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ABSTRACT: We develop a theory for the correctness

of asynchronous parallel programs. A program is

considered correct if its behavior is in some sense

similar to that of an abstract version of the pro–

gram. We discuss various criteria for this simil-

arity. We then concentrate on one of them and

develop a technique for showing that a parallel

program is correct with respect to this criterion.

1. INTRODUCTION

The benefits of a top-down approach to the

design of programs are well known (Dijkstra [2]).

The use of such techniques for the correctness of

sequential programs makes correctness proofs sim-

pler (Dijkstra [2], Gries [5], Infante and Monta–

nari [6], for example) . We will develop some tech–

niques for using this approach for proving the cor-

rectness of asynchronous parallel programs.

The correctness of parallel programs has been

studied in Keller [71, Lamport [91, and Owicki and

Gries [12]. Our approach bears some resemblance

to that of Rosen [13]. His use of the Church-Ros-

ser property and equivalent states is similar to

the notions of consistency that we develop, but he

does not explicitly take advantage of program

“structure”. Part of approach is also related to

that of Lipton [11], although his emphasis is

“bottom-up” while ours is “top-down”.

As the first step in the development of a par-

allel program, we envision an “idealized” version

in which “complex” operations are assumed to be

performed in an indivisible manner. For example,

see Figure la. Here we have a program, called

EQO, for appending item i to the end of a queue.

Several processes may attempt to perform this op-

eration simultaneously, so we present an ideal-

ized version in which the operation is assumed to

be performed instantaneously. As far as correct-

ness is concerned, it is easy to verify that the

predicate “next(end) =null” is invariant, i.e.

true for all reachable states.

As the next step in the development of a par-

allel program, we break up sections of the program

that were previously assumed to be indivisible

into “more reasonably s;zed pieces”. That is, we

use operations that are closer to those that some

processor might actually perform “instantaneously”,
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initially end is the address of a cell such

that next(end)=null

private i

+

next(end)

next(i) +

end + i

Here i represents the address of

cell,

which

cells.

and next

takes on

f

--i--

3-

is a field within

values that refer

Fiqure la”.

+i

null

some data

the cell

to other

initially S=1

P: when S O

do S + S-1—

next(end) + i

next(i) + null

end + i

v: s + S+l

Figure lb.

Consider the program of Figure lb, which we

call EQ1. Here we have broken up the operation of

appending item i onto the queue into three opera-
tions, and have used Dijkstra’s P and V operations

on the semaphore S to ensure that only one process

can execute these operations during any one period

of time. The predicate “next(end)=null”, that was

invariant in EQO, is no longer invariant, although

intuitively the two parallel programs are, at the

least, very similar.

There are two approaches to the correctness of

EQ). The first is to modify the original predicate

so that it is invariant in EQ1. The other is to

weaken our criteria for correctness, so that we con-

s<de~ a prog~arn to b- c-~~.ck --.=- ;g tk- de=i=ea

predicate is not invariant.

The first approach, although plausible, has

few difficulties associated with it. Modifying

predicate so that it becomes invariant in the

a
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“expanded” parallel program may be fairly difficult

to do. Even if an invariant predicate can be

found, its relation to the original predicate
might not be clear. Since we are using a top-down

approach tO the design Of a program, the relation–
ship between the programs at different levels of

abstraction should be well-defined.

Let us consider the second approach to the cor-

rectness of EO1. It is clear that the predicate

“next(end)=null” is true for all reachable states

in which no processes are “between” the P and V op–

erations. Hence EQ1 is actually simulating EQO in

that the composite effect of transitions tl through
t5’of EQI is exactly that of transition t Of EQO.

If we can prove that, in some sense, the execution

of EQ1 is “guided” by the execution of EQO, then
the predicate that is invariant in EQO can be used

as a “weaker” indication of the correctness of EQ1.

What we need then is a formal method of propagating

the correctness of a program at one level to the

programs at lower levels as we descend through the

various levels of abstraction.

2. MODEL AND NOTATION

Our model of a parallel program is similar to

that presented in Keller [7]. We present the model

in a slightly different way, as we want to put more

emphasis on the individual processes.

A parallel program (or system) is a 4-tuple

<Q,V,II,L>. O is a possibly infinite set of states,

V is a finite set of variable names, II is a poss–

ibly infinite set of processes, and Z is a finite

set of transition names. Each state of Q is a vec-

tor, the components of which are named, not neces-

sarily uniquely, by elements of V. Each process of

~ consists of a name m, and a partial function pf

mapping Q into Q.
II

Certain components of the state vector have

unique names from V, and are referred to as shared
variables . The remainder of the components do not

have unique names, and are referred to as private

variables . Each private variable can only be mod-

ified by a unique pf, and hence is associated with

some particular process.

We qualify references to private variables by

appending the Process name in parentheses after the
name of the variable. For example, if c is the

name of a private variable, then the particular

variable named c that is “accessible” by process

T is called c(m) .

For any shared variable b or private variable

c(n) , the value of the variable in state q is re-

ferred to as q.b or q.c(m), respectively.

Associated with each process n is a private

variable i(m) called the instruction pointer.

This variable can only take on values from a

finite cet of place~.

There is a natural way in which we can name the

ordered pairs of states that are related by the

varibus pffs. We define a transition to be a set

of ordered pairs of states, each related by some

pf, such that the values of instruction pointers

are equal in all states which are first in an order-

ed pair, and are also equal in all states which are

second in an ordered pair. Each such transition is

given a name from Z. We assume a one–one corres-

pondence between all transitions and X, and hence

consider Z to represent the set of all transitions.

Each transition defines a relation on the

states . If t is a transition, and ql and q2 are

two states related by t, we then write this as

ql J q2

Only one of the instruction pointers can differ in

value between the two states, as the transition

relation is a subset of the relation specified by

some pf. If n is the process name associated with

the particular instruction pointer involved, then

we say that n executed the transition t. If need

be, we modify our notation and explicitly mention

IT as follows.

tp )
ql q2

If ql and q2 are related by some unspecified

transition we write ql + q2r i.e., + is the rela-
tion on QxQ which is the union of all the pf’s.

Letting e denote the null transition, we write
q 9 q for all states q. Ifr for all states q,, qq,

and q
~.

3

‘ql h2A q,$q,
fOr XEE* and tcl, we then write

If there exists an XEZ* such that q A

ql $ clz. +1~ ‘2’ ‘e ‘r’teIf we need to specify to w ~ch parallel

program we are referring, say Sj, we writer for

example,

We will always specify some state, written as

qO, to be the start state. If there exist states

ql and q2 such that ql ~ q2, then we say that x is

a valid transition sequence. If ql is the start

state, then we say that x is a valid initial trans-

ition sequence.

If there exists a valid transition sequence x

such that ql ~ q2, then we say ‘that q2 is reachable

from ql, or just reachable if ql is the start state

qo .

Following Keller [7], we present a graphical

interpretation of our model. We use a bipartite

directed graph, with one class of nodes, written as

horizontal lines, representing transitions, and the

other class of nodes, written as circles, represen-

ting places, i.e. the values of instruction poin-

ters . See Figure 2.

place node ? +.l

transition node
v when P do F—

6
Process n ‘s instruction pointer has the

value of the indicated place.

Figure 2.

There is an arc from a place a to transition t

and from transition t to place b iff there exist

two states ql and q2 such that ql $ q2, and in ql

some instruction pointer has the value a, while m

q7 it has the value b. If there is an arc from one

node to another, we say that the fprmer is an input

node of the latter, and the latter is an output

node of the former.

