checking.
Therefore, using classical-style attributed gram-

mars, i n c o m p l e t e fragments cannot be t ype checked
if declarations are m i s s i n g ,

Because of this defect, We explicitely pass

over from attribute values to sets of "still pos-
sible ~ attribute values. The basic idea is as fol-
lows: i correct fragment can be embedded into a
~usually infinite) set of correct and complete
programs, These programs can be attributed, yield-

ing a set of attribute assignments to tree nodes.
The restriction of all these assignments onto the

fragment in question results in a set of attribute
assignments for the fragment, which represents

exactly the context information corresponding to
the fragment, Instead of using several attributes
for a tree node, we use ~t most one attribute {or

each node, w h i c h however may be structured~ As

attribute values are associated with tree nodes, a

c o l l e c t i o n o f attribute assignments can then be
seen a s a relation in the sense of r e l a t i o n a l data
base theory: the columns of such a relation are
labelled with the tree nodes, tuple elements are
attribute values, and each tuple represents a pos ~
sible attribute assignment for the fragment~ Such

a relation is called a ~ ~ i g / l ~ A con-
t e x t relation a s s o c i a t e d with a fragment contains

exactly the still possible attribute assignments

o f the fragment. If the f r a g m e n t i s c o m p l e t e and
corrects the relation will contain exactly one
tuple, as there is only one possible attribute
assignment for complete prosrems. In case o~ e

semantic errors the relation will become empty,
bebause no correct ass ignmen t of attribute values

to tree nodes exists. Note t h a t a context relation
may be of i n f i n i t e size, if the set of underlying
a t t r i bu te values is i n f i n i t e . For certain

languages {not for PASCAL or C) context re lat ions
may oven not be recurs ive ly enumerable.

F o r m a l l y , l e t A be the se t o f p o s s i b l e a t t r i -
bu te v a l u e s of the l a n g u a g e , N the nodes o f a

fragment F. The context relation CRIF) a s s o c i a t e d
with F is a ant of mappings

{t: N -> A}

The set of all context relations is denoted by CR.

Poring ed i t ing , a fragment is produced step by
s tep by composing a bigger tree from smaller

trees: s u b t r e e placeholders (unexpanded nontermi-
r i a l s) will be replaced by aubtrees, or subtrees of
a fragment will be deleted and replaced by subtree

placeholderso AS a basis for incremental
analysis, we there/ore need an operation which

computes the relation of a fragment {rum the rela-
tions of its components. Actually, this operation

is just the natural join of relations (as known
from data base theory, see /Aho879/). I{ a place-

holder X in a f r a g m e n t F is replaced by a fragment
G, thus giving a new fragment H, we therefore have

CR(H) : CR(G) ~ CRIF)

For examp les , see /HeSne$/ and the following sec -
t i o n s . However, there must be some relations to
start with! At this point, the language definer

enters the scene: In a syntax-oriented manner, he
has to specify so-called ~li~ /~L~920! for all
terminals and all constructors of the abstract

syntax O{ the language /PSG85/. Once these basic
relations have been defined, all fragments may be

analysed by joining the basic relations of their
components. Again, basic relations may contain an

infinite number of tuples; In PASCAL, an isolated
identifier may have the whole set o f PASCAL types
as still possible attribute. Therefore, the basic
relation for identifiers contains at least one
tuple for each PASCAL type.

Aa context relations a re u s u a l l y infinite, we
have to construct a finite representation. The

basic i dea is to use a grammar: The set of all
attribute values is described by an abstract syn-

tax, a so-called data attribute grammar (bAG).
Here, the structure of the attributes o f the

l a n g u a g e is defined. For PASCAL, typical bAG
rules might look like this:

attribute :: type object class

type = simple_type, array_type, set type
simple type = arithmetic, ordinal

arithmetic = integer, real

ordinal = integer, boolean, char, enumeration. , ,

set type :: ord inal

a r r a y t y p e : : o r d i n a l type
object class = v a r i a b l e , ctyPe, constant,

procedure, function, . . .

