
Combinations of Abstract Domains for Logic Programming

1 Abstmct

Agostino Cortesi* Baudouin Le Charlier Pascal Van Hentenryckt

Brown University University of Namur Brown University

Box 1910, Providence 21, rue Grandgagnage Box 1910, Providence

RI 02912 (USA) B-5000 Namur (Belgium) RI 02912 (USA)

aac@cs. brown. edu ble~inf o. fundp. ac .be pvh~cs. brown. edu

Abstract interpretation [7] is a systematic methodology to
design static program analysis which has been studied exten-

sively in the logic programming community, because of the
potential for optimiaations in logic programming compilers

and the sophistication oft he analyses which require concep
tual support. With the emergence of efficient generic ab-

stract interpret ation algorithms for logic programming, the

main burden in building an analysis is the abstract domain

which gives a safe approximation of the concrete domain of
computation. However, accurate abstract domains for logic

programming are often complex because of the variety of
analyses to perform, their interdependence, and the need to

maintain structural information. The purpose of this paper
is to propose conceptual and software support for the design

of abstract domains. It contains two main contributions: the
notion of open product and a generic pattern domain. The

open product is a new way of combining abstract domains

allowing each combined domain to benefit from information

from the other components through the notions of queries

and open operations. The open product is general-purpose

and cam be used for other programming paradigms se well.
The generic pattern domain Pat (!)?) automaticzdly upgrades

a domain D with structural information yielding a more ac-
curate domain Pat (D) without additional design or imple-

mentation cost. The two contributions are orthogonal and
can be combined in various ways to obtain sophisticated do-

mains while imposing minimal requirements on the designer.
Both contributions are characterised theoretically and ex-

perimentally and were used to design very complex abstract
domains such sa PAT (OProp@OHode@OPS) which would be

very diiTicult to design otherwise. On this last domain, de-
signers need only contribute about 20% (about 3,4oo lines)

of the complete system (about 17,700 lines).

● Supported by CNR, Prog. Fin. ,~si~te~i lnformatici e CaldO
Parallelo” under grant n.91.00026.69.

tsuppo~ed in pti by the National Science Foundation under
grant number CCW9108O32, the Office of Naval Research under grant
NOO01491-J-4052 ARPA order 8225, and by a National Young Inves-

tigator Award.

Permission to copy without fee atl or pert of this meteriel is
grented provided thet the copies ere not made or distributed for

direct commercial edventege, the ACM copyright notice end the

title of the publication end its dete appeer, end notice is given
thet copying is by permission of the Association for Computing
Machinery. To copy otherwise, or to republish, requires a fee

endlor specific permission.

POPL 94- 1/94, Portland Oregon, USA

2 Introduction

Abstract interpretation [7] is a systematic methodology to
develop static program analysis. A traditional approach to

abstract interpretation consists mainly of three steps: (1)
the definition of a fixpoint semantics of the programming

language: the concrete semantics; (2) the abstraction of the

concrete semantics: the abstract semantics; (3) the design

of a fixpoint algorithm to compute the least fixpoint of the
abstract semantics. In general, the abstract semantics and

the fixpoint algorithm are generic, i.e. they are pararneter-
ized by an abstract domain and its associated operations. A

static analysis is then obtained by defining an abstract do-
main and providing an implementation of the operations as

consistent approximations of the concrete operations. The
main advantage of the approach is to factor out the abstract

semantics and the fixpoint algorithm for various applica-
tions, providing modularity and reusability y.

Abstract interpretation has raised much interest in logic

programtig because of the need for optirnizations in com-

pilers to make them competitive with procedural kmguages,
the variety of interdependent analyses that need to be per-

formed, and their sophistications which require methodolog-
ical and software support. The use of abstract interpre-

tation has led to dramatic improvements in Prolog com-
piler technology [27, 29]. Moreover, substantial work (e.g.

[2, 10, 12, 14, 15, 18, 19]) has been devoted to produce effi-
cient generic fixpoint algorithms and systems like GAIA1 [19]

have been shown to yield efficient and accurate analyses.
With the emergence of these generic fixpoint algorithms,

most of the burden in developing an analysis lies in the de-
sign of the abstract domain and its associated operations.

The design of abstract domains is often complex and error-
prone because of the variety of interdependent analyses (e.g.

freeness, sharing, groundless, types) that must be integrated,

the necessity of handling structural information (i.e. infor-
mation on the structure of the terms such aa the functor

and the arguments) to achieve reasonable accuracy, and the
desire to obtain a good tradeoff between accuracy and effi-

ciency. Yet little research haa addressed the important prob-
lem of supporting this task adequately. Notable exceptions

are [3, 8, 9, 14, 25].
The purpose of this paper is to propose some concep

tual and software support to build sophisticated abstract
domains. It contains two main contributions: (1) a new,
product operation: the open product; (2) a gene~c pattern
domain Pat (R) for structural information.

1GAIA is available by anonymous ftp frnm Brown University.

@ 1994 ACM 0-89791 -636-9/94~1 ..$3.60

227

The open product construct is a novel way of combining
abstract domains, independent from logic programming and

hence applicable to other programming languages as well.
The key idea is the notion of open abstract domain which

contains queries (providing information to the environment)

and open operations (receiving information form the envi-

ronment). The open product improves on the direct product
by letting the domains interact, since operations in one do-

main can use queries in other domains. Its formal charac-
terization provides us with a precise meaning of consistent

approximation in this open context and an automatic way of

combining operations and queries. The open product pro-
vides a rich framework to express combinations of domains

where the components interact, yielding what is called an

attribute-dependent analysis [9]. It can be used as an alter-
native to the reduced product of the Cousots [8, 9] which

cannot be automated, since it depends on the concretiza-

tion functions, and which does not allow the components to

interact. It contains as a degenerated case the refinement
operation proposed independently by [3]. It also shares some

of the motivations behind the ideas of R-abstraction of [5]
and open semantics [1], although the technical details and

practical applications are fundamentally different.
The generic pattern domain pat (3?) is more tailored to

logic programming, although its principles are general and
could be used for other programming languages as well.

Pat (R) was motivated by the fact that structural informa-
tion dramatically improves the precision of the abstract do-

main albeit at a significant increase in complexity of the
domain. Its main contribution amounts to upgrading auto-

matically a domain D to obtain a new domain Pat (D) aug-

menting II with structural information. As a consequence,
it provides the additional accuracy without increasing the

design complexity which is factored out in Pat ($?). The key
technical idea behind Pat (?T?) is to provide a generic imple-

mentation of the abstract operations of Pat(D) in terms of
a few basic operations on the domain D using the notion of
subterm that was also the basis of the pattern domain of
[19, 23]. Note also that the motivations behind Pat (3?) are

similar to those of [14] which proposes an engine preserving
structural information. One of the fundamental differences

between these two approaches is that our approach handles
structural information at the domain level and not inside

the fixpoint algorithm. As a consequence, the domain can
be combined with a variety of fixpoint algorithms achieving

various tradeoffs between efficiency and accuracy.
The two contributions are completely orthogord and can

be combined in various ways to obtain sophisticated abstract
domains. The main advantages of this approach are the

simplicity, modularity, and accuracy it offers to abstract do-
main designers. Simplicity is achieved by abstracting away

structural information and allowing designers to focus on
one domain at a time. Modularity comes from the fact that

abstract domains can be viewed as abstract data types sim-
plifying both the correctness proofs and the implementa-
tion. Finally, accuracy results from structured information
and from the idea of open operation which is so general that

abstract domains can interact at will although through well
defined interfaces.

