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L a n g u a g e - s p e c i f i c  editors @or t yped  p r o g r a ~ i n g  languages  must contain a subsystem ~or 
semantic snalysis in order to gusrsntee correctness o~ programs with respect to the con- 
text conditions o f  the l anguage ,  AS programs are  usually incomplete durzng development, 
the semsntic analysis must be able to cope with missing context in~ormation~ e . g ,  incom- 
plete variable declarstions or calls to procedures imported from still missing modules. ~n 
this paper we present an algorithm ~or incremental semantic analysis, which guarantees 
immediate detection of semantic errors even in arbitrary incomplete program fragments. The 
algorithm is generated from the lsnguage's context conditions, which are described by 
i n f e r e n c e  rules. During editing, these rules are evaluated using a unification algorithm 
for many-sorted algebras with semi-lattice ordered subsorts and non-empty equational 
theories. The method has been implemented as part of the PSG system, which generates 
interactive programming environments from formal language definitions~ and has been suc- 
cessfully used to generste an incremental semantic snalysis for PASCAL and MODULA-2. 

Programm&ng environments for a specific pro- 
gramc~ing language should support the interactive 
construction of correct programs. Correctness for 
typed programming languages includes wellformed- 
hess according to the context conditions of the 
lsnguage. Therefore, a semantic anslyser must be 
part of a programmlng environment which checks 
context conditions during program construction, 
For use within s language-specific e d i t o r ,  the 
analysis algorithm must ~ul~ill several require- 

ments: 

I. Programs are usually incomplete during develop- 
ment. Program parts which are important w~th 
respect to semantic analysis { e . g ,  declarations] 
may be still m i s s i n g  or incomplete. The most gen- 
e r a l  form o~ an incomplete program is a sentential 
form of some nonterminal o f  the l a n g u a g e ' s  s y n t a x .  
We call such ~orma (and their representations as 
abstract trees) ~ ,  If the basic units ~or 
editing are incomplete fragments which may 
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be edited separately, in a PASCAL environment the 
~ollowing situation could arise: A programmer 
types the incomplete procedure fragment 

procedure p ( a : t l ;  k : t 2 ) ;  
begin 

a[a(k+5]] := 3 . ~ ;  

Although tl and t2 are global objects the defini- 
tion of which is not part o4 the fragment, the 
semantic analysis must be able to handle this 
fragment as a separate unit~ Thezefore, we 
require that the seman t i c  analysis must be able to 
anslyse arbitrary incomplete program fragments. 

2. Fragments are correct ,  i~  they are correct pro ~ 

R~D.=.~L~.~.. Therefore, the semantic analysis must 
report  semantic er rors  as soon as a fragment can 
no longer be embedded in to  a correct progrsm. Our 
above example must immediately considered semsnti- 
C~iiy incorrect~ as left and right hand sides o~ 
the asslgnment have incompatible t y p e s ,  regardless 
of the missing global declarations. 

• . For e f f i c i e n t  use in an 
ent, the semantic analysis 

mental manner. 

i n t e r a c t i v e  envlron = 

must work in an inc re -  

4, It is useful not to implement a language- 
specific environment by hand, but to use a geners- 
tot. Therefore, it must be possible to geners te  

the semantic analysis from o formal definition of 
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the  c o n t e x t  conditions o f  a language~ 

~n the following, we p r e s e n t  the  c o n c e p t ,  theory 
and a l g o r i t h m s  o f  a seman' t ic  a n a l y s i s  s a t i s f y i n g  
the above r e q u i r e m e n t s ~  The m e t h o d  has been 
implemented as part of the PSG Programming System 
Generator, which generates interactive programming 

environments from formal language definitions 
/SaSh85/ ,  W i t h i n  PSG e n v i r o n m e n t s ,  f ragments  are 
the  b a s i c  u n i t s  f o r  e d i t i n g  and execution. 'The 
semantic analysis is part of the hybrid editor 

genera ted  by PSG. i n a l y s e r s  for ALGOL60, PASCAL, 
MOOULA-2 and the formal language definition 

l anguage  itself have been g e n e r a t e d  s u c c e s s f u l l y .  

We assume that program f r a g m e n t s  are i n t e r n a l l y  
r e p r e s e n t e d  as a b s t r a c t  s y n t a x  t r e e s  during e d i t -  
ing. A f t e r  each m o d i f i c a t i o n ,  the  t r e e  i s  sub- 
3acted to the  incremental semantic a n a l y s i s .  AS 
usual~ we associate attributes with the nodes Of 
an abstract tree. Hoverers it will be impossible 

to compute uniquely determined attribute v a l u e s  
f o r  tree nodes,  because in an incomplete f r a g m e n t  
important information { e . g .  declarations) may be 
missing. A well-known method to handle this prob- 

lem is t o  use c l a s s i c a l  attribute grammars 
together with special " d e f a u l t "  attribute v a l u e s  
associated with completing productions, and to use 
an incremental a t t r i bu te  e v a l u a t i o n  algorithm 
/Reps83/. However, c lass ica l - s t y le  a t t r i bu te  gram- 
mars a lways  f o l l o w  the scheme: first i n s p e c t  the  
d e c l a r a t i o n s ,  b u i l d i n g  up an e n v i r o n m e n t ,  then use 
this environment to per{ore e.g, type checking. 
Therefore, using classical-style attributed gram- 

mars,  i n c o m p l e t e  fragments cannot be t ype  checked 
if declarations are m i s s i n g ,  

