
C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
P
O
P
L
*

Ar
tifact

*
A
E
C

Serializability for Eventual Consistency:
Criterion, Analysis, and Applications

Lucas Brutschy, Dimitar Dimitrov, Peter Müller, and Martin Vechev

Department of Computer Science, ETH Zurich, Switzerland

{lucas.brutschy, dimitar.dimitrov, peter.mueller, martin.vechev}@inf.ethz.ch

Abstract

Developing and reasoning about systems using eventually consistent
data stores is a difficult challenge due to the presence of unexpected
behaviors that do not occur under sequential consistency. A funda-
mental problem in this setting is to identify a correctness criterion
that precisely captures intended application behaviors yet is generic
enough to be applicable to a wide range of applications.

In this paper, we present such a criterion. More precisely, we
generalize conflict serializability to the setting of eventual consis-
tency. Our generalization is based on a novel dependency model
that incorporates two powerful algebraic properties: commutativity
and absorption. These properties enable precise reasoning about
programs that employ high-level replicated data types, common in
modern systems. To apply our criterion in practice, we also devel-
oped a dynamic analysis algorithm and a tool that checks whether a
given program execution is serializable.

We performed a thorough experimental evaluation on two real-
world use cases: debugging cloud-backed mobile applications and
implementing clients of a popular eventually consistent key-value
store. The experimental results indicate that our criterion reveals
harmful synchronization problems in applications, is more effective
at finding them than prior approaches, and can be used for the
development of practical, eventually consistent applications.

Categories and Subject Descriptors D.2.5 [Software Engineer-
ing]: Testing and Debugging; C.2.4 [Computer-Communication
Networks]: Distributed Systems — Distributed databases

Keywords Replication, eventual consistency, serializability

1. Introduction

Modern distributed systems increasingly rely on replicated data
stores [12, 19, 20, 33] in order to achieve high scalability and
availability. As dictated by the CAP theorem [16], consistency,
availability and partition-tolerance cannot be achieved at the same
time. While various trade-offs exist, most replicated stores tend to
provide relaxed correctness notions that are variants of eventual
consistency: updates are not immediately but eventually propagated
to other replicas, and replicas observing the same set of operations
reflect the same state.

However, relaxations of strong consistency come at a price as
applications may now experience unexpected behaviors not possible
under strong consistency. These behaviors may lead to serious er-
rors, and make development of such applications more challenging
because the application itself is now responsible for guaranteeing
strong consistency where required. Serializability then becomes an
important criterion for reasoning about the correctness of the appli-
cation: if serializability holds, one can reason about the application
without considering the effects of weak consistency. Further, serializ-
ability violations can guide the placement of correct synchronization.
While desirable, the general notion of serializability is very difficult
to use in practice. A key issue is that deciding whether a concurrent
execution is serializable is NP-hard [28]. This is one of the key
reasons why stronger but computationally tractable serializability
criteria, such as conflict serializability [28], have been explored (see
also [4]).

Key Properties To be practically useful, a serializability criterion
for eventual consistency must possess at least three key properties:
(a) it must be strong enough so that the associated decision problem
is computationally feasible, (b) it must be precise enough so it does
not rule out desired application behaviors, and (c) it should handle
the weak semantics of modern data stores.

Designing a serializability criterion that addresses all three
properties is very challenging. For example, general serializability
satisfies conditions (b) and (c), but not condition (a). On the other
hand, conflict serializability satisfies condition (a), but neither (b) nor
(c). Subsequent developments on conflict serializability improved
on (b) and (c) but, interestingly, not on both at the same time.
For example, the work of Weihl [38] improves the precision of
conflict serializability under strong consistency by reasoning about
commuting high-level operations. Other works, for instance [3, 14],
incorporate weaker semantics, such as snapshot isolation and causal
consistency, but do not improve the precision and still work with
low-level reads and writes.

Key Challenge The main challenge then is: can we obtain a
criterion that covers all three properties above: is computationally
feasible, is precise enough to be used for practical applications, and
can deal with (very) weak semantics such as eventual consistency?

This Work To addresses the above challenge, we propose a new
serializability criterion that generalizes conflict serializability to
eventually consistent semantics, while at the same time taking into
account high-level operations. This enables precise reasoning about
replicated data types (such as replicated maps and lists [9, 30]),
which are commonly used in modern distributed applications. Since
we assume only eventual consistency, our criterion immediately
applies to all consistency levels that strengthen eventual consistency
in various ways [9, 10, 23, 34].

The key technical insight of our work is that a precise criterion
for eventual consistency needs to take into account not only com-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.

POPL’17, January 15–21, 2017, Paris, France
ACM. 978-1-4503-4660-3/17/01...$15.00
http://dx.doi.org/10.1145/3009837.3009895

458

mutativity, but also that some operations absorb (mask) the effects
of others. Absorption is one of the main properties that permits an
execution possible under eventual consistency to be recognized as
equivalent to a strongly consistent one. The core technical problem
here is finding a way to combine commutativity and absorption
reasoning: a combination that is natural for reads and writes but
non-trivial for abstract operations with rich semantics.

We note that in practice, a serializability criterion need not (and
typically should not) be used on the entire application. It is most
effective when used in a targeted manner for program parts intended
to be serializable (e.g., payment check-out), while not used for
parts that can tolerate weak consistency (e.g., display code) and can
benefit from higher performance. Indeed, in our evaluation, we used
our criterion in such a targeted way. This usage scenario is similar
to how standard conflict serializability is used for shared memory
concurrent programming (e.g., [37]).

To substantiate the usefulness of our criterion, we built a dynamic
analyzer that checks whether the criterion holds on program execu-
tions, and evaluated our analyzer on two application domains. First,
we analyzed 33 small mobile apps written in TOUCHDEVELOP [35],
a framework that uses weakly consistent cloud types [9]. The ex-
perimental results indicate that our serializability criterion is able
to detect violations that lead to some difficult-to-catch errors. Sec-
ond, we implemented the database benchmark TPC-C [36] using
the eventually consistent data store RIAK [19] and show how our
criterion can guide developers to derive correct synchronization for
client implementations.

Contributions The main contributions of our paper are:

• An effective serializability criterion for clients of eventually
consistent data stores. Our criterion generalizes conflict serializ-
ability to deal with weakly consistent behaviors and high-level
data types.

• Polynomial-time algorithms to check whether the criterion holds
on a given program execution.

• An implementation of our algorithms for two data stores: the
TOUCHDEVELOP cloud platform for mobile device applications
and the distributed database RIAK.

• A detailed evaluation that indicates that our criterion is useful for
finding previously undetected errors and can help in building cor-
rect and scalable applications running on eventually consistent
data stores.

Outline In the next section, we provide an overview of the main
concepts introduced in this paper and discuss how they relate to
previous work. Section 3 describes our formal system model, and
Section 4 presents our main result, a new serializability criterion.
On this basis, Section 5 develops a dynamic detection algorithm,
which is then evaluated in two practical settings in Section 6 and
Section 7. Section 8 discusses related work and Section 9 concludes.

2. Overview

In this section, we provide an informal overview of the key chal-
lenges and illustrate our solution to these. Full formal details are
presented in later sections.

Motivating Example Consider the following code fragment,

adapted from a mobile gaming library1

Players.at(G, I).user.setIfEmpty(userID)

if Players.at(G, I).user != userID
// try next position

1 “cloud game lobby”, written in TOUCHDEVELOP and available at http:
//touchdevelop.com

u1

q1

u2

q2

ar

vi
vi

vi

(a) Visibility,

arbitration

u1

q1

u2

q2

⊕ ⊕
⊖

(b) Dependency,

anti-dependency

Figure 1: Execution of motivating example, with operations:
u1 map(G,I).user.setIfEmpty("Alice")

u2 map(G,I).user.setIfEmpty("Bob")

q1 map(G,I).user returns "Alice"
q2 map(G,I).user returns "Bob"

Here, Players is a distributed map from a game G and a po-
sition I to a user participating in the game. A user identifier is
stored in field user. For now, suppose that each operation such
as setIfEmpty runs atomically in its own transaction (our results
extend to transactions with multiple operations). The intended be-
havior is that all players have a consistent view of the Players map
and, in particular, that it is not possible for two players to assume
they have obtained the same position in a game. This behavior is
guaranteed for executions under strong consistency: if two compet-
ing accesses to the same position are performed concurrently, one
of the setIfEmpty operations will remain without effect, and the
corresponding client has to try the next position in the game.

To illustrate the issues with eventual consistency, suppose we
have two users, ‘Alice’ and ‘Bob’, trying to acquire the same position
I in game G. Here, each user executes a setIfEmpty update, which
will eventually propagate to the replica of each user, followed by a
query on the map (executed on the user’s own replica). That is, as
shown in Figure 1, ‘Alice’ performs update u1 and query q1, while
‘Bob’ performs update u2 and query q2. The figure also shows a
possible execution of these updates and queries. In the graph, vi
designates whether an update is visible to a query (i.e., whether the
update was applied to the replica on which the query is executed
before the query took effect). By ar, we denote an arbitration order
in which all (conflicting) updates are ordered by the system. A query
therefore observes a database state that is the result of applying such
visible updates in the arbitration order.

Returning to our example in Figure 1a, here, both u1 and u2

are visible to q1, but only u2 is visible to q2. Since u1 is ordered
before u2 by arbitration, q1 will read the value written by u1 (u2

will not override the value since it is a setIfEmpty operation),
while q2 will read the value written by the only visible update u2.
Consequently, both clients conclude that they have acquired the
position in the game. The resulting behavior is not serializable: there
is no sequential execution of u1, q1, u2 and q2 in which the queries
q1 and q2 return these values.

In this work, we use the classic notions of dependency and anti-
dependency [1] to characterize serializability: intuitively, a query
depends on a visible update in the execution if the result of the
query would change had the update become invisible. In Figure 1b,
dependencies are marked with a ⊕ arc from the update to the query.
Similarly, a query anti-depends on an update that is not visible if the
query result would change had the update become visible. Figure 1b
shows anti-dependencies as arcs labeled ⊖ from the query to the
update. Here, q2 anti-depends on u1, because u1 is ordered before
u2 in the arbitration order and, by the semantics of setIfEmpty, q2
would therefore observe a different value if u1 had become visible.
If the four relations of dependency, anti-dependency, program order
po, and arbitration order ar form a cycle then the execution is not
serializable [14]. Indeed, in our example, when we put all these four
relations together, we do have a cycle, namely: u1, u2, and q2.

459

http://touchdevelop.com
http://touchdevelop.com

x.add(1)

x.get():1

x.add(1)

x.get():1

⊖⊕ ⊕

Figure 2: A trivial serializability violation with two counters

Commutativity and Absorption A precise serializability criterion
requires a precise notion of dependency. For reads and writes, this
is fairly straightforward: a read depends on the last-arbitrated write
that is visible to it and accesses the same record. For operations
on high-level data types such as counters, maps, sets, and tables,
however, this is not as straightforward. Consider for instance the
case where there is a second function in the above gaming library
that lists all games a player with a given userID participates in:

Games := Players.select(_.user == userID)

Suppose user ‘Alice’ reserves a position in a game via the
update setIfEmpty("Alice"), and concurrently ‘Bob’ lists the
games that he participates in via the above query. Here, Alice’s
update is not a dependency for Bob’s query as no matter whether
it is visible or not, the result of the query will be the same:
Alice’s reservation does not influence Bob’s participation. The
reason is that, even though both operations access the same data,
they actually commute. Thus, determining dependencies precisely
requires reasoning about commutativity. In this work, we show how
to leverage commutativity properties of arbitrary operations in order
to capture the dependencies between them.

And while commutativity is useful, we can make our dependency
definition even more precise. Consider again the execution shown
in Figure 1b, but suppose that now we had used set instead of
setIfEmpty. Even though both updates do not commute with
either of the two queries, the execution is serializable in the order
u1q1u2q2. Indeed, we no longer have a cycle as u2 hides the effect
of u1 from q2, and therefore q2 does not depend on u1. We refer to
this form of hiding as absorption. Again, if the operations are reads
and writes, absorption is easy to define: updates absorb each other
if they write to the same record. However, for the richer operations
considered in this work (e.g., those of high-level data types), the
definition of absorption may be more involved: operations such as
setIfEmpty may be absorbing, non-absorbing, or absorbing only
under specific conditions.