In any particular state of a parallel program,

the individual processes are thought of as dwelling

at the place nodes representing the values of their
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respective instruction pointers. We often attach to

transition nodes information specifying the rela-

tion that the transition represents. For example,

for a predicate P and a function F we write “When

P do F“ to mean that if there is a process T dwell-

in~at the input place of the transition and P is

true (when this is truer we say that T is enabled

for the transition), then T may “move” so as to

dwell at the output place of the transition, and at

the same instant the state is further modified as

specified by F. P is called the enabling predicate

of the transition, and F is called the action func–

tion of the transition. See Figure 2.

If the disjunction of the enabling predicates

of the output transitions of a place is identically

true, then the place is called a non-synchronizing

place, and the output transitions are called non-

synchronizing transitions. Otherwiser the place is

called a synchronizing place, and the output trans–

itions are called synchronizing transitions.

We often include in our graphical model trans-

ition nodes with no input places, representing

“cKeators of processes”, called entrance transi-

tions, and include transitions with no output

places, representing “annihilators of processes”,

called exit transitions. See Figure 3. An en-

trance transition is always enabled, and hence al-

lows the introduction of an unbounded nmnber of

processes into the system. Exit transitions, when

executed, effectively destroy a process.

T L

an entrance an exit

transition transition

Figure 3.

These special transitions are not intended to

increase the “power” of the model. They are just a

convenient shorthand. The creation of processes

could just as well be represented by infinite

“pools” of processes dwelling at certain places,

just biding their time until they are allowed to

proceed, and destruction of processes could be han-

dled in a similar fashion.

A typical way of showing a parallel program to

be “correct” is to prove that all reachable states

satisfy some predicate. Following Keller [7], we

give the following definition.

DEFINITION: Let <Q,V,H,~> be a parallel program.

A unary predicate J on Q is said to be q-invar-

iant if

(W’CQ) q~q’~J(q’).

If q is omitted, then we mean qo-invariant.

Prcving a predicate to be invariant can be

very difficult, if done directly. It is most

often easier, if one wants to prove J invariant,

to prove a stronger version of J to be inductive,
as defined below (also following Keller [7]).

DEFINITION: Let <Q,V,II,X> be a parallel program.

A unary predicate K on Q is said to be -inductive

if

K(q)A(Wq1,q2@) (K(q1)Aql+q2) +K(q2)
If q is omitted, then we mean qO-inductive.

An important property of a parallel program is

that of deadlock-freedom. Following Doeppner and

Keller [4] , we formalize this property.

DEFINITION: We say that a process n is dead in

state q if n has not executed an exit tra~sition

and there exists no state q’ such that q + q’ and

T is enabled in q’. We write this condition as

dead~(q).

DEFINITION: A parallel program is said to be

deadlock-free if for all processes IT, -deadm is

qo-invariant.

3. EXPANSION

When developing a parallel program, it is con-

venient at first to treat certain complex Opera-

tions as indivisible. When more detail is required,

the complex operations can be split up into less

complex, component operations, with the execution

of these components interleaved with the e~ecution

of operations of other processes. We call this

expansion.

For example, see Figure 4. In Figure 4ar we

have two processes, with one process performing two

additions in one step. In Figure 4b, we have ex-

panded this “complex” operation, and introduced new

variables to control the execution of the expanded

operation. Correctness of such expansions will be

considered in the next section. In this section

we formally explore the notion of expansion.

+IT
1

x + X+l

y + X+y

initially x=y=O

?’
+n

+
~ + X+1

~

Figure 4a.

o +n

+-

2

when S=0

do X + X+l—

%

y + X+y

S*O

Figure 4b.

Let us consider a parallel program S’i. We wish

to refine transition t of Sir resulting in a new

parallel program Si+l. We write this act of expan-

sion as

si~>si+l.

If t is understood or not important, we omit the t.

We call transition t“ the prototyp e of the expansion,

and we call the process which contains t the expan-

sion process.

Let pl and p2 be the input and output plaCeS Of

t, respectively. In the graphical interpretation

of sir there is a path from pl to P2 containin9

only one node, t. BY expanding Sir we replace this

single path with a subgraph, called the expansion

subgraph Of Si+l, containing new place nodes called

expansion places, and new transition nodes called

expansion transitions. ‘i+l is formed from xi by

replacing t with the expansion transitions . plis

called the input place of the expansion subgraph,

and p2 is called the output place of the expansion

subgraph.
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Referring to Figure 4, process 1 is the expan–

sion process. Transition t of Figure 4a is the

prototype of the expansion. It is replaced by the

subgraph that is shown in Figure 4b.

We will find it necessaq to relate the transi-

tion names of the expanded system to those of the

unexpanded system. We define a homomorphism from

the transition names of the expanded system to those

of the unexpanded system. For non-expansion trans–

itions, the mapping is just the identity mapping.

For expansion transitions, we will map all but one

into the empty string, and the remaining transition

will map into the prototype of the expansion. The

choice of which one to map into the prototype is

somewhat arbitrary. We choose the last transition

of an expansion sequencer mainly because in this

way only complete expansion sequences will map into

the prototype.

More formally, we define the homomorphism ‘#i+l

mapping Zi+l onto xi, where

= s if s is not an expansion transi-

tion.

= t if tn is an expansion transition,

the output place of which is the out–. .
put place of the expansion subgraph,

and t is the prototype of the expan-

sion.

Vi+l(ti) = e for all other expansion transi-

tions tit where e is the empty string.

This mapping is illustrated in Figure 5.

expan-

sion

sub–

graph

tl—ui+l — 1’
t2—lli+l —

t3—Lli+l —

‘1

i

—lJi+l —.

S2— v,
1+1 —

s.
1

t

‘1

‘2

Illustration of the mapping p
i+l.

Figure 5.

We augment the state set of Si bY introducing

new (non-instruction pointer) variables in the

state vectors, where these variables take on some

set of values. Let Qi denote the state set of Si

and Qi+l denote the stiate set of Si+l. We define

a Partial function ~i+l maPPin9 Qi+l Onto Qit where

~i+l(q) is the state q’ in Qi such that the ValUeS

of each of the variables in q! are the same as

those in q. rli+l is not defined when the expansion

process’s instruction pointer has the value of an

expansion place. We attach to the transition nodes
replacing the expansion transition information

specifying state relations, i.e. , enabling predi-

cates and action functions.

we always use q. to denote the start state of a

sys tern. Although this is somewhat ambiguous, the

system of which q. is the start state should be
clear from context.

Other processes are also possibly modified by

the addition of new variables, and the correspond-

ing pf’s are extended over the larger domain. We

restrict the modifictition of other processes so

that if n’ is not the expansion process, then

We call this restriction faithfulness.

The expansion subgraph defines a set of paths

from pl to p2r which we wish to treat collectively.

DEFINITION: The set of expansion sequences T of

Si+l is the set of all transition sequences from

paths from the input place to the output place of
the expansion subgraph of Si+l that can appear as

a subsequence of a valid transition sequence.

We want to ensure that in some sense expansion

sequences “mimic” the operation performed by the

prototype transition. We make certain that this is

the case when non-expansion transitions are not

interleaved with expansion transitions.

DEFINITION: A set of expansion sequences T is said

to be accurate if for all sequences
‘l’-” -’tn

from T and all states ql and q2 from Qi+l

‘l...tn t
‘q~- ‘i+l(q/ ~ ‘i+l(q2)ql i+ 1

where t is the prototype transition (note that this

definition only concerns the composite behavior of

expansion transitions; there is no mention of the

effects of interleaved execution with transitions

of other processes).