Because of this defect, We explicitely pass 

over from attribute values to sets of "still pos- 
sible ~ attribute values. The basic idea is as fol- 
lows: i correct fragment can be embedded into a 
~usually infinite) set of correct and complete 
programs, These programs can be attributed, yield- 

ing a set of attribute assignments to tree nodes. 
The restriction of all these assignments onto the 

fragment in question results in a set of attribute 
assignments for the fragment, which represents 

exactly the context information corresponding to 
the fragment, Instead of using several attributes 
for a tree node,  we use ~t most one attribute {or 

each node, w h i c h  however  may be structured~ As 

attribute values are associated with tree nodes, a 

c o l l e c t i o n  o f  attribute assignments can then  be 
seen a s  a relation in the sense of r e l a t i o n a l  data 
base theory: the columns of such a relation are 
labelled with the tree nodes, tuple elements are 
attribute values, and each tuple represents a pos ~ 
sible attribute assignment for the fragment~ Such 

a relation is called a ~ ~ i g / l ~  A con-  
t e x t  relation a s s o c i a t e d  with a fragment contains 

exactly the still possible attribute assignments 

o f  the  fragment. If the  f r a g m e n t  i s  c o m p l e t e  and 
corrects the relation will contain exactly one 
tuple, as there is only one possible attribute 
assignment for complete prosrems. In case o~ e 

semantic errors the relation will become empty, 
bebause no correct ass ignmen t  of attribute values 

to tree nodes exists.  Note t h a t  a context relation 
may be of i n f i n i t e  size, if the  set of underlying 
a t t r i bu te  values is i n f i n i t e .  For certain 

languages {not for PASCAL or C) context re lat ions 
may oven not be recurs ive ly  enumerable. 

F o r m a l l y ,  l e t  A be the se t  o f  p o s s i b l e  a t t r i -  
bu te  v a l u e s  of the  l a n g u a g e ,  N the nodes o f  a 

fragment F. The context relation CRIF) a s s o c i a t e d  
with F is a ant of mappings 

{t: N -> A} 

The set of all context relations is denoted by CR. 

Poring ed i t ing ,  a fragment is produced step by 
s tep  by composing a bigger tree from smaller 

trees: s u b t r e e  placeholders (unexpanded nontermi- 
r i a l s )  will be replaced by aubtrees, or subtrees of 
a fragment will be deleted and replaced by subtree 

placeholderso AS a basis for incremental 
analysis, we there/ore need an operation which 

computes the relation of a fragment {rum the rela- 
tions of its components. Actually, this operation 

is just the natural join of relations (as known 
from data base theory, see /Aho879/). I{ a place- 

holder X in a f r a g m e n t  F is replaced by a fragment 
G, thus giving a new fragment H, we therefore have 

CR(H) : CR(G) ~ CRIF) 

For examp les ,  see /HeSne$/  and the following sec -  
t i o n s .  However, there must be some relations to 
start with! At this point, the language definer 

enters the scene: In a syntax-oriented manner, he 
has to specify so-called ~li~ /~L~920! for all 
terminals and all constructors of the abstract 

syntax O{ the language /PSG85/. Once these basic 
relations have been defined, all fragments may be 

analysed by joining the basic relations of their 
components. Again, basic relations may contain an 

infinite number of tuples; In PASCAL, an isolated 
identifier may have the whole set o f  PASCAL types 
as still possible attribute. Therefore, the basic 
relation for identifiers contains at least one 
tuple for  each PASCAL type. 

Aa context relations a re  u s u a l l y  infinite, we 
have to construct a finite representation. The 

basic i dea  is to use a grammar: The set of all 
attribute values is described by an abstract syn- 

tax, a so-called data attribute grammar (bAG). 
Here, the structure of the attributes o f  the 

l a n g u a g e  is defined. For PASCAL, typical bAG 
rules might look like this: 

attribute :: type object class 

type = simple_type, array_type, set type .... 
simple type = arithmetic, ordinal 

arithmetic = integer, real 

ordinal = integer, boolean, char, enumeration. , ,  

set type :: ord inal  

a r r a y t y p e  : :  o r d i n a l  type 
object class = v a r i a b l e ,  ctyPe, constant, 

procedure, function, . . .  

Nero ,  :; i n d i c a t e s  a so-called hove r u l e ,  t h a t  i s ,  
the subcemponents Of a g i v e n  structure are 
described~ In our example an attribute consists of 

two subcomponents, namely  the type O{ an object 
as well as its object class. On the other hand, = 
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indicates a class rule, that is, alternatives 
within attributes are described. For example, a 

t y p e  may be a simple type, an array type, a set 

t y p e  and so on. Note t h a t  c l a s s e s  need not  be d i s -  
joint: integer is an arithmetic type as well as an 

ordinal t y p e .  An array type has again subcom- 

ponents~ namely an ordinal i n d e x  t y p e  and a com- 

ponent type, which may be an arbitrary type. Since 

attribute classes may contain subclasses, a DAG 
a l s o  i n c l u d e s  the concept  o f  a sub type i n  a 
natural way: integer is also an ordinal t y p e ,  and 
each ordinal type is a simple type, each simple 

type is a type, bAG symbols not occuring on the 

l e f t  hand a ide  of a r u l e  are c o n s i d e r e d  to  be t e r -  
minal, s. 