Targeted Serializability Checking Requiring serializability for all
operations in a program is typically too strong in practice. Consider
for example the execution in Figure 2, where a serializability
violation occurs when a counter is incremented by two clients and
queried by each of them without observing the increments from the
other. Any application incrementing a counter and then querying
its value without using synchronization is susceptible to such an
anomaly, but it is often harmless. For example, an application might
read the counter solely to display it to the user and there may
be no negative effects of displaying an outdated value. To avoid
reporting violations in such cases, we allow the developer to provide
a lightweight specification of a set of operation invocations not
subject to serializability. An execution is considered serializable
with respect to this specification if it is serializable after projecting
out the specified invocations. This is a slight generalization of the
notion of atomic set serializability introduced by Vaziri et al. [37].
We discuss targeted serializability in more detail in Section 6.

Replicated Data Type Behavior Serializability can be used as a
generic correctness criterion for an application, because the serial
behaviors of a data type act as witnesses for the correctness of a

weak execution. For example, consider an add-wins set [30], where
conflicts between concurrent add and remove operations on the
same element are resolved by considering the element to be added.
The correctness of an application may then be witnessed by a serial
execution, in which the add is executed after the remove. The
behaviors of most replicated data types [6, 9, 18, 31] allow such
serial witnesses. However, there are some exceptions to this rule. For
example, the multi-value register of Dynamo [12] has the following
semantics: if two writes to the register happen concurrently, then
a later read observing the writes will retrieve both of the written
values; otherwise, it will retrieve one of the values (the last one).
In the first case, there cannot be a serial witness for the correctness
of the application, as no serial execution of operations on the data
type results in multiple values being read. If one is to reason about
such data types, this means that one can no longer provide a default
(serial) witness execution, but requires user input to specify which
witnesses are acceptable. Thus, such settings are not a natural fit
for serializability, but a different condition, which allows users to
specify witnesses. Such manual intervention departs from the goal
of the paper, which is to define a widely usable generic condition.

3. Weakly Consistent Systems

In this section, we present the model of weakly consistent systems
that we later use to reason about serializability. Our model is
formally equivalent to the one of Burckhardt et al. [8], but uses
Mazurkiewicz traces instead of totally ordered event sequences. This
choice makes reasoning about serializations more transparent, and
is closer to the approach to weak memory by Shasha and Snir [32].

In the systems we consider, several processes interact with a
weakly consistent data store, for example, a geo-replicated data store
like Dynamo [12] or PNUTS [11]. Interaction between a process and
the store happens in a sequence of atomic actions that manipulate or
query the stored data. Our main subject of interest in such a system
is the set of possible interaction histories that it can exhibit.

3.1 Actions

An action represents a primitive operation as issued by a process
against the replicated data store. For example, storing 0 in a given
record x is an action, denoted by x.set(0). Similarly, observing that
x holds the value 0 is another action, denoted by x.get():0. Formally,
we treat an action as a primitive operation whose arguments and
results have been fixed to concrete values.

To make our arguments simpler, we assume that each action is
either an update or a query. An update may modify the store but
does not indicate a return value. On the other hand, a query must
not modify the store but may return a value. Further, we assume
that an update can always be applied, i.e., that it does not have any
pre-condition. Our assumptions are non-restrictive as any action can
be split into an query after an update, and any update can be made
to do nothing if its pre-condition is not met.

We will model the weak semantics of the store based on the
sequential semantics of actions. We assume that the sequential action
semantics is given by a safety specification, that is, a prefix-closed
set of finite action sequences, which we call legal. For example,
the sequence x.set(0) x.get():0 is legal for standard read-write
registers, while the sequence x.set(0) x.get():1 is not.

We can view an action sequence as a totally ordered set of
events labeled by actions. Each action occurrence in the sequence
corresponds to one event, e.g., x.set(0) x.set(0) x.get():1 consists
of three events. We say that a given event e ∈ α is legal if the
prefix of α ending in e is legal. Thus, the first two events in the last
sequence are legal, while the third one is not.

Sometimes two action sequences α and β have the same behavior,
that is, they read the same values and produce the same final state for

460

any initial state. Then, we say that the two sequences are equivalent.
Formally, this means that α and β are legal in the same contexts:

α ≡ β iff ∀π, ρ. παρ is legal ⇐⇒ πβρ is legal.

With≡ we can easily state that two actions a, b commute (ab ≡ ba),
or that one gets absorbed (ab ≡ b). For example:

x.set(0) y.set(1) ≡ y.set(1) x.set(0)

z.set(0) z.set(1) ≡ z.set(1)

3.2 Traces

When reasoning about the possible sequences over a set of events,
the order of commuting actions is usually irrelevant. It is easier to
abstract it away and replace action sequences with what is known as
traces (see, e.g., [26]). A trace relaxes the total order of a sequence
to a partial one, preserving the order of non-commuting actions.

Given a partial order τ (or any binary relation), let f
τ
−→ g denote

that τ relates f to g. A binary relation is lower-finite if each element
is reachable along directed paths from at most finitely many others.

Definition 1. A trace is a lower-finite strict partial order τ on a
countable set E of events such that for all f, g ∈ E:

(1.1) if fg 6≡ gf then f
τ
−→ g or g

τ
−→ f , and

(1.2) if fg ≡ gf and f
τ
−→ g then f

τ
−→ h

τ
−→ g for some h ∈ E.

Condition (1.1) ensures that τ orders all pairs of non-commuting
actions. This way, one can think of a trace as abstracting a set of
equivalent sequences: this is the set L of all sequences over E that
are consistent with the trace order. Indeed, starting with any α ∈ L
we can obtain any β ∈ L by swapping adjacent commuting actions.

Condition (1.2) ensures that τ makes no unnecessary ordering:

applying it recursively to any two actions f
τ
−→ g such that fg ≡ gf ,

we will eventually obtain a sequence (by lower-finiteness)

f
τ
−→ h1

τ
−→ . . .

τ
−→ hn

τ
−→ g,

where no pair of adjacent actions commute.
Below is an example of a trace where the record x gets read, then

incremented twice, and finally read again:

x.get():0

x.add(1) x.add(2)

x.get():3

(1)

Legality We define a trace to be legal iff all the action sequences
it abstracts are legal. It is important to note that either all of these
sequences are legal or none of them is, simply because they are all
equivalent. Therefore, the trace is legal iff any of the sequences is
legal, and respectively, illegal iff any of the sequences is illegal.

Note that if two actions a and b never appear adjacent in a legal
sequence then they commute. The events x.get():0 and x.get():3 in
(1) are an example. A trace that does not order such events admits
illegal action sequences; consequently, such a trace itself is illegal
and does not represent a sequential execution in the model. In legal
traces, such events are always ordered.

Semi-traces In our proofs, we will need the trace analog of
forming a subsequence. This is simply the restriction of the domain
of a trace to a subset of its events. In this case, property (1.1) will
still hold but (1.2) need not. We call such restrictions of traces semi-
traces. For example, if we restrict the trace (1) to the two get()
actions, then they remain ordered even though they commute:

x.get():0→ x.get():3.

Concatenation Concatenation is an operation that applies to both
traces and semi-traces. The concatenation of two semi-traces τ , υ
over disjoint events is a semi-trace τυ over the union of those events.
It is defined as the smallest partial order τυ ⊇ τ ∪ υ such that

e1 ∈ τ, e2 ∈ υ, and e1e2 6≡ e2e1 =⇒ e1
τυ
−−→ e2.

For example, the trace (1) is the concatenation of two traces

x.get():0→ x.add(1) and x.add(2)→ x.get():3.

Via concatenation, the most important notions on sequences lift
to semi-traces: prefixes, legality of events, equivalence, etc.

3.3 Histories and Schedules

A history provides an external view on the events observed by each
process in the system. We model a process as a possibly infinite
sequence of events. Every process itself is split into transactions:
contiguous segments that are intended to execute atomically. No
transaction encompasses more than a single process.

Definition 2. A history (E, po, T) consists of

– a countable set E of events (each labeled by an action),

– a partial ordering po of E into a disjoint union of processes,

– a partition T of the processes into transactions t1, t2, · · · ⊆ E.

The connected components of po form the processes of the
history. Moreover, because each process is lower-finite by definition,
the whole po is lower-finite as well. Also, each transaction t ∈ T
resides on a single process, and therefore po orders t linearly.

The set of possible histories of the system defines its externally
observable behaviors. To prevent undesired behaviors, a data store
imposes constraints on this set, typically by requiring that each
history can be scheduled in a specific way. A standard choice is to
permit only serializable histories, i.e., those having serial schedules:

Definition 3. A serial schedule of a history (E, po, T) is a linear
ordering so of E such that:

(3.1) the union po ∪ so is lower-finite and acyclic,

(3.2) every prefix of so is legal, and

(3.3) no two transactions t1 6= t2 ∈ T overlap, i.e., either:

(a) f
so
−→ g for all f ∈ t1, g ∈ t2, or

(b) g
so
−→ f for all f ∈ t1, g ∈ t2.

Serializability formalizes transaction atomicity: one can assume
that all transactions appear as indivisible units of execution. This
simplifies reasoning about concurrent processes a lot, because as
long as each individual transaction preserves the required data
invariants, any serializable history will preserve them too.

However, serializability is typically too expensive to enforce
in a replicated setting: the CAP theorem [16] implies that during
a network partition a store cannot be both available for updates
and ensure serializability. That is why some stores choose various
forms of eventual consistency instead. They are cheaper to enforce
but also provide much weaker guarantees to the store clients.
Consequently, clients need to implement their own synchronization
between processes in order to ensure correctness.

In the present work, we consider the so-called strong eventual

consistency2 [31]. Informally, it is a combination of two properties:
first, every process observes a consistent view, but only of a subset
of the updates in the system so far; second, every update eventually
propagates to the view of every process. We say that a history is
eventually consistent iff it has a schedule with these properties:

2 The motivation behind strong eventual consistency is that it captures
the guarantees provided by most data stores better than broader forms of
eventual consistency. This in turn enables more precise reasoning about
client correctness. See [8] for a further discussion.

461

Relation Type Description

po E × E process ordering
so E × E serial ordering

vi U ×Q update visibility
ar U × U update arbitration

⊕ U ×Q dependency
⊖ Q× U anti-dependency

Table 1: The various model relations for a given set E = U ∪Q of
update events U and query events Q.

Definition 4. An eventually consistent schedule (vi, ar) of a history
(E, po, T), with updates and queries U ∪Q = E, consists of

– a relation vi ⊆ U ×Q indicating the update-query visibility,

– a legal trace ar ⊆ U × U arbitrating the order of updates in E,

such that they meet three conditions:

(4.1) the union po ∪ vi is lower-finite and acyclic,

(4.2) each query q is legal in the restriction of ar to {u | u
vi
−→ q},

(4.3) for any update u the set {q | u 6
vi
−→ q} is finite.

Eventual consistency imposes a weaker requirement on the
legality of events than serializability (conditions (4.1) and (4.2))
and does not require transactions to be atomic.

Condition (4.1) is there to ensure consistency in the temporal
sense: the transitive closure of po ∪ vi is a weakening of Lamport’s
happened-before relation [21]. If an event f is related to an event g
by po or vi then f causally precedes g. Therefore, no pair of events
should participate in a cycle of such causal relationships, nor should
any event be causally preceded by infinitely many other events.

Condition (4.2) is there to ensure that each query q is consistent
with the updates that it observes. This is the case if one obtains a
legal semi-trace after concatenating the part of ar visible to q and
the query q itself. Because ar is global for the whole schedule, it
cannot be the case that one query considers a pair of updates ordered
one way, while another query the opposite way.

Condition (4.3) is there to ensure that updates are eventually
propagated. It says that an update is observed by almost all the
queries, i.e., all but finitely many. This can happen only if the update
gets delivered to all replicas eventually. Note that serial schedules
have this property too: the only queries not observing a given update
are those ordered before it, and these are finitely many.