We should contrast faithfulness with accurate

expansions. Faithfulness is a restriction on non-

expansion transitions, while accuracy is a similar-

ly motivated restriction on expansion transitions.

As accuracy seems to be the more difficult to ver-

ify, we stress this difficulty in the remainder of

our work by explicitly requiring an expansion to be

accurate, while we implicitly assume it to be faith-

ful .

What we have described concerns only the refine-

ment of a single transition, which we shall refer

to as a single expansion. We are usually concerned

with a sequence of expansions, i.e., S04)S1,

‘1+)s2,--- /si_~+>si- We abbreviate our nota-

tion as SO~>S1~>S2~)...~~Sit and call such

a sequence of expansions a multi-expansion, or sim-

ply expansion. When referring to a multi-expansion,

our use of the terms expansion process, prototype

transition, etc. should be interpreted as referring

,_l<)Si of theto the “last” expansion, i.e. S.

aforementioned multi-expansion.

We have now developed our idea of an expansion

and presented a notation. The remainder of the

paper mainly concerns what happens when the execu-

tion of non-expansion transitions is interleaved

with that of expansion transitions.

4. CONSISTENCY

suppose that a system SO is “correct”, and SYS-

tem Si is the result of expanding SO. We want to

develop criteria on the basis of which we can de-

cide whether the correctness of Si can be inferred

from the correctness of SO. The criteria which we

discuss are based on the notion of Si being able to

“simulate” so.

There are two parameters involved in this simu–

lation. Very roughly, the first parameter concerns

what we want to be “preserved” by the expansion.

We can use the strict requirement that state
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reachability be preserved, i.e. that what is true

in SO always be true in Si. We can also use the
weaker requirement (assuming that SO @ judged cor-

rect because a predicate W is inductive) that only

W need be preserved.

The second parameter concerns how closely Si

should follow SO. Again we have two choices. The
first is the strict requirement that Si can only

“deviate” from SO when Si is executing expansion

transitions. The second is the weaker requirement

that Si be allowed to “stray” from the path of SO,

as long as it can always “get back” onto the path

of s
o“

We first mention three intuitive ideas which we

often desire to be incorporated as constraints in

our correctness criteria. The first and third con-
straints we always require. The second, because it
is not essential to the proofs of later theorems,

we present as an “optional” requirement. These
ideas are similar in spirit to those of Lipton [10]

in his definition of “simulate”.

Our first constraint is that we want both the

unexpanded and expanded systems to be deadlock-

free. If it is desired to have a process “termin-

ate” , this can be accomplished by the use of an

exit transition.

The second constraint, which we often place on

a “correct” expansion, is what we call our bounded-

ness constraints. We want to bound the amount of

time a process spends executing the expansion

transitions , as opposed to just constraining a pro-

cess to spend a finite amount of time executing

these transitions. The essence of the situation

that we wish to avoid is expressed in Figure 6. If

initially i=k=O

(?-
+TI

1

ta: when i>k——

v)
tb: when i<k

do i + i+l—

Figure 6.

process 1 is the expansion process, and ta is an

expansion transition, then ta will always be able

to be executed after a finite period of waiting,

but this waiting period will increase without bound

after each successive execution of t.. In a “real”

system, such a situation would probsbly result in

a continuing degradation of performance. Hence we

usually warrt to ensure a bounded period of waiting.

Similarly, if process 2 is regarded as the ex-

panSiOn process and tb an expansion transition, then

after each successive execution of an expansion

sequence containing ~, the expansion sequence will

“grow” longer, without bound. Hence we usually

want to bound the length of expansion sequences.

The third constraint is the requirement that,

in some sense, the expanded system can do every-

thing that the unexpanded system can do. For ex-

~Ple/ consider the well-known reader-writer

CL
+n

1

“read” o-+11
2

“write”

idealized reader-writer

Figure 7a.

/’7’ +-n
2

“bad” solution to reader-writer problem

Figure 7b.

problem (Courtois et al. [1]). In Figure 7a, we

have an “idealized” solution to it. In Figure 7b,

we have expanded the solution, but the expansion

requires that the readers and writers alternate.

This we do not wish to consider correct, as the

expanded system should have “at least as many de-

grees of freedom” as the unexpanded system.

The following definitions are useful in relat-

ing the states of the various systems.

DEFINITION: We let ~~(q~ represent ~1(~2(...~k(q))

. ..)) if each of the n IS defined.
i

DEFINITION: A state q of Si is said to be conceip

able in Sj for i>j, if ~ (rli(q)) . ..) is

defined.
j+l(. ..’li-l

Conceivability is an important concept and

should be emphasized. A state of Si is conceivable

inS. if the instruction pointers of all processes

take]on the values of places that exist in Sj. In

such states we can make direct comparisons of the

two systems. Our correctness criteria will be

based on reaching these conceivable states, and

showing that certain properties of the states of

Sj also hold for the states of Si which are con-

ceivable in S..
1

Our first correctness criterion is fairly

strict, and useful mainly in systems with trivial

interaction among processes. Referring back to

the “parameters of simulation”, we are using their

strict values. That is, if So~).S~4~...4)Si,

then Si should always be capable of reaching a

state conceivable in So, and that all reachable

states of Si that are conceivable in So shOuld be

such that their images under q? are reachable in S
1 0.

This correctness criterion is diagramed in

Figure 8. Circles represent states of Sir and

solid circles represent states that are conceivable

in So. The wavy lines Xepresent transition sequen-

ces, and the bracket means that between states q,

and qy, the system enters no state that is con– ‘

ceivable in So. The interpretation of the diagram

is then that if Si reaches a state (q2) that is not

conceivable in So, then the next state reached that

is conceivable in S
o

will be “reachable” in S
0.

An example of an expansion that is correct

under this criterion is giv~n in Figure 9. The ex-

panded system is effectively behaving exactly as

the unexpanded system.
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‘o

[1ql

~2

q3{~eachable

In S
-o

consistency

Figure 8.

Y

+7
1

initially x=y=l

O+IT1

+

* + X+3

y + y*x

unexpanded
+

parallel

Figure 9a.

?2

+Ti

+’n
2

~ + X+2

y + y+x

program

+–
when S>0

*–

when S>0

do S + S–1 do S + S-1— —

a consistent expansion

Figure 9b.

In the following, ~. and xi denote the respec-

tive sets of transition names of So (the unexpan–

ded system) and Si (the expanded system). n is un-

derstood to be a natural number. ? denotes “unde-

fined”. Rj(qo), the “reachable set” is defined to

be

{qlqo ; q}

DEFINITION: An expansion Soj)Sl~)..._>Si is

boundedly consistent if So,.sl, . . ..si are deadlock-

free and

(3n)(Wq~i(qo))

n;(q) # ? ~ n;(q)~Ro(qo)

n~(d = ?=) ((%’ @i) (sx~:n) (q f q’An~(q)+?))

If we replace “(3xcZ~n)” with “(3x~~) , then an

expansion satisfying the criterion IS said to be

consistent.

Ordinarily, in an expansion we are not concern–

ed so much with preservation of reachability as

with the preservation of some weaker predicate W.

So we weaken the first “parameter of simulation”.

That is, we modify the consistency definition so

that it only need be that W is true of reachable

states that are conceivable in S
o“

DEFINITION: An expansion

boundedly W-consistent if

free and

@n) (tiq @i (qo) )

n;(q) # ?>W(q)

.so+%l+)...+)Si is

‘O’sl
,...,Si are deadlock-

If we replace II(3XX:n)” with “(3xE Z*)”, then an

expansion satisfyingxthe criterion i; said to be

W-consistent.