Nero , :; i n d i c a t e s a so-called hove r u l e , t h a t i s ,
the subcemponents Of a g i v e n structure are
described~ In our example an attribute consists of

two subcomponents, namely the type O{ an object
as well as its object class. On the other hand, =

230

indicates a class rule, that is, alternatives
within attributes are described. For example, a

t y p e may be a simple type, an array type, a set

t y p e and so on. Note t h a t c l a s s e s need not be d i s -
joint: integer is an arithmetic type as well as an

ordinal t y p e . An array type has again subcom-

ponents~ namely an ordinal i n d e x t y p e and a com-

ponent type, which may be an arbitrary type. Since

attribute classes may contain subclasses, a DAG
a l s o i n c l u d e s the concept o f a sub type i n a
natural way: integer is also an ordinal t y p e , and
each ordinal type is a simple type, each simple

type is a type, bAG symbols not occuring on the

l e f t hand a ide of a r u l e are c o n s i d e r e d to be t e r -
minal, s.

A bAG d e s c r i b e s a many s o r t e d { r e e a l g e b r a w i t h
s u b s o r t s as f o l l o w s : Each symbol o f the bAG g i v e s
r i s e to a s o r t . The t e r m i n a l symbols are con-
s i d e r e d as nullary constants of their own sort,

and the l e f t hand s ides o f node r u l e s are con-

siderd as non-nullary function symbols with arity

according to the node rule. The terms freely gen-

erated by all terminal symbols are e x a c t l y the
possible attribute values, denoted by A(DAG), As

an a b s t r a c t s y n t a x a l s o d e s c r i b e s a set o f t r e e s ,
A(DAG) can a l s o be seen as the t r e e language gen-

erated from the bAG. The terms freely generated by

the t e r m i n a l symbols and the c l a s s names (wh ich
also are considered nullary c o n s t a n t s) are j u s t
the incomplete derivation trees (sentential forms)

g e n e r a t e d by the gAG; they are c a l l e d
forms and are denoted by AF(DAG), Thus, an a t t r i -
bute fo rm may c o n t a i n n o n t e r m i n a l l e a v e s . As
u s u a l , we a l s o use the n o t i o n o f d e r i v a t i o n : f o r
x , y AF(DAG) we write x ~> y igf y may be derived

from x by substituting an attribute form of the

correct sort for a nonterminal leave. [n this

ease, we also consider the sort associated with y

to be a subsort of the sort assoclated with x. An

attrib~ute form can be used to represent an infin-

ite set of attributes, namely all those attributes

which can be derived from it.

As u s u a l , we add v a r i a b l e s : The a l g e b r a f r e e l y
g e n e r a t e d by the t e r m i n a l s , c l ass symbols and an
inifite se t of s o r t e d variables is called the
a l g e b r a o f ~ i / / _ i b ~ i£Xg-% w i t h _~_ii~_!9_~ and
deno ted by AFV(OAG). The sort o f a v a r i a b l e v is

denoted by s o r t (v) , and for x~AFV(DAG) we denote
the variables in x by v a r s (x) ,

We now d e f i n e the n o t i o n o f ~].Q/.D
/Lt~/.~Ag_~: G iven a f r agmen t F, an a t t r i b u t e form
relation describing F is a finite set of mappings

from the tree nodes N o f F to attribute ~orms with

varxables. The set of all attribute ~orm rela-

tions is deno ted by AFR. An attribute form rela-

tion r6AFR r e p r e s e n t s a p o s s i b l y infinite c o n t e x t
re],ation R[r] ~CR as follows:

t ~ R [r] i f f t h e r e i s t ' ~ r and t h e r e i s a mapping

e: v a r s (t ') -> A(DAG)

such that for all S ~ dom(t)

e ~ (t ' (s)) -> t (s)

At this point, we will g i v e some examples. Con-
sider the PASCAL fragments

I) a[<expression1>] :: <expressionl>

(an incomplete assignment)

2) a rk+5) (a v a r i a b l e)

3) k and j (an e x p r e s s i o n)

with corresponding abstract syntax trees

: =

/ \
[] < e x p r e s s i o n l > / \

a <express ion1>

[]

/ \
a +

/ \

and

/ \
k j

For the sake of simplicity, we do not distin-

guish between a subrange type and its base type.

and we assume, t h a t w i t h i n an ass ignment both
s i d e s must have the same t ype or the l e f t hand
s i d e has t ype r e a l and the r i g h t hand s ide has

type integer (t h e s e simplifications are not essen-

tial). Therefore, in fragment one, we do not know

the component type of the a r r a y , but it is clear
that the still missing index must be o? ordinal

type. Furthermore, the still missing right hand
s i d e o f the ass ignment e i t h e r must have the same

type as the component type of array a, or a has
component t ype r e a l and the r i g h t hand s ide has
type integer. In the second fragment, k must be a
variable, function or constant o f t ype integer,
and a t h e r e f o r e has index t ype c o m p a t i b l e w i t h
i n t e g e r . Note t h a t even though the a d d i t i o n i n
PASCAL is o v e r l o a d e d , k canno t be r e a l , as it is

used within an array index. The fragment itself

has the same type as the component type of array

a. In the t h i r d f r a g m e n t , k, j ann the £ragment
itself must have type boolean.