There is an obvious way in which one can endow a serial
schedule so with visibility and arbitration relations: a query observes
all updates that so orders before it; two non-commuting updates get
ordered the same way as so orders them. Thus, we will treat serial
schedules as eventually consistent.

For brevity, we will omit “eventually consistent” and use the
term schedule. Figure 1a shows a schedule.

Pre-schedules Later in Section 4.2, when we need to prove that
a pair (vi, ar) forms a schedule, condition (4.1) will often hold
trivially, while (4.2) and (4.3) will require more work. We call pairs
(vi, ar) for which (4.1) holds pre-schedules. If condition (4.2) holds
for a specific query q in a pre-schedule, then we will say that q is
legal in that pre-schedule.

This concludes our model. Table 1 summarizes the notation that
we introduced so far, plus two relations that we will consider next.

4. A Serializability Criterion

We will now present a sufficient criterion for checking a history’s
serializability when given one of its eventually consistent schedules.
The main idea is to test whether the given schedule can be reordered
into a serial one while preserving query legality. This is done
by testing for acyclicity a certain directed graph, known as the
dependency serialization graph, derived from the schedule.

The dependency serialization graph (see, e.g., [14]) is based
on two relations between the events in a history: dependency and
anti-dependency. Before stating our criterion we need to generalize
this graph to our setting. The key step is to define dependency and
anti-dependency for arbitrary actions, and not just for reads and
writes as is done traditionally.

4.1 Dependency and Anti-dependency

We will first give suitable axioms for the notions of dependency
and anti-dependency. The axiomatization decouples the correctness
of the serializability criterion from the concrete instantiations of
dependency and anti-dependency. In Sections 4.3 and 4.4, we will
instantiate the axioms with concrete relations based on two algebraic
properties of actions: commutativity and absorption.

4.1.1 Dependency

Informally, a query in a schedule depends on an update if this update
is visible and potentially influences the query legality. For example,
consider the serial schedule

x.add(1) y.set(1) x.set(0) x.add(2) x.get():2 y.get():1 (2)

Here, x.get():2 depends on both x.set(0) and x.add(2): if we
remove any of them then the query becomes illegal for some initial
states. However, if we remove the actions on y then the query will
definitely remain legal. Thus, x.get():2 depends only on x.set(0)
and x.add(2). The situation with the query y.get():1 is analogous:
it depends only on y.set(1).

Instead of giving a single definition of when a query depends
on a given update, we assume that for every pre-schedule (vi, ar)
dependencies are specified as a dependency relation ⊕ ⊆ vi so that

Axiom 1. For every relation R such that ⊕ ⊆ R ⊆ vi, a query q is
legal in (vi, ar) iff it is legal in the pre-schedule (R, ar).

In other words, dependency ⊕ is a lower bound on relaxing
visibility to some R ⊆ vi so that query legality with respect to R
remains the same. In particular, (vi, ar) is legal iff (R, ar) is. Given
a dependency relation, we say that q depends on u iff (u, q) ∈ ⊕.

Leaving the dependency relation as a parameter makes our
criterion more widely applicable; one may, for instance, instantiate
it with a dependency relation that is precise, one that is easy
to compute, or one that reflects a particular action semantics.
In Section 4.3, we will derive a general relation based on the
commutativity and absorption properties of actions. In Section 5,
we will discuss how to compute this general relation, but also how a
stronger notion of absorption gives rise to a more efficient algorithm.

4.1.2 Anti-dependency

Anti-dependency is the natural counterpart of dependency. An
update is an anti-dependency of a given query in a schedule if
it is not visible to the query, but making it visible may change the
query legality. Consider, for example, the serial schedule

x.add(1) x.set(0) x.add(2) x.get():2 y.set(1):1 x.set(1) (3)

Here, x.set(1) is an anti-dependency of the query x.get():2 because
if we make it visible by reordering it right before the query, then
the query becomes illegal. On the other hand, y.set(1) does not
affect the legality on any action on x, and therefore it is not an
anti-dependency of x.get():2.

462

vi1
⊕1

⊖−1
1

vi2

⊕2

Figure 3: Inclusion relationship between visibility, dependency, and
anti-dependency, given that vi2 extends vi1 over the same arbitration.

Similarly to dependency, we assume that an anti-dependency
relation ⊖ ⊆ Q × U is specified for every pre-schedule (vi, ar),
where the converse ⊖−1 is a subset of the complement of vi.
However, instead of imposing a condition on legality directly, we
require that anti-dependency is compatible with dependency:

Axiom 2. If (vi1, ar) and (vi2, ar) are two pre-schedules such that

vi1 ⊆ vi2, and ⊖−1
1 ∩ vi2 = ∅ then ⊕1 ⊇ ⊕2.

The axiom postulates that if visibility gets extended without
making anti-dependencies visible then no new dependencies are
introduced, as illustrated in Figure 3. By Axiom 1, this requirement
is sufficient to guarantee that the two pre-schedules (vi1, ar) and
(vi2, ar) have exactly the same legal queries.

4.2 The Criterion

In order to check whether a history is serializable, we assume that
one of its eventually consistent schedules (vi, ar) is given, and use
it to establish a witness schedule so for serializability. This serial
witness is not arbitrary, but we require that it satisfies the following
inequality over the relations of the given schedule:

so ⊇ po ∪ ar ∪ ⊕ ∪ ⊖ (4)

Including po in so is necessary to ensure (3.1), while including
the other three is a choice that makes it sufficient to show that so
is a pre-schedule; its legality then follows automatically from the
legality of (vi, ar). Note that we do not require so ⊇ vi, as it is not
needed for serializability.

To check whether such a serial pre-schedule exists, we observe
that (4) is equivalent to a set of ordering constraints on the history’s
transactions. We express these constraints as a graph:

Definition 5. The dependency serialization graph (DSG) of a given
pre-schedule (vi, ar) of a history (E, po, T) is a directed graph
whose nodes are the transactions in T , and which contains an arc
(s, t) iff s 6= t and po ∪ ar ∪ ⊕ ∪ ⊖ relates an event f ∈ s to an
event g ∈ t.

Every solution of inequality (4) implies that the dependency
serialization graph is acyclic. We will prove the converse, namely,
that acyclicity implies the existence of a solution. This way we
reduce serializability testing to detecting cycles in a directed graph:

Theorem 1. A history (E, po, T) with a finite number of processes
is serializable if it has a schedule (vi, ar) with an acyclic DSG.

Proof. Suppose that the DSG is acyclic and that it has a lower-finite
topological ordering. By Definition 5, this ordering corresponds
to a serial pre-schedule so ⊇ po ∪ ar ∪ ⊕ ∪ ⊖. Let us denote its
visibility relation with viso. The intersection vi∩ = vi ∩ viso satisfies
the condition ⊕ ⊆ vi∩ ⊆ vi of Axiom 1, and therefore every query
in E is legal in the pre-schedule (vi∩, ar). Because vi∩ ⊆ viso, this
pre-schedule and (viso, ar) satisfy the condition of Axiom 2, thus

⊕so ⊆ vi∩ ⊆ viso. Applying Axiom 1 to (viso, ar), we conclude that
the pre-schedule so is indeed a schedule.

We still need to establish that the serial pre-schedule so exists.
Because the DSG is acyclic and there is a finite number of processes,
we could use a round-robin scheduler to produce it. But for that, we
need to prove that the DSG is lower-finite.

First, observe that no infinite path of the DSG can have a final
node u0, that is, no path is of the shape · · · → t−2 → t−1 → t0.
This is because such a path visits infinitely many transactions of
at least one process (as there are only finitely many processes).
However, by the definition of a history, every process is lower-
finite, and a final node t0 in the path implies that only finitely many
transactions were visited.

Second, the schedule (vi, ar) is eventually consistent, and so all
the relations po, ar, ⊕, and ⊖ are lower-finite (anti-dependency ⊖
is lower-finite because of eventuality (4.3)). It follows that every
transaction has only a finite number of immediate predecessors, i.e.,
that the graph has a finite fan-in. Combined with the “no infinite
final paths” property, we conclude that the DSG is lower-finite.

Note that eventual consistency is not a safety property as (4.3) is
a liveness condition and makes sense only for infinite histories. That
is why we consider infinite histories in the first place. Curiously
enough, serializability is not a safety property either: one can easily
construct an example where all finite prefixes of a history are
serializable, but the whole history is not (say, because it has no
schedule satisfying (4.3)). On the other hand, our acyclicity criterion
is a safety property: if violated by a history then it is violated in
some finite prefix of it. Therefore, we have a classic case of under-
approximating a non-safety property with a safety one.

So far we have shown the correctness of our criterion for all
dependency and anti-dependency relations that satisfy Axiom 1 and
Axiom 2. In the next subsections, we present concrete relations and
show that they indeed have the required properties.

4.3 Commutativity, Absorption, Dependency

While it is possible to specify dependency and anti-dependency
relations manually, practical applicability calls for an automatic
construction. In this subsection, we propose a dependency relation
that is based on two algebraic properties of actions f , g:

f commutes with g ⇐⇒ fg ≡ gf

f is absorbed by g ⇐⇒ fg ≡ g

We consider an update u to be a dependency of a query q unless we
can repeatedly apply commutativity and absorption as rewrite rules
to obtain a schedule where u is not visible to q. We do not perform
a commutativity rewrite after an absorption rewrite. This restriction
simplifies the rewriting process at the cost of some generality (i.e.,
we may flag more actions dependent than optimal).

As an example, consider again the serial schedule (2) from
Section 4.1. There, y.set(1) commutes with all updates on x. Thus,
it is not a dependency of the query x.get():2, because we can swap
commuting actions and obtain:

x.add(1) x.set(0) x.add(2) x.get():2 y.set(1) y.get():1

In turn, here we can remove x.add(1) because x.set(0) absorbs it.
After the removal, x.add(1) will not be visible to x.get():2, and
therefore, is not a dependency of x.get():2.

Using commutativity and absorption to find the dependencies
of a query q in an eventually consistent schedule (vi, ar) is a little
bit more involved. We will rewrite the semi-trace induced by q and
the updates that it observes. Namely, we restrict ar to the updates
visible to q, and then append q itself. For example, such an induced
semi-trace could be the following:

463

u1

v1

v2

u2

u3 u4

q

Here, solid arrows indicate the trace order, and dashed arrows
indicate absorption. The two updates v1 and v2 are not dependencies
of q because they do not precede it in the trace order, and therefore
can be “moved past” q. The update u2 is not a dependency of q
either, as it gets absorbed by the adjacent update u4. But after that,
u1 and u3 become adjacent, and so u1 gets absorbed by u3. What
remains are the two dependencies u3 and u4 of q.

We capture the above observations with two operations that
remove non-dependencies from a given visibility relation: one for
commutativity and one for absorption. With their help, we define
the dependency relation of a pre-schedule:

Definition 6. For a given pre-schedule (vi, ar) we define two
operations ♯ and ⊲ over relations R ⊆ vi:

(6.1) (u, q) ∈ R♯ iff u
R
−→ q and there is an update v

R
−→ q such

that vq 6≡ qv, and either u
ar
−→ v or u = v.

(6.2) (u, q) ∈ R⊲ iff u
R
−→ q and also for all updates v

vi
♯

−→ q if

u
ar
−→ v but u

ar
−→ w

ar
−→ v for no w

R
−→ q then uv 6≡ v.

The dependency relation of a pre-schedule (vi, ar) is the largest

⊕ ⊆ vi♯ such that ⊕ = ⊕⊲.

The idea behind the definition is to shrink down the visibility vi
to the dependency relation⊕ by using commutativity and absorption,
while preserving query legality. The ♯ operation removes any events
due to commutativity: if an update u and the updates arbitrated
after it commute with a query q then they are not dependencies of
q. Similarly, the ⊲ operation removes updates that get absorbed by
adjacent updates. Because absorbing an event may allow for others
to be absorbed too (as in the example above), we look for the largest
relation in which no further absorption is possible.