A bAG d e s c r i b e s  a many s o r t e d  { r e e  a l g e b r a  w i t h  
s u b s o r t s  as f o l l o w s :  Each symbol  o f  the bAG g i v e s  
r i s e  to  a s o r t .  The t e r m i n a l  symbols are  con- 
s i d e r e d  as nullary constants of their own sort, 

and the  l e f t  hand s ides  o f  node r u l e s  are con- 

siderd as non-nullary function symbols with arity 

according to the node rule. The terms freely gen- 

erated by all terminal symbols are  e x a c t l y  the 
possible attribute values, denoted by A(DAG), As 

an a b s t r a c t  s y n t a x  a l s o  d e s c r i b e s  a set  o f  t r e e s ,  
A(DAG) can a l s o  be seen as the t r e e  language gen- 

erated from the bAG. The terms freely generated by 

the  t e r m i n a l  symbols and the c l a s s  names (wh ich  
also are considered nullary c o n s t a n t s )  are  j u s t  
the incomplete derivation trees (sentential forms) 

g e n e r a t e d  by the gAG; they  are  c a l l e d  
forms and are  denoted  by AF(DAG), Thus, an a t t r i -  
bute  fo rm may c o n t a i n  n o n t e r m i n a l  l e a v e s .  As 
u s u a l ,  we a l s o  use the n o t i o n  o f  d e r i v a t i o n :  f o r  
x , y  AF(DAG) we write x ~> y igf y may be derived 

from x by substituting an attribute form of the 

correct sort for a nonterminal leave. [n this 

ease, we also consider the sort associated with y 

to be a subsort of the sort assoclated with x. An 

attrib~ute form can be used to represent an infin- 

ite set of attributes, namely all those attributes 

which  can be derived from it. 

As u s u a l ,  we add v a r i a b l e s :  The a l g e b r a  f r e e l y  
g e n e r a t e d  by the t e r m i n a l s ,  c l ass  symbols and an 
inifite se t  of s o r t e d  variables is called the 
a l g e b r a  o f  ~ i / / _ i b ~  i£Xg-% w i t h  _~_ii~_!9_~ and 
deno ted  by AFV(OAG). The sort o f  a v a r i a b l e  v is 

denoted by s o r t ( v ) ,  and for x~AFV(DAG) we denote 
the variables in x by v a r s ( x ) ,  

We now d e f i n e  the n o t i o n  o f  ~ ].Q/.D 
/Lt~/.~Ag_~: G iven  a f r agmen t  F, an a t t r i b u t e  form 
relation describing F is a finite set of mappings 

from the tree nodes N o f  F to attribute ~orms with 

varxables. The set of all attribute ~orm rela- 

tions is deno ted  by AFR. An attribute form rela- 

tion r6AFR r e p r e s e n t s  a p o s s i b l y  infinite c o n t e x t  
re],ation R[r] ~CR as follows: 

t ~  R [ r ]  i f f  t h e r e  i s  t ' ~  r and t h e r e  i s  a mapping 

e: v a r s ( t ' )  -> A(DAG) 

such that for all S ~ dom(t) 

e ~ ( t ' ( s ) )  -> t ( s )  

At this point, we will g i v e  some examples. Con- 
sider the PASCAL fragments 

I) a[<expression1>] :: <expressionl> 

(an incomplete assignment) 

2) a rk+5 )  (a v a r i a b l e )  

3) k and j (an e x p r e s s i o n )  

with corresponding abstract syntax trees 

: =  

/ \  
[ ] < e x p r e s s i o n l >  / \  

a <express  ion1> 

[ ] 

/ \  
a + 

/ \  

and 

/ \  
k j 

For the sake of simplicity, we do not distin- 

guish between a subrange type and its base type. 

and we assume, t h a t  w i t h i n  an ass ignment  both  
s i d e s  must have the same t ype  or  the  l e f t  hand 
s i d e  has t ype  r e a l  and the r i g h t  hand s ide  has 

type integer ( t h e s e  simplifications are not essen- 

tial). Therefore, in fragment one, we do not know 

the component type of the a r r a y ,  but it is clear 
that the still missing index must be o? ordinal 

type. Furthermore, the still missing right hand 
s i d e  o f  the ass ignment  e i t h e r  must have the same 

type as the component type of array a, or a has 
component t ype  r e a l  and the r i g h t  hand s ide  has 
type integer. In the second fragment, k must be a 
variable, function or constant o f  t ype  integer, 
and a t h e r e f o r e  has index  t ype  c o m p a t i b l e  w i t h  
i n t e g e r .  Note t h a t  even though the a d d i t i o n  i n  
PASCAL is o v e r l o a d e d ,  k canno t  be r e a l ,  as it is 

used within an array index. The fragment itself 

has the same type as the component type of array 

a. In the  t h i r d  f r a g m e n t ,  k, j ann the £ragment 
itself must have type boolean. 