To demonstrate the practicability of this approach, both
cent ributions have been implemented on a large collection
of abstract domains which includes Pat (Prop), Pat (Type)
and Pat (0Prop@OHode&30PS), where Prop is the groundless
domain of Marriott and Sondergaard [4, 22, 21], Type is the
type graph domain of Bruynooghe and Janssens [16], and

OHode and OPS are well-known domains for modes and shar-
ing. It is interesting to note that Pat (OProp@OOHode@OPS)

and Pat (Type) are some of the most complicated domains
ever implemented for Prolog, yet their requirements on the

designer are minimal.
The rest of the paper is organized in four sections. Sec-

tions 2 and 3 present the main contributions of this paper,

i.e. the open product and the generic pattern domain. Sec-

tion 4 presents some experimental results and Section 5 con-

cludes the paper. See the technicaJ version of the paper for

a comprehensive coverage [6].

3 Open Product

This section considers the problem of designing an abstract

domain D as a combination of domains DI, D. and pro-
poses the novel concepts of open product and refinement.

Subsection 3.1 gives an overview of our approach and a com-

parison with some previous work in the area. Section 3.2

formalizes the concepts while Section 3.3 illustrates the ap-

proach for the abstract interpretation of Prolog. In a first

reading, it may be convenient to refer to Section 3.3 when
reading Section 3.2.

3.1 Overview

The direct product is the simplest combination of abstract
domains. Given two abstract domains D1 and DZ with con-
cretization functions Ccl : DI + C’ and CC2 : D2 * C,

the direct product domain is the domain D = D1 x D2 with

concretization function Cc((dl, dz)) = Ccl (dl) n Ccz (dZ).

Moreover, given a concrete operation OP, : C ~ C and two

corresponding abstract operations OP1 and OPZ on D1 and
Dz, a direct product operation can be obtained automati-

cally as
OF’((dl, dz)) = ((lpl(dl), OpZ(dZ)).

The main disadvantage of the direct product is its lack of

precision since there is no interaction between the compo-
nents. Note also that the direct product domain may contain

many redundant elements (i.e. distinct elements with the
same concretization) possibly implying an additional loss of

precision since the operations are not guaranteed to work on
the more precise components.

The reduced product was proposed by the Cousots [8] to
overcome some of the limitations of the direct product. Its

key idea is to cluster into equivalence classes the elements
of the direct product having the same concretization and to
work on the more precise representative of each class. More
formally, consider the function reduce : D1 x Dz + DI x D2
defined as

reduce((dl, dz)) = fl{(el, ez) I Cc((el, ez)) = Cc((dl, dz))}.

The reduced product domain is the domain

while a reduced product operation over D can be defined as

W((dl, dz)) = reduce((OPl (dI), OPZ(dz))).

Note that the reduced product removes redundancies

from the domain and enjoys some nice theoretical proper-
ties (e.g. the reduced product of two Galois connections is a

228

Galois connection). However, the reduced product has also
some inherent limit ations. On the one hand, the implemen-

tation of the product operations cannot be obtained auto-

matically, since they rely on the concretization function (a

semantic notion), although the reduced product provides se-

mantic guidance for their construction. On the other hand,

ss observed by the Cousots themselves, additional accuracy
can be obtained by defining new operations where the op-

erations on DI and Dz interact. The reduced product has
been used in logic programming by [3] and their reduced

product operations are of course obtained manually.
The open product introduced in this section remedies the

limitations of the reduced product. The key features of our
approach are (1) an automatic derivation of the product

operations; (2) possible interactions between the domains
before, during, and after the product operation; (3) encap-

sulation of the representation and implementation of each

component. As a consequence, the open product provides

a rich and widely applicable framework to implement and
prove the correctness of various combinations of domains, in-

cluding the reduced product. It is aleo orthogonal to other
systematic methods to build abstract domains such as down-

set completion and tensor products [8, 9, 25] or the pattern
domain defined in the next section.

The key idea behind the open product is the notion of
open abstract interpretation.3 Informally speaking, an open

abstract interpret ation dMers from a traditional abstract in-
terpretation by introducing the notion of queries and open

operations. A query is simply a function giving informa-
tion about the properties captured by the domain. An open

operation is essentially an abstract operation except that

it receives one or more boolean functions describing addi-
tional properties of the concrete objects (e.g. properties not

captured by the domain). The main benefit of open inter-

pretations is the fact that abstract operations are able to

receive information from the environment to improve their
accuracy.

Once open interpretations are defined, it is natural to

define a new form of product, the open product, which is
similar to the direct product except that the open operations
in one domain can use some queries in other domains to

improve accuracy. Note that all operations interact in terms
of the initial abstract object, i.e. the object before executing

the operation.
The open product can be improved further by letting

the subdomains interact after the operations, i.e. in terms
of the results of the operations. To capture formally this

idea, the concept of refinement and refined open product
are introduced. Refinements are open operations which do

not modify the global concretization function but improve
the subdomains locally. Refinements are orthogonal to the

open product and lead to the notion of refined open product
which is an open product followed by a sequence of refine-

ments. Refinements are ways to compute or approximate the
greatest lower bound operation used by the reduced prod-
uct. In addition, they can be used even when the domains
are not Galois connections or when the greatest lower bound
is too expensive to compute exactly.

The notions of open product and open interpretation are

both theoretical and practical tools. On the theoretical side,

2 Note that the reduced product may not aPPIY if the domains Sre
not Gslois connections, since the greatest lower bound may not be in
the same equivalence class.

3We are using the term “abstract interpret at ion” in a t ethnical
sense here ss in [5].

they capture precisely the properties that need to be satis-
fied to obtain a new domain and consistent operations. On

the practical side, they sUow the designer to build a com-

plex domain as a set of open domains which are nothing else

than abstract data types offering queries sad open opera-

tions. Moreover, there exist systematic ways of composing

queries from difTerent domains and to complement incom-

plete interpretations. Finally, it is important to note that

the open product is completely independent of logic pro-
gramming and can be used for any programming language.

3.2 Formalization

In the following we assume farniliarit y with standard notions
of abstract interpretation [l’l. We assume for simplicity that

all complete partial orders (cpo) are pointed and use the fol-
lowing definitions for domains and abstractions of domains.

Definition 1 (domain) A domain is a cpo with an upper
bound opemtion (not necessarily a lub opemtion).

Definition 2 (abstraction of domains)
Let DI, Dz be two domains ordered by <I and <z respec-
tively. The domain D2 abstmcts DI if them exists a mono-

tone function Cc : DZ + DI such that Vdl E DI ld2 E D2 :

dl <1 Cc(d2). The function Cc is called a “concretization

function”.

Additional structure can be imposed on the domains and

the abstractions but this issue is orthogonal to our objec-
tives. We also denote by Booi the set {true, f alse} and as-

sume, without loss of generality, the order induced by true
< false on Bool. It is natural to use ~ for this order. The

first important concept we introduce is the notion of query
which gives information about the properties of concret e ob-

jects.

Definition 3 (test) A testis a boolean function T : Arg +
Bool. The tests on the same set Arg can be partially ordered

as follows: T <7’ # Vh c Arg : T(h) ~ 7’(h).

Definition 4 (query) A query on the domain D is a mono-

tone function Q : D + Arg -+ Bool which maps elements
of the domain D onto tests.

Queries give rise to the notion of query interpretations
which is a slight generalization of the traditional notion of

interpretation [5] and was proposed independently in [24] for

other purposes. In the following we denote by D the tuple

(D, <, (OF,,..., Opn), (Ql,..., Qrn))

and by Dh the tuple

(Dh, <h, (OP~,..., OP~), (Q~,..., Q~))

for h = 0,1,2.

Definition 5 (query interpretation) A query interpre-
tation is a tuple D where: D is a domain; s is the par-

tial order on D; OPI, OP. are opemtions of signature

OP~ : D + D;4 Q1 Q~ am queries on D.

4 we ~e~ttict our ~ttention to unary operations. A generalization

.af the definition is straightforward.