We will now prove that the relation⊕ from Definition 6 is indeed
a dependency relation, i.e., that it satisfies Axiom 1:

Theorem 2. Given some pre-schedule (vi, ar), for every relation R
such that ⊕ ⊆ R ⊆ vi, a query q is legal in (vi, ar) iff it is legal in
the pre-schedule (R, ar).

Proof. To make our argument simpler, let us introduce some nota-
tion. We are looking at relations in the interval

[⊕, vi] = {R | ⊕ ⊆ R ⊆ vi}.

For brevity, let us collect all the restrictions of ar that such a relation
R determines into a single map 〈R〉:

q 7→ ar ↾{u | u
R
−→ q}.

Operations on semi-traces extend pointwisely to such maps, and if
we denote the identity map q 7→ q with Q, then our claim becomes:

∀R ∈ [⊕, vi]. 〈R〉 ·Q is legal ⇐⇒ 〈⊕〉 ·Q is legal.

The basis of our proof is that ⊕ can be derived from any relation
R ∈ [⊕, vi] as the limit of the decreasing sequence:

R = R0 ⊇ R0 ∩ vi
♯ = R1 ⊇ R

⊲
1 = R2 ⊇ R

⊲
2 = R3 ⊇ . . .

This is a simple consequence of vi being lower-finite plus a standard
fixed-point argument applied to the ⊲ operation (see, e.g., [15,

Proposition II-2.4]). From here we will show that every step i above
preserves legality in the sense that

〈R〉 ·Q is legal ⇐⇒ 〈Ri〉 ·Q is legal.

That turns to be sufficient as the above property is preserved when
taking limits, again a consequence of lower-finiteness.

So let us make the first step. The vi♯ relation splits 〈R〉 into two
parts, the second one commuting with Q:

〈R〉 ·Q ≡ 〈R ∩ vi
♯〉 · 〈R \ vi♯〉 ·Q ≡ 〈R ∩ vi

♯〉 ·Q · 〈R \ vi♯〉.

Since updates are free of pre-conditions, the right-most side is legal

iff its prefix 〈R ∩ vi♯〉 ·Q is legal.
Now, the remaining steps. It is enough to show that each restric-

tion 〈Ri+1〉 is equivalent to 〈Ri〉. Let us first study how updates get
absorbed when applying the ⊲ operation. Recall definition (6.2), and
consider the relation:

u ≺q
i v iff (u, q) ∈ Ri \Ri+1 breaks (6.2) because v

vi
♯

−→ q.

Because absorption is transitive, this relation is transitive in the
sense that for all i > j:

u ≺q
i v ≺q

j w =⇒ u ≺q
i w.

This allows us to conclude that if we remove (u, q) at step i, then it
is always because of some v visible to q at that step:

(u, q) ∈ Ri \Ri+1 =⇒ u ≺q
i v

Ri−−→ q for some v.

Indeed, recursively tracing the reason for removals, we get a
sequence of steps i = in ≥ in−1 ≥ · · · ≥ i1 and updates:

u ≺q
in

vn ≺
q
in−1

· · · ≺q
i1

v1 = v,

such that v
Ri−−→ q (because otherwise, v was removed even earlier

and we can continue the sequence).
We are now ready to prove that 〈Ri〉 ≡ 〈Ri+1〉 for i ≥ 1. By

our previous argument, the updates removed from their relation Ri

with q are the non-maximal vertices of the dag

(V = {u | u
Ri−−→ q}, E =≺q

i).

After sorting the non-maximal vertices u1, . . . , un(q) in V topolog-
ically, consider the sequence of trace restrictions:

α0 = ar ↾V ⊃ α1 = α0 \ u1 ⊃ · · · ⊃ αn−1 \ un(q) = αn.

By definition (6.2), every αj is of the form βjujvjγj , where
βjvjγj = αj+1 and uj ≺

q
i vj . Here, vj absorbs uj , and therefore

αj ≡ αj+1. We conclude that α1 ≡ αn(q) for every query q, or in
other words 〈Ri〉 ≡ 〈Ri+1〉.

4.4 A Corresponding Anti-dependency

We now match the dependency relation ⊕ defined in the previous
subsection with a suitable anti-dependency relation.

Definition 7. For any pair u 6
vi
−→ q of an update and a query in a

given pre-schedule (vi, ar), let ⊕uq denote the dependency relation
with respect to the modified visibility viuq = vi ∪ {(u, q)}. We
define the anti-dependency relation of the pre-schedule as

q
⊖
−→ u iff u

⊕
uq

−−−→ q.

In other words, we consider an update u to be an anti-dependency
of a query q if it is not visible to q, but if making it visible would
turn it into a dependency of q.

In Definition 7 we implicitly assume that ⊕ is the dependency
relation from Definition 6, even though it might work for others too.
We will next prove that⊖ is indeed an anti-dependency relation, i.e.,
that it satisfies Axiom 2:

464

Theorem 3. If (vi1, ar) and (vi2, ar) are two pre-schedules such

that vi1 ⊆ vi2, and ⊖−1
1 ∩ vi2 = ∅ then ⊕1 ⊇ ⊕2.

Proof. Reasoning about commutativity is mostly straightforward,

so we will focus on absorption here, i.e., assume vi1 = vi
♯
1, and

vi2 = vi
♯
2.

Consider any two pre-schedules (viX , ar) and (viY , ar), such that
viX ⊆ viY . The respective operations ⊲X and ⊲Y possess a kind of
monotonicity property. For every pair of relations A ∈ [⊕X , viX]
and B ∈ [⊕Y , viY], update u, and a query q

A(u, q) ⊇ B(u, q) =⇒ A
⊲X (u, q) ⊇ B

⊲Y (u, q),

where R(u, q) stands for the set {v ∈ R−1(q) | u
ar
−→ v or u = v}.

By the fixed-point argument from the proof of Theorem 2, this
property transfers to the respective fixed-points:

A(u, q) ⊇ B(u, q) =⇒ ⊕X(u, q) ⊇ ⊕Y (u, q).

Moving on to the two pre-schedules (vi1, ar) and (vi2, ar),
suppose that (u, q) ∈ vi2. As vi1(v, p) ⊇ ⊕

uq
1 (v, p) for every

pair (v, p) ∈ vi1, we conclude that

⊕1(v, p) ⊇ ⊕
uq
1 (v, p).

But q 6
⊖1−−→ u, i.e., u 6

⊕
uv
1−−−→ q, and therefore ⊕1 ⊇ ⊕

uq
1 . With this

fact at hand, we will prove that for all (u, q) ∈ ⊕2

⊕1(u, q) ⊇ ⊕2(u, q).

Proceeding by well-founded induction on the set ⊕2(u, q), let
v 6= u belong to it. By the inductive hypothesis:

⊕1(u, v) ⊇ ⊕1(v, q) ⊇ ⊕2(v, q) ∋ v.

We can, therefore, conclude that⊕1(u, q) \u ⊇ ⊕2(u, q) \u. Now,
if we let R = ⊕1 ∪ (u, q), then we obtain:

R(u, q) ⊇ ⊕2(u, q)

Because the relation R belongs to the interval [viuq1 ,⊕uq
1], the

monotonicity property applies here, and so:

⊕1(u, q) ⊇ ⊕
uq
1 (u, q) ⊇ ⊕2(u, q).

5. Detection Algorithm

In this section, we present two algorithms for detecting serializ-
ability violations given a history and a corresponding eventually
consistent schedule. The first one is general, while the second makes
assumptions on the data types, but is asymptotically more efficient.
Detecting serializability violations amounts to determining the de-
pendencies ⊕ and anti-dependencies ⊖ of the pre-schedule, and
performing cycle detection. The latter has well-known linear-time
solutions, and thus we discuss how to compute ⊕ and ⊖ in this
section.

Our algorithms assume for each data type two specifications,
a commutativity specification ♯ on all pairs of actions and an
absorption specification � on all pairs of updates, which give
sufficient conditions for commutativity and absorption:

u ♯ v =⇒ uv ≡ vu,

u � v =⇒ uv ≡ v

In practice, for each pair of operations, we provide a first-order logic
formula that can be checked, given the arguments and return values
of two actions, in time independent of the size of the graph. An
example of a very simple absorption and commutativity specification
for a dictionary is given in Figure 4.

putx[k
′, v′] getx[k

′, v′] sizex[n
′]

putx[k, v] k 6= k′ or v = v′ k 6= k′ never

getx[k, v] k 6= k′ always always

sizex[n] never always always

(a) Commutativity specification

putx[k
′, v′]

putx[k, v] k = k′

(b) Absorption specification

Figure 4: Specifications for a dictionary

5.1 Generic Algorithm

Algorithm 1 directly implements the mathematical construction
given in Section 4.3 and Section 4.4. Here, PRUNE (line 12) takes a
set of dependencies V and an arbitration order E between them, and
computes the fixed-point V ⊲ using a standard work-list algorithm.
In line 13, the arbitration order is transitively reduced. Then, in every
step of the work-list computation in lines 14-19, a pair of updates
u1, u2 is removed from the work-list and it is checked whether u1 is
absorbed by u2, its successor in the transitively reduced arbitration
order. If so, DELFROMREDUCTION in line 18 removes the update
u1 from (V,E), inserts edges from all predecessors to all successors
of u1, re-computes the transitive reduction, and returns all newly
inserted edges. It thereby preserves both reachability and transitive
reduction over vertex removals.

For the purpose of explaining the algorithm, we differentiate
between direct (anti-)dependencies of a query q, which are non-
commutative with q, and indirect (anti-)dependencies, which are
commutative with q but are arbitrated before a direct dependency.

DEPENDENCIES uses PRUNE to compute both⊕ and⊖. For each
query q, it first determines Ur , the set of all updates related to q by

vi♯ in Definition 6. Ur therefore contains the set of all updates non-
commutative with and visible to q, as well as all updates preceding
them in the arbitration order. This set must necessarily include all
direct or indirect dependencies, as well as indirect anti-dependencies.
It then uses PRUNE to eliminate all absorbed updates in line 5, where
we use ar ↾ Ur to denote the restriction of the relation ar to elements
in Ur . All remaining updates are added as dependencies of q in line
6. In the second step (line 7 onwards), it re-inserts one invisible
update after the other and checks whether it is absorbed by the
dependencies of q. If not, it is added to the anti-dependencies. The
complexity of the algorithm is O(n4m), where n = |U |+ |Q| and
m = |ar|. The polynomial complexity shows that our criterion is
strong enough to make the checking computationally feasible.

5.2 Optimized Algorithm

The complexity of the generic algorithm is caused largely by the fact
that absorption can, in general, be used to prune dependencies only
if the absorbed update is directly followed by the absorbing update
in the arbitration order. For example, assume a store provides a
swap operation that atomically swaps two fields of a record. We can
conclude that two writes to a field of a record absorb each other only
if there is no swap update on the written field in between the two
field writes. Generally, we can prune an update only if it has an edge
to an absorbing update in the transitive reduction of the arbitration
order, which forces us to recompute the transitive reduction after
every prune operation.

We can strengthen the notion of absorption to be agnostic to
updates arbitrated between the absorbed and the absorbing updates.
We call this far-reaching absorption. For data types with operations
for which far-reaching absorption differs from standard absorption

465

Algorithm 1 Generic algorithm for determining the dependencies
and anti-dependencies for a schedule with updates U , queries Q,
visibility vi and arbitration ar

1: function DEPENDENCIES(U,Q, vi, ar)
2: (⊕,⊖)← (∅, ∅)
3: for q ∈ Q do

4: Ur ← {u ∈ U | (u, q) ∈ vi♯}
5: Up← PRUNE (Ur, ar ↾ Ur)
6: ⊕←⊕∪ (Up × {q})

7: for u ∈ {u ∈ U | u 6
vi
−→ q} do

8: Uu← PRUNE (Up ∪ {u}, ar ↾ (Up ∪ {u}))
9: if u ∈ Uu then

10: ⊖←⊖∪ {(q, u)}

11: return (⊕,⊖)

12: function PRUNE(V,E)
13: E← TRANSITIVEREDUCTION(E)
14: W ← E
15: while W 6= ∅ do
16: ((u1, u2),W)← REMOVEELEMENT(W)
17: if u1 � u2 then
18: (V,E,N)← DELFROMREDUCTION(V,E, u1)
19: W ← E ∩ (W ∪N)

20: return V

(such as swap), this strengthening will result in more dependencies
and therefore a less precise serializability criterion. However, many
systems, including the two discussed in the next two sections, do
not contain such data types. Here we can employ the strengthened
notion and an algorithm based on it without any loss of precision.