W-consistency is diagramed in Figure 10. Here,

from any reachable skate of Si that is not conceiv-

able in So, the next state reached that is conceiv-
~le in So will be such that W is trUe.

An example of an expansion that is W-consistent

W-consistency

Figure 10.

initially j=clk=tl=tz=t+o

+IT
1

tl + Clk

tz + Clk+l

clk + clk+2 (
j + j+3

unexpanded parallel

+7T
1

tl + ~lk

clk + clk+l
j + j+l

t2 + clk

clk + clk+l

j + j+2

a “j is a multiple

but not consistent is

Figure ha.

(1

+Tr
2

‘r-3 + Clk

clk + clk+l
j + j+3

program

*IT
2

t3 + clk

clk + clk+l
j + j+3

of 3“-consistent expansion

Figure llb.

shown in Figure 11. Here W

is the predicate “j is a multiple of 3“. The ex-

pansion is clearly W-consistent, but it is not con–

sistent since in the unexpanded system tl and t2

will always have consecutive values, but in the ex–

panded system this is not necessarily so.

consistency and W-consistency both require a

certain “structuredness” “of an expansion. That is,

the expanded system is only allowed to behave sig-

nificantly differently than the unexpanded system

when it is “executing” an expansion sequence.

This structure makes proofs of consistency and W-

consistency relatively easy, as we shall see in the

next section. Howeverr we may still want to con-

sider some expansions to be correct even if they do

not display this structure.

so we weaken the second parameter and strength-

en the first parameter of simulation. That is, we

weaken our first correctness criterion in another

way so that we do not require all reachable states

of Si that are conceivable in S0 tO be reachable in

so. What we require is that there always be reach-

able a state from which direct simulation of So is

possible.

DEFINITION: An eXpanSiOn so~~s~~~...~)si is

boundedly semi–consistent if SO,sl,. ..,sl are dead-

lock-free, and there exists an integer n such that

for all reachable states q of Sir there is a valid

transition sequence XE~~n and a state q’ such that

1)+2’
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2) fl~(q’) is reachable in S.
1 u

3) if V:( q’) ~ q , then there is a state qb in

Si such tha% rl~(qb) S qa, and there is a transition

sequence ysZ~n and a state q! such that qt ~
I ‘b”

If we replace “Z~n” with “Z?”, then an exPmsion

satisfying the criterion islsaid to be semi-consis–

tent.

Semi-consistency is diagramed in Figure 12.

Here, from any state of Si, there is reachable a

state that is conceivable in S
o

and “reachable” in

‘o “

In Figure 13, we have an example of a system

that is semi–consistent, but neither W–consistent
nor consistent. In all states reachable in the

unexpanded system, i is a power of two. In the

expanded system, there certainly are reachable

states in which i is not a power of two. However,

from any such state there is reachable a state in

which i is a power of two. From this state, direct

simulation of the unexpanded system is possible.

t

ql

q2 [ reachable in So

semi-consistency

Figure 12.

initially i=l

0’
+T

1

i .+i*2

unexpanded parallel program

Figure 13a.

+1,
+Tr

&
+IT

k-
2

i + i+l i + i*2

k + k+l

when
Y—

“i is a when “i is not

power of 2“ & a power of 2“

In

we can

teriar

tion.

W“”doi+i+l—

a semi-consistent expansion

Figure 13b.

certain cases, when w is inductive in SO,

combine the previous two correctness cri-

i.e. , we weaken both parameters of simula-

The combined criterion is that from any

reachable state of Sir there is reachable a state

which is conceivable in So, and in which the pre-

dicate W is true. Presumably, this would mean

then that from this state, direct simulation of SO

is possible, and hence every time Si enters a state

conceivable in SO, W would be true. Unfortunately,

thi~ is not always the case. Although So and Si

may both be deadlock-free, it is possible that a

state q of Si that is conceivable in S0 may be

such that deadn(n~ (q)).

initially i=j=k=O

+IT
1

(!-
‘-’m

2

when k=O if i#j

do i,j + i+l— ~enk+l

if k=l

Gen i + j

unexpanded parallel program

Figure 14a.

+Ir
1

+n
D2

if k=l

~en irk + O

j + 1000

when k=O

i + i+l

j + j+l

if k=l

Ken i + j

&-if i+j

~enk+l

an undesirable expansion

Figure 14b.

For example, see Figure 14. In the unexpanded

system, the predicate “i=j” is clearly invariant.

In the expanded system, it is possible for i and j

to become unequal. Once this occurs, they will only

again be equal when an instruction pointer takes on

the value of pl. But in such a state, k will be 1.

This is clearly a deadlock situation in the unexpan-

ded system. For the process to proceed in the ex-

panded system, it must set i and j to unequal val-

lx?s . Such an expansion ,one surely does not want to

consider correct.

Because of this problem, we require the reacF,-

ability of a state in Si which is such that it is

conceivable in So, W is true, and in its image in
So no process is dead. .

DEFINITION: An expansion So~~Sl~)...~)Si is

boundedly semi–W-consistent if Si is deadlock–free,

W is inductive in S., and there exists an integer

n such that for al.l”reachable states q of Sir there

is a valid transition sequence xc~$n and a state qf

such that

l)q;q’
2) q’ is conceivable in SO

3) -deadn is 11~ (q’ )-invariant in So for all

processes n

4) if m~(q’) ~ qa, then there is a state qh in

Si such that,; (qb? = qa and there is a transition
sequence yE~~n such that q? ~ q

b“

If we replace “Z*r.’” with “1?”, then an expansion

satisfying the cr~terion islsaid to be semi–W-

~nsistent.

Semi–W-consistency is diagrammed in Figure 15.

This is interpreted as, from any state that is

reachable in S, , there is reachable a state that is
1
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!
qo

ql

o
q~ I W(q ) and -dead

in 20

semi.-W-c0nsistency

Figure 15.

unexpanded parallel

Figure 16a.

(l +’fr
1

i + i+l

i.

+’n
2

1 & i*2

if “i is not—
a power of 2“

then t + 1

else;

p roq ram

n+11

i + i*2

\
a semi-”i is a power of two’’-consistent expansion

Fiaure 16b.

conceivable in S , “not dead in SO”, and such that

W is true for th~ state.

An example of an ‘expansion which is semi–W-

consistent but neither semi-consistent, W–consis–

tent, nor consistent is given in Figure 16. This

is basically the same as the example of a semi–con–

sistent expansion, but the setting of the variable

t whenever i is not a power of two prohibits the

possibility of direct simulation.

We have presented formalization of our intuit-

ive ideas of how a correct expansion should behave.

We summarize our criteria in Figure 17, where an

expansion satisfying an “upper criterion” implies

that it satisfies the “lower criteria”.

consistent

_-----’ \consi5tent
W–consistent

~-
semi-W-consistent

summary of criteria

Figure 17.

5. PROVING CONSISTENCY

In his paper on reduction [11], Lipton discus-
ses a technique which, in the terminology and con-

teXt Of our present work, is a method for proving
an expansion to be consistent. We develop tech-
niques of a similar motivation for proving an ex–

pansion to be W-consistent. However, we first

concentrate on consistency, developing a method

similar to that of Lipton.

It is often convenient to view the component

transitions of an expansion as one transition per-

forming some desired action, and a set of other

transitions performing actions that are more of a

bookkeeping nature, not really affecting the pro–

gress of other processes. The former transition we

call the representative of the expansion, in that

with respe-t to other processes, it embodies all

that is important of the expansion transitions.