229

A query interpretation can be seen as an abstract data
type, where queries represent information about the domain

D which is offered to the environment. In order to use
queries, we introduce the concepts of open operation (an

operation parametrised by tests) and open interpretation

(an interpretation with open operations and queries).

Definition 6 (open operation) An open operation on the
domain D is a function OP : (Arg -+ Bool)m + D + D

(m > O) which maps a tuple of tests onto an operation. OP
should be monotone with respect to the tests.

Definition 7 (open interpretation) An open interpreta-

tion is a tuple D where: D is a domain; < is the partial
order on D; OPI ,. ... OP~ are open operations on D; and

QI Qm are queries on D.

Observe that a query interpretation can be seen as a

degenerate case of open interpretation where none of the
operations depends on tests. We now consider the abstrac-

tion of query interpretations and of open interpretations ae

generalisations of the traditional notions.

Definition 8 (abstraction of queries) Let Q1 and QZ be

two queries on domains D1 and DZ respectively and assume
that D2 abstracts D1. We say that Q2 is an abstraction of

Q1 i.f Vd c DZ : Ql(Cc(d)) e Qz(d).

Definition 9 (abstraction of query interpretations)

Consider the query interpretations D1 and D2. We say that

DZ is an abstmction of D1 if:

- DZ abstmcts Dl;

-forl<i<n : OP~ abstmcts OP~, i.e. Vdz 6 Dz :

op; (Cc(dz)) <1 Cc(Op~(dz));

- for 1< i < m : Q? abstmcts Q:.

We now introduce the semantics of open operations through
the notion of open abstraction.

Definition 10 (open abstraction) Consider a query in-
terpretation D1 and an open interpretation Dz. We say that

D2 is an open abstmction of D1 if:

- Dz abstracts Dl;

- for 1 ~ i < n : OP~ abstmcts OP~, i.e.

Vdz c Dz VdI c D1 :dl <1 Cc(dz) %-

Op$(dl) <1 Cc(Op; ((Q:(dl), Q&(dl))) (dZ)).

- for 1 ~ i < m : Q: abstmcts Q:.

We are now in position to define the notion of open prod-

uct of domains. An important point to notice here is how
the product operations and the product queries are derived

automatically.

Definition 11 (open product) Consider two open inter-
pretations DI and DZ. The open product DI @ Dz is the
query interpretation D defined as follows.

- D is the cartesian product D1 x Dz;

the partial ordering ~ is the product ordering of <1
and s2;

the quer~ Q, is defined as Q,(dl, dz) = Q: (dl)VQ~(d2).

the opemtion OP, : (Dl x D2) + (Dl x Dz) is defined

by:

opi(dl, d2) =

(Op:((Ql(dl, dz), Qrn(dl. dz)))(dl) ,

Op?((Ql(dl, dz), Qm(dl, dz)))(dz)).

The following theorem is a soundness result which proves

that the open product of two abstractions is itself an abstrac-

tion<

Theorem 1 (consistency of the open product)
Let DO be a query interpretation, and assume the existence
of a greatest lower bound operation n on the domain of D0.5
-Let D1 and Dz be open interpretations such that DI and Dz

are open abstmctions of DO. The open product D1 @ Dz i~r
an abstraction of DO.

Proof: The three conditions of Definition 9 hold.

1. Domain: Domain D1 x D2 abstracts DO through the

concretization function Cc : D1 x Dz. + DO defined by

Cc(dl, dz) = Cc(dl) il Cc(dZ). This function is monotone

by composition of monotone functions.

2. Queries: Query Q, abstracts Q? since

do so Cc(dI), Cc(dz)

Q~(do) + Qt(dl), Q:(dz)

Q!(do) ~ Q,(dl, dz).

implies

and thus

3. Operations: Operation OPI abstracts OP~ since, for
l~h~2andl~j~m

do <0 Cc(dl), Cc(dz) *

o~(do) <0 6’c(OP~((Q;(dO), Q~(do)))(dh))

(Dh is an open abstraction of Do)

op~(~o) <0 CC@p~((QI(C&, ~z), Qrn($l, ~2)))(~h))

(Qj is an abstraction of Q?)

l)~(do) <o nl<h<z CC(OP; ((Q1(Ctl, d2),... , Qm(dl, d2)))(dh))

(by p;o@wties of n)

O~(do) <0 CC(OPi(dl, d’2))
(by definition of OP,).

Hence, by Cc(dl, dz) <o Cc(dl), Cc(dz),

OP~(CG(d~, (lZ)) <~ CG(OP~(d~, d.)). E

5 Note that, in general, the existence of n is trivially ensured, since

Do will be the concrete domain.

230

Refined Open Product The open product enables opera-

tions to benefit from information from the other components

in the state before the product operation. However, theop
erations themselves can produce additional information that

may beuseful torefine the results. Asmentioned previously,
refinements can be used after each product operation, This

idea waa proposed independently, but not formalized, in [3].

Definition 12 (refinement) Let Do and D1 be a query

interpretation and an open interpretation such that D1 is
an open abstraction of DO. An operution REFI?JE: (Arg +

Bool)m + D1 + D1 is a refinement opemtion of D1 with
respect to Do if for all do G DO and d~ 6 DI, the following

conditions hold.

1. dO so Cc(dl) +

do <o Cc(RHFINE((@(do), Q%(do)))(dl));

2. REFINE((fi, . . . ,7~))(dl) <1 dl

foranyte8t z,...,7m.

Consider the open product D1 @ DZ, where D1 and D2

are open abstractions of the query interpretation DO. As-
sume that the refinement functions REFINE1 and REFIN& are

defined in D1 and D2 respectively. The corresponding op
eration REFINE in the open product is defined se traditional

operations.

Definition 13 (refinement in the open product)

In the hypotheses and notation of Theorem 1, assume that
REFINE1 and REFINfi are refinement functions for D1 and

Dz with respect to DO. The refinement function REFINE on

the open product DI @ D2 is defined by:

REFINE(dl , dz) =

@ZFINEl((Ql(dl, &), Qm(A, &))) (all) ,
REFIN&((Ql(dl, dz), Qm(&, d2))) (dz))

An abstract operation in the open product can now be de

fined aa follows.

Definition 14 (refined abstract operation)
Under the hypotheses and notation of theorem 1, assume
that REFINE1 and REFIN~ are refinement functions for D1

and D2 with respect to DO. The opemtion

UP, : (Dl X D2) + (Dl X D2)

can be defined au;

OP; (dl, dz) = REFINE(dj, dj) where

(d{, d;) = (Op;((421(d~, d2),..., G?m(dl, d2)))(dl) ,

Op?((Ql(dl, dz), Qrn(dl. d2)))(d2))

It is easy to adapt the correctness proof to refined ab-
stract operations. Observe that the implement ation of the

operations REFINE can be expressed simply by using queries.

This guarantees once again the complete modularity of the

approach, since the interpretations can be constructed in-
dependently. Note also that the refinement can be applied

arbitrarily often if useful.

3.3 Application

In this section, we illustrate the refined open product to
compose two domains for logic programming: a groundless
and a sharing domain. We describe respectively the con-

crete semantics, the abstract domains and the open prod-

uct. In the following, variables are taken from the set V =
{XI, Z2,... , Zi,...} and we use F to denote a finite subset
of V. The presentation is intentionally simplified.