Formally, we have far-reaching absorption between two updates
u, v, denoted by u � v, if and only if for all traces of updates χ,
we have uχv ≡ χv. For data stores for which we have � = �,
the algorithm we are about to present is as precise as the generic
algorithm.

The optimized Algorithm 2 computes Ur , the set of all updates
that may form direct or indirect dependencies, or indirect anti-
dependencies, as in the generic version. We then check for all
other updates whether they are invisible and non-commutative
with q, and thus form direct anti-dependencies. In the second step
(line 8 onwards), all updates absorbed by q-visible successors in the
arbitration order are eliminated. Depending on them being visible to
q or not, the remaining elements of the set are added as dependencies
or anti-dependencies, resp. (line 11 onwards). The complexity of the
algorithm is O(max(nm, n2)), where n = |U |+ |Q| and m = |ar|,
and thereby significantly faster than the generic version.

6. Application: Debugging Cloud-Backed Mobile

Software

In this section, we describe and evaluate a dynamic analysis tool
for checking serializability violations in TOUCHDEVELOP [35]
applications and show that our criterion is precise enough such that
violations are likely to indicate actual bugs.

TOUCHDEVELOP is a platform for mobile device applications
providing direct integration of replicated cloud-backed storage. We
compare our results to the notion of commutativity races [13] and
show that our criterion is better suited for debugging, as it captures
harmful violations more precisely: over all applications, our criterion
flags 75% less potential serializability violations.

First, we describe the TOUCHDEVELOP system briefly. Then, we
discuss a prototype implementation of our tool ECRACER. Finally,
we discuss the serializability violations found.

Algorithm 2 Optimized algorithm for determining the dependencies
and anti-dependencies for a schedule with updates U , queries Q,
visibility vi, and arbitration ar

1: function FASTDEPENDENCIES(U,Q, vi, ar)
2: (⊕,⊖)← (∅, ∅)
3: for q ∈ Q do

4: Ur ← {u ∈ U | (u, q) ∈ vi♯}
5: for u ∈ (U \ Ur) do

6: if u 6
vi
−→ q ∧ u 6 ♯ q then

7: ⊖←⊖∪ {(q, u)}

8: for u, u′ ∈ Ur with (u, u′) ∈ ar do

9: if u � u′ ∧ u′ vi
−→ q then

10: Ur ← Ur \ {u}

11: for u ∈ Ur do

12: if u
vi
−→ q then

13: ⊕←⊕∪ {(u, q)}
14: else
15: ⊖←⊖∪ {(q, u)}

16: return (⊕,⊖)

While we focus on a relatively narrow type of applications
targeting a specific system, the ideas in this section are generally
applicable to a large class of so-called causally consistent data
stores [9, 23, 24, 29]. We will discuss an analysis for an eventually
consistent key-value store in the next section.

6.1 Cloud Types

TOUCHDEVELOP uses the global sequence protocol [9] to imple-
ment a replication system providing prefix consistency. In a prefix-
consistent system, a client observes a prefix of a common global
sequence of updates, plus its own updates after the end of the pre-
fix. This property is stronger than causal consistency but weaker
than snapshot isolation [10]. All three are stronger than eventual
consistency and therefore our criterion can be used directly.

All TOUCHDEVELOP code executes within weak transactions
that provide atomic visibility, that is, they guarantee a stable view
of a prefix-consistent snapshot of the data store. Updates propagate
asynchronously to other clients at the end of each transaction.
Transaction boundaries are inserted whenever the runtime is idle,
e.g., between the execution of event handlers or during execution of
blocking operations.

The replication system is exposed to the programmer as cloud
types: data types that behave similarly to regular heap-stored data
structures, but are replicated automatically to other clients. Cloud
types include high-level data structures such as maps and lists, but
also simple data types with a richer set of atomic operations. For
example, a cloud integer can be set to a certain value using set, but
also supports a commutative add operation.

To synchronize, clients can query whether their last update on a
cloud type is confirmed, meaning that the update was included in
the global prefix, and all updates that precede it in the prefix are
visible to the client.

6.2 Prototype Implementation

Our tool ECRACER performs dynamic offline serializability anal-
ysis based on the optimized algorithm in Section 5.2. First, the
TOUCHDEVELOP client runtime is instrumented to record the exe-
cution history and schedule of a client program. Second, an analysis
back-end reads the recorded information from an execution with two
or more clients and detects serializability violations as discussed in
the previous sections. The violations, which are embodied by cycles

466

in dependency serialization graphs (DSGs), are then mapped back
to source code locations and reported to the user.

Recording The instrumentation of the TOUCHDEVELOP runtime
records events and stores them locally. To reconstruct the visibil-
ity relation vi between events in the system, we replicate vector
clocks [25] using the data store of TOUCHDEVELOP itself. That is,
we keep a replicated map from client identifiers to integer counters,
and every update to replicated data is instrumented with an update
to the client’s logical clock. This yields correct vector clocks, since
(a) atomic visibility guarantees that a client will observe the counter
increment if and only if it observes the corresponding update, and
(b) causal consistency guarantees that all increments causally preced-
ing an update will be observed. The overhead of the instrumentation
is low, as a single increment will only result in a small constant num-
ber of extra bytes being sent to the other replicas. The arbitration
order ar is not recorded, as it is only known by the server and not
communicated to the client. Note, however, that Theorem 1 does not
require us to use the real schedule when checking for serializability,
but any schedule in which all queries of the history are legal. We
can, therefore, assume arbitration by physical time of the client and
check legality of the resulting schedule. In our experiments, this
approach yielded legal schedules in all cases.

Analysis The analysis back-end implements the optimized algo-
rithm from Section 5.2, instantiated with commutativity and absorp-
tion specifications of all operations in TOUCHDEVELOP. For our
experiment, the boundaries of intended transactions (T in Defini-
tion 2) coincide with the boundaries of the above mentioned weak
transactions.

As explained in Section 2, our criterion is especially useful when
applied for targeted checking. For the sake of the experiment, we
exclude from our analysis queries issued within declared rendering
sections of TOUCHDEVELOP scripts, as they are very frequently
executed (every time a page is re-rendered), guaranteed to have no
side effects on the program state, and are almost always harmless in
practice. We check serializability for all other events.

6.3 Experimental Set-up

We analyzed 33 different applications, which are summarized in
Figure 5. 24 of them were written by regular TOUCHDEVELOP

users; 6 were written by Microsoft employees to showcase or test the
cloud functionality of TOUCHDEVELOP (marked with † in Figure 5).
In addition, we analyzed 3 scripts where we fixed some of the bugs
that we found (marked with ‡ in the table).

Each application is exercised on two client nodes in parallel via
our own random exploration tool for roughly 3 minutes. For 4 games
(marked with ∗ in Figure 5) more involved interaction was required,
and we executed some of the operations manually. The clients are
independently restarted at random during the execution to achieve a
realistic overlap in their lifetimes. Both clients are located in Europe
while communicating through a data center in the US.

6.4 Analysis Results

We compare our serializability criterion to commutativity races,
the most closely related criterion applicable in this setting. A
commutativity race [13] is a pair of non-commutative actions
unrelated by causality. Their absence is a sufficient condition for
serializability under causal consistency with atomic visibility. To
see this, observe that (a) under atomic visibility, every cycle in the
DSG contains at least one ⊖ edge, since ar ∪ po ∪ vi is acyclic
by definition (the system guarantees causal arbitration [7]), (b) ⊕
edges cannot introduce cycles as mutual dependency of transactions
is impossible under atomic visibility, and (c) every ⊖ edge forms a
commutativity race under causal consistency.

Figure 5 shows the result of our experiment. Columns Events
and Trans. denote the number of events and transactions, resp.,
executed within the analyzed schedule. Column Time [s] contains
the time it took to analyze the schedule on a system equipped with
an Intel Core i7-4600U CPU with 2.10GHz and 12GB of memory.

We define the number of serializability violations in a program
as the number of ⊖ edges involved in cycles in the DSG, mapped
from events down to program locations. This is a natural metric, as
it overapproximates the number of operations whose order must be
fixed by synchronization to resolve the violation. Furthermore, it
makes the number of commutativity races (column CR in the table)
and serializability violations (column SV) comparable, since each
serializability violation in this sense is also a commutativity race.

6.5 Discussion

The experiments show that significantly fewer serializability viola-
tions than commutativity races are reported for 21 of the 33 appli-
cations; the remaining 12 exhibit neither commutativity races nor
serializability violations. Overall, we detect 75% fewer serializabil-
ity violations than commutativity races. In particular, 21 applications
contain commutativity races, but only 8 contain serializability viola-
tions. This means that the programmer has to inspect significantly
fewer program locations when evaluating the serializability of a
system, often none at all. In most cases where commutativity races
are reported but no serializability violations, conflicting updates
remain unobserved, which is correctly detected by the use of cycle
detection and absorption.

We did not find a false alarm among the serializability violations,
in the sense that every serializability violation actually caused the
replication system to return inconsistent values to the application.
In four applications, these data inconsistencies had no effect on the
overall application functionality and can, therefore, be considered
harmless. In the other four applications that contained serializability
violations, the analysis revealed bugs that are likely to be fixed by the
developers. In the following, we discuss two of them. We propose
bug-fixes and show that establishing their correctness requires
precise serializability checking.

Tetris One bug appears in the game “tetris”, in which the following
program fragment is executed when a new high score is to be saved
to the replicated store:

1 if (curScore > cloud.highScore)

2 cloud.highScore := curScore

Here, a high score of the player’s account is stored in a cloud
integer. When a game is completed, its score is compared to the local
replica of highScore. If it is larger, highScore is overwritten. The
update is later propagated to other clients, potentially overwriting
higher scores achieved on other clients. When the above transaction
is executed concurrently by two clients, the execution schedule
shows both a commutativity race and a serialization violation and is
thereby detected by ECRACER (see Figure 5, id “gcane”).

Implementing a fix is not trivial, as there is no atomic max-
function on cloud integers in TOUCHDEVELOP. A fix can instead
make use of high-level data structures to store all scores instead of
only the first:

1 var scoreRec := cloud.scores.add_row

2 scoreRec.val := curScore

3 while (!scoreRev.val.confirmed) sleep(0.2)

4 var highScore = 0

5 foreach (s in cloud.scores)

6 if (s.val > highScore) highScore = s.val
7 else s.delete

The fix adds the newest score to a replicated list and then waits
until the update is appended to the global prefix. Finally, it selects
the highest value among all values stored in the list and deletes all

467

ID Name Category Events Trans. CR SV SV
CR

[%] Time [s]

sxjua Cloud Paper Scissors † Game 244 96 7 2 29 0.066

uvlma Color Line ∗ Game 5 4 1 0 0 0.003

ycxbc guess multi-player demo † Game 293 66 3 1 33 0.104

kqfnc HackER Game 115 91 12 6 50 0.181

ohgxa keyboard hero ∗ Game 2 2 0 0 - 0.001

wccqepeb Online Tic Tac Toe Multiplayer Game 565 184 57 17 30 0.324

uvjba pentix ∗ Game 6 6 3 0 0 0.002

padg sky locale ∗ Game 347 266 2 1 50 0.118

– sky locale ∗ ‡ Game 264 195 0 0 - 0.047

gcane tetris ∗ Game 8 4 2 1 50 0.002

– tetris ∗ ‡ Game 14 8 1 0 0 0.003

fqaba Chatter box Social 131 75 3 0 0 0.020

etww Contest Voting † Social 57 57 0 0 - 0.065

eijba ec2 demo chat † Social 72 36 0 0 - 0.009

gbtxe Hubstar Social 263 183 0 0 - 0.120

nggfa instant poll † Social 81 81 0 0 - 0.019

qnpge metaverse Social 20 4 3 0 0 0.005

ruef Relatd Social 118 65 7 0 0 0.014

cvuz Super Chat Social 170 58 0 0 - 0.029

wbuei unique poll Social 166 143 2 0 0 0.071

qzju cloud card Tool 32 8 0 0 - 0.006

kzwue Cloud Example Tool 178 170 2 1 50 0.099

blqz cloud list † Tool 302 261 2 0 0 0.082

qwidc Events Tool 1458 80 5 2 40 0.772

– Events ‡ Tool 520 65 0 0 - 0.158

nvoha expense recorder † Tool 67 60 3 0 0 0.007

wkvhc Expense Splitter Tool 25 14 0 0 - 0.007

kmac FieldGPS Tool 12 12 1 0 0 0.005

kjxzcgcv NuvolaList 2 Tool 297 223 6 0 0 0.340

eddm Save Passwords Tool 345 259 0 0 - 0.118

cavke TouchDatabase Tool 232 58 0 0 - 0.048

qzeua TouchDevelop Jr. Tool 64 49 1 0 0 0.029

whpgc Vulcanization calculator Tool 54 30 1 0 0 0.009

Figure 5: Result of the dynamic analysis of 33 TOUCHDEVELOP applications

others. The synchronization in line 4 is required to not incorrectly
determine that the new score is a high score, while some other
client submitted a better high score, arbitrated before ours. The
fix still exhibits a commutativity race between the inserts to the
list. However, there is no serialization violation, as the program is
serializable.