These inferences are valld regardless o{ the pro. 
grams into wh ich  the fragments can be hypotheti- 

cally embedded and can be d#pe w i t hou<  l o o k i n g  at 
any declarations, but more cannot be sald. We now 

d e s c r i b e  the p o s s i b l e  a t t r m b u t e  ass ignments  to  
fragments node~ by attribute form relations. For 

the sake of readability, we will ignore the 
on]act_class component of attributes and simply 

concentrate on the types of the objects involved 
The attribute form relations corresponding to the 

f r agmen ts  are  

where e* ~s the  
a t t f i b u t e  f o r m s .  

homomorphic e x t e n s i o n  o f  e to  
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(1) 
____z_ _ I_ < ~ ~ o 2  >_ 1 _ [_ ]__ I _ < m ~ ~ l >  
a r r a y  type(ORDINALs TYPE) ORDINAL I TYPE ] TYPE 
array type{ORDINAL, real) ORDINAL I real I integer 

{Z) 

a I_[_]_.L k t * t _ A  ..... 
array_type(integer TYPE) j TYPE I integer I integer I integer 

(3) 

k I ._~01___ I _J ..... 
boolean I boolean I boo.lean 

The column l a b e l s  o f  t h e s e  r e l a t i o n s  a re  t h e  
nodes of t h e  c o r r e s p o n d i n g  f r a g m e n t s  wh i ch  possess  
an a t t r i b u t e .  Tupe l  components are  a t t r i b u t e  forms 
w i t h  v a r i a b l e s .  The f i r s t  r e l a t i o n  has two t u p e l s .  
The first tuple contains t he  variables ORDINAL and 
TYPE, wh i ch  are  ( s i m i l a r  t o  PROLOG) written i n  
Upper case l e t t e r s ,  For t h e  sake o f  s i m p l i c i t y ,  
the names of the variables also indicate their 
s o r t ,  Thus, the  f i r s t  t u p l e  s t a t e s  t h a t  ' a '  may 
be an array of unknown index and component type 
and that the still missing index expression is oE 

the Sam~: ordinal type; the right hand side must be 
o f  the  saj~ type as t h e  array component  type. The 
second tuple states that alternatively 'a' may 
have component  t y p e  r e a l  and t h e  r i g h t  hand s i d e  
t y p e  i n t e g e r ;  a g a i n  t h e  v a r i a b l e  ORDINAL d e s c r i b e s  
that the unknown index type must  be the same as 
the type of the still missing index. A similar 
interpretation a p p l i e s  to the two other r e l a t i o n s .  
Note t h a t  t h e  scope o f  a variable is a l w a y s  t he  
t u p l e  it occurs in. The first two relations 
represent infinite context relations, whereas the 

third r e l a t i o n  r e p r e s e n t s  a one-tuple context 
relation {which %s accidently identical with the 

basic relation for t he  logical and operator). 
Note t h a t  still p o s s i b l e  attribute a s s i g n m e n t s  
d i f f e r e n t  f r om  t h o s e  r e p r e s e n t e d  by t h e  g i v e n  
relations do not exist for our fragments, regard- 

less o f  g l o b a l  c o n t e x t :  t h e  r e l a t i o n s  d e s c r i b e  
e x a c t l y  the s e t s  o f  p o s s i b l e  attribute a s s i g n m e n t s  
to  fragment nodes~ As examp le  three shows, such a 
set can be unique even in t he  absence o f  declara- 
tions. 

!Lm~f2..~a t i___2p_/!~z c e ~ o m d ~ ~  

[t is now n e c c e s s a r y  to construct an operation 
for attribute form relations which exactly 
r e p r e s e n t s  t h e  join, This operation is ~ f ~  
in our many-sorted algebra with subsorta~ Unifica- 

tion i n  m a n y - s o r t e d  a l g e b r a s  works  s i m i l a r  t o  the 
c l a s s i c a l  Rob inson  u n i f i c a t i o n  / R o b i 6 5 / .  However  
as we have subsorts and non-disjoint sorts, in 
order to unify two variables of different s o r t s  it 

zs n e c c e s s a r y  t o  f i n d  a s o r t  w h i c h  d e s c r i b e s  
e x a c t l y  t he  intersection o f  t he  original s o r t s ,  
Therefore, we r e q u i r e  for two s o r t s  that their 
intersection is either empty or again a sort, 
wh ich  i s  e q u i v a l e n t  to  

(AF{DAG)~ 9>) is an upper semilattice. 