3.3.1 Concrete Domain

Domain A traditional concrete domain for logic program-

ming has sets of substitutions as elements. Given it Subst
the set of idl substitutions and SubstF the set of substitu-

tions whose domain is F, a concrete domain CSF is simply

p(PSF). This domain is a complete lattice with respect to

the set inclusion ~.6

Operations The operations on the concrete domains de-
pend from one framework to another. As shown in [13], they

need to contain at leaat projection, unification, and an upper
bound operation. In the following, for illustration purposes,

we consider only a single operation, the unification of two
variables, whose specification is as follows (~ c CSF):

Queries For simplicity, we consider only two queries,

c–GRomD: CSF + F + Booi

and
C-NOS~ARING: CSF + $’ X F + BOO1

which provide information on groundless and sharing and

are specified as follows:

C_GROUND(@)(~;) =

{

true if W c El : zi6 is a ground term

false otherwise

C-NOSHARING(~)(Z,, ZJ) =

{

true if VO c @ : zie, Xjd do not share variables

false otherwise

3.3.2 The Open Abstmct Interpretation OProp

We now turn to the first abstract domain and specities the
domain, its queries, operation, and refinement.

Domain prOpF [4, 22, 21] is the poset of Boolean func-

tions that can be represented by propositional formulae con-
structed from F, the Boolean truth values, and the logical

connective V, A, * and ordered by implication. A truth
assignment over F is a function 1 : F + Bool. The value

of a Boolean function ~ wrt a truth assignment 1 is de-
noted 1(f). The basic intuition behind the domain PrOpF

is that a substitution O is abstracted by a Boolean function
~ over F iff, for all instances 0’ of 8, the truth assignment 1

defined by “l(z;) = true ti 0’ grounds zi (1 < i < n)” sat-

isfies j. For instance, let F = {s1, s2}, q + Z2 abstracts
the substitutions {z1 /23, ZZ/Z3 }, {zl/a, zz/a}, but neither

{zl/a, 22/23} nor {s1/23, z2/z4}.

The concreti.zation function for prOpF is a function Cc :
prOpF + CSF defined aa follows:

where assign : CSF + D + Bool is defined by assign 6’ z,

= true % $ grounds z;.

6In the following, the notion of substitution composition is slightly

cm-standard and makes sure that dom(bla) = dom(ll).

231

Queries In prOpF, the queries are abstracted by the func-
tions

OProp-GROUND: PropF + F + Boo!
OProp-ltOSRARING: PropF + F x F -+ Bool

whose definitions are aa follows

OProp-GROUND(.f) (~i) # (.f + $,)
OProp-NOSHARING(~)(zi, Zf) # (~ + $i) V (.f + zj)

Opemtion The unification can be abstracted as
OProp-UNIF(GROUND) (~, z,, z~) =

{

fAz, Az, if GROUND(G) V GRCIUND(Z3);

f A (~i ++ zj) otherwise .

Refinement The refinement in prOpF is simply the func-
tion OProp-REFINE(GROUND)(f) = j A S,l A . . . A zip, where

{Zi,,..., XiP } = {xi E F] GROUND(~i)}.

3.3.3 The Open Abstmct Interpn%ation OPS

Domain The abstract domain OPS (inspired by the shar-
ing component described in [19]) specMes the possible pair-

sharing of variables between terms. The elements of OpSF
are binary and symmetrical relations ps : F x F. The intu-

ition is that the terms bound to ~i and ZJ may share vari-
ables only when Ps(~i, ~a) is true. The ordering between two

abstract elements PSI, PS2 is defined as follows: PSI < psz if

V(i, j) : PSI ($i, Zj) + ps2(z,, ~j). The concretization func-
tion Cc : OpSF + CSF is

Queries OPS supports the sharing query:

and the ground query

OPS-GROUND(ps)(~i) + (x,, Zi) @pS.

Opemtion The unification is abstracted aa

OPS-UNIF(GROUND) (pS, ~:, Z,) = $’S’

where psi is defined as

PS\{(Zk, ZI) I k E {ij}v~~ {ij}}

if GROUND(~i) V GROUND(Z$) ad w

otherwise, where p-s denotes the symmetrical closure of ps.

Refinement The refinement exploits groundless informw
tion. Let W = {z, c F I GROUND(Z,) } in

OPS-REFIME(GROUND) (ps) =

{(Zi, Z’j) lfM(Zi, Z~)&Zi # W&Xj @ W}.

3.3.4 The Open Product OProp @ OPS

The open product OProp @ OPS is defined in Figure 1.

4 The Generic Pattern Domain Pat (J?)

The purpose of this section is to present the second con-

tribution of this paper. Once again, we start by giving an
overview of the approach. We then formalize it, show its

implementation, and discuss some applications.

41 Overview

It is well-known that preserving structural information in

abstract domains for logic programming is often of primary
importance to achieve a rewonable accuracy’. However,

abstract domains preserving structural information are often
an order of magnitude more complicated to design.

In this section, we define Pat (Y?), a generic abstract do-
main which automatically upgrades a domain ?Rwith struc-

tural information. As a consequence, the approach requires
the same design and programming effort as the domain J?,

yet it fully benefits from the availability of structural in-
formation. The price to pay for this important function-

ality is a small loss of efficiency for some domains (this is
quantiiled experimentally later on). Contrary to the open

product, Pat (Y?) is tailored to logic programming. However,
approaches similar in spirit can be used for other program-

ming languages as well.
The key intuition behind Pat (Y?) is to represent informa-

tion on some subterms occurring in a substitution instead
of information on terms bound to variables only. More pre-
cisely, pat (Y?) may associate the following information with
each considered subterm: (1) its pattern which specifies the

main functor of the subterrn (if any) and the subterms which
are its arguments; (2) its properties which are left unspeci-

fied and are given in the domain 32. A subterm is said to be

a leaf ifI its pattern is unspecified. In addition to the above

information, each variable in the domain of the substitutions
is associated with one of the subterms. Note that the d~

main can express that two arguments have the same value
(and hence that two variables are bound together) by associ-

ating both arguments with the same subterm. This feature
produces additional accuracy by avoiding decoupling terms

that are equal but it also contributes in complicating the
design and implementation of the domain. The new notion

of constmined mapping aims precisely at dealing with this

issue. It should be emphasized that the pattern information
is optional. In theory, information on all subterms could be

kept but the requirement for a finite analysis makes this im-
possible for almost all applications. As a consequence, the

domain shares some features with the depth-k abstraction
[17], although Pat (3?) does not impose a fixed depth but ad-

justs it dynamically through upper bound and widening op-
erations. This idea ww already used in the domain Pattern

defined in [19, 23] which can be viewed as an instance of
pat (W) for some specific domains.

pat (3?) is thus composed of three components: a pattern
component, a same value component, and a S-component.
The first two components provide the skeleton which con-
tains structural and same-value information but leaves un-

specified which information is maintained on the subterms.
The $?-domain is the generic part which specifies this infor-
mation by describing properties of a set of tuples

<tl,tp>

7An al~~~~tiv~ is to ~Se r.eexecution which, in practice, simulates

the presence of structural information.

232

The open product ‘D= oProp @ OPS = (D,<, D-REFINq D-UNIF, (D-GROUND, D-NOSHARING)) is defined SS:

- D is the cartesian product of the two domains and the partial order ~ is (+, ~).