Sky Locale The “Sky Locale” quiz game allows a user to overwrite
the account of an existing user, because of an incorrect uniqueness
check, which is detected by our analysis. The essential problem is
embodied by the following code:

1 if (!Users.at(name).Created) {

2 Users.at(name).Created := true

3 // ...

4 }

The code tries to enforce a uniqueness constraint over user
names. Here, it is possible that two clients reserve the same name
after concurrently reading false in line 1. A fix can be derived by
reserving the name, forcing synchronization with the other clients,
and checking if we have won the race for the name reservation:

1 Users.at(name).Created := client_id

2 while (!Users.at(name).Created.confirmed)

3 sleep(0.2)

4 if (!Users.at(name).Created == client_id)

5 // ...

Our analysis reports correctly that the fixed version does not
contain a serializability violation. In contrast, it does contain a
commutativity race between two instances of the update in line 1.
However, this race was not triggered during the run of the dynamic
analysis and is, thus, not reported in Figure 5.

7. Application: Developing Clients of Weakly

Consistent Databases

Developing clients of eventually consistent data stores is a challeng-
ing problem. Adding too much synchronization to the program will
generally reduce performance, while insufficient synchronization
can lead to serializability violations and, thus, unintended applica-
tion behaviors. In this section, we show that our dynamic analysis
can guide the developer towards a correct and efficient implementa-
tion. Starting with little or no synchronization, developers can use
our analysis to detect serializability violations and then fix these
violations by adding more synchronization until the required consis-
tency constraints are met.

To illustrate this application of our analysis, we implemented
a common database benchmark on top of an eventually consistent
data store and used the analysis to determine the necessary synchro-
nization. In our experiment, our analysis always reported violations
that lead to real synchronization problems. Moreover, the analysis
correctly classifies all of our fixes as serializable. The resulting im-
plementation is significantly faster and more scalable than a solution
with naive synchronization.

In our case study we use RIAK [19], a distributed key-value data
store based on a design similar to Amazon’s Dynamo [12]. Riak
replicates data across a cluster of nodes and keeps it eventually
consistent. Operations are typically performed in a highly available
manner, where queries contact only a subset of the replicas, and
updates return to the client before being confirmed by all nodes.
To resolve update-update conflicts in a convergent manner, RIAK

provides implementations of several conflict-free replicated data
types [30] such as counters, sets, flags, maps, and last-writer-wins
registers.

468

7.1 Dynamic Analysis of Riak-Backed Applications

We integrate our runtime instrumentation as a shim layer around
the official Python client library of RIAK. This layer serves two
purposes: (a) if the dynamic analysis is enabled, the layer records
all executed operations of the client application to an independent
database, and (b) it gives the developer the ability to provide
lightweight specifications in addition to the purely operational API
of RIAK.

Recorded Information As in Section 6, we require the knowledge
of visibility vi, arbitration ar, and program order po, as well as
being able to check commutativity ♯ and absorption � between
events. po can be trivially determined by sequentially numbering all
operations performed by the same client and recording it. To check
commutativity and absorption, we record the arguments and return
values of each event.

In contrast to Section 6, here visibility vi cannot be tracked using
vector clocks: Vector clocks can be used only for transitively closed
relations, while visibility in RIAK is not. Furthermore, updates are
only guaranteed to become atomically visible on a per-key basis.
That is why we track visibility information for every stored value
separately. Each value is embedded in a RIAK-DT-Map [6], along
with a set of unique identifiers of all the updates applied to the
value. These identifiers correspond directly to vi edges in the DSG.
Since changes to the same map are made atomically visible, a client
has observed an update if and only if that update’s identifier is
in the set. Deletions are not performed directly, but instead, the
value-embedding map also contains a flag that marks the record as
deleted.

Using this instrumentation, the data stored in the database
grows linearly in the number of operations performed on the
database, which is permissible during testing but prohibitive for
production use. This restriction can be partially lifted by making
further assumptions: For example, by assuming that clients remain
connected to the same node, implying that the set of observed
updates is monotonically increasing, one can track observed updates
for each client separately and prune observed updates from the
observed sets. We do not apply such a technique in our evaluation,
as short execution traces suffice for our purposes.

Lightweight Specifications If the dynamic analysis is used with-
out any developer annotations, every operation will be observed as
a single-operation transaction. In that case, ECRACER essentially
checks for sequential consistency [22] of the recorded execution.
Our client library provides two ways of expressing the developer’s
intent: (a) one may designate that a set of operations forms a trans-
action, that is, are expected to have serializable behavior; (b) the
developer may exclude query operations from the serializability
checking. We then allow such operations to return inconsistent val-
ues, as described in Section 2.

Offline Analysis The offline analysis is performed in the same
manner and, in fact, with the same core implementation as in
Section 6, despite that it targets different systems. ECRACER is
extended with commutativity and absorption specifications for
all operations provided by RIAK. Here, we use the semantics of
RIAK’s CRDTs to derive the arbitration order. For example, for
an increment-only counter, all updates are unordered as they all
commute; therefore the arbitration order is empty. For an add-
wins set, concurrent adds are unordered, concurrent removes are
unordered, and every add is ordered after all concurrent removes.
Finally, for a last-writer-wins register, all updates to the register are
totally ordered by their physical timestamps.

7.2 Analyzing TPC-C using ECRacer

TPC-C [36] is one of the most well-known database benchmarks. It
defines a database-backed whole-sale supplier application, featuring

Version #Txns #Events Time [s] #Viol.

1 280 7197 28.064 9
2 307 6907 24.806 6
3 365 7236 20.938 2
4 441 6903 7.678 1
5 475 7192 8.113 1
6 449 6903 6.823 0

Figure 6: Analysis results for each version of TPC-C. #Txns is the
number of transactions, #Events is the number of events recorded,
Time is the total analysis time in seconds, and #Viol. is the number
of detected violations

among others payment, delivery, order status, stock level status, and
order creation transactions. It is typically implemented by vendors
of databases that provide serializable transactions but has also been
extensively used for the benchmarking of weakly synchronized
distributed databases [2].

We use our analysis to derive a correctly synchronized version
of a TPC-C implementation, by iteratively eliminating violations
detected by our analysis. Initially, we start with an implementation of
TPC-C (in Python), loosely based on the sample programs given in
Appendix A of the TPC-C specification [36]. These programs use a
standard table-based data model and assume support for serializable
transactions from the database.

We deliberately do not partition the data horizontally by the
warehouse, as is common [2]. Our goal is to derive an implementa-
tion that can scale up a single warehouse and even a single district
to a large number of servers.

Each version of the implementation is run with the previously
described runtime instrumentation for 20 seconds with 3 clients in
parallel on a minimal three node setup of RIAK on a remote server.
The number of transactions and operations executed, the analysis
time and the detected violations are shown in Figure 6. The analysis
was run on a system equipped with an Intel Core i7-4600U CPU
with 2.10GHz and 12GB of memory.

Version 1 In the first version, the analysis detects 9 violations.
Three of those are due to increments being performed in a non-
atomic way:

txn: PAYMENT

C.get("C_YTD"):10

C.set("C_YTD", 20)

txn: PAYMENT

C.get("C_YTD"):10

C.set("C_YTD", 30)

⊖
po po

ar

In this and the coming figures, the boxes represent nodes (that
is, transactions) in the dependency serialization graph. Insides the
boxes, we show the fragment of the events in the transaction that
are central to the described serializability violation. For illustration,
we show relations as arrows between events; however, in the DSG,
these are edges between nodes. Consequently, the figure above
shows a cycle in the DSG between the two nodes representing
the two instantiations of the PAYMENT transaction and, thus, a
serializability violation.

Observing the violation above, a developer can easily see that the
left update to the customer’s sum of all year-to-date payments is lost,
as it is overwritten by the right update. They can then check whether
serializability is required for this set of operations. In this particular
case, we refer to the Consistency Requirements section of the TPC-C
benchmark [36] to see that losing an update to C_YTD may violate
Consistency Requirement 12 of the database and therefore the serial-
ization violation above points to an actual synchronization problem.

469

The problem can easily be solved without coordination, by replacing
C_YTD by a CRDT counter with commutative increments.

Version 2 The result of replacing non-atomic increments of coun-
ters by commutative counter increments, leads to the following
execution fragment:

txn: PAYMENT

C.add("C_YTD",10)

disp C.get("C_YTD"):20

txn: PAYMENT

txn: PAYMENT

C.add("C_YTD",20)

disp C.get("C_YTD"):30

txn: PAYMENT

⊕ ⊕
⊖⊖

po po

Note the difference to the previous fragment: Here, the two
increments are unordered by arbitration (as they commute), and
they do not absorb each other. Therefore, we get two ⊖ edges,
forming a cycle in the DSG. In any serialization, one of the get
queries must read the sum 40, assuming that the initial value was
10. The two queries are used only to display the year’s sum of
payments on the terminal; the requirements document [36] does
not require those displayed values to be consistent. Therefore, we
chose performance over strong consistency in this case by adding
a lightweight annotation to exclude the queries in the above figure
from the serializability checking. With similar reasoning, we can
resolve several other violations.

Version 3 After excluding the violations above through targeted
checking, ECRACER still detects two violations. One of those is
due to partial observation of transactions, as in the following cycle
between NEW_ORDER and DELIVERY:

txn: NEW_ORDER

ORDERS.insert(33,...)

NEW_ORDERS.insert(33)

txn: DELIVERY

NEW_ORDERS.get_first():33

ORDERS.get(33):empty
⊖

⊕
po po

The left transaction inserts a new order into the ORDERS table
and a foreign key to that order into the NEW_ORDERS table. The
right transaction observes the foreign key but does not observe the
corresponding order record. The DSG defines that, in a serialization,
the order insertion must follow the order retrieval to make its return
value legal, but also requires the foreign key insertion to be ordered
before the foreign key retrieval, creating a cycle with the program
order.

To solve the problem, we need to change our application such
that the modifications to ORDER and NEW_ORDER are reflected
atomically at each replica. RIAK and most other stores provide
atomicity for all updates applied to the same row. This means, we can
solve the problem by denormalizing the data and combining tables
into a common CRDT data structure, which is stored in a single row
of the database. In this example, we represent the ORDERS record
by a RIAK-DT-Map [6], and embed the NEW_ORDER flag into the
entries of that map. Similarly, the lines of the order are embedded
as a set CRDT in the ORDERS map.

Version 4 In Version 4 of the implementation, only one violation is
detected: Two parallel increments to D_NEXT_O_ID (the district’s
next, serially assigned order number) and two queries to that value
in the same NEW_ORDER transaction:

txn: NEW_ORDER

dist.add(’D_NEXT_O_ID’)

dist.get(’D_NEXT_O_ID’):13

ORDERS.insert(13,...)

txn: NEW_ORDER

dist.add(’D_NEXT_O_ID’)

dist.get(’D_NEXT_O_ID’):13

ORDERS.insert(13,...)