Thus, the unification has to compute supreme in 
t h i s  l a t t i c e  f rom t ime  to  t i m e .  For ou r  sample 
bAG, if we have a variable oT sort ordinal and a 
variable o f  s o r t  a r i t h m e t i c ,  their unification is 

a variable of sort integer~ On the other hand, the 

unification o{ a variable o£ sort 
array type and another variable of 
sort real fails, as real and 
array type are dis]oint sorts~ Note 

t h a t  from a t h e o r e t i c a l  p o i n t  o f  v i ew  
it is not essential to include non- 

disjoint bAG c l a s s e s .  The s p e c i a l  case 
" c l a s s e s  must be d i s j o i n t "  i s  t h e o r e t -  
i c a l l y  s u E f i c i e n t  and l e a d s  t o  a sub- 
sort o r d e r i n g  w h i c h  has t r e e  s t r u c t u r e  
rather t h a n  to  be an uppe r  s e m i l a t -  
tice. From a practical point of v i e w ,  
h o w e v e r ,  it i s  e s s e n t i a l  that rela- 

tions c o n t a i n  as few t u p l e s  as P o s s i -  
b l e ,  T h e r e f o r e ,  any a t t r i b u t e  subse t  
relevant in a language should be 

r e p r e s e n t e d  by a bAG c l a s s  r a t h e r  than  by dif- 
ferent t u p l e s  within a relation. Considering 
that, including n o n - d i s j o i n t  bAG c l a s s e s  is 

essential f o r  performance. 

The_on Considering tuples as special t e r m s ,  if 
the  bAG i n d u c e s  an upper  s e m i l a t t . i c e ,  t u p l e - w i s e  
unification of attribute form relations 
represents t h e  n a t u r a l  j o i n  e x a c t l y :  

R [ { t  i t h e r e  are t ~ r l ,  t ' ' ~ ,  r2, t : u n i v ( t ' , t ' ' ) } ]  
= R [ r l ]  ~ R [ r 2 ]  

F u r t h e r m o r e ,  the  u n i f i c a t i o n  as s c o t c h e d  above 
will produce a correct and u n i q u e  most general 
u n i f i e r  f o r  m a n y - s o r t e d  a l g e b r a s  w i t h  semi-  
l a t t i c e  o r d e r e d  s u b s o r t s ~  

~_ilg.~f see / S n e 1 8 3 / .  

~ e s  

a) Ne compose f r a g m e n t s  1) and 2 ) ,  t h u s  o b t a i n i n g  
the  f r a g m e n t  

a [ a [ k * 5 ] ]  : :  < e x p r e s s i o n >  

We have t o  u n i t y  t u p l e  componen ts  in  
c o r r e s p o n d i n g  co lumns o f  ou r  two r e l a t i o n s .  Irt 
t he  examp le ,  t h e  co lumn for ' a '  i n  r e l a t i o n  (I) 
has to be matched a g a i n s t  t he  c o r r e s p o n d i n g  
column f o r  ' a '  i n  r e l a t i o n  ( 2 ) ,  and t h e  column 
f o r  ' < e x p r e s s i o n 1 > '  i n  r e l a t i o n  (1)  has to  be 
matched a g a i n s t  t h e  column f o r  ' [  ] '  i n  r e l a t i o n  
( 2 ) .  Note  t h a t  in general, scope and visibility 

r u l e s  o f  t he  l a n g u a g e  i n  q u e s t i o n  must  be obeyed 
when d e t e r m i n i n g  w h i c h  co lumns match ;  t h i s  p r o -  
cess i s  no t  d e s c r i b e d  he re  (see / H u S c 8 3 / ) .  
Unification o{ the  a t t r i b u t e s  a r r a y  t ype (ORDINAL ,  
TYPE) and a r r a y  t y p e ( i n t e g e r ,  TYPE) r e s u l t s  i n  a 
new s o r t  f o r  t he  v a r i a b l e  ORDINAL, namely  
i n t e g e r ,  as i n t e g e r  i s  a s u b s o r t  o f  o r d i n a l .  

Furthermore, t h e  two TYPE variables are unified. 

N e x t .  c o n s i d e r i n g  t h e  co lumns f o r  < e x p r e s s i o n 1 > '  
i n  r e l a t i o n  I 1 )  and ' [  ] '  i n  r e l a t i o n  ( 2 } ,  we 
have t o  u n i f y  t h e  v a r i a b l e s  ORDINAL and TYPE~ Hut 
ORDINAL has a l r e a d y  been s u b s t i t u t e d  by i n t e g e r .  
T h e r e f o r e ,  TYPE a l s o  changes its s o r t  and becomes 
integer {note that in our setting for a variable 

" t o  change s o r t "  and " t o  ge t  a new v a l u e "  a re  
somewhat e q u i v a l e n t ) ,  Now, t h e  second t u p l e  o~ 
the first relation must be considered, Here, we 
unify a r r a y  t ype (ORDINAL,  real) and 
array_type{integer, TYPE) r e s u l t i n g  in a new sort 
f o r  ORDINAL, name ly  i n t e g e r ,  and a new s o r t  f o r  
TYPE, namely  r e a l .  N e x t ,  ORDINAL and TYPE have  to 
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be unzfled: however, because the constants 

i n t e g e r  and r e a l  are not u n l f y a b l e  ( the  i n t e r s e c -  
t ; o n  o f  t r le c o r r e s p o n d i n g  s o r t s  i s  empty)  the  
who le  u n i f i c a t i o n  f a l l s ,  Thus, we obtain a new 
relation consisting ef one tuple 

" a l m o s t  a n y "  i n p u t  i n  the  sense o f  open prob lem 8 
in /Siek8¢/, 