- The queries are:
{

27-GRouND(~,ps) = OProp-GROUND(~) V OPS-GROUND(PS)
%NOSHARING(~,ps) = OProp-NOSHARING(~) V OPS-NOSHARING(ps)

- The refinement is 2WEFINE(t, ps) = (f’, ps’) where

{

~~, = OProp-REFINWD-GROUND(j, ps))(~)
= OPS-REFINF@GROUNO(~,ps))(ps)

- The operation is ZMNIF((~,pS), z~, ~j) = %REFINE(~’, ps’) where

{

j’, = OProp-UNIF(%GROUND(~, P~))(~, ~i, ~i)

ps = OPS–UNIF(D-GROUND(j, pS))(p8$ ~i, Zj)

Figure 1: The Open

where to,..., tP are terms. As a consequence, defining the

R-domain amounts essentially to define a traditional domain

on substitutions. The only diference is that the R-domain

is an abstraction of a concrete domain whose elements are

sets of tuples (of terms) instead of sets of substitutions. This
diference is conceptual and does not fundamental.ly affect

the nature or complexity of the Y?-operations. The imple-
mentation of the abstract operations of pat (3?) is expressed
in terms of the R-domain operations. In general, the imp-
lementations are guided by the structural information and

call the R-domain operations for basic cases.
Pat (Y?) carI be designed in two dWerent ways, depending

upon the fact that we maintain information on all terms or
only on the leaves. In the rest of this paper, we adopt the
first approach for simplicity, although the second approach

is more efficient for many domains $?. In both csses, the
main difficulty in generalizing the original pattern domain

is to deal properly with global information, i.e. informa-
tion which is not explicit for each subterm but constrains

zdl subterms together. For instance, in Prop, groundless in-
formation is not associated with each subterm but rather is
given through a global boolean formula. Specific informa-

tion about a term can of course be extracted from the for-

mula but need not be represented explicitly. The handling of
global information has been achieved through the introduc-

tion of a number of novel concepts (e.g. constrained map
ping), a radically new implementation of some operations
(e.g. UNION and the ordering relation), and a generalization

of many others (e.g. unification).

The identification of subterms (and hence the link be-
tween the structural component and the R-domain) is a
somewhat arbitrary choice. In the following, we identify
the subterms with integer indices, say 1... n if n subterms

are considered. For inst ante, the substitution

{qtt*a, z~+a, z~+gJ1\[]}

willhave 7 subterms. The association of indices to them

could be for instance

{(1, t* a), (’2,*), (3, a), (4, a), (5,91 \ []), (6, w), (7, [1)}.

The pattern component (possibly) assigns to an index an
expression ~(il, ..., in), where ~ is a function symbol of arity

Product OProp @ UPS

nandil, ..., iw are indices. If it is omitted, the pattern is

said to be undefined. In our example, the (most precise)

pattern component will make the following associations

{(1,2 * 3), (2,t), (3, a), (4, a), (5, 6\ 7), (7, [])}.

The same value component, in this example, maps xi to 1,
zz to 3, and Z3 to 5.

Assuming that the R-domain is intended to be the shar-
ing domain defined in the previous section, the R-component
for the above abstract substitution is a relation ps : {1...7} x
{1... 7} which is true only for (5,5), (5,6), (6,5) and (6,6).

Note the use of integers instead of the variables of the pre
vious section. This is the only difference between the 0?-

domain and a traditional domain.

42 The Abstract Domain

We now turn to the formalization of Pat (32). In the follow-

ing, we denote by 1P the set of indices {1,..., p}, by STP the
set of t uples of terms < tl,...,tp>, by ST the union of all

sets STP for some p >0, and by p(ST) the powerset of ST.
An abstract sub~ltution ~ over the program variables

xl, ..., X. is a triple (~rm, SV, t) where ~mn is a partial
function, sw is a total function, and J! is an element of an
%&domain to be specified.

Pattern Component The pattern component is defined as
in [19]. It associates with some of the indices in 1P a pattern

f}:,..., iq), where ~ is a function symbol of arity g and
,.. ,iq}clp.

We denote by FRMP the set of all partial functions frrn
for a fixed p and by FRM the union of all FRMP (p ~ 0).

The meaning of an element fmn is given by the concretizm
tion function Cc : FRMP + p(STP):

Cc(fm) = {< t,,tp>l Vi:l~i~p:
~rm(i) = f(il, iq) * ti= j’(til,...,tiq)}.

Same Value Component The second component as+ns a

subterm to each variable in the abstract substitution. Given

a set D of program variables and a set of indices 1~, this
component is a subjective function sw : D + Im. We denote

by SVD,~ the set of all same value functions for fixed D and
m and by SV the union of all sets SVD,m for any D and m.

The meaning of an element sv is given by a concretization
function Cc : SVD,~ + CSD that makes sure that two

variables sssigned to the same index have the same value:

Cc(sv) = {0 I dom(6) = D and V~ij Zj c D :

S’U(Zi) = 9W(Zj] * Z*O = Zj@}.

The Y&component The ?R-component of the generic domain

is an element of a domain !RP that gives information on a
tuple of terms < tl,. . . . tP >. These objects (i.e. the el-

ements of Y?P) are called Y?-tuples in the following. The
domain is assumed to satisfy the requirements of Defini-

tion 1. In the following, we denote by ?Rthe union of all 32P

(P z 0). The signature of the concretization function CC is
cc : Y?p + $9(STP).

The Y&domain should include a number of operations
which dMer from one framework to another. Conceptu-

ally, only three operations are needed: upper bound, uni-
fication, and constrained mapping. The first two, W-UNION

and WJ?JIF, are rather st audard and must be consistent
abstractions of the foIlowing concrete operations (0, @l and

@Z are sets of ptuples of terms):

Upper Bound: This operation takes the union of two sets
of t uples.

C-UNItlN(@l, @z) = % u @z.

Unification: This operation performs unification and needs

only consider two simple cases.8

C-UNIF(@, 9, j) = {(tla, L#Y) I

(t,,..., t??) e o & a e ?ngu(t,, tj)};
C-UNIF(@, 8, g/~) = {(t]a, %a, ~la, yPu) I

~: ‘;;;;ji;f;,:yp))&

yl, ..., YP me fresh v~iables}

The third operation, constrained mapping, is novel and
generalizes many operations such as projection, renaming,
and extension among others. It is motivated by one of the
fundamental difficulties encountered when designing the op

erations of Pat ($?): the fact that abstract substitutions may
have ditferent structures in the pattern component and that

equality constraints are enforced implicitly by repeated use

of the same index. As a consequence, it is non-trivial to
establish a correspondence between the elements of the re-

spective ~-components of two abstract substitutions and the
need for such a correspondence appears, in one form or an-

other, in many abstract operations such as UNION and INTER9

and the ordering relation on Pat (Y?). The constrained map
ping provides a uniform solution to this problem and simpli-
fies dramatically the implementation of many abstract op
erations.

Definition 15 (Constrained Mapping)

A constrained mapping on domain 3? maps any function

tr : lP, + lP, onto a function t# : !l?Pl + ?UP2. This
mapping has to satis~ the following conditions:

1. id~P (1) = 1, whew idlP is the identity function on lP.

‘The other caees come for free through Pat(R).
9~ntemection is ~~ed for e~~ple in reexecution fram=vOrkS (e.g.

[20]).

2.

3.

4.

Cc(t;* (/)) (co;sistenc~).

The intuition is as follows: an element of !J?Pis a con-

straint over the set of tuples of the form < tl,....tp>. A
function tr : 1P + Ip, contains two implicit pieces of infor-

mation: first, a set of equality constraints for terms whose
indices are mapped onto the same value by tT; second, it

ignores terms whose indices are not the image of some index
in lP. This intuition is formally captured by function tr#
which indicates how to transform an abstract object in !l?P
by removing superfluous terms md duplicating some others.

The ordering on domains must obviously be respected since

new equal terms are added in the same way to all elements of

the domain. The constrained mapping can be implemented

in a generic way in terms of simpler operations (see Figure 2)
demonstrating that this concept is indeed natural for many

domains. More specitic implementations are often simpler
and more efficient but they complicate somewhat the task
of the designer.

The Domain Pat (Y?) Let D be a finite set of variables. The

set of abstract substitutions Pat (k!) is the subset of FRh4 x

SV x $? satisfying the following conditions: 1) %, p 6
N,p~m&l E?Rp&sv ESVD,~ &f TmEFRMp;

2) Vi:m<i~p: Slj:l<j~p:jrm(j)= ~(..., i)...).

The C’oncrdization Function Formally, the meaning of an
abstract substitution /3 = (~rm, m, t) is given by the con-

cretization function Cc : Pat (3?) + 9(CSD) defined by

Cc(~) = { O I dom(0) = D &
a(tl,..., tp) G Cc(t) n Cc(jrm) :
Vz ~ D : X6= t+)}.