⊖⊖
po

po

po

po

Clearly, this behavior is non-serializable, as it should not be possible
for both transaction instances to read value 13 in the second
operation. This problem is classic for TPC-C and was previously
shown to be impossible to implement without coordination [2]. To
resolve the problem (which is not directly possible in RIAK), we
use atomic counters, externally synchronized by ZooKeeper [17], a
high-performance service for distributed synchronization.

Version 5 After running the Version 4 several times, the analysis
reported potential double delivery, a rare circumstance due to the
infrequent execution of the delivery transaction:

txn: DELIVERY

ORDERS.query(new=true):x

x.set(new=false)

txn: DELIVERY

ORDERS.query(new=true):x

x.set(new=false)

⊖
po po

Here, the transaction receives all new orders from the database
and subsequently disables the new flag. While the implementation
would behave correctly for serial schedules, in RIAK it may lead
to double deliveries. We solve the problem by exploiting the rarity
of the delivery transactions: We can force its execution on a single
server and lock it locally, without compromising performance.

Version 6 In the final version, no serializability violation is de-
tected. While ECRACER, being a dynamic analysis, cannot provide
a guarantee about the absence of violations, one can gain significant
confidence by creating bad-case scenarios (network partitions, node
failure, etc.) during the dynamic analysis.

7.3 Scalability

Finally, we evaluate the throughput of our incrementally derived,
serializable implementation to an implementation with straightfor-
ward synchronization. The former, labeled Custom in Figure 7 cor-
responds to Version 6 from the previous subsection, while the latter,
labeled Locked, corresponds to Version 1, extended with a somewhat
naive synchronization, where clients lock the parts of the database
they access using ZooKeeper primitives.

We run both versions on 4 to 10 m4-large Amazon EC2
instances with 2 virtual cores and 8GiB of RAM each, running
clustered instances of both RIAK and ZooKeeper. RIAK is run in
its default configuration with triple replication and Apache SOLR
providing advanced querying on top of the key-value store.

Our benchmark follows the standard usage of distributed
databases: it replicates data across nodes for failure tolerance,
and it does not use stored procedures to implement transactions.
It is therefore not directly comparable to optimized implementa-
tions, and much higher throughputs can be achieved with further
domain knowledge. However, the benchmark clearly shows that the
manual synchronization derived from our analysis result, without
any domain knowledge, scales much better than the naive locking
approach.

470

4 6 8 10
0

0.4

0.8

1.2

·104

Servers

T
ra

n
sa

ct
io

n
s

p
er

m
in

u
te

Custom

Locked

Figure 7: Performance comparison of Version 6 (Custom) and a
primitively synchronized variant of Version 1 (Locked)

8. Related Work

Conflict serializability is a restriction of serializability that can be
checked in polynomial time [28]. It is based on reasoning about
conflicts between basic reads and writes, but can directly be lifted
to commutativity (see, e.g., [38]). However, conflict serializability
assumes sequentially consistent [22] histories and is therefore not
directly applicable to weakly consistent systems.

Several works define serializability conditions on executions on
data stores with various weak guarantees, for example, snapshot
isolation [14], causal consistency [3], as well as a variety of weak
memory models (e.g., [5, 27, 32]). As with our criterion, these are
typically based on detecting cycles in graphs involving some notion
of dependency and anti-dependency. The main differences to our
work are that (a) they assume stronger consistency guarantees from
the data store, and (b) they use low-level read and write reasoning
instead of algebraic reasoning. Our work is a generalization of these
previous criteria, which makes them applicable to a broader class of
real-world systems.

Zellag and Kemme [39] use a criterion similar to Fekete et
al. [14] to quantify the anomalies in applications running against
eventually consistent data stores. However, they do not prove the
criterion correct w.r.t. eventual consistency and again reason only
about reads and writes.

Commutativity races [13] are sufficient for serializability if the
system provides causal consistency. However, they are less precise
than our criterion (see our comparison in Section 6) and are not
sufficient for serializability under the weaker eventual consistency.

Several works suggest reasoning about the preservation of in-
tegrity invariants in weakly consistent data stores (see, e.g., [2]).
While invariant-based reasoning can permit more behaviors than
serializability and can also lead to additional performance gains, it
demands detailed specifications, which are notoriously difficult to
obtain. Our work instead uses a generic correctness condition.

9. Conclusion and Future Work

We presented a new serializability criterion for eventually consis-
tent data stores and demonstrated its usefulness via two dynamic
analyses. The criterion generalizes the classic notion of conflict
serializability to high-level data types by leveraging the concepts
of commutativity and absorption. Our evaluation suggests that the
concepts and systems presented in this work are useful for building
correct and efficient applications on top of eventually consistent data
stores.

We expect this work to be a starting point for further research into
both the correctness of clients of eventually consistent data stores as
well as other concurrent programs using high-level data types. Our

criterion is also well-suited to be extended to static analyses using
suitable abstraction, which we plan to develop as future work.

In the reads and writes setting, previous work [3] has found that
only certain restricted classes of cycles can occur in dependency
serialization graphs under guarantees stronger than eventual con-
sistency. It would be interesting to discover if one can find similar
restrictions for arbitrary operations.

References

[1] A. Adya, B. Liskov, and P. E. O’Neil. Generalized isolation level
definitions. In Proceedings of the 16th International Conference on

Data Engineering, ICDE ’00, pages 67–78, Washington, DC, USA,
2000. IEEE Computer Society. ISBN 0-7695-0506-6. URL http:

//dl.acm.org/citation.cfm?id=846219.847380.

[2] P. Bailis, A. Fekete, M. J. Franklin, A. Ghodsi, J. M. Heller-
stein, and I. Stoica. Coordination avoidance in database systems.
Proc. VLDB Endow., 8(3):185–196, Nov. 2014. ISSN 2150-8097.
doi:10.14778/2735508.2735509. URL http://dx.doi.org/10.

14778/2735508.2735509.

[3] G. Bernardi and A. Gotsman. Robustness against consistency models
with atomic visibility. In CONCUR’16: International Conference on

Concurrency Theory, 2016.

[4] P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency

Control and Recovery in Database Systems. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 1987. ISBN 0-201-10715-5.

[5] A. Bouajjani, E. Derevenetc, and R. Meyer. Checking and enforcing
robustness against TSO. In Proceedings of the 22nd European Con-

ference on Programming Languages and Systems, ESOP’13, pages
533–553, Berlin, Heidelberg, 2013. Springer-Verlag. ISBN 978-
3-642-37035-9. doi:10.1007/978-3-642-37036-6_29. URL http:

//dx.doi.org/10.1007/978-3-642-37036-6_29.

[6] R. Brown, S. Cribbs, C. Meiklejohn, and S. Elliott. Riak DT map: A
composable, convergent replicated dictionary. In Proceedings of the

First Workshop on Principles and Practice of Eventual Consistency,
PaPEC ’14, pages 1:1–1:1, New York, NY, USA, 2014. ACM. ISBN
978-1-4503-2716-9. doi:10.1145/2596631.2596633. URL http:

//doi.acm.org/10.1145/2596631.2596633.

[7] S. Burckhardt. Principles of Eventual Consistency, volume 1 of Foun-

dations and Trends in Programming Languages. now publishers, Oc-
tober 2014. URL http://research.microsoft.com/apps/

pubs/default.aspx?id=230852.

[8] S. Burckhardt, A. Gotsman, H. Yang, and M. Zawirski. Replicated data
types: Specification, verification, optimality. In Proceedings of the 41st

ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages, POPL ’14, pages 271–284, New York, NY, USA, 2014.
ACM. ISBN 978-1-4503-2544-8. doi:10.1145/2535838.2535848.

[9] S. Burckhardt, D. Leijen, J. Protzenko, and M. Fähndrich. Global
sequence protocol: A robust abstraction for replicated shared
state. In J. T. Boyland, editor, 29th European Conference

on Object-Oriented Programming, volume 37 of ECOOP 2015,
pages 568–590, Dagstuhl, Germany, 2015. Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik. ISBN 978-3-939897-86-6.
doi:http://dx.doi.org/10.4230/LIPIcs.ECOOP.2015.568. URL http:

//drops.dagstuhl.de/opus/volltexte/2015/5238.

[10] A. Cerone, G. Bernardi, and A. Gotsman. A Framework for
Transactional Consistency Models with Atomic Visibility. In
L. Aceto and D. de Frutos Escrig, editors, 26th International

Conference on Concurrency Theory, volume 42 of CONCUR

2015, pages 58–71, Dagstuhl, Germany, 2015. Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik. ISBN 978-3-939897-91-0.
doi:http://dx.doi.org/10.4230/LIPIcs.CONCUR.2015.58. URL http:

//drops.dagstuhl.de/opus/volltexte/2015/5375.

[11] B. F. Cooper, R. Ramakrishnan, U. Srivastava, A. Silberstein, P. Bo-
hannon, H.-A. Jacobsen, N. Puz, D. Weaver, and R. Yerneni. PNUTS:
yahoo!’s hosted data serving platform. Proc. VLDB Endow., 1(2):1277–
1288, Aug. 2008. ISSN 2150-8097. doi:10.14778/1454159.1454167.
URL http://dx.doi.org/10.14778/1454159.1454167.

471

http://dl.acm.org/citation.cfm?id=846219.847380
http://dl.acm.org/citation.cfm?id=846219.847380
http://dx.doi.org/10.14778/2735508.2735509
http://dx.doi.org/10.14778/2735508.2735509
http://dx.doi.org/10.14778/2735508.2735509
http://dx.doi.org/10.1007/978-3-642-37036-6_29
http://dx.doi.org/10.1007/978-3-642-37036-6_29
http://dx.doi.org/10.1007/978-3-642-37036-6_29
http://dx.doi.org/10.1145/2596631.2596633
http://doi.acm.org/10.1145/2596631.2596633
http://doi.acm.org/10.1145/2596631.2596633
http://research.microsoft.com/apps/pubs/default.aspx?id=230852
http://research.microsoft.com/apps/pubs/default.aspx?id=230852
http://dx.doi.org/10.1145/2535838.2535848
http://dx.doi.org/http://dx.doi.org/10.4230/LIPIcs.ECOOP.2015.568
http://drops.dagstuhl.de/opus/volltexte/2015/5238
http://drops.dagstuhl.de/opus/volltexte/2015/5238
http://dx.doi.org/http://dx.doi.org/10.4230/LIPIcs.CONCUR.2015.58
http://drops.dagstuhl.de/opus/volltexte/2015/5375
http://drops.dagstuhl.de/opus/volltexte/2015/5375
http://dx.doi.org/10.14778/1454159.1454167
http://dx.doi.org/10.14778/1454159.1454167

[12] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,
A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels. Dynamo:
Amazon’s highly available key-value store. In Proceedings of Twenty-

first ACM SIGOPS Symposium on Operating Systems Principles, SOSP
’07, pages 205–220, New York, NY, USA, 2007. ACM. ISBN 978-1-
59593-591-5. doi:10.1145/1294261.1294281.

[13] D. Dimitrov, V. Raychev, M. Vechev, and E. Koskinen. Commutativity
race detection. In Proceedings of the 35th ACM SIGPLAN Conference

on Programming Language Design and Implementation, PLDI ’14,
pages 305–315, New York, NY, USA, 2014. ACM. ISBN 978-1-4503-
2784-8. doi:10.1145/2594291.2594322.

[14] A. Fekete, D. Liarokapis, E. O’Neil, P. O’Neil, and D. Shasha. Making
snapshot isolation serializable. ACM Trans. Database Syst., 30(2):
492–528, June 2005. ISSN 0362-5915. doi:10.1145/1071610.1071615.
URL http://doi.acm.org/10.1145/1071610.1071615.

[15] G. Gierz, K. Hofmann, K. Keimel, J. Lawson, M. Mislove, and D. Scott.
Continuous Lattices and Domains. Number 93 in Encyclopedia of
Mathematics and its Applications. Cambridge University Press, 2003.
ISBN 9780521803380. doi:10.1017/CBO9780511542725.