. . . . .  ~ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  I - L ] _ _ l _ [ _ ] _ _ _ l . . .  k . . . . . .  I . . . . .  ~ l_~_ 5 ] < ~ s s i o n >  
a r r a y _ . t y p e ( i n t e g e r , i n t e g e r ) l i n t e g e r l i n t e g e r l i n t e g e r l i n t e g e r l i n t e g e r l i n t e g e r  

that  is, we have Inferred that in the new frag- 

ment the s t i l l  m i s s i n g  right hand s ide  of the  
ass ignmen t ,  as w e l l  as i ndex  and component t ype  
of a r r a y  a, must be of type i n t e g e r .  

b) We compose our newly  d e r i v e d  f ragment  and our  
o r i g i n a l  f r a g m e n t  (3) t o  f o r m  the  ass ignment  

a [ a [ k + 5 ] ]  := k and ] 

Here,  we have to u n i f y  the  a t t r i b u t e s  for 

< e x p r e s s i o n >  i n  f r agmen t  (1) and the "and" node 
zn f ragmen t  ( 3 ) ,  as w e l l  as the a t t r i b u t e s  #or k, 
However, unification o f  integer and boolean fails 

at  once, We therefore obtain the empty re la t ion  

_A_ I _ [ _ 3 _  I _ [ _ ] _  I_2~_1_+_ t j . _  I _ _ ~ _  I zZ  
I I I I I I I 

indicating a semantic error: Type conflict in an 

ass ignmen t .  This example illustrates how the  
method g u a r a n t e e s  Immedia te  d e t e c t a o n  of seman t i c  
errors even in incomplete f r a g m e n t s .  Furthermore, 

s i n c e  the columns and a t t r i b u t e s  wh ich  d id  not  
match a re  known, it i s  a l s o  p o s s i b l e  to l o c a t e  
semantlc errors exactly. 

The use o f  Sor ted  v a r i a b l e s  a l l o w s  the spec i f . -  
l c a t l o n  of equality in certain (sub)attributes o f  

a t u p l e  t o g e t h e r  w i t h  an indication of admissible 

s u b s t i t u t i o n s ,  f towever ,  f o r  p r a c t i c a l  purposes 

t h i s  ms not  enough, We will give an example :  
HODULA-2 allows the use of constant expressions 

w i t h i n  constant declarations. For purposes o f  
semantic analysis, it is important to ev~luak@ 

these constant expressions: The fragment 

CONST a = 3; 
b = a -3 ;  

VAR x: ARRAY [ a . . b ]  OF <type> 

i s  o b v i o u s l y  i n c o r r e c t .  E x p r e s s i o n  e v a l u a t i o n  
within semantic analysis based on unification is 

equivalent to unification in algebras with non- 

empty equational theory. The unfication algorithm 

i n  our  example must know t h a t  3-3 = 0 and 3 <=0 = 
false. Arbitrary complicated examples like this 

may be c o n s t r u c t e d ,  However,  in  h is  w e l l - k n o w n  
paper  / P l o T 2 /  P l o t k i n  showed t h a t  f i n i t e  most 
g e n e r a l  unifiers for a l g e b r a s  with non-empty 
equational t h e o r y  i n  g e n e r a l  do no t  exist. AS 
our concept is language independent, we do not 

want to look for correct unification algorithms 

f o r  each language  (there are c e r t a i n  equational 
theories where finite most general unifiers 

exist). Since the general problem is not solv- 
able, we have developed an extension of our unif- 

ication in order to be able to handle arbitrary 
equational theories, which works correct with 

The basic idea i s  as follows: We extend our 

attribute algebra w i t h  sorts and terms for which 

an i n t e r p r e t e r  i s  assumed to  e x i s t ,  t h a t  i s ,  we 
m a r k  certain attribute forms as e v a l u a b l e .  In  cur 

example ,  we i n t r o d u c e  i n t e g e r  v a l u e s  and arith- 

metic and assume that an interpreter for arith-. 

metic and relational expressions e x i s t s  wh ich  f o r  

example can d e t e r m i n e  t h a t  3-3=0,  Thus. i f  we 
assume that constants are described by their t ype  
and v a l u e  

const_attr :: simple_type value 

value = let_value, Real_value, Bool_value 

where  I n t  . va lue  e t c ,  a re  assumed to  be predefined 

DAG classes, the basic relation for constant 

addition in MODULA-2 might look as follows 

(const add i s  a node with two sons,const expr] 

and c o n s t _ e x p r 2 ) :  ~ 

c o n s t  a d ¢ . _ _ _ I ~ ( ~ L I H H ~ £ , Y A L U E / + Z 6 _ L U g  i ) 
~,L~L~x~Lk_l_c_q.Q_~%~ aLt~(ARI~HMETIQ,yALUE]) 
const expr2 I const attr(ARITHMETIC,VALUE2) 

Por ing  analysis, u n i f i c a t i o n  and e v a l u a t i o n  
a re  AE~Ltw~LD..~, The system keeps t r a c k  of 

u n e v a l u a t e d  e x p r e s s i o n s .  Once the neccesa ry  argu.- 
ments o f  as ye t  u n e v a l u a t e d  e x p r e s s i o n s  are known 
( t h i s  m igh t  be a consequence o f  u n i f i c a t i o n s ) ,  
the  e x p r e s s i o n s  are  e v a l u a t e d  a t  once. Th is  con- 
cep t  is known as  da ta  d r i v e n  e v a l u a t i o n  s t r a t e g y :  
U n e v a l u a t e d  e x p r e s s i o n s  are w a i t i n g  as demons; 
t hey  are a lways  e v a l u a t e d  as soon as possible. 