The Ordering It remains to define the ordering relation.

Consider two abstract substitutions ~1, P2, and assume in
the following that ~rm,, m;, 1, are the components of a sub-

stitution /3i, p, is the number of indices in the domains of

f rmi, and m, is the number of indices in the codomain of
10 Conceptuwy, ~1 < PZ holds if @l imposes the SameS’01 .

or more constraints on & components than /3z does, i.e. W

Cc(@l) ~ Cc(@z). The formalization of this intuition uses
the constrained mapping to establish the correspondence be-
tween the elements of the Pat (Y?) domains.

Definition 16 /31 ~ /32 ifl them exists a function tr : IP2 +
Ipl satisfying

1. t7’#(L) <s?p, /2;

2. Vz G D : svl(z) = tT(W2(Z));

9. Vi C IP2 ; .f9-rnz(i) = f(il, i,) + $*ml(-tr(i)) =

f(tr(il),. . . . tr(iq)).

Note that the above relation is only a preorder, since dis-
tinct elements (corresponding to permutations of indices)

may have the same concretization. Formally, the domain
should be defined as the quotient of Pat ($?) by this equiv-
alence relation (ss in the reduced domain construction). In
practice, it suffices to work with a canonicalform and hence

we will continue working on the abstract domain Pat (3?).

10The dom&n of ~v, is implicitly defined by the substitution.

234

We show generic implementation of the constraint mapping in terms of simpler operations on the domain 3?. These operations

can be provided by the designer instead of the constrained mapping and operations are required to be monotonic and consistent

abstractions of the following concrete operations:

Projection: This operation projects out of term tjand can be easily extended to sets of indices.

C-PROJ(Q, J = {<tl,...,tl,tj+l,l,tp>l<tl,<,tp...,tp>60}.

Renaming: This operation permutes some of the elements. Let r : 1P + 1P be a permutation of indices.

c-RR?J(@,r) = {<tr(,),...,tr(p)>l <tl,..., ~p>e@}.

Duplication: This operation duplicates an element.

C_ DUP(@, i) = {<to,...,tl,tp,t,>lt,>l <tl,...,ti,tP>C@}>C@}.

Given a sequence of indices (;1,..., i~), we define

C-DUP(@, (ii,... ,i~)) = C-DUP(C-DUP(@, ii), (ZZ,..., in)) (n z 1)
C-DUP(@, ()) = @

The generic implementation is defined as follows.

Implementation 1 The constmined mapping tr# of tr : lP, + Ipl can be dejined as follows. Let

PZ. = #tr(Ip,) where #A denotes the cardinality of a set A;
tr(IP2) = {ii,...,iP3} such thatil <. ..< iP3;

tT~ : IP2 + lP, such that

{

1) trlis a permutation;
2) tr(trl (j)) = ij for j C lp3;

tT2 : lP, + ~p3 such that tm(ij) = j for j’ G IP3

in

11 = !R-PRoJ(g lP, \ {il,..., &3 })

12 = ?R-DUP(/1, (tT2(tT(tTl (P3 + 1))), tT2(tT(tTl (P2))))

tT#(t) = 0MEN(Z2, tr:l).

As mentioned previously, the key idea is to project irrelevant terms and to introduce new terms and equality constraints to
obtain the new domain. Note that trlinthe implementation can be defined as follows.

v = {j I i~~p, kv~~~p, :tr(~)=tr(j)+i <~}
trl(j) = rnin{k I tr(k) = ij} ifj ~ ps

= kj-p, ifj>p3 wherekl <... <kP,_p~ & VU{kl,..., kPp3}=IP2P2.

Theorem 2 Implementation 1 of the constrained mapping is consistent.

Proof:

(t,,...,tp,) c cc(l)
(t,,,..., t,,,) G cc(k)

(ttr(tr,(l)), ttr(trl(p,)))c Wl)

(Gr(tr,(l)), . . . 2‘tr(trl(pg))> %r(trl(tr2(tr(trl (p3+l))))) ~. ..> %(tr, tr (tr(tri(p2)))))) c cc(~2)

Otr(trl(l)), %r(tr1(p9))> ~tr(trl(ps+l)), . ..> (!h trl(pa))) c cc 22
?$

b’wwm:;i ; ‘;:;r$~;jp’)))
) G Cc(tr (/))

(%(l),
❑

Figure 2: A Generic Implementation of the Constrained mapping

235

4.3 Implementation of the Abstract Operations

We now turn to the implementation of the Y?-domain op

erations. Space requirements preclude the presentation of

all operations and hence only operation UNION will be pre-
sented. Operation UNION illustrates well the process of build-

ing Pat (R) operations in terms of 3?-operations and the ben-

efit of the constrained mapping to overcome the difficulty
encountered for certain operations in presence of global do-

mains. The unification operation is described at length in
the technical report and follows more closely the traditional

implementation of the domain Patt ern[19, 23].

Specification 1 Let PI, P2 be two abstract subst~tut~ons SUCh
that dom(fh) = dorn(B2) = D. WNION(/&, /32) produces an
abstmct substitution ~ such that dom(i?) = D & PI, /32 5

P.

TO implement the function UNION(/%, @2) we need to build

the set of pairs (i, j) of indices that are in correspondence.

Let D be the domain of 91 and /32. we define the set E of
pairs in correspondence induced by the same value comp~
nent:

The remaining correspondences can be obtained from E and
the pattern component. We define the set F of all correspon-

dences aa the smallest set satisfying

1. (i, j)~E+(i, j)6F

The number of indices in the abstract substitution produced
by the UNION operation will be exactly the size of F, i.e. p =

#F, aa these are precisely the terms corresponding in both
abstract substitutions. Of course, the number of variables

n is the same in /3, ih, 92. We *O need a bijective function

tr:F + 1P to estabbh the relation between the old ~d
the new indices of the corresponding subterms. We denote

by trl:Ip+ Ip, and tn : 1P + lP, the functions mapping

elements of 1P to lP1 and lPZ respectively. trl (k) = ~ if there

exists (i, j) E F such that tr(i j) = k, ~d an~%ousb
trz(k) = j if there etits (i, j) 6 F such that tr(i) ~) = k

Implementation 2 The operation WION@, P2 J produces
an abstract substitution @ = (frm, w,/) defined as follows.

frm = {(tr(i, j), f(tr(il, jl),..., t~(in, jn))) I

(i, j)~F&
frml(i) = f(+,... ,i=) &

trm2(j) = f (~1,..., jn)}

1 = $J?-UNION(tr?(fl), tr$ (Z2))

Operation UNION is typical of many operations. It shows
that the initial computation is driven by the pattern and
the same-value components to determine how to apply the
W-operations. The various components are then deduced

independently. Note also the simplicity gained by the avail-
ability of the constrained mapping.

4.4 Applications

The simplest applications of Pat ($?) amount to upgrading

a single domain. Examples are the domain Pat (Prop) for
groundless analysis and the domain Pat (Type), upgrading

the rigid type graph of Bruynooghe and Janssens [16] for
type an~Ysis. pat (prop) produces perfectly ~curate re-

sults for our suite of benchmarks 1, improving on the domain
prop for programs mtipulattig difference lists. Note that it

is clear that an example losing accuracy can be constructed.
Pat (Type) is a very complex domain inferring automatic~y

recursive and disjunctive types. For instance, the analysis of
the block planning program from Sterling and Shapiro [26]

with Pat (Type) produces the following (optimal) grammar
describing the type of the planning result:

T1 ::= [] I cons(T2, Tl)

T2 ::= to.block (ground, ground, ground) I

to.table (ground, ground, groumd)

The advantages of using Pat (9?) are twofold: on the one
hand, Pat (W) factorizes sure structural information, keeping
the sises of the type graphs smaller; on the one hand, pag

takes care of all other information such as modes, same-
value, and sharing. Hence, the design of Type is simplified.