These inferences are valld regardless o{ the pro.
grams into wh ich the fragments can be hypotheti-

cally embedded and can be d#pe w i t hou< l o o k i n g at
any declarations, but more cannot be sald. We now

d e s c r i b e the p o s s i b l e a t t r m b u t e ass ignments to
fragments node~ by attribute form relations. For

the sake of readability, we will ignore the
on]act_class component of attributes and simply

concentrate on the types of the objects involved
The attribute form relations corresponding to the

f r agmen ts are

where e* ~s the
a t t f i b u t e f o r m s .

homomorphic e x t e n s i o n o f e to

2 3 1

(1)
____z_ _ I_ < ~ ~ o 2 >_ 1 _ [_]__ I _ < m ~ ~ l >
a r r a y type(ORDINALs TYPE) ORDINAL I TYPE] TYPE
array type{ORDINAL, real) ORDINAL I real I integer

{Z)

a I_[_]_.L k t * t _ A
array_type(integer TYPE) j TYPE I integer I integer I integer

(3)

k I ._~01___ I _J
boolean I boolean I boo.lean

The column l a b e l s o f t h e s e r e l a t i o n s a re t h e
nodes of t h e c o r r e s p o n d i n g f r a g m e n t s wh i ch possess
an a t t r i b u t e . Tupe l components are a t t r i b u t e forms
w i t h v a r i a b l e s . The f i r s t r e l a t i o n has two t u p e l s .
The first tuple contains t he variables ORDINAL and
TYPE, wh i ch are (s i m i l a r t o PROLOG) written i n
Upper case l e t t e r s , For t h e sake o f s i m p l i c i t y ,
the names of the variables also indicate their
s o r t , Thus, the f i r s t t u p l e s t a t e s t h a t ' a ' may
be an array of unknown index and component type
and that the still missing index expression is oE

the Sam~: ordinal type; the right hand side must be
o f the saj~ type as t h e array component type. The
second tuple states that alternatively 'a' may
have component t y p e r e a l and t h e r i g h t hand s i d e
t y p e i n t e g e r ; a g a i n t h e v a r i a b l e ORDINAL d e s c r i b e s
that the unknown index type must be the same as
the type of the still missing index. A similar
interpretation a p p l i e s to the two other r e l a t i o n s .
Note t h a t t h e scope o f a variable is a l w a y s t he
t u p l e it occurs in. The first two relations
represent infinite context relations, whereas the

third r e l a t i o n r e p r e s e n t s a one-tuple context
relation {which %s accidently identical with the

basic relation for t he logical and operator).
Note t h a t still p o s s i b l e attribute a s s i g n m e n t s
d i f f e r e n t f r om t h o s e r e p r e s e n t e d by t h e g i v e n
relations do not exist for our fragments, regard-

less o f g l o b a l c o n t e x t : t h e r e l a t i o n s d e s c r i b e
e x a c t l y the s e t s o f p o s s i b l e attribute a s s i g n m e n t s
to fragment nodes~ As examp le three shows, such a
set can be unique even in t he absence o f declara-
tions.

!Lm~f2..~a t i___2p_/!~z c e ~ o m d ~ ~

[t is now n e c c e s s a r y to construct an operation
for attribute form relations which exactly
r e p r e s e n t s t h e join, This operation is ~ f ~
in our many-sorted algebra with subsorta~ Unifica-

tion i n m a n y - s o r t e d a l g e b r a s works s i m i l a r t o the
c l a s s i c a l Rob inson u n i f i c a t i o n / R o b i 6 5 / . However
as we have subsorts and non-disjoint sorts, in
order to unify two variables of different s o r t s it

zs n e c c e s s a r y t o f i n d a s o r t w h i c h d e s c r i b e s
e x a c t l y t he intersection o f t he original s o r t s ,
Therefore, we r e q u i r e for two s o r t s that their
intersection is either empty or again a sort,
wh ich i s e q u i v a l e n t to

(AF{DAG)~ 9>) is an upper semilattice.