The usefulness of this idea is that it provides

a simple method for proving an expansion to be con-

sistent. In developing this idea, we need the fol-

lowing definition.

DEFINITIO!~: Let s be a transition of a process

different from the expansion process and tr an ex-

pansion transition. s is said to commute =round tr

(in the expanded system) iff for each sequence

~t,...r tn> from the set of expansion sequences T,

all states q, and q2, and for each tiE<tl, . . . ,tn>,

if ti precedes tr, then

tis St.

clo+q1~q2+ ql=q2

and if tr precedes tir then

St, tis

qo&T1dq2 + q1~q2

Transition tr is said to be a representative of

the expansion.

In Figure 18, transition S1 commutes arO?nd t2,

but S2 does not. Here transitions tl, t2, and t3

are expansion transitions.

S1: j + j+3

S2: j + 3

+’11
2

‘1 ‘
j + j+l

‘2:
j + j+l

t3: j ‘= j+l

d
example of commutativity

Figure 18.

Intuititively, transition s commutes around tr

if the execution of s is in no way affected by the

execution of any of the transitions in the expan-

sion except tr.

We nsed to make certain that a process cannot

get “stuck” while executing expansion transitions,

i.e., that the system can always reach a state

which is conceivable in the unexpanded system. We

formalize this constraint below.

DEFINITION: An expansion So S1 is said to be

extendable if for each transition sequence x such

that q
. q , there exists a Y from ~f such that

ql $q~ ~nd2q z is conceivable in SO. ,

We now “combine” our definitions into one, re-

sulting in a sufficient condition for consistency.

DEFINITION: If all transitions of all processes

except the expansion process commute around trt

foK some expansion transition tr, and the expansion

is accurate and extendahle, then the expansion is

said to be interleavable.
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THEOPJ3M 1: If SO&Jsl is an interleavable expan-

sion, then the expansion is consistent.

PROOF: We want to show two things, which together

imply that the expansion is consistent:

1) if S1 is a reachable state that is not con-
ceivable in SO, then after some finite number of

transitions it will be in a state that is conceiv-

able in S0.

2) If S1 is in a reachable state that is con-

ceivable in So, then the image of this state under
ill is reachable in So.

~Let x be any transition sequence such that

qo + ql. Since the expansion is interleavable,

the transitions O;,X can be permuted into a sequen-

ce xl so that q. + ql, and all transitions of

Aeach expansion se uence in x are contiguous. s up-

pose that ql is not conceivable in SO. This means

that the rightmost transitions of x’ are a proper

prefix of an expansion sequence. Since the expan-

sion is extendable, x’ can be extended forming the

transition sequence z = sty. It is now true that

x’
Y

‘o i g’1 1 q2
where q2 is conceivable in So. Since the expan–

sion is accurate, it follows that

VI(Z)

nl(qo)-&n1(q2)

which proves the theorem.

There are examples of the use of the preceding

idea in Lipton [11]. In particular, he shows (in

the terminology and context of our present work)

that Dijkstra’s P and V primitives, as used to im-

plement mutual exclusion, form consistent expan-

sions.

We now concentrate on proving an expansion to

be W-consistent. We first consider the case of a

single expansion. Later, we generalize these re-

sults , allowing multi-expansions.

Since interleavability implies consistency, we

weaken the idea of interleavability into something

that implies W-consistency. Suppose that when a

transition sequence is permuted as in the definition

of a transition cormnuting around tr, the new se-

quence does not take the system into the same state

as the previous sequence. But if the desired pre-

dicate W is still true in this new state, then we

can still show the system to be W-consistent. We

postulate a new set of transitions to account for

the differences in states arising from permuting

the transition sequences.

DEFINITION: For system Si, let L represent the
set of all partial functions mapping Qi into Qi

such that for each iEL and each q@i, if Q(q) is

defined, then W(q) ~ W(L(q)), and the value of

each instruction pointer in q is the same as the

corresponding instruction pointer in L(q) . We call
each member of L a W-preserving residual.

NOTE : Although not transitions in the sense that

they are not part of the parallel program, we will

use W-preserving residuals as if they were part of

the program. In order to avoid confusion, if two

states of Si are related by a transition sequence

that contains W-preserving residuals, we will write

and say that x is a W-vzl.id transition sequence.

We extend p: to map W-preserving residuals into the

DEFINITION: If there exists a W-valid transition

sequence x such that

we say that ql is W-reachable.

If a transition sequence of Si+l is such that

whenever an expansion sequence is executed, the ex-

ecution of the expansion sequence is not interrup-

ted by the execution of any other transitions, then

this transition sequence is effectively “mimicking”

a transition sequence of Si, with the prototype

transition replacing the expansion sequences.

DEFINITION: A W-valid transition sequence x of

s i+l is said to be performable in Si if it is the

case that each occurrence of an expansion sequence

in x is a substring of x.

W-preserving residuals will be used for proving

that W is true for states of an expanded system.

Our general plan” for showing an expansion to be W-

consistent will be as follows. Given any valid

transition sequence of an expanded system leading

to a state q that is conceivable in the unexpanded

system, we will show that there is another W-valid

transition sequence leading to q, which is perform-

able in the unexpanded system. Assuming the expan-

sion to be accurate, and since W is inductive in

the unexpanded system and W-preserving residuals do

not falsify W, it will follow that W(q) must be

truer and hence the expansion is W-consistent.

We now define a class of transition sequences

which are “equivalent, modulo W-preserving resi-

duals” to transition sequences performable in S
0.

DEFINITION: A valid transition sequence X Of S1,

such that ql ~ q2 where ql and q2 are conceivable in

So, is said to be W-compressible if there exists a

W-valid transition sequence y such that ql~q2,

and y is perfortile in S
0.

We broaden our notion of extendable to ensure

that in system Sit states conceivable in so are

always reachable by a finite number of transitions.

DEFINITION: An expansion So~)Sl~) . . ..~)Si is

said to be extendable to So if for each transition
sequence x such that qO ~ q2, there exists a Y from

~~ such that ql ~ q2 and q2 is conceivable in S
0.

If an expansion is extendable, then any valid

transition sequence can be extended so that it takes

the system into a state that is conceivable in the

unexpanded system. We formalize this notion as

follows.

DEFINITION: Let So~)S1j)... ~}Si and let x be

a transition sequence such that ql $ q2. To SO-

extend x is to a
%

end to x a transition sequence

Y~~~ so that ql ~ q3 and q3 is conceivable in SO.

We are now able to weaken our notion of inter-

leavability so that only the predicate W need be

“preserved” in an expansion.

DEFINITION: An expansion So~%l is said to betj-

interleavable if it is accurate, and each valid
transition sequence of S1 starting from a state q

such that q is conceivable in So and W(q) is true
can be So-extended so that the result is W-compres-

sible.

Related to our previous definition of a trans–

ition sequence comnuting around the prototype, we

define what we call W-commute, in which we allow the

insertion of W-preserving residuals to “fix things
empty strin$.
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UP” . The result is a sufficient, but not neces-

sary, condition for W-interleavability.

DEFINITION: Let s be a transition of a process

different from the expansion process, and let tr be

an expansion transition occurring in all expansion

sequences. s is said to W-commute around tr in S1

if

1) w is inductive in So, and

Z) for each sequence <tl, . . ..tn> from the set

of expansion sequences T, all states ql and q2 from

91 such that W(ql) is truer and fOr each ‘kc<tlr
. ..rtn>.

a) if tk precedes trr then

‘1
. ..tks klsf,2t;. ..t!

ql 1 ~qz=ql- 1
1

. } q2

where <tip ..., t;> is a prefix of an expan-

sion sequence, and k
1

and 9.
2

are W-preserv–

ing residuals,

b) if tw precedes t,., then
L— .