Another applications of Pat ($?) consists in having 3? as

an open product, combtig the two contributions of this

work. The domains Pat (OProp 8 OPS) and Pat (OProp 8

OPS @ Ol!ode), where O!!ode is a mode domain sssigning to

each subterms a mode from { var, ground, ngv, novar,
noground, gv, any } , have been built along these lines.

Finally, more advanced domains can be built by defining
3? as an open domain which can receive structural informa-

tion from the pattern component. Although most domains
will not need this information, a mode domain maintaining

information on all subterms may benefit from this interac-
tion. For 3? to be an open domain in this case, it is necessary
to generalize dighlty the open product such that its opera-

tions can be open operations as well. The domain OPat (Ops

@ 0140de), used to quantify the 10SSof efficiency of our aP-

proach, was defined using this approach.
Note also that for most of our benchmarks, the computa-

tion times are below 10 seconds, even for complex domains

such aa Pat (OProp @ OPS @ OHode) and Pat (Type).

5 Experimental Evaluation

In this section, we briefly describe experimental results to

indicate the practical interest of our approach. We de-

scribe the reduction in development effort, discuss respec-
tively open operations and refinements and aasess the over-

head of our approach. Only a small fraction of the available

results are given; see the techtical version of this paper for
complete tables. The results were obtained with GAIA [19],
all domains being implemented in C and the system being

run on a Sun SS30/10.

The Benchmarks The programs we use are hopefully rep-
resentative of “pure” logic programs (i.e. without the use

of dynamic predicates). They are taken from a number of

authors and used for various purposes from compiler writing
to equation-solvers, combinatorial problems, and theorem-

proving. Hence they should be representative of a large claas

11The bench~=k~ ~ available by SIIOnymCWJ ftp fmm Brown ‘di-

versity and are used by several research groups.

236

of programs. In order to accommodate the many built-ins
provided in Prolog implementations and not supported in

our current implement ation, some programs have been ex-
tended with some clauses achieving the effect of the built-ins.

Examples are the predicates to achieve input/output, meta-
predicates such as set of, bagof, arg, and f unct or. The

clauses containing assert and retract have been dropped

in the one program containing them (i.e. Syntax error han-

dling in the reader program).
The program kalah is a program which plays the game

of kalah. It is taken from [26] and implements an alpha-beta
search procedure. The program press is an equation-solver

program taken from [26] as well. We use two versions of
this program, pressl and press2, the ditTerence being that

press2 has a procedure call repeated in the body of a pro-
cedure. The program cs is a cutting-stock program taken

from [28]. It is a program used to generate a number of
configurations representing various ways of cutting a wood

board into small shelves. The program uses, in various ways,
the nondeterminiam of Prolog. We use two versions of the

program; one of them (i.e. c~l) assumes that the data are

ground while the other one (i.e. CS) assumes that the data

are ground lists. The program dk j is taken from [11] and

is the generate and test equivalent of a constraint program

used to solve a disjunctive scheduling problem. This is also

a program using the nondeterminism of Prolog. Once again,

we use two versions of the program with the same distinc-
tion sa for the cutting stock example. The program read is

the tokenieer and reader written by R. O’keefe and D.H.D.
Warren for Prolog. It is mairdy a deterministic program,
with mutually recursive procedures. The program pg is a

program written by W. Older to solve a specific mathemat-
ical problem. The program gabriel is the Browse program

taken from Gabriel benchmadrs. The program plan is a
planning program taken from Sterling & Shapiro. The pro-

gram queens is a simple program to solve the n-queens prob-
lem. peep is a program written by S. Debray to carry out

the peephole optimization in the SB-Prolog compiler. It is
a deterministic program. We also use the traditional con-

catenation and quickeort programs, say append (with input
modes (var, var ,ground)) and qsort (difference lists).

On the Development Effort We first give some ideaa about
the effort necessary to produce the sophisticated domain

OPAT (OProp@OHode@OPS). The overall implementation of the
system is 17,712 lines of C, split in 15,759 lines in . c tiles

(Programs) and 1,953 lines in .h files (data structure defifi-
tlons). The mode component requires 822 lines (785 + 37),

the sharing component requires 800 lines (761 + 39), and

the Prop component requires 1791 lines (1766 + 25). For

this application, only 19% of the overall code needs to be
supplied. Domain OPAT (OHodet30PS) needs only to produce

about 10% of the overall code. Its domain part (1622 lines)
produces a reduction of about 40% over the direct imple-
mentation (i.e. the domain Pattern [19]12) which requires

2657 lines (2463 + 194). As should be clear, our approach
reduces the development effort substantially. Note also that
the above figures do not account for the support in the de-
sign process, which allows designers to concentrate on one

domain at a time and to be liberated from structural infor-
mation.

12we ~hu~ have two i~plementations of the domain pattern: a ‘l-

rect one and one built using the techniques described in this paper.
These two versions will be compared later with respect to efficiency.

On the Importance of Open Operations We now investigate
the importance of open operations to find out whether re-

finement operations can recover the loss of information com-
ing from a direct product. The domain OPAT(OHode@OPS)

is used for the experimental results in its standard version

(denoted by S) and in a modified version (denoted IUJ) where

Oltode and UPS can only interact through the refinement op-

erations. The accuracy results demonstrate the importance

of open operations. As far as input patterns are concerned,
Nq loses in the average about 26% accuracy for modes, 81%

for freeness, 0.42% for groundless, and has 105% sharing
with respect to S. As far as output patterns axe consid-

ered, N(J exhibits substantially more sharing thau S (e.g. up
to 50 times more sharing on some of the larger programs).

Although they are appropriate to adjust groundless infor-
mation, refinement operations lose much precision for other

measures such as freeness, input modes, and sharing. In
these cases, refinements cannot recover the information lost

during the operations. The efficiency results show that S is
slightly more efficient than Nq in the average, demonstrat-

ing that open operations are particularly appropriate e. In

the average, Nq is 1.05 slower than S. Note that S is about

twice faster than Nq on one of the benchmmk programs.

On the Importance of Refinements We now investigate the

import ante of refinements in conjunction with open opera-

tions to find out whether open operations are sophkticated
enough to eliminate the need for refinements. We use the
domain OPAT(OFIode@OPS) for the experimented results in its
standard version (denoted by S) and in a modified version

(denoted NR) where no refinement operations are used. The
accuracy results are the same for the inputs and difer only

on sharing for the outputs. In this cue, NR produces about

230% of the sharing of S. This indicates that refinement op-

erations can improve substantially the sharing component
on the output patterns and seem to be useful in general, al-

though the gain seems much less dramatic than in the case of

open operations. More importantly perhaps, the efficiency

results indicate that NR is about 1.3 times slower in the av-
erage than S, indicating that refinement operations can also
improve efficiency by reducing the number of iterations.

On the Overhead of the Approach We turn to the overhead
of our approach in OPAT (OModet30PS) compared to a direct

implementation of our pattern domain [19]. Of course, both

domains have exactly the same accuracy. Our approach in-

troduces mainly three forms of overheads: (1) global opera-
tions: the generic pattern domain has provisions to accom-

modate global information on subterms which complicates
the operations when only local information is used as in

OPAT (OMode@OPS); (2) memor~ management: the approach
allocates and dezdlocates memory with a much smaller gran-

ularity because the domains are disconnected; (3) queries:
the query mechanism introduces an additional layer necee-
sary to combine the domain. The results indicate that the
direct implementation requires about 43% of the time of
standard version. This is an acceptable overhead given the
significant reduction in development time offered by the ap-

proach. However, the overhead should be interpreted with
care, since the implementation has not be tuned with the

same care as the direct implementation. In particular, the
overhead can be sigticwtly reduced by improving mem-
ory management, caching queries whenever appropriate, and
specializing the implement ation when the full generality is

237

not needed. This is obviously an important topic for further

resezuch.