Thus, the unification has to compute supreme in
t h i s l a t t i c e f rom t ime to t i m e . For ou r sample
bAG, if we have a variable oT sort ordinal and a
variable o f s o r t a r i t h m e t i c , their unification is

a variable of sort integer~ On the other hand, the

unification o{ a variable o£ sort
array type and another variable of
sort real fails, as real and
array type are dis]oint sorts~ Note

t h a t from a t h e o r e t i c a l p o i n t o f v i ew
it is not essential to include non-

disjoint bAG c l a s s e s . The s p e c i a l case
" c l a s s e s must be d i s j o i n t " i s t h e o r e t -
i c a l l y s u E f i c i e n t and l e a d s t o a sub-
sort o r d e r i n g w h i c h has t r e e s t r u c t u r e
rather t h a n to be an uppe r s e m i l a t -
tice. From a practical point of v i e w ,
h o w e v e r , it i s e s s e n t i a l that rela-

tions c o n t a i n as few t u p l e s as P o s s i -
b l e , T h e r e f o r e , any a t t r i b u t e subse t
relevant in a language should be

r e p r e s e n t e d by a bAG c l a s s r a t h e r than by dif-
ferent t u p l e s within a relation. Considering
that, including n o n - d i s j o i n t bAG c l a s s e s is

essential f o r performance.

The_on Considering tuples as special t e r m s , if
the bAG i n d u c e s an upper s e m i l a t t . i c e , t u p l e - w i s e
unification of attribute form relations
represents t h e n a t u r a l j o i n e x a c t l y :

R [{ t i t h e r e are t ~ r l , t ' ' ~ , r2, t : u n i v (t ' , t ' ') }]
= R [r l] ~ R [r 2]

F u r t h e r m o r e , the u n i f i c a t i o n as s c o t c h e d above
will produce a correct and u n i q u e most general
u n i f i e r f o r m a n y - s o r t e d a l g e b r a s w i t h semi-
l a t t i c e o r d e r e d s u b s o r t s ~

~_ilg.~f see / S n e 1 8 3 / .

~ e s

a) Ne compose f r a g m e n t s 1) and 2) , t h u s o b t a i n i n g
the f r a g m e n t

a [a [k * 5]] : : < e x p r e s s i o n >

We have t o u n i t y t u p l e componen ts in
c o r r e s p o n d i n g co lumns o f ou r two r e l a t i o n s . Irt
t he examp le , t h e co lumn for ' a ' i n r e l a t i o n (I)
has to be matched a g a i n s t t he c o r r e s p o n d i n g
column f o r ' a ' i n r e l a t i o n (2) , and t h e column
f o r ' < e x p r e s s i o n 1 > ' i n r e l a t i o n (1) has to be
matched a g a i n s t t h e column f o r ' [] ' i n r e l a t i o n
(2) . Note t h a t in general, scope and visibility

r u l e s o f t he l a n g u a g e i n q u e s t i o n must be obeyed
when d e t e r m i n i n g w h i c h co lumns match ; t h i s p r o -
cess i s no t d e s c r i b e d he re (see / H u S c 8 3 /) .
Unification o{ the a t t r i b u t e s a r r a y t ype (ORDINAL ,
TYPE) and a r r a y t y p e (i n t e g e r , TYPE) r e s u l t s i n a
new s o r t f o r t he v a r i a b l e ORDINAL, namely
i n t e g e r , as i n t e g e r i s a s u b s o r t o f o r d i n a l .

Furthermore, t h e two TYPE variables are unified.

N e x t . c o n s i d e r i n g t h e co lumns f o r < e x p r e s s i o n 1 > '
i n r e l a t i o n I 1) and ' [] ' i n r e l a t i o n (2 } , we
have t o u n i f y t h e v a r i a b l e s ORDINAL and TYPE~ Hut
ORDINAL has a l r e a d y been s u b s t i t u t e d by i n t e g e r .
T h e r e f o r e , TYPE a l s o changes its s o r t and becomes
integer {note that in our setting for a variable

" t o change s o r t " and " t o ge t a new v a l u e " a re
somewhat e q u i v a l e n t) , Now, t h e second t u p l e o~
the first relation must be considered, Here, we
unify a r r a y t ype (ORDINAL, real) and
array_type{integer, TYPE) r e s u l t i n g in a new sort
f o r ORDINAL, name ly i n t e g e r , and a new s o r t f o r
TYPE, namely r e a l . N e x t , ORDINAL and TYPE have to