[16] S. Gilbert and N. Lynch. Brewer’s conjecture and the feasibility of
consistent, available, partition-tolerant web services. SIGACT News, 33
(2):51–59, June 2002. ISSN 0163-5700. doi:10.1145/564585.564601.
URL http://doi.acm.org/10.1145/564585.564601.

[17] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed. Zookeeper: Wait-
free coordination for internet-scale systems. In Proceedings of the

2010 USENIX Conference on USENIX Annual Technical Conference,
USENIXATC’10, pages 11–11, Berkeley, CA, USA, 2010. USENIX
Association. URL http://dl.acm.org/citation.cfm?id=

1855840.1855851.

[18] P. R. Johnson and R. H. Thomas. The maintenance of duplicate
databases. RFC 677, RFC Editor, january 1975. URL http://

www.rfc-editor.org/rfc/rfc677.txt.

[19] R. Klophaus. Riak core: Building distributed applications without
shared state. In ACM SIGPLAN Commercial Users of Functional

Programming, CUFP ’10, pages 14:1–14:1, New York, NY, USA, 2010.
ACM. ISBN 978-1-4503-0516-7. doi:10.1145/1900160.1900176. URL
http://doi.acm.org/10.1145/1900160.1900176.

[20] A. Lakshman and P. Malik. Cassandra: A decentralized structured
storage system. SIGOPS Oper. Syst. Rev., 44(2):35–40, Apr. 2010.
ISSN 0163-5980. doi:10.1145/1773912.1773922. URL http://

doi.acm.org/10.1145/1773912.1773922.

[21] L. Lamport. Time, clocks, and the ordering of events in a distributed
system. Commun. ACM, 21(7):558–565, July 1978. ISSN 0001-0782.
doi:10.1145/359545.359563.

[22] L. Lamport. How to make a multiprocessor computer that correctly
executes multiprocess programs. IEEE Trans. Comput., 28(9):690–691,
Sept. 1979. ISSN 0018-9340. doi:10.1109/TC.1979.1675439. URL
http://dx.doi.org/10.1109/TC.1979.1675439.

[23] W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G. Andersen.
Don’t settle for eventual: Scalable causal consistency for wide-area
storage with cops. In Proceedings of the Twenty-Third ACM Sym-

posium on Operating Systems Principles, SOSP ’11, pages 401–
416, New York, NY, USA, 2011. ACM. ISBN 978-1-4503-0977-6.
doi:10.1145/2043556.2043593. URL http://doi.acm.org/10.

1145/2043556.2043593.

[24] W. Lloyd, M. J. Freedman, M. Kaminsky, and D. G. Andersen. Stronger
semantics for low-latency geo-replicated storage. In Proceedings

of the 10th USENIX Conference on Networked Systems Design and

Implementation, nsdi’13, pages 313–328, Berkeley, CA, USA, 2013.
USENIX Association. URL http://dl.acm.org/citation.

cfm?id=2482626.2482657.

[25] F. Mattern. Virtual time and global states of distributed systems. In
M. Cosnard, editor, Proc. Workshop on Parallel and Distributed Algo-

rithms, pages 215–226, North-Holland / Elsevier, 1989. (Reprinted in:
Z. Yang, T.A. Marsland (Eds.), "Global States and Time in Distributed
Systems", IEEE, 1994, pp. 123-133.).

[26] A. Mazurkiewicz. Trace theory. In W. Brauer, W. Reisig, and
G. Rozenberg, editors, Petri Nets: Applications and Relationships

to Other Models of Concurrency, volume 255 of Lecture Notes in

Computer Science, pages 278–324. Springer Berlin Heidelberg, 1987.
ISBN 978-3-540-17906-1. doi:10.1007/3-540-17906-2_30.

[27] S. Owens. Reasoning about the implementation of concurrency
abstractions on x86-TSO. In Proceedings of the 24th European

Conference on Object-oriented Programming, ECOOP’10, pages 478–
503, Berlin, Heidelberg, 2010. Springer-Verlag. ISBN 3-642-14106-4,
978-3-642-14106-5. doi:10.1007/978-3-642-14107-2_23.

[28] C. H. Papadimitriou. The serializability of concurrent database
updates. J. ACM, 26(4):631–653, Oct. 1979. ISSN 0004-5411.
doi:10.1145/322154.322158. URL http://doi.acm.org/10.

1145/322154.322158.

[29] N. Preguiça, M. Zawirski, A. Bieniusa, S. Duarte, V. Balegas, C. Ba-
quero, and M. Shapiro. SwiftCloud: Fault-tolerant geo-replication
integrated all the way to the client machine. In Proceedings of the

2014 IEEE 33rd International Symposium on Reliable Distributed

Systems Workshops, SRDSW ’14, pages 30–33, Washington, DC,
USA, 2014. IEEE Computer Society. ISBN 978-1-4799-7361-3.
doi:10.1109/SRDSW.2014.33. URL http://dx.doi.org/10.

1109/SRDSW.2014.33.

[30] M. Shapiro, N. Preguiça, C. Baquero, and M. Zawirski. A compre-
hensive study of Convergent and Commutative Replicated Data Types.
Research Report RR-7506, Inria – Centre Paris-Rocquencourt ; INRIA,
Jan. 2011. URL https://hal.inria.fr/inria-00555588.

[31] M. Shapiro, N. Preguiça, C. Baquero, and M. Zawirski. Conflict-
free replicated data types. In Proceedings of the 13th International

Conference on Stabilization, Safety, and Security of Distributed Sys-

tems, SSS’11, pages 386–400, Berlin, Heidelberg, 2011. Springer-
Verlag. ISBN 978-3-642-24549-7. URL http://dl.acm.org/

citation.cfm?id=2050613.2050642.

[32] D. Shasha and M. Snir. Efficient and correct execution of parallel
programs that share memory. ACM Trans. Program. Lang. Syst., 10(2):
282–312, Apr. 1988. ISSN 0164-0925. doi:10.1145/42190.42277.

[33] S. Sivasubramanian. Amazon dynamoDB: A seamlessly scalable non-
relational database service. In Proceedings of the 2012 ACM SIGMOD

International Conference on Management of Data, SIGMOD ’12, pages
729–730, New York, NY, USA, 2012. ACM. ISBN 978-1-4503-1247-9.
doi:10.1145/2213836.2213945. URL http://doi.acm.org/10.

1145/2213836.2213945.

[34] Y. Sovran, R. Power, M. K. Aguilera, and J. Li. Transactional storage
for geo-replicated systems. In Proceedings of the Twenty-Third ACM

Symposium on Operating Systems Principles, SOSP ’11, pages 385–
400, New York, NY, USA, 2011. ACM. ISBN 978-1-4503-0977-6.
doi:10.1145/2043556.2043592. URL http://doi.acm.org/10.

1145/2043556.2043592.

[35] N. Tillmann, M. Moskal, J. de Halleux, and M. Fahndrich. TouchDe-
velop: Programming cloud-connected mobile devices via touchscreen.
In Proceedings of the 10th SIGPLAN Symposium on New Ideas,

New Paradigms, and Reflections on Programming and Software, On-
ward! 2011, pages 49–60, New York, NY, USA, 2011. ACM. ISBN
978-1-4503-0941-7. doi:10.1145/2048237.2048245. URL http:

//doi.acm.org/10.1145/2048237.2048245.

[36] Transaction Processing Performance Council. TPC-C benchmark,
revision 5.11, Feb. 2010.

[37] M. Vaziri, F. Tip, and J. Dolby. Associating synchronization constraints
with data in an object-oriented language. In Conference Record of the

33rd ACM SIGPLAN-SIGACT Symposium on Principles of Program-

ming Languages, POPL ’06, pages 334–345, New York, NY, USA,
2006. ACM. ISBN 1-59593-027-2. doi:10.1145/1111037.1111067.
URL http://doi.acm.org/10.1145/1111037.1111067.

[38] W. E. Weihl. Commutativity-based concurrency control for abstract
data types. IEEE Trans. Comput., 37(12):1488–1505, Dec. 1988. ISSN
0018-9340. doi:10.1109/12.9728.

[39] K. Zellag and B. Kemme. How consistent is your cloud application?
In Proceedings of the Third ACM Symposium on Cloud Computing,
SoCC ’12, pages 6:1–6:14, New York, NY, USA, 2012. ACM. ISBN
978-1-4503-1761-0. doi:10.1145/2391229.2391235. URL http:

//doi.acm.org/10.1145/2391229.2391235.

472

http://dx.doi.org/10.1145/1294261.1294281
http://dx.doi.org/10.1145/2594291.2594322
http://dx.doi.org/10.1145/1071610.1071615
http://doi.acm.org/10.1145/1071610.1071615
http://dx.doi.org/10.1017/CBO9780511542725
http://dx.doi.org/10.1145/564585.564601
http://doi.acm.org/10.1145/564585.564601
http://dl.acm.org/citation.cfm?id=1855840.1855851
http://dl.acm.org/citation.cfm?id=1855840.1855851
http://www.rfc-editor.org/rfc/rfc677.txt
http://www.rfc-editor.org/rfc/rfc677.txt
http://dx.doi.org/10.1145/1900160.1900176
http://doi.acm.org/10.1145/1900160.1900176
http://dx.doi.org/10.1145/1773912.1773922
http://doi.acm.org/10.1145/1773912.1773922
http://doi.acm.org/10.1145/1773912.1773922
http://dx.doi.org/10.1145/359545.359563
http://dx.doi.org/10.1109/TC.1979.1675439
http://dx.doi.org/10.1109/TC.1979.1675439
http://dx.doi.org/10.1145/2043556.2043593
http://doi.acm.org/10.1145/2043556.2043593
http://doi.acm.org/10.1145/2043556.2043593
http://dl.acm.org/citation.cfm?id=2482626.2482657
http://dl.acm.org/citation.cfm?id=2482626.2482657
http://dx.doi.org/10.1007/3-540-17906-2_30
http://dx.doi.org/10.1007/978-3-642-14107-2_23
http://dx.doi.org/10.1145/322154.322158
http://doi.acm.org/10.1145/322154.322158
http://doi.acm.org/10.1145/322154.322158
http://dx.doi.org/10.1109/SRDSW.2014.33
http://dx.doi.org/10.1109/SRDSW.2014.33
http://dx.doi.org/10.1109/SRDSW.2014.33
https://hal.inria.fr/inria-00555588
http://dl.acm.org/citation.cfm?id=2050613.2050642
http://dl.acm.org/citation.cfm?id=2050613.2050642
http://dx.doi.org/10.1145/42190.42277
http://dx.doi.org/10.1145/2213836.2213945
http://doi.acm.org/10.1145/2213836.2213945
http://doi.acm.org/10.1145/2213836.2213945
http://dx.doi.org/10.1145/2043556.2043592
http://doi.acm.org/10.1145/2043556.2043592
http://doi.acm.org/10.1145/2043556.2043592
http://dx.doi.org/10.1145/2048237.2048245
http://doi.acm.org/10.1145/2048237.2048245
http://doi.acm.org/10.1145/2048237.2048245
http://dx.doi.org/10.1145/1111037.1111067
http://doi.acm.org/10.1145/1111037.1111067
http://dx.doi.org/10.1109/12.9728
http://dx.doi.org/10.1145/2391229.2391235
http://doi.acm.org/10.1145/2391229.2391235
http://doi.acm.org/10.1145/2391229.2391235

	Introduction
	Overview
	Weakly Consistent Systems
	Actions
	Traces
	Histories and Schedules

	A Serializability Criterion
	Dependency and Anti-dependency
	Dependency
	Anti-dependency

	The Criterion
	Commutativity, Absorption, Dependency
	A Corresponding Anti-dependency

	Detection Algorithm
	Generic Algorithm
	Optimized Algorithm

	Application: Debugging Cloud-Backed Mobile Software
	Cloud Types
	Prototype Implementation
	Experimental Set-up
	Analysis Results
	Discussion

	Application: Developing Clients of Weakly Consistent Databases
	Dynamic Analysis of Riak-Backed Applications
	Analyzing TPC-C using ECRacer
	Scalability

	Related Work
	Conclusion and Future Work