St . ..t
k

t’
k

. ..t.9.1si
2

ql 1
‘> C12= ql> 1 q2

‘here ‘%’ . ..rt~> is a suffix of an expan-

sion sequence, and L
1

and i
2

are W-preserv-

ing residuals.

?2 +IT

} i

r :i + i*3+i
1

tl:i + i+l

‘2
:i+3

‘2
:i+i+l

‘3
:i&i+l

example of “i is a multiple of 3“-commutativity

Figure 19.

For an illustration of the definition of W-

commutativity, see Figure 19. Here tl, t2, and t3

are an expansion sequence. If we let W be the

predicate “i is a multiple of 3“, then rl W-com-

mutes around each of the expansion transitions,
but r7 does not W-commute around any of them. s up-

pose <hat it is thought that rp W-commutes around

j~.i = O in the Inltlal’s;ate -

Consider the transition sequence t1t2r2t3.
,..

, this will result in

a state in which i = 4. If we now consider the

sequence t1t2t3r2, as required by the definition,

this will result in a state in which i = 3. what

we need is a W-preserving residual k such that

‘lt2t3 2r 9. reSUlts in a state in which i = 4. But

this is impossible, since 9. would then be causing

a change from a state in which k~ is true to a

state in which W is false.

W–commutativity provides us with a sufficient

condition for W-interleavability.

THEOREM 2. Let So#S1. If all transitions of

processes other than the expansion process W-com-

mute around tr, for some expansion transition tr,

and the expansion is accurate and extendable, then

the expansion is W-i~terleavable.

PROOF : A straightforward induction based on the
definition of W-commute.

We now proceed to show that

provides a sufficient condition

W-interleavability

for W-consistency.

x
LEMMA 1: If q1~q2, w is inductive in SO, and x

is performable in So, then if W(ql) then W(q2).

PROQF : x is composed of 1) transitions that exist

~, 2) W-preserving residuals, and 3) expansion

transitions. In case 1), since we assume that W is

inductive in S
R’

and by our faithfulness restriction

on expansion t at

it follows then that W(qa) implies W(qb). In case

2), the truth of W is preserved by definition of

W–preserving residuals. Case 3) follows from the

assumption that the expansion is accurate and the

argument of case 1) .

THEOREM 3: If expansion So~>S is W-interleav-

able, then the expansion is &-cor+sistent.

PROOF : Let ql~l be such that W(ql) is true.

Suppose that cll $ c12r where yEX~. Since the ex-

pansion is extendable, y can be extended into a
valid transition sequence x = yz such that

z’
‘llq2iq3

and q3 is conceivable in Si. By the definition of

W-interleavability, x is W-compressible and hence

they exists an x’ performable in So such that

ql ~ q3. By lemma 1 we have that W(ql) implies

w(q3) . Since we assume that W is true for the in-

itial state, the theorem follows.

Let us consider some system, say So, in which

the predicate W is inductive. If we expand So by a

W-interleavable expansion, then we have a W-consis-

tent expansion, resulting in S~. Now suppose that

we continue to expand, creating systems S2,S3,. . . .

by W-consistent expansions. In ‘order to show that

the expansion So~}S1~). . . ~)Si is W-consistent,

we would like to make use of the knowledge that the

transitions of Si are either transitions of so, or

expansion transitions. Given a state q~ Of S1, We

wish there to be a valid transition sequence x such

that q, ~ q. and q. is conceivable in SO. Using

the id~a~ o? W-co&utativity, we then show that

since W is inductive in SO, W(q2) must be true in

Si.

In the definition of W-compressibler we were

only concerned about single expansions. Now we are

concerned about multi-expansions, and need to make

certain that W–preserving residuals are not inter-

leaved with expansion transitions of any system of

the sequence, as they are only useful when applied
to states that are conceivable in SO.

We first broaden our definition of performable.

DEFINITIOIJ: Let So-)S1~9. ..d)Si. A transi-

tion sequence x of ‘i is performable in S0 if

x is performable in Si_~/

~i(x) is performable in Si_2,
Pi-l(Pi(~)) is’ performable in S.1–3’

u2(P3(.. .(!Ji(x)) . ..)) is performable in So.

We broaden our definition of W-compressibility

to account for multi–expansions.

DEFINITION: A valid transition sequence xxof Sir

where So~)Sl~)... ~~i, such that ql ~q2 where

q and q2 are conceivable in So, is .sSid to be

(3,W)–compressible if there exists a transition
sequence y = Q uP.

12
such that
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1) u is from Z:,
2) LI and !,2 are W-preserving residuals,

3) SI&%12,
4) y IS performable in SO.

DEFINITION: An expansion is said to be (O,W)–

interleavable if it is accurate, and each valid

transition sequence starting from a state q such

that q is conceivable in SO and W(q) is true can

be So-extended so that the result is (O,W)-compres-

sible.

In order to make use of the idea of W-commut-

ativity in our new context, we need to choose the

W-preserving residuals from a slightly restricted

class. We will only want to apply W-preserving

residuals to states that are conceivable in So,

because only in these states will we know that W

is true. So we will use those W-preserving resi-

duals whose locations in a transition sequence can

always be changed so that they only occur when the

system is in a “proper” state.

DEFINITIOIJ: Let SO~)S1~).. .~l. A W-pre-

serving residual L is said to be O-preadjusting in

Si if for all states ql and q2 of Qi, where ql is

conceivable in So and W(ql) is true, if

Cll+ q2

where x is from X*, then there exists a W-preserv–

ing residual Q1 aid a y from Z! such that

.L1y

cl= q2

A W–preserving residual L is said to be O-postad-

justing in Si if for all states ql, q2, and q3 Of

Qi, where ql and q3 are conceivable in s
o

and

W(ql) is true
* Lx

q*q2~ q3

where x is from Z;, then there exists a W-preserv-
ing residual L1 and a y from Z; such that

C12>Y.I.+.q3
i

Using these restricted W-preserving residuals,

we extend our definition of W-commute.

DEFINITION: Let s be a transition of a process

different from the expansion process, and let tr

be an expansion transition occurring in all expan-

sion sequences. s is said to (O,W)–commute around

tr in Si if

1) W is inductive in So, and

2) for each sequence <tl, . . . ,tn> from the set

of expansion sequences T, all states ql and q2

from Qi such that ql is W-reachable, and for each

t@<t, ,...,tm>,,. af

b)

“ recedes tif tk P then
r’

‘1
. ..tns kst’. ..t’

lj

‘1 i ) q2+ ?lI> i q2

where <tj,, . . . , t!> is a prefix of an expan-

sion sequence, and L is a O-preadjusting
W-preserving residual in Si_l,

if t~ precedes tk, then

Gt . ..t ‘-
k

t’ . ..t’s9.

Cll
km

%2=%1) ~ > q2

where <t;,...,<> is a suf;ix of an expan-

sion sequence, and i is an O-postadjusting
W-preserving residual in Si_l.

(O,W)-commutativity provides us with a suf-

ficient condition for (O,W)-interleavability.

THEOFU3M 4:

+). . . ‘e’so+)si+)”. -+xi. lfsO*%’ ‘~jSi_l IS a (O, )-lnterleavable expansion,

and all transitions of processes other than the ex-

pansion process of Si (O,W)-comnute around tr, for

some expansion transition tr, and the expansion

(So+kl+.. . ~)Si) is accurate and extendable

to S0, then the expansion is (O,W)-interleavable.