232

be unzfled: however, because the constants

i n t e g e r and r e a l are not u n l f y a b l e (the i n t e r s e c -
t ; o n o f t r le c o r r e s p o n d i n g s o r t s i s empty) the
who le u n i f i c a t i o n f a l l s , Thus, we obtain a new
relation consisting ef one tuple

" a l m o s t a n y " i n p u t i n the sense o f open prob lem 8
in /Siek8¢/,

. ~ . I - L] _ _ l _ [_] _ _ _ l . . . k I ~ l_~_ 5] < ~ s s i o n >
a r r a y _ . t y p e (i n t e g e r , i n t e g e r) l i n t e g e r l i n t e g e r l i n t e g e r l i n t e g e r l i n t e g e r l i n t e g e r

that is, we have Inferred that in the new frag-

ment the s t i l l m i s s i n g right hand s ide of the
ass ignmen t , as w e l l as i ndex and component t ype
of a r r a y a, must be of type i n t e g e r .

b) We compose our newly d e r i v e d f ragment and our
o r i g i n a l f r a g m e n t (3) t o f o r m the ass ignment

a [a [k + 5]] := k and]

Here, we have to u n i f y the a t t r i b u t e s for

< e x p r e s s i o n > i n f r agmen t (1) and the "and" node
zn f ragmen t (3) , as w e l l as the a t t r i b u t e s #or k,
However, unification o f integer and boolean fails

at once, We therefore obtain the empty re la t ion

A I _ [_ 3 _ I _ [_] _ I_2~_1_+_ t j . _ I _ _ ~ _ I zZ
I I I I I I I

indicating a semantic error: Type conflict in an

ass ignmen t . This example illustrates how the
method g u a r a n t e e s Immedia te d e t e c t a o n of seman t i c
errors even in incomplete f r a g m e n t s . Furthermore,

s i n c e the columns and a t t r i b u t e s wh ich d id not
match a re known, it i s a l s o p o s s i b l e to l o c a t e
semantlc errors exactly.

The use o f Sor ted v a r i a b l e s a l l o w s the spec i f . -
l c a t l o n of equality in certain (sub)attributes o f

a t u p l e t o g e t h e r w i t h an indication of admissible

s u b s t i t u t i o n s , f towever , f o r p r a c t i c a l purposes

t h i s ms not enough, We will give an example :
HODULA-2 allows the use of constant expressions

w i t h i n constant declarations. For purposes o f
semantic analysis, it is important to ev~luak@

these constant expressions: The fragment

CONST a = 3;
b = a -3 ;

VAR x: ARRAY [a . . b] OF <type>

i s o b v i o u s l y i n c o r r e c t . E x p r e s s i o n e v a l u a t i o n
within semantic analysis based on unification is

equivalent to unification in algebras with non-

empty equational theory. The unfication algorithm

i n our example must know t h a t 3-3 = 0 and 3 <=0 =
false. Arbitrary complicated examples like this

may be c o n s t r u c t e d , However, in h is w e l l - k n o w n
paper / P l o T 2 / P l o t k i n showed t h a t f i n i t e most
g e n e r a l unifiers for a l g e b r a s with non-empty
equational t h e o r y i n g e n e r a l do no t exist. AS
our concept is language independent, we do not

want to look for correct unification algorithms

f o r each language (there are c e r t a i n equational
theories where finite most general unifiers

exist). Since the general problem is not solv-
able, we have developed an extension of our unif-

ication in order to be able to handle arbitrary
equational theories, which works correct with

The basic idea i s as follows: We extend our

attribute algebra w i t h sorts and terms for which

an i n t e r p r e t e r i s assumed to e x i s t , t h a t i s , we
m a r k certain attribute forms as e v a l u a b l e . In cur

example , we i n t r o d u c e i n t e g e r v a l u e s and arith-

metic and assume that an interpreter for arith-.

metic and relational expressions e x i s t s wh ich f o r

example can d e t e r m i n e t h a t 3-3=0, Thus. i f we
assume that constants are described by their t ype
and v a l u e

const_attr :: simple_type value

value = let_value, Real_value, Bool_value

where I n t . va lue e t c , a re assumed to be predefined

DAG classes, the basic relation for constant

addition in MODULA-2 might look as follows

(const add i s a node with two sons,const expr]

and c o n s t _ e x p r 2) : ~

c o n s t a d ¢ . _ _ _ I ~ (~ L I H H ~ £ , Y A L U E / + Z 6 _ L U g i)
~,L~L~x~Lk_l_c_q.Q_~%~ aLt~(ARI~HMETIQ,yALUE])
const expr2 I const attr(ARITHMETIC,VALUE2)