6 Conclusion

The purpose of this paper was to tackle one of the most

important open problems in the design of static analysis

of logic programs: the building of abstract domains. This
problem is important, since logic program analyses are in
general quite sophisticated because of the need to integrate
various interdependent analyses and to maintain structural

information.
The paper introduced two new ideas: the notion of open

product and a generic pattern domain. The open product
enables the combination of domains where the components

interact through the notions of queries and open operations.
It provides a rich framework to build complex combina-

tions of domains, including the reduced product construc-
tion. The generic pattern domain upgrades automatically

a domain with structural information providing an (often
substantial) increase in accuracy at no additional cost in
design and implementation. Both contributions have been
validated theoretically and experimentally and the experi-

mental results showed the practical benefits of our approach.
Future work on the theory will focus on generalizing the

notion of open product in several directions. A promisi-

ng line of research amounts of viewing all operations as

coroutines communicating information whenever appropri-
ate. This may allow to view Pat (Y?) as a product although

the theoretical and practical consequences of this view are
still to be explored. On the practical side, fine-tuning the

implementation and a better environment for designers are
the first priorities.

7 Acknowledgments

Comments and suggestions from the reviewers helped im-
prove the presentation.

F&h-

[1]

[2]

[3]

[4]

A. Bossi, M. Gabbrielli, G Levi, and M-C. Meo. Con-

tribution to the Semantics of Open Logic Programs. In

Proc. of ht. Conf. on Fifth Generation Computer Sy.+
terns, Tokyo, June 1992.

M. Bruynooghe. A Practical Framework for the Ab-
stract Interpretation of Logic Programs. Journal of
Logic Programming, 10:91-124, 1991.

M. Codish, A. Mulkers, M. Bruynooghe, M. Garcia de
la Banda, and M. Hermenegildo. Improving Abstract

Interpretations by Combining Domains. In Proceed-
ings of the ACM Symposium on Partiat Evaluation and

Semantics-Based Progmm Manipulation (PEPM93),
Copenhagen, Denmark, June 1993.

A. Cortesi, G. Fi16, and W. Winsborough. Prop re-
visited: Propositional formdas as abstract domain for

groundless analysis. In Proc. Sixth Annual IEEE Sym-
posium on Logic in Computer Science (LICS’91), pages
322–327, 1991.

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

A. Cortesi, G. Fi16, and W. Winsborough. Compari-

son of Abstract Interpretations. In F%oc. 19th hterna-

tional; Colloquium on Automata, Languages and Pro-
gmmming (ICALP’92), 1992.

A. Cortesi, B. Le Charlier, and P. Van Hentenryck.

Conceptual and Software Support for Abstract Domsin

Design: Generic Structural Domain and Open Product.
Technical Report CS-93-13, CS Department, Brown

University, 1993.

P Cousot and R. Cousot. Abstract Interpretation: A

Unified Lattice Model for Static Analysis of Programs

by Construction or Approximation of Fixpoints. In

Conf. Record of Fourth ACM Symposium on Program-

ming Languages [POPL ‘77), pages 238-252, Los Ange-

les, CA, 1977.

P Cousot and R. Cousot. Systematic Design of Program

Analysis Frameworks. In Conf. Record of Sixth A Cikl
Symposium on Programming Languages (POPL ‘79),

pages 269–282, San Antonio, Tx, 1979.

P. Cousot and R. Cousot. Abstract Interpretation and
Application to Logic Programs. Journal of Logic Pro-

gramming, 13(2-3), 1992.

S. Debray. Efficient Dat aflow Analysis of Logic Pro-

grams. ,7A CM, 39(4):949-984, 1992.

M. Dincbas, H. Simonis, and P. Van Hentenryck. Solv-

ing Large Combinatorial Problems in Logic Program-
ming. Journal of Logic Progmmming, 8(1-2):75-93,

1990.

V. Englebert, B. Le Charlier, D. Roland, and
P. Van Hentenryck. Genetic Abstract Interpretation
Algorithms for Prolog: Two Optimization Techniques

and Their Experimental Evaluation. Software Practice
and Experience, 23(4), April 1993.

R. Giacobazzi, S. Debray, and G. Levi. A Generalized
Semantics for Constraint Logic Programs. In FGCS’92,

Tokyo, June 1992.

N. Heintze and J. Ja.far. An Engine for Logic Program

Analysis. In IEEE 7th Annual Symposium on Logic in
Computer Science, 1992.

M. Hermenegildo, R. Warren, and S. Debray. Global
Flow Analysis as a Practical Compilation Tool. Journal

of Logic Programming, 13(4):349–367, 1992.

G. Janssens and M. Bruynooghe. Deriving Descr@-
tion of Possible Values of Program Variables by Means

of Abstract Interpretation. .Tournai of Logic Program-
ming, 13(2-3):205–258, 1992.

T. Kanamori and T. Kawamura. Analysing Success

Patterns of Logic Programs by Abstract Hybrid Inter-
pretation. Technical report, ICOT, 1987.

B. Le CharIier, K. Musumbu, and P. Van Henten-
ryck. A Generic Abstract Interpretation Algorithm
and Its Complexity Analysis (Extended Abstract). In
Eighth International Conference on Logic Programming

(ICLP-91), Paris (France), June 1991.

238

[19] B. Le Charlier and P. Van Hentenryck. Experimen-

tal Evaluation of a Generic Abstract Interpretation

Algorithm for Prolog. ACM Tmnsactions on Pro-

gmmming Languages and Systems. To appear. An

extended abstract appeared in the Proceedings of

Fourth IEEE International Conference on Computer

Languages (ICCL’92), San Francisco, CA, April 1992.

[20] B. Le Charlier and P. Van Hentenryck. Reexecution

in Abstract Interpretation of Prolog. In Proceedings

of the International Joint Conference and Symposium
on Logic Progmmming (JICSLP-92), Washington, DC,

November 1992.

[21] B. Le Charlier and P. Van Hentenryck. Groundless
Analysis for Prolog: Implementation and Evaluation

of the Domain Prop. In Proceedings of the ACM
Sgmposium on Partial Evaluation and Semantics-Based

Progmm Manipulation (PEPM93), Copenhagen, Den-

mark, June 1993.

[22] K. Marriott and H. Sondergaard. Abstract Interpre-
tation of Logic Programs: the Denotational Approach,

June 1990. To appear in ACM Transaction on Pro-
gramming Languages.

[23] K. Musumbu. Interpretation Abstmite de Programmed
Prolog. PhD thesis, University of Namur (Belgium),
September 1990.

[24] A. Mycroft. Completeness and Predicate-Bsaed Ab-
stract Interpretation. In Proceedings of the ACM Sym-

posium on Partial Evaluation and Semantics-Based

Program Manipulation (PEPM93), Copenhagen, Den-

mark, June 1993.

[25] F. Nielson. Tensor Product Generalise the Relational
Data Flow Analysis Method. In Proceedings of the
Fourth Hungarian Computer Science Conference, 1985.

[26] L. Sterling and E. Shapiro. The Art of Prolog: Advanced
Progmmming Techniques. MIT Press, Cambridge, Ma,

1986.

[27] A. Taylor. LIPS on MIPS: Results From a Prolog Com-

piler for a RISC. In Seventh International Conference
on Logic Programming (ICLP-90), Jerusalem, Israel,

June 1990.

[28] P. Van Hentenryck. Constmint Satisfaction in Logic

Progmmming. Logic Programming Series, The MIT
Press, Cambridge, MA, 1989.

[29] P. Vim Roy and A. Despain. High-Performance Com-
puting with the Aquarius Compiler. IEEE Computer,

25(l), January 1992.

239