Thus, u n i f i c a t i o n  c a l l s  e v a l u a t i o n  i f  p o s s i b l e ,  
however  the r e s u l t s  o f  e v a l u a t i o n s  must aga in  be 
considered for unification: evaluation calls 

unification if neccessary. This concept does not 

work i n  eve ry  case:  t h e r e  might be u n e v a l u a t e d  
e x p r e s s i o n s ,  w h i c h ,  in case o f  e v a l u a t i o n ,  wou ld  
cause subsequent  unifications to fail; however, 

they never get evaluated. Fortunately, this does 

not  happen v e r y  o f t e n ,  and as ment ioned above,  
someth ing  b e t t e r  w i l l  p r o b a b l y  not  e x i s t  f o r  
a r b i t r a r y  e q u a t i o n a l  t h e o r i e s ,  Note t h a t  e x t e n d -  
i n g  unification by data-driven evaluation is also 

c o n s i d e r e d  a u s e f u l  e x t e n s i o n  o f  PROLOG. We con-  
sider the approach to be an alternative to nar- 

rowing algorithms~ 

We have seen t h a t  u n i f i c a t i o n ,  i n t e r t w i n e d  
w i t h  e v a l u a t i o n ,  g i v e s  a u s e f u l  bas i s  f o r  i n c r e -  

men ta l  semant i c  a n a l y s i s .  C o n c e p t u a l l y ,  i t  wou ld  
be s u f f i c i e n t  t o  s t o r e  w i t h  each f ragmen t  one b ig  
" g l o b a l  r e l a t i o n "  wh ich  c o n t a i n s  a l l  the  a t t r i -  

* This relation has been rotated for layout 

r e a s o n s  
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butes of the f r a g m e n t .  During ed i t i ng ,  t h i s  re la -  
t ion  must then be m o d i f i e d  after each e d i t i n g  
s tep .  [ f ,  f o r  example,  an unexpanded n o n t e r m z n a l  
i s  r e p l a c e d  by a new s u b t r e e ,  i t  would  be s u f f i -  
c i e n t  to a n a l y s e  the  new s u b t r e e  by ] e i n z n g  the 
basic relations o f  its components and then to use 

one ] o l n  te  update the g l o b a l  r e l a t i o n .  Th is  
scheme, however ,  i s  not  v e r y  a p p r o p r i a t e ,  because 
zt might  r e q u i r e  a comp le te  r e - a n a l y s i s  o f  .Frag- 
ments after s u b t r e e  d e l e t i o n s ,  i t  i s  f a r  b e t t e r  
to  d l s t r l b u t e  the g l o b a l  r e l a t z o r l  w i t h i n  the syn-  
tax  t r e e :  Some f ragmen t  nodes f la re  a " l o c a l  r e l a -  
t i o n "  a t t a c h e d ,  wh ich  d e s c r i b e s  p a r t  o f  the  sub- 
t r e e  b e g i n n i n g  a t  t h a t  node. It i s  not n e c c e s s a r y  
to include into such a local relation e,g, attri- 

butes of ob3ects which are not visible at the 

c o r r e s p o n d i n g  f r agmen t  node, a c c o r d i n g  to  the  
scope r u l e s  of the  l anguage ,  A f t e r  an e d i t i n g  
s tep ,  t h e r e  i s  u s u a l l y  o n l y  a sma l l  number o f  
small relations t o  be upda ted ,  wh ich  i s  far more 
e f f i c i e n t  than  to  update one b lg  r e l a t i o n ,  0 n l y  
local relations attached to fragment nodes on the 

path f rom the  m o d i f i e d  subtree t o  the fragment 
r o o t  must be c o n s i d e r e d .  A f t e r  a s u b t r e e  
insertion,these relations have to be joined with 

the r e l a t i o n  of the new subtree (which has to be 
ana l ysed  f i r s t ) .  A f t e r  a s u b t r e e  d e l e t i o n ,  t hese  
relations must be recomputed from basic relations 

and other local relations wh ich  a re  not a f f e c t e d  
by the subtree deletion and therefore need net be 

recomputed~ The analysis can often be stopped 

after considering 3ust one or two local rela- 

tions: as soon as the  scope r u l e s  g u a r a n t e e  t h a t  
i n s e r t e d  or  d e l e t e d  s y n t a c t i c  o b j e c t s  canno t  have 
any i n f l u e n c e  on surrounding parts of the  frag- 

ment, updating o f  local relations on the path 

from the m o d i f i e d  s u b t r e e  to  the f r agmen t  r o o t  
may be aborted, It is even possible to  implement 

a Raps-style change propagation algorithm for 

local relations: updating local relations is 

stopped as soon as no more changes occu r .  

In general, the complete analysis of a f r a g -  
ment of size n requires O{n*ln n) unifications, 

whereas the incremental analysis after one edit- 

ing s tep  requires typically O{ln n) unifications, 

For a detailed description of the incremental 

analysls a l g o r i t h m s  including c o m p l e x i t y  
a n a l y s i s ,  see /Sne1851. 