Por ing analysis, u n i f i c a t i o n and e v a l u a t i o n
a re AE~Ltw~LD..~, The system keeps t r a c k of

u n e v a l u a t e d e x p r e s s i o n s . Once the neccesa ry argu.-
ments o f as ye t u n e v a l u a t e d e x p r e s s i o n s are known
(t h i s m igh t be a consequence o f u n i f i c a t i o n s) ,
the e x p r e s s i o n s are e v a l u a t e d a t once. Th is con-
cep t is known as da ta d r i v e n e v a l u a t i o n s t r a t e g y :
U n e v a l u a t e d e x p r e s s i o n s are w a i t i n g as demons;
t hey are a lways e v a l u a t e d as soon as possible.

Thus, u n i f i c a t i o n c a l l s e v a l u a t i o n i f p o s s i b l e ,
however the r e s u l t s o f e v a l u a t i o n s must aga in be
considered for unification: evaluation calls

unification if neccessary. This concept does not

work i n eve ry case: t h e r e might be u n e v a l u a t e d
e x p r e s s i o n s , w h i c h , in case o f e v a l u a t i o n , wou ld
cause subsequent unifications to fail; however,

they never get evaluated. Fortunately, this does

not happen v e r y o f t e n , and as ment ioned above,
someth ing b e t t e r w i l l p r o b a b l y not e x i s t f o r
a r b i t r a r y e q u a t i o n a l t h e o r i e s , Note t h a t e x t e n d -
i n g unification by data-driven evaluation is also

c o n s i d e r e d a u s e f u l e x t e n s i o n o f PROLOG. We con-
sider the approach to be an alternative to nar-

rowing algorithms~

We have seen t h a t u n i f i c a t i o n , i n t e r t w i n e d
w i t h e v a l u a t i o n , g i v e s a u s e f u l bas i s f o r i n c r e -

men ta l semant i c a n a l y s i s . C o n c e p t u a l l y , i t wou ld
be s u f f i c i e n t t o s t o r e w i t h each f ragmen t one b ig
" g l o b a l r e l a t i o n " wh ich c o n t a i n s a l l the a t t r i -

* This relation has been rotated for layout

r e a s o n s

233

butes of the f r a g m e n t . During ed i t i ng , t h i s re la -
t ion must then be m o d i f i e d after each e d i t i n g
s tep . [f , f o r example, an unexpanded n o n t e r m z n a l
i s r e p l a c e d by a new s u b t r e e , i t would be s u f f i -
c i e n t to a n a l y s e the new s u b t r e e by] e i n z n g the
basic relations o f its components and then to use

one] o l n te update the g l o b a l r e l a t i o n . Th is
scheme, however , i s not v e r y a p p r o p r i a t e , because
zt might r e q u i r e a comp le te r e - a n a l y s i s o f .Frag-
ments after s u b t r e e d e l e t i o n s , i t i s f a r b e t t e r
to d l s t r l b u t e the g l o b a l r e l a t z o r l w i t h i n the syn-
tax t r e e : Some f ragmen t nodes f la re a " l o c a l r e l a -
t i o n " a t t a c h e d , wh ich d e s c r i b e s p a r t o f the sub-
t r e e b e g i n n i n g a t t h a t node. It i s not n e c c e s s a r y
to include into such a local relation e,g, attri-

butes of ob3ects which are not visible at the

c o r r e s p o n d i n g f r agmen t node, a c c o r d i n g to the
scope r u l e s of the l anguage , A f t e r an e d i t i n g
s tep , t h e r e i s u s u a l l y o n l y a sma l l number o f
small relations t o be upda ted , wh ich i s far more
e f f i c i e n t than to update one b lg r e l a t i o n , 0 n l y
local relations attached to fragment nodes on the

path f rom the m o d i f i e d subtree t o the fragment
r o o t must be c o n s i d e r e d . A f t e r a s u b t r e e
insertion,these relations have to be joined with

the r e l a t i o n of the new subtree (which has to be
ana l ysed f i r s t) . A f t e r a s u b t r e e d e l e t i o n , t hese
relations must be recomputed from basic relations

and other local relations wh ich a re not a f f e c t e d
by the subtree deletion and therefore need net be

recomputed~ The analysis can often be stopped

after considering 3ust one or two local rela-

tions: as soon as the scope r u l e s g u a r a n t e e t h a t
i n s e r t e d or d e l e t e d s y n t a c t i c o b j e c t s canno t have
any i n f l u e n c e on surrounding parts of the frag-

ment, updating o f local relations on the path

from the m o d i f i e d s u b t r e e to the f r agmen t r o o t
may be aborted, It is even possible to implement

a Raps-style change propagation algorithm for

local relations: updating local relations is

stopped as soon as no more changes occu r .