PROOF: A straightforward induction based on the

definition of (O,W)-conunute.

Finally, we show that (O,W)-interleavability is

a sufficient condition for W-consistency.

THEOREM 5: If W is inductive in So, and So~}Sl

+). . . 4}Si is an (O,W)-interleavable expansion,

then the expansion is W-consistent.

PROOF : Consider a state ql of Si such that W(ql) is

true. Let y be any valid transition sequence such

that ql ~ q2. Since the expansion is (O,W)-inter-

leavable, y can be So–extended to a valid transition

sequence x = yz, such that

q1:q2:q3

where q3 is conceivable in So, and zEZf. We now

proceed by induction on i. The basis, i = 1, is

theorem 3. For the induction step, by definition

of (O,W)-interleavability, x is (O,W) -compressible

and hence there are exists an x’ performable in So
of the form Qluk2 such that

‘1
Q2

q ~y q; ~ q~~q~

Here L1 and !,2 are W-preserving residuals, and u is

from Z*
1. By the restriction that

r

ql 1 q2
5 lli(ql) i:l ni(c12)

(faithfulness) and the assumption that the expansion

is accurate, we have that

y
q a i-1 ‘b

where qa = ~i(qi) and qb = ~i(q$). From the induc-

tion hypothesis, we know that W(qa) lmplleS W(qb).

The theorem then follows since we know that %1 and

k2 do not falsify W.

We have presented a method of “attacking the

problem” of proving the correctness of a system in-

volving complicated interaction among the processes.

Simply stated, our method is to show that the in-

teraction of processes can be ignored, thereby re-

ducing a system with much interaction between pro-

cesses to a simpler system with little interaction

between processes. In the next section we illus-

trate our ideas with an example.

6. EXAMPLE - PARALLEL GARBAGE COLLECTION

In this section we use the theory which we have

derived to develop and prove correct a program for

parallel garbage collection. The program is basic-

ally that of Dijkstra et al. [4], although the cor-

rectness proof is ours.

What we envision is a LISP-like environment,

with one process, called the mutator, performing

basic LISP operations, i.e. manipulating a set of

cells representing a graph structure, and another

process, called the collector, performing garbage

collection. The two processes will execute in par–
allel, with a “minimal amount of interaction”. In

particular, there will be no synchronizing places

(i.e., neither process will ever have to wait for

the other).
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The variables used by the program include a

finite set of cells. Each cell consists of three

parts - a color and two pointers which will refer-

ence other cells. The two cells so referenced are

called the left son and the right son. A subset

of these cells is designated to be roots; they are

always “accessible” by the two processes. Another

cell is specialized to be the head of the free-

list. The free-list is a list of garbage cells.

A cell is termed garbage if it is not on a path

from a root. It is termed mutatable otherwise.

The collector process determines which cells are

garbage, and then “places” these garbage cells on

the free-list. The mutator process may take cells

off the free-list, and make them sons of mutatable

cells. For more details, see Dijkstra et al. [4].

& m:

(1?t:P

+ c:

“perform basic LISP operation”

“mark non-garbage cells”

“collect garbage’:

GC
o

Figure 20.

Initially we consider the program of Figure 20,

which we designate GCO. The mutator process is

conceptualized as one transition and one place.

The transition will be thought of as performing

some basic LISP operation.

The collector process is conceptualized as two

transitions, representing a marking and a collect-

ing phase, and two places. All cells are assumed

to be initially white. The first transition col-

ors all non-garbage cells black. The second trans-

ition then “places” all white (i.e. garbage) cells

on the free-list, and resets the black cells to

white.

We first sketch the expansions to GCO; then we

will prove them to be W-consistentr for a W yet to

be presented.

The first step is to expand the “marking

phase” of the collector. As is mentioned in Dijk-

stra et al. [4], it is necessary to specify some

“overhead” on the part of the mutator. The reason

for this is shown in Figure 21 (from [4]). In

Figure 21a, root 2 points to cell a, and the col-

lector is “examining” root 1 to “see” if it has

any sons, which it does not. Nextr as shown in

Figure 21b, the collector examines root 2 to “see”

if it has any sons. But in the meantime the muta–

tor has modified the graph structure of the set of
cells, and now root 1 points to cell a, but root 2

does not. The collector “sees” that root 2 does

not have any sons, and incorrectly assumes that

cell a is garbage.

In order to avoid this problem, we introduce

an “intermediate color” for a cell - gray. The

mutator, at the same instant that it establishes a

pointer to a cell, makes the cell “at least gray”,

to use the term of Dijkstra et al. [4].

The details of the first expansion are shown

in Figure 22. Here, “to shade a cell gray”,

root 1 root 2

collector

/

(Y’
cell

Figure 21a.

root 1

cell

Figure 21b.

9

a

a

root 2

collector

~t< shade all toots gray;

1
.

G~true;

: when G=true
‘2——

do G~~;—

do i~l to # cells

af celfli)-is gray—
then do;——

shade left son gray

(if any);

shade right son gray

(if anv):

color cell(i) black;

G~true;

C?@;

The expansion subgraph of GCo~)GC1. This replaces

transition t of GCO tO fOrm GC1.

Figure 22.

Q
+ . ;+n

f

~: -cell(i) tc:
is not gray

t

. .. A. .,, ..G--ti

T+i+ l—
\

when cell(i) is gray

shade left son gray

(if any)

shade right son gra>,

(if any)

color cell(i) black

G+true

The expansion subgraph of GC1-)GC2.

Figure 23.

synonymous with “to make a cell at least gray”,

means

if the cell is white then color it gray;—
else do nothing;

It is not difficult to verify that the expan-

sion is accurate. We prove later that it is W-con-

sistent as well.

The marking phase is further expanded in Figure
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23. Now we come to the expansion of the mutator

transition. We will ignore one detail - that of

one process adding cells to the free-list while

the other process removes them. This is an in-

stance of the producer-consumer problem, which has

been treated by several authors (see Dijkstra [2],

for example).

There is one detail associated with the free–

list that we do consider, however. This is the
problem of how to handle a cell during the period

from when it is taken off the free-list to when it

is made the son Of some mutatable cell. We solve

this problem differently from as was done in Dijk-

stra et al. [4], where an elegant solution is pre-

sented to both this problem and the producer–con–

sumer problem, but is not proven correct.

We have the mutator “mark” any cell that is

about to be made the son of some other cell. This

mark cannot be “erased” by the collector, and a

marked cell, even if the cell is white, is not
treated as garbage in the collection phase. The

details of the expansion are shown in Figure 24.

The final expansion of the collecting phase,

shown in Figure 25, is straightforward.

‘1 : let c1 be a mutatable cell

let C2 be either a mutatable

cell or a cell from the free-

list

mark C2

m : set c Is right or left son to
2

be C2
1

‘3 : Shade C2 gray

m : unmark c
4— 2

The expansion subgraph of GC2~)GC3. Each cell

has been given a “mark” field. To mark a cell

means to set the field to 1, to unmark it means to

set the field to O. Transition c (the collection

phase) is modified to read “place all cells that

are white and unmarked on free-list”.

Figure 24.

0

when cell(i) is

white A not marked

V marked I I

do color

1

do place cell(i).— —
cell(i) white on free list \

The expansion subgraph of GC3.&)GC4.

Figure 25.