Du r ing  e d i t i n g ,  the  c o n t e x t  r e l a t i o n s  are p r i -  
m a r i l y  used to d e t e c t  semantic errors, Of c o u r s e .  
relations associated with fragments can a l s o  be 
used as symbol tables: within a PSG environment, 
the user always may have a look at the attributes 

of syntactic ob3ec t s .  Note that relational 

analysis does not require any o b ] e c t s  to  be 
d e c l a r e d ,  scope a n a l y s i s  will however  d e t e c t  
missing declarations as soon as the l as t  possi- 

bility of declaring that object has been deleted 

and t h e r e  i s  no p o s s i b i l i t y  of d e c l a r i n g  t h a t  
object outside the fragment in question, 

Furthermore, the relational approach can be 

used to guarantee not only immediate detection of 

semantic errors, but also their prevention: A PSG 
editor always offers users the  possibility to 

m a n i p u l a t e  t h e i r  fragments by s e l e c t i o n  from 

language-specific ~enu items, These menus are 

g e n e r a t e d  a c c o r d i n g  t o  the a b s t r a c t  s y n t a x  o f  the  
l anguage .  However ,  they  a re  a d d i t i o n a l l y  f ' i l  ~ 
t o t e d  d y n a m i c a l l y  with r e s p e c t  to context condi- .  
tions, Thus, if PS6 editors are simply used ae 

s t r u c t u r e  e d i t o r s ,  t hey  g u a r a n t e e  the p r e v e n t i o n  
o f  bo th ,  s y n t a c t i c  ~ seman t i c  e r z o r s .  

Several techniques for incremental semant ic  
a n a l y s i s  i n  Language s p e c i f i c  e d i t o r s  have been 
d e v e l o p e d .  The p r o b a b l y  most w e l ]  known <oHcepts 
are seman t i c  a e t i o n  r o u t i n e s  zn 6ANOALF /Hob82/  
and i n c r e m e n t a l  a t t r i b u t e  e v a l u a t i o n  w i t h i n  the 
C o r n e l i  Program S y n t h e s i z e r  / R e p s S ] / ;  these  are 
a l s o  v a r i a t i o n s  on the a t t r i b u t e  grammar theme 
e~g, / J o F 1 8 2 / .  I t  i s  p o s s i b l e  to  imp lement  our 
concep t  us i ng  these  t e c h n i q u e s .  In f a c t ,  c o n t e x t  
r e l a t i o n s  and u n i f i c a t i o n  have e x p e r i m e n t a l l y  
been imp lemented  us i ng  the  C o r n e l l  s y n t h e s i z e r  
g e n e r a t o r .  However ,  the concep t  of i n f e r r i n g  sets  
o £ s t l l l  p o s s i b l e  a t t r l b u t e s  w i t t l l n  i n c o m p l e t e  
f r a g m e n t s  seems to be new. A l l  the known concep ts  
have a lways  obeyed the  c l a s s i c a l  scheme: F i r s t  
i n s p e c t  the  d e c l a r a t i o n s ,  then use the c o l l e c t e d  
i n f o r m a t i o n  f o r  the a n a l y s i s  o f  s t a t e m e n t s  e t c ,  
I t  was a d i r e c t  consequence o f  the  PS6 f ragmen t  
concep t  t h a t  we had to  do i t  a n o t h e r  way. 

The Nilner-,Style analysis of type-free lambda 

c a l c u l u s  e x p r e s s i o n s  / M i l n 7 8 /  computes the most 
g e n e r a l  p o l y m o r p h i c  t ype  o f  a g i v e n  lambda term, 
I t  a l s o  uses u n i f i c a t i o n  and i s  in  some sense 
s i m i l a r  to our  scheme. However ,  M i l n e r  and the 
w o r k e r s  who ex tended  the approach never  t r i e d  to 
implement incremental algorithms, and t h e y  aJso 

did not use the concept within an environment 

g e n e r a t o r .  

! .  F i n a l  Lg_ElArks 

The i n c r e m e n t a l  seman t i c  a n a l y s i s  w i t h  c o n t e x t  
relations i s  i n  operation as part o f  the PSG sys- 

tem s i n c e  1984. I t  i s  imp lemented  i n  PASCAL, a l l  
in  a l l  about  10000 l i n e s  o f  code, For a 100 l i n e  
PASCAL program,  the  comp le te  a n a l y s i s  r e q u i r e s  
1.2 CPU seconds on a SIEMENS 7551 mach lne ;  i n c r e -  

men ta l  a n a l y s i s  o f  m o d l f l c a t i o n s  r e q u i r e s  between 
0.02 and 0.3 seconds per  e d z t l n g  s t e p .  The d e f i n -  
i t i o n  of the PASCAL context condi t ions (that is,  
the s p e c i f i c a t i o n  of the  b a s i c  r e l a t i o n s )  con- 
s i s t s  o f  about  600 l i n e s  o f  meta language~ wh ich  
we c o n s i d e r  to  be not  v e r y  much. Note t h a t  we 

did not p r e s e n t  the specification of scope rules 

as well as s e v e r a l  useful e x t e n s i o n s  l i k e  e .g .  
operations on l i s t s  
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