In general, the complete analysis of a f r a g -
ment of size n requires O{n*ln n) unifications,

whereas the incremental analysis after one edit-

ing s tep requires typically O{ln n) unifications,

For a detailed description of the incremental

analysls a l g o r i t h m s including c o m p l e x i t y
a n a l y s i s , see /Sne1851.

Du r ing e d i t i n g , the c o n t e x t r e l a t i o n s are p r i -
m a r i l y used to d e t e c t semantic errors, Of c o u r s e .
relations associated with fragments can a l s o be
used as symbol tables: within a PSG environment,
the user always may have a look at the attributes

of syntactic ob3ec t s . Note that relational

analysis does not require any o b] e c t s to be
d e c l a r e d , scope a n a l y s i s will however d e t e c t
missing declarations as soon as the l as t possi-

bility of declaring that object has been deleted

and t h e r e i s no p o s s i b i l i t y of d e c l a r i n g t h a t
object outside the fragment in question,

Furthermore, the relational approach can be

used to guarantee not only immediate detection of

semantic errors, but also their prevention: A PSG
editor always offers users the possibility to

m a n i p u l a t e t h e i r fragments by s e l e c t i o n from

language-specific ~enu items, These menus are

g e n e r a t e d a c c o r d i n g t o the a b s t r a c t s y n t a x o f the
l anguage . However , they a re a d d i t i o n a l l y f ' i l ~
t o t e d d y n a m i c a l l y with r e s p e c t to context condi- .
tions, Thus, if PS6 editors are simply used ae

s t r u c t u r e e d i t o r s , t hey g u a r a n t e e the p r e v e n t i o n
o f bo th , s y n t a c t i c ~ seman t i c e r z o r s .

Several techniques for incremental semant ic
a n a l y s i s i n Language s p e c i f i c e d i t o r s have been
d e v e l o p e d . The p r o b a b l y most w e l] known <oHcepts
are seman t i c a e t i o n r o u t i n e s zn 6ANOALF /Hob82/
and i n c r e m e n t a l a t t r i b u t e e v a l u a t i o n w i t h i n the
C o r n e l i Program S y n t h e s i z e r / R e p s S] / ; these are
a l s o v a r i a t i o n s on the a t t r i b u t e grammar theme
e~g, / J o F 1 8 2 / . I t i s p o s s i b l e to imp lement our
concep t us i ng these t e c h n i q u e s . In f a c t , c o n t e x t
r e l a t i o n s and u n i f i c a t i o n have e x p e r i m e n t a l l y
been imp lemented us i ng the C o r n e l l s y n t h e s i z e r
g e n e r a t o r . However , the concep t of i n f e r r i n g sets
o £ s t l l l p o s s i b l e a t t r l b u t e s w i t t l l n i n c o m p l e t e
f r a g m e n t s seems to be new. A l l the known concep ts
have a lways obeyed the c l a s s i c a l scheme: F i r s t
i n s p e c t the d e c l a r a t i o n s , then use the c o l l e c t e d
i n f o r m a t i o n f o r the a n a l y s i s o f s t a t e m e n t s e t c ,
I t was a d i r e c t consequence o f the PS6 f ragmen t
concep t t h a t we had to do i t a n o t h e r way.

The Nilner-,Style analysis of type-free lambda

c a l c u l u s e x p r e s s i o n s / M i l n 7 8 / computes the most
g e n e r a l p o l y m o r p h i c t ype o f a g i v e n lambda term,
I t a l s o uses u n i f i c a t i o n and i s in some sense
s i m i l a r to our scheme. However , M i l n e r and the
w o r k e r s who ex tended the approach never t r i e d to
implement incremental algorithms, and t h e y aJso

did not use the concept within an environment

g e n e r a t o r .