We now concentrate on proving the parallel

garbage collection program to be correct. GCO is

rewritten in Figure 26 with more detail, but each

P

m:

t:

c:

GC
o

let c1 be a mutatable cell.

let C2 be either a mutatable cell

or a cell from the free-list.

set cl’s right or left son to be

C2, and shade C2 gray.

shade all roots gray
G+true ;

do while (G);——
G+false;

do i+l to # cells;
-

If cell(i)—is gray then do;——
~hade left son gray (if any)

shade right son gray (if any)

color cell(i) black;
G+=;

*;

end;—
end;—

place all white cells on free-list;

color all cells white;

with more detail.

Figure 26.

transition is still thought of as being indivisible.

We write “black&white” to mean that no cell col-

ored black has as either a right son or a left son

a cell colored white, and similarly for “gray ~

white”. We assume that in the initial state, all

cells are colored white, and all cells except the

roots are on the free list. The following predic-

ates are easily shown to be inductive in GCO.

1) black~white

2) i (collector) = p~’’all roots are colored

black”

3) i(collector) = p= gray~white

The conjunction of the three predicates, which

we call W, ‘implies that when the collector is at p,

any white cell is garbage; however, they do not im-

ply that all garbage cells are white.

We will modify GCO by a series of four expan-

sions that are W–consistent. For the resulting

system, GC4, we will show that since the predicates
are GCO-inductiver there will always exist a reach-

able state in which the collector is at p and all

and only all garbage cells are white.

The first expansion is shown in Figure 22. The

key idea in showing that this expansion is W-inter-

leavable is that if one considers a proper prefix

of any expansion sequence, the composite effect of

the expansion transitions, disregarding their eff-

ect on the collector~s instruction pointer, is that

of a W-preserving residual. This is easily verified

by observing that the only predicate affected is

“black~white” . No cell is colored white in an

expansion sequence, and a cell is colored black only

if (simultaneously) its sons are shaded gray. (We

note that in the above we are only considering the

collector process, and hence can treat it as a se-

quential program, allowing us to examine the com-

posite effect of expansion transitions.)

It follows that m, the mutator transition, W-
commutes around the last occurrence of t3 in any

expansion sequencer i.e.
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tl(t2t3)nm !,lmtl

‘1 GCl
> q~~q$ GC ‘q2

1

and

t1t2 (t3t2)nm 9. mt t

ql GC 392*ql) 2 &2>q2.
1

where n is a nonnegative integer, ~1 is a W-Preser-

ving residual whose effect is that of (t2t3)n res-

tricted to non-instruction pointer variables, and

9.2 is a W-preserving residual whose effect is that

of (t~tz) n restricted to non-instruction pointer

variables. The expansion is clearly accurate and

extendable; hence by theorems 2 and 3 it is W-

consistent.

The second expansion, resulting in GC2, is

shown in Figure 23. We want to show this expansion

to be (O,W)-interleavable, as W is not inductive

in GC1.

We first show the expansion to be W-interleav-

able, i.e., if

t m...tn. .tn. . .
a

ql GC ) q2
(’c-he 0ri9inal sequence)

2

then there exist W-preserving residuals 11 and 12

such that

ilta. ..tirmnl12

ql) GC
}q2 (the modified sequence)

2

In order to show this, we need to determine

the effect of moving the mutator transitions to the

end of the expansion sequence. Any particular cell

is either unaffected by the action of the occur–

rences of m or its components are changed in some

way. The effect of an occurrence of m is either

to change the value of one of a cell’s pointers or

to shade a cell gray.

We call the execution of either transition tc

or th visiting cell(i). If a cell is shaded gray

by an occurrence of m before it is visited, then

that cell will eventually be colored black and its

sons shaded gray. In the modified sequence, the

same effect can be achieved by having kl shade the

cell gray. If the cell is shaded gray by an oc-

currence of m after it is visited, then this shad-

ing will not cause other cells to be shaded by a

transition of the expansion sequence. Hence in

the modified sequence the effect can be achieved

by having L2 shade the cell gray.

The modification of a pointer by m has two

effects on a cell. The previous target of the

pointer is “disowned”, i.e. it becomes no longer a

son of the changed cell. The new target of the

pointer is “adopted” , i.e. it becomes a son of the

changed cell. The effect of delaying the adoption

of a cell is the same as the effect of delaying

Ehe shading of a cell, which we have alyeady di~–

cussed.

By delaying the disowning of a cell, we may be

causing that cell (and its descendants) to be

shaded when they were not shaded in the original

sequence. we cannot account for this in i2, as

this would require cells to be colored white, which

would be difficult to show to be W-preserving.

Instead we have 9, c’nange any pointer that is mod-

ified by an occur~ence of m to null. (This is

permissible, as the actions of m are not predicated

on the previous value of a pointer. It may be that

in practice the previous value of a pointer is im-

portant for the execution of the mutator, but this

value is not important in establishing the correct-

ness of the garbage collection scheme.) The effects

of this early disowning of a cell can then be han-

dled by shading appropriate cells, as was previously

discussed.

We now consider whether Ql and ~2, as we have

defined them, really are W-preserving residuals.

That is, if W is true for some state, is W true in
the state which is the image under L1 or !2? The

only action of Q2 is to shade some set Of states

gray. As the mutator’s instruction pointer does

not reference P, this will clearly preserve W. L1

will shed? some set of cells gray, and will also set

some set of pointers to null. Again, it is clear

that neither of these actions will falsify W.

That the expansion is accurate and extendable

is easily verifiable. Hence we have that’ it is W-

interleavable. But we need to show that it is

(O,W)-interleavable. This can be ascertained by

the arguments which showed that the first expansion

was W-interleavable, i.e., a proper prefix of an

expansion sequence is effectively a W-preserving
residual.

we now expand the mutatorr resulting in GC3, as

shown in Figure 24. We will show that all transi-

tions (O,W)-commute around m2.

Actually, all transitions except c, the collec-

tion transition, commute around m2. If c occurs

immediately before m3, the result is that the cell

being shaded by the mutator at m3 will end UP shaded,

but if c occurs after m3, the result is that the

cell will end up white. This can clearly be accoun-

ted for by a W-preserving residual % after c that

shades the appropriate cell gray.

It is trivial to verify that the other transi–

tions corranute around m2. Hence we have that each

collector transition W–commutes around m2. The ex-

pansion is certainly accurate and expendable; hence

it is W-interleavable. Howeverr we still need to

show it to be (O,W)-interleavable. We do this by

showing that the W-preserving residual E used in the

expansion, i.e. shading a cell gray, is O-postad-

justing in GC2. That is, we must show that if k
occurs in a state not conceivable in GCO, then we

can remove i and replace it with a W-preserving

residual it, situated so that 9.’ will occur when
tie system is in a state conceivable in GCO. Since

the transition c and the prototype m of our current

expansion exist in GCO, ,9, will only occur in a state

conceivable in GCO. Hence the expansion is (O,W)-

interleavable by theorem 4 and is W-consistent by

theorem 5.

The final expansion, shown in Figure 25, is

trivially W-consistent.

We have shown that our predicate W is GCO–

inductive in GC4. As mentioned previously, this

only implies that no non–garbage cells will be col–

lected as garbage. It is possible that the system

will never be in a state in which all garbage cells

have been collected. But, whenever GC4 reaches a

state that is conceivable in GCO, the predicate W

will be true. From such a state, direct simulation

of GCO is possible, and it is not difficult to
prove that for any state of GCO in which-W is true,

after one execution of the marking transition, the
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system will be in a state in which all and only

all garbage cells are colored black. It then fol-

lows that GC4 is semi-consistent.
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