! . F i n a l Lg_ElArks

The i n c r e m e n t a l seman t i c a n a l y s i s w i t h c o n t e x t
relations i s i n operation as part o f the PSG sys-

tem s i n c e 1984. I t i s imp lemented i n PASCAL, a l l
in a l l about 10000 l i n e s o f code, For a 100 l i n e
PASCAL program, the comp le te a n a l y s i s r e q u i r e s
1.2 CPU seconds on a SIEMENS 7551 mach lne ; i n c r e -

men ta l a n a l y s i s o f m o d l f l c a t i o n s r e q u i r e s between
0.02 and 0.3 seconds per e d z t l n g s t e p . The d e f i n -
i t i o n of the PASCAL context condi t ions (that is,
the s p e c i f i c a t i o n of the b a s i c r e l a t i o n s) con-
s i s t s o f about 600 l i n e s o f meta language~ wh ich
we c o n s i d e r to be not v e r y much. Note t h a t we

did not p r e s e n t the specification of scope rules

as well as s e v e r a l useful e x t e n s i o n s l i k e e .g .
operations on l i s t s

IAho873/

I A u s t 8 3 /

/8aSn85/

Aho, A ,V , , 8 e e r i , C . , U l l m a n , J . O : The
t h e o r y of j o i n s i n r e l a t i o n a l d a t a b a s e s ,

ACM TOPS 4 (1 9 7 9) , 3, pp. 297-314

Austerm~hl, 8,: Ein relationaler AnsatZ
zur 8eschreibung der statischen Semantik

yon P r o g r a m m i e r s p r a c h e n . PhD t h e s i s ,
Technische Hochschu le Darms tad t 1983

8ahlke, R, Snelting, 6.: The PSG - Pro-'

gramming System Generator. Proc. ACH
S[GPLAN 85~ Language i s s u e s in p rog ram-
ming e n v i r o n m e n t s + SIGPLAN n o t i c e s 20
(19~5) , 7, pp, 28~33

234

/ 3oF i82 /

/Hob82/

/HeSnD#/

/HuSc83/

/ M i l n 7 8 /

/PSG85/

/P1o72/

/Reps83/

/Rob i55 /

/S iekS# /

/Sne185/

Johnson, G.F, F isher , C.N,: Non-
s y n t a c t i c a t t r i b u t e f l o w in language-
based e d i t o r s . Proc. 9th ACH symposium
on p r i n c i p l e s of programming languages,
1982, pp,196-205

Habermann, N. e t e l : The second compen-
dium o{ Gandal{ documentat ion. Dept, o f
Computer science, Carnegie Mel lon
Un&verszty 1982

Henhapl, W., Sne l t i ng , G.: Context r e l a -
t i o n s : a concept For i nc remen ta l con tex t
a n a l y s i s in program f ragments, Proc, G[
Fachtagung Programmiersprachen und Pro-
grammentwicklung, Sprin9er Verlag 1984,
I n { o r m a t i k Fachber ich te 77, pp. 128-143

Hunkel, M,, Schmi t t , H,: Ein System zur
8ezeichneridentifikation und dessen
Integration in ein strukturorientiertes
Ediersystem~ Diploma t h e s i s , Technische
Hochschule Darmstadt 1983.

H i l n e r , R , : A theory o{ type polymorphism
in programming. J. Computer and system
sc iences 17 (1978), pp. 348-375

8 a h l k e , R . , Hunkel,M~, K lug ,H. ,
S n e l t i n g , G , : Language d e f i n e r s guide to
PSG. Report PUZR3/85, Technische
Nochschule Darmstadt, 1985.

P l o t k i n , G.: 8uz ld ing zn equa t i ona l
t h e o r i e s . Machine i n t e l l i g e n c e 7 (1972),
pp. 73-90

Reps, 7 . , Te i te lbaum, l . , Pemers, A. :
[ne['emental contex t -dependent ana lys i s
f o r language-based e d i t o r s . ACN TOPLAS
5 (1983), 3, pp. ¢49-~77

Robinson, J . A . : A machine o r ien ted l o g l c
based on the r e s o l u t i o n p r i n c i p l e . 3ACM
12 (1955), 1, pp. 23-41

Siekmann, 3 . : Un i ve rsa l u n i f i c a t i o n .
Proc. 7th i n t e r n a t i o n a l con{erence on
automated deduc t ion , Spr inger Ver lag ,
LNCS 170, pp. 1-42

S n e l t i n g G. I n k r e m e n t e l l e semantische
Analyse in unvo l l s tandzgen Programm{rag-
menten mit K o n t e x t r e l a t i o n e n . PhO
t h e s i s , Technische Hochschule Darmstadt
1985.

